Logo Logo
Hilfe
Kontakt
Switch language to English
Molecular mechanisms and biomarkers of familial FTD/ALS
Molecular mechanisms and biomarkers of familial FTD/ALS
This thesis investigates protein-mediated pathomechanisms and biomarkers in two familial forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in cell culture and patient material. I focused on the ubiquitin-proteasome system (UPS), spreading-mechanisms and mitochondrial dysfunction. The most frequent genetic cause of FTD and ALS is a GGGGCC-repeat expansion mutation in the intronic region of C9orf72. Patients harbor hundreds of repeats that are bi-directionally transcribed. Repeat-containing transcripts form nuclear RNA foci and are unconventionally translated in all reading frames into five dipeptide repeat (DPR) proteins (poly-GA, poly-GP, poly-GR, poly-PA and poly-PR). These DPR proteins coaggregate specifically in C9orf72 patient brains, but their pathogenic nature is still under intense debate. In C9orf72 FTD/ALS and other neurodegenerative diseases, dysfunction of the UPS has been discussed as cause or consequence of protein aggregation. To gain deeper insights into the ultrastructure of poly-GA aggregates, we conducted cryo-electron tomography in primary neurons. We found that poly-GA aggregates consist of densely packed twisted ribbons immobilizing numerous 26S proteasomes that are stalled in a rare transition state indicating an unsuccessful degradation attempt. I validated the colocalization of the proteasome with poly-GA and confirmed sequestration of the proteasome by biochemical fractionation. Altogether these results indicate that proteasomes are trapped in poly-GA aggregates and inhibit the UPS (Publication II). Cell-to-cell transmission of intracellular protein aggregates is emerging as a common feature in neurodegenerative diseases. As part of a study on transmission of DPR protein, I conducted co-culture experiments in primary neurons revealing that poly-GA is released and taken up by other neurons. Unexpectedly, I observed that overexpression of poly GA also induced RNA foci formation in C9orf72 fibroblasts suggesting a transcriptional feedback mechanism. Together these data suggest cell-to-cell transmission of poly-GA causes non-cell autonomous effects in C9orf72 FTD/ALS (Publication IV). Despite ample evidence for DPR protein toxicity in cellular and animal models, the lack of correlation between DPR protein expression and neurodegeneration in end-stage tissue have cast doubt on the relevance of DPR proteins for C9orf72 pathogenesis. To study the temporal course of DPR expression in C9orf72 FTD/ALS, I established a novel poly-GP immunoassay using monoclonal antibodies. In a cross-sectional study in the CSF from C9orf72 mutation carrier poly-GP was clearly detected, compared to controls with other neurodegenerative diseases or healthy individuals. Interestingly, poly-GP detection in a clinical AD case and subsequent genetic testing identified a misdiagnosed C9orf72 case, demonstrating the clinical utility of this immunoassay. Importantly, I detected similar poly-GP levels in symptomatic and asymptomatic C9orf72 mutation carriers, suggesting chronic DPR expression in the prodromal stage may trigger subsequent steps in a disease cascade, e.g. by chronic overloading of the UPS, and non-cell autonomous effects through cell-to-cell transmission (Publication III). While DPR proteins have also been linked to mitochondrial dysfunction, mutations in the mitochondrial protein CHCHD10 are so far the strongest evidence for a causal role of this pathomechanism in FTD/ALS. However, most CHCHD10 mutations described in FTD/ALS patients are associated with late disease onset and slow progression. Incomplete penetrance has raised concerns by some geneticists about the pathogenicity. Moreover, the molecular mechanisms of known CHCHD10 mutations are unclear. Here, we identified a novel mutation in CHCHD10 (Q108P) in a 29-year old ALS patient with very aggressive disease progression. Q108P is located in the CHCH domain and affects a highly conserved residue. I discovered that Q108P blocked mitochondrial import nearly completely resulting in decreased protein stability and diffuse cytoplasmic localization in vitro. I analyzed all CHCH10 variants reported in FTD/ALS patients and discovered that another mutation in the CHCH domain (C122R) disrupted mitochondrial localization as well. In contrast, other mutations (G66V and E127K) showed normal mitochondrial import but resulted in mitochondrial clustering. Thus, both loss-of-function and toxic gain-of-function mechanisms might contribute to pathogenesis in CHCHD10 FTD/ALS. Truncation experiments show that the CHCH domain is critical for import, but not the N-terminal sequence, which has been commonly referred to as a mitochondrial import signal. For other CHCH containing proteins a Mia40-depependent formation of disulfide bonds is critical for mitochondrial import. Using knockdown experiments in HeLa cells, I showed that Mia40 mediates mitochondrial import of CHCHD10. Strikingly, Mia40 overexpression fully rescued mitochondrial import of CHCHD10 Q108P by enhancing disulfide-bond formation and protein stability. Reduced mRNA and protein levels in lymphoblasts froma FTD patient, carrying a Q108stop mutation, further support a loss-of-function mechanism. Interestingly, I also found reduced spare respiratory capacity in the patient Q108stop lymphoblasts and CHCHD10 knockdown cells suggesting that mitochondrial dysfunction can contribute to FTD/ALS pathogenesis. The discovery of a novel CHCHD10 mutation with a clear pathomechanism strongly supports CHCHD10 as a bona-fide ALS gene. Enhancing Mia40 activity to boost CHCHD10 import and stability may be a new treatment strategy for this subtype of ALS/FTD (Publication I). Together, my data show that diverse mechanisms such as chronic impairment of mitochondria or the proteasome, and cell-to-cell transmission of aggregating proteins contribute to the development of FTD/ALS. Furthermore, poly-GP is a suitable biomarker for C9orf72 FTD/ALS diagnosis and/or monitoring of clinical trials., Diese Arbeit beschäftigt sich mit Biomakern und Pathomechanismen in zwei familiären Formen der Frontotemporalen Demenz (FTD) und der Amyotrophen Lateralsklerose (ALS). Hierbei fokusierte ich mich insbesondere auf das Ubiquitin-Proteasom-System (UPS), interzellulärer Übertragung von Protein-Aggregaten und mitochondrialer Dysfunktion. Die häufigste genetische Ursache von FTD und ALS ist eine massive Verlängerung einer sonst kurzen (GGGGCC)n Sequenz in der Intronregion von C9orf72. Patienten haben hunderte von GGGGCC-Wiederholungen, die bidirektional transkribiert werden. Beide Repeat-Transkripte bilden RNA-Foci im Zellkern und werden auf unkonventionelle Weise in allen Leserahmen in fünf Dipeptid-Repeat (DPR)-Proteine (Poly-GA, Poly-GP, Poly-GR, Poly-PA und Poly-PR) translatiert, die im Gehirn von C9orf72 Patienten co-aggregieren. Sowohl in C9orf72 FTD/ALS als auch in anderen neurodegenerativen Erkrankungen wird eine Dysfunktion des Ubiquitin-Proteasom-Systems (UPS) als Ursache oder Folge von Proteinaggregation diskutiert. Um die Ultrastruktur der Poly-GA-Aggregate zu untersuchen, führten wir Kryoelektronentomographie in primären Neuronen durch. Dabei fanden wir, dass Poly-GA-Aggregate aus dicht gepackten “twisted ribbons“ bestehen, an die zahlreiche 26S-Proteasomen binden. Dabei wird das 26S-Proteasom in einem seltenen Übergangszustand blockiert, was auf eine gestörte Degradation hinweist. Ich konnte die Kolokalisation von Poly-GA mit dem Proteasom in Zellkultur bestätigten und mit biochemischer Fraktionierung die Sequestrierung des Proteasoms zeigen. Zusammengefasst zeigen diese Ergebnisse, dass Proteasomen in Poly-GA-Aggregaten eingeschlossen und inaktiviert werden und so das zelluläre UPS gestört wird (Publikation II). Die interzelluläre Übertragung von intrazellulären Proteinaggregaten scheint ein gemeinsames Merkmal von neurodegenerativen Erkrankungen zu sein. Im Rahmen einer größeren Studie zur Übertragung von DPR-Proteinen konnte ich in Ko-Kultur Experimenten die Transmission von Poly-GA zwischen primären Neuronen nachweisen. Überraschenderweise induzierte die Überexpression von Poly-GA zudem die RNA-Foci Bildung in C9orf72-Fibroblasten, was auf eine positive Rückkopplung der Transkription schließen lässt. Die Übertragung von Poly-GA kann somit nicht-zellautonome Effekte in C9orf72 FTD/ALS auslösen (Publikation IV). Trotz der Toxizität von DPR-Proteinen in verschiedenen Zellkultur- und Tiermodellen, stellt die fehlende Korrelation der DPR-Protein Verteilung in humanem post-mortem Gewebe mit Neurodegeneration ihre kausale Rolle in Frage. Um diesen Widerspruch aufzulösen, wollte ich den zeitlichen Verlauf der DPR-Expression in C9orf72 Patienten detektieren. Dazu entwickelte ich einen neuartigen Poly-GP-Immunoassay mit monoklonalen Antikörpern und untersuchte damit in einer Querschnittsstudie Liquor von C9orf72-Mutationsträgern. Hier konnte ich Poly-GP, im Vergleich zu gesunden Kontrollen oder Patienten mit anderen neurodegenerativen Erkrankungen, selektiv bei Mutationsträgern nachweisen. Außerdem detektierte ich Poly-GP in einem klinischen Alzheimer Patienten, bei dem ein anschließender Gentest die C9orf72 Mutation bestätigen konnte. Dies belegt den klinischen Nutzen des neuen Poly-GP Immunoassays. Erstaunlicherweise, waren die Poly-GP Mengen bei symptomatischen und asymptomatischen C9orf72-Mutationsträgern nahezu identisch. Dies deutet darauf hin, dass die DPR-Proteine wahrscheinlich bereits im Prodromalstadium den Krankheitsverlauf initieren, indem sie das UPS überlasten und nicht-zellautonome Effekte auslösen (Publikation III). DPR-Proteine werden zwar mit mitochondrialer Dysfunktion in Verbindung gebracht, allerdings sind Mutationen im mitochondrialen Protein CHCHD10 bisher der stärkste Beweis für eine kausale Rolle dieses Pathomechanismus bei FTD/ALS. Die langsame Progression und unvollständige Penetranz von CHCHD10-Mutationen hatten jedoch zu heftigen Debatten geführt. Darüber hinaus sind die molekularen Mechanismen der bisher bekannten CHCHD10 Mutationen unklar. In dieser Arbeit charakterisierte ich eine neue Mutation in CHCHD10 (Q108P), die bei einem 29 Jahre alten ALS-Patienten mit sehr aggressiver Krankheitsprogression identifiziert wurde. Q108P befindet sich in der CHCH-Domäne und betrifft eine hoch konservierte Aminosäure. Meine in vitro Experimente zeigen, dass Q108P den mitochondrialen Import fast vollständig blockiert, was zu einer verringerten Proteinstabilität und einer diffusen zytoplasmatischen Lokalisierung führt. Zusätzlich analysierte ich alle bisher in FTD/ALS Patienten beschriebenen CHCHD10-Varianten und entdeckte, dass eine weitere Mutation in der CHCH-Domäne (C122R) auch zu zytoplasmatischer Mislokalisierung führt. Einige Mutationen (G66V und E127K) zeigten normalen mitochondrialen Import, führten jedoch zu mitochondrialer Cluster-Bildung. Somit können CHCHD10-Mutationen zu einem Funktionsverlust als auch zu einer toxischen Fehlfunktion des Proteins führen. CHCHD10 Trunkationen zeigten, dass die CHCH-Domäne für den mitochondrialen Import wichtig ist, und nicht die N-terminale Sequenz, welche bisher als mitochondriales Importsignal postuliert wurde. Entscheidend für den mitochondrialen Import vieler CHCH-Proteine ist eine Mia40-abhängige Bildung von Disulfidbrücken. Mit Hilfe von Knockdown-Experimenten konnte ich in HeLa-Zellen belegen, dass Mia40 auch den mitochondrialen Import von CHCHD10 vermittelt. Durch Überexpression von Mia40 konnte der mitochondrialen Import von CHCHD10 Q108P aufgrund verstärkter Bildung von Disulfidbindungen wiederhergestellt werden. Reduzierte mRNA- und Proteinexpression in Patientenlymphoblasten mit Q108stop-Mutation deuten zusätzlich auf Haploinsuffizienz hin. Tatsächlich fand ich eine reduzierte Reserve-Atemkapazität in den Q108stop-Lymphoblasten und in CHCHD10-Knockdown-Zellen. Dies bestätigt, dass mitochondriale Dysfunktion wahrscheinlich zur FTD/ALS-Pathogenese beiträgt. Die Entdeckung einer neuartigen CHCHD10-Mutation mit klarem Pathomechanismus unterstützt CHCHD10 als bona fide ALS-Gen. Ein möglicher neuer Therapieansatz für diesen FTD/ALS Subtypen wäre eine Steigerung der Mia40-Aktivität wodurch der CHCHD10-Import und dessen Stabilität erhöht wird (Publikation I). Zusammengefasst zeigen meine Daten, dass verschiedene Mechanismen wie chronische Beeinträchtigung der Mitochondrien oder des Proteasoms und die Übertragung von Aggregaten zwischen Zellen zur Entwicklung von FTD/ALS beitragen. Darüber hinaus ist Poly-GP ein geeigneter Biomarker für die C9orf72 FTD/ALS Diagnose und die Überwachung klinischer Therapiestudien.
Not available
Lehmer, Carina
2018
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Lehmer, Carina (2018): Molecular mechanisms and biomarkers of familial FTD/ALS. Dissertation, LMU München: Medizinische Fakultät
[thumbnail of Lehmer_Carina.pdf]
Vorschau
PDF
Lehmer_Carina.pdf

17MB

Abstract

This thesis investigates protein-mediated pathomechanisms and biomarkers in two familial forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in cell culture and patient material. I focused on the ubiquitin-proteasome system (UPS), spreading-mechanisms and mitochondrial dysfunction. The most frequent genetic cause of FTD and ALS is a GGGGCC-repeat expansion mutation in the intronic region of C9orf72. Patients harbor hundreds of repeats that are bi-directionally transcribed. Repeat-containing transcripts form nuclear RNA foci and are unconventionally translated in all reading frames into five dipeptide repeat (DPR) proteins (poly-GA, poly-GP, poly-GR, poly-PA and poly-PR). These DPR proteins coaggregate specifically in C9orf72 patient brains, but their pathogenic nature is still under intense debate. In C9orf72 FTD/ALS and other neurodegenerative diseases, dysfunction of the UPS has been discussed as cause or consequence of protein aggregation. To gain deeper insights into the ultrastructure of poly-GA aggregates, we conducted cryo-electron tomography in primary neurons. We found that poly-GA aggregates consist of densely packed twisted ribbons immobilizing numerous 26S proteasomes that are stalled in a rare transition state indicating an unsuccessful degradation attempt. I validated the colocalization of the proteasome with poly-GA and confirmed sequestration of the proteasome by biochemical fractionation. Altogether these results indicate that proteasomes are trapped in poly-GA aggregates and inhibit the UPS (Publication II). Cell-to-cell transmission of intracellular protein aggregates is emerging as a common feature in neurodegenerative diseases. As part of a study on transmission of DPR protein, I conducted co-culture experiments in primary neurons revealing that poly-GA is released and taken up by other neurons. Unexpectedly, I observed that overexpression of poly GA also induced RNA foci formation in C9orf72 fibroblasts suggesting a transcriptional feedback mechanism. Together these data suggest cell-to-cell transmission of poly-GA causes non-cell autonomous effects in C9orf72 FTD/ALS (Publication IV). Despite ample evidence for DPR protein toxicity in cellular and animal models, the lack of correlation between DPR protein expression and neurodegeneration in end-stage tissue have cast doubt on the relevance of DPR proteins for C9orf72 pathogenesis. To study the temporal course of DPR expression in C9orf72 FTD/ALS, I established a novel poly-GP immunoassay using monoclonal antibodies. In a cross-sectional study in the CSF from C9orf72 mutation carrier poly-GP was clearly detected, compared to controls with other neurodegenerative diseases or healthy individuals. Interestingly, poly-GP detection in a clinical AD case and subsequent genetic testing identified a misdiagnosed C9orf72 case, demonstrating the clinical utility of this immunoassay. Importantly, I detected similar poly-GP levels in symptomatic and asymptomatic C9orf72 mutation carriers, suggesting chronic DPR expression in the prodromal stage may trigger subsequent steps in a disease cascade, e.g. by chronic overloading of the UPS, and non-cell autonomous effects through cell-to-cell transmission (Publication III). While DPR proteins have also been linked to mitochondrial dysfunction, mutations in the mitochondrial protein CHCHD10 are so far the strongest evidence for a causal role of this pathomechanism in FTD/ALS. However, most CHCHD10 mutations described in FTD/ALS patients are associated with late disease onset and slow progression. Incomplete penetrance has raised concerns by some geneticists about the pathogenicity. Moreover, the molecular mechanisms of known CHCHD10 mutations are unclear. Here, we identified a novel mutation in CHCHD10 (Q108P) in a 29-year old ALS patient with very aggressive disease progression. Q108P is located in the CHCH domain and affects a highly conserved residue. I discovered that Q108P blocked mitochondrial import nearly completely resulting in decreased protein stability and diffuse cytoplasmic localization in vitro. I analyzed all CHCH10 variants reported in FTD/ALS patients and discovered that another mutation in the CHCH domain (C122R) disrupted mitochondrial localization as well. In contrast, other mutations (G66V and E127K) showed normal mitochondrial import but resulted in mitochondrial clustering. Thus, both loss-of-function and toxic gain-of-function mechanisms might contribute to pathogenesis in CHCHD10 FTD/ALS. Truncation experiments show that the CHCH domain is critical for import, but not the N-terminal sequence, which has been commonly referred to as a mitochondrial import signal. For other CHCH containing proteins a Mia40-depependent formation of disulfide bonds is critical for mitochondrial import. Using knockdown experiments in HeLa cells, I showed that Mia40 mediates mitochondrial import of CHCHD10. Strikingly, Mia40 overexpression fully rescued mitochondrial import of CHCHD10 Q108P by enhancing disulfide-bond formation and protein stability. Reduced mRNA and protein levels in lymphoblasts froma FTD patient, carrying a Q108stop mutation, further support a loss-of-function mechanism. Interestingly, I also found reduced spare respiratory capacity in the patient Q108stop lymphoblasts and CHCHD10 knockdown cells suggesting that mitochondrial dysfunction can contribute to FTD/ALS pathogenesis. The discovery of a novel CHCHD10 mutation with a clear pathomechanism strongly supports CHCHD10 as a bona-fide ALS gene. Enhancing Mia40 activity to boost CHCHD10 import and stability may be a new treatment strategy for this subtype of ALS/FTD (Publication I). Together, my data show that diverse mechanisms such as chronic impairment of mitochondria or the proteasome, and cell-to-cell transmission of aggregating proteins contribute to the development of FTD/ALS. Furthermore, poly-GP is a suitable biomarker for C9orf72 FTD/ALS diagnosis and/or monitoring of clinical trials.

Abstract

Diese Arbeit beschäftigt sich mit Biomakern und Pathomechanismen in zwei familiären Formen der Frontotemporalen Demenz (FTD) und der Amyotrophen Lateralsklerose (ALS). Hierbei fokusierte ich mich insbesondere auf das Ubiquitin-Proteasom-System (UPS), interzellulärer Übertragung von Protein-Aggregaten und mitochondrialer Dysfunktion. Die häufigste genetische Ursache von FTD und ALS ist eine massive Verlängerung einer sonst kurzen (GGGGCC)n Sequenz in der Intronregion von C9orf72. Patienten haben hunderte von GGGGCC-Wiederholungen, die bidirektional transkribiert werden. Beide Repeat-Transkripte bilden RNA-Foci im Zellkern und werden auf unkonventionelle Weise in allen Leserahmen in fünf Dipeptid-Repeat (DPR)-Proteine (Poly-GA, Poly-GP, Poly-GR, Poly-PA und Poly-PR) translatiert, die im Gehirn von C9orf72 Patienten co-aggregieren. Sowohl in C9orf72 FTD/ALS als auch in anderen neurodegenerativen Erkrankungen wird eine Dysfunktion des Ubiquitin-Proteasom-Systems (UPS) als Ursache oder Folge von Proteinaggregation diskutiert. Um die Ultrastruktur der Poly-GA-Aggregate zu untersuchen, führten wir Kryoelektronentomographie in primären Neuronen durch. Dabei fanden wir, dass Poly-GA-Aggregate aus dicht gepackten “twisted ribbons“ bestehen, an die zahlreiche 26S-Proteasomen binden. Dabei wird das 26S-Proteasom in einem seltenen Übergangszustand blockiert, was auf eine gestörte Degradation hinweist. Ich konnte die Kolokalisation von Poly-GA mit dem Proteasom in Zellkultur bestätigten und mit biochemischer Fraktionierung die Sequestrierung des Proteasoms zeigen. Zusammengefasst zeigen diese Ergebnisse, dass Proteasomen in Poly-GA-Aggregaten eingeschlossen und inaktiviert werden und so das zelluläre UPS gestört wird (Publikation II). Die interzelluläre Übertragung von intrazellulären Proteinaggregaten scheint ein gemeinsames Merkmal von neurodegenerativen Erkrankungen zu sein. Im Rahmen einer größeren Studie zur Übertragung von DPR-Proteinen konnte ich in Ko-Kultur Experimenten die Transmission von Poly-GA zwischen primären Neuronen nachweisen. Überraschenderweise induzierte die Überexpression von Poly-GA zudem die RNA-Foci Bildung in C9orf72-Fibroblasten, was auf eine positive Rückkopplung der Transkription schließen lässt. Die Übertragung von Poly-GA kann somit nicht-zellautonome Effekte in C9orf72 FTD/ALS auslösen (Publikation IV). Trotz der Toxizität von DPR-Proteinen in verschiedenen Zellkultur- und Tiermodellen, stellt die fehlende Korrelation der DPR-Protein Verteilung in humanem post-mortem Gewebe mit Neurodegeneration ihre kausale Rolle in Frage. Um diesen Widerspruch aufzulösen, wollte ich den zeitlichen Verlauf der DPR-Expression in C9orf72 Patienten detektieren. Dazu entwickelte ich einen neuartigen Poly-GP-Immunoassay mit monoklonalen Antikörpern und untersuchte damit in einer Querschnittsstudie Liquor von C9orf72-Mutationsträgern. Hier konnte ich Poly-GP, im Vergleich zu gesunden Kontrollen oder Patienten mit anderen neurodegenerativen Erkrankungen, selektiv bei Mutationsträgern nachweisen. Außerdem detektierte ich Poly-GP in einem klinischen Alzheimer Patienten, bei dem ein anschließender Gentest die C9orf72 Mutation bestätigen konnte. Dies belegt den klinischen Nutzen des neuen Poly-GP Immunoassays. Erstaunlicherweise, waren die Poly-GP Mengen bei symptomatischen und asymptomatischen C9orf72-Mutationsträgern nahezu identisch. Dies deutet darauf hin, dass die DPR-Proteine wahrscheinlich bereits im Prodromalstadium den Krankheitsverlauf initieren, indem sie das UPS überlasten und nicht-zellautonome Effekte auslösen (Publikation III). DPR-Proteine werden zwar mit mitochondrialer Dysfunktion in Verbindung gebracht, allerdings sind Mutationen im mitochondrialen Protein CHCHD10 bisher der stärkste Beweis für eine kausale Rolle dieses Pathomechanismus bei FTD/ALS. Die langsame Progression und unvollständige Penetranz von CHCHD10-Mutationen hatten jedoch zu heftigen Debatten geführt. Darüber hinaus sind die molekularen Mechanismen der bisher bekannten CHCHD10 Mutationen unklar. In dieser Arbeit charakterisierte ich eine neue Mutation in CHCHD10 (Q108P), die bei einem 29 Jahre alten ALS-Patienten mit sehr aggressiver Krankheitsprogression identifiziert wurde. Q108P befindet sich in der CHCH-Domäne und betrifft eine hoch konservierte Aminosäure. Meine in vitro Experimente zeigen, dass Q108P den mitochondrialen Import fast vollständig blockiert, was zu einer verringerten Proteinstabilität und einer diffusen zytoplasmatischen Lokalisierung führt. Zusätzlich analysierte ich alle bisher in FTD/ALS Patienten beschriebenen CHCHD10-Varianten und entdeckte, dass eine weitere Mutation in der CHCH-Domäne (C122R) auch zu zytoplasmatischer Mislokalisierung führt. Einige Mutationen (G66V und E127K) zeigten normalen mitochondrialen Import, führten jedoch zu mitochondrialer Cluster-Bildung. Somit können CHCHD10-Mutationen zu einem Funktionsverlust als auch zu einer toxischen Fehlfunktion des Proteins führen. CHCHD10 Trunkationen zeigten, dass die CHCH-Domäne für den mitochondrialen Import wichtig ist, und nicht die N-terminale Sequenz, welche bisher als mitochondriales Importsignal postuliert wurde. Entscheidend für den mitochondrialen Import vieler CHCH-Proteine ist eine Mia40-abhängige Bildung von Disulfidbrücken. Mit Hilfe von Knockdown-Experimenten konnte ich in HeLa-Zellen belegen, dass Mia40 auch den mitochondrialen Import von CHCHD10 vermittelt. Durch Überexpression von Mia40 konnte der mitochondrialen Import von CHCHD10 Q108P aufgrund verstärkter Bildung von Disulfidbindungen wiederhergestellt werden. Reduzierte mRNA- und Proteinexpression in Patientenlymphoblasten mit Q108stop-Mutation deuten zusätzlich auf Haploinsuffizienz hin. Tatsächlich fand ich eine reduzierte Reserve-Atemkapazität in den Q108stop-Lymphoblasten und in CHCHD10-Knockdown-Zellen. Dies bestätigt, dass mitochondriale Dysfunktion wahrscheinlich zur FTD/ALS-Pathogenese beiträgt. Die Entdeckung einer neuartigen CHCHD10-Mutation mit klarem Pathomechanismus unterstützt CHCHD10 als bona fide ALS-Gen. Ein möglicher neuer Therapieansatz für diesen FTD/ALS Subtypen wäre eine Steigerung der Mia40-Aktivität wodurch der CHCHD10-Import und dessen Stabilität erhöht wird (Publikation I). Zusammengefasst zeigen meine Daten, dass verschiedene Mechanismen wie chronische Beeinträchtigung der Mitochondrien oder des Proteasoms und die Übertragung von Aggregaten zwischen Zellen zur Entwicklung von FTD/ALS beitragen. Darüber hinaus ist Poly-GP ein geeigneter Biomarker für die C9orf72 FTD/ALS Diagnose und die Überwachung klinischer Therapiestudien.