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I. Introduction 

1. Frontotemporal Dementia and Amyotrophic Lateral Sclerosis  

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two severe 

neurodegenerative disorders without cure and with very limited treatment options (Tsai and 

Boxer, 2016). FTD is one of the major causes of early-onset dementia and the third most 

common form of dementia in all age groups worldwide (Bang et al., 2015; Vieira et al., 2013). 

ALS is the most common form of motor neuron diseases (MND). Both FTD and ALS have 

overlapping clinical, pathological and genetic features and therefore are often referred to as the 

extreme ends of a disease spectrum with multisystem degeneration (Ferrari et al., 2011). 

1.1. Clinical, genetic and neuropathological features of FTD, ALS and FTD/ALS 

1.1.1. Clinical features of FTD 

In 1892, FTD was described for the first time by the Czech neuropsychiatrist Arnold Pick in a 

71-year-old man with cognitive defects and aggressive behavior, but normal motor function. 

Autopsy revealed severe brain atrophy in the left hemisphere (Berrios and Girling, 1994). 

Approximately 5-15% of all dementia cases suffer from FTD. Predominantly, presenile 

individuals (< 65 years) are affected by FTD and the disease duration is typically 6-12 years 

(Kansal et al., 2016; Rademakers et al., 2012). The diagnosis of FTD is mainly done by clinical 

assessment and neuroimaging techniques. Atrophy of the frontal lobes can be visualized using 

magnetic resonance imaging (MRI) and computer tomography. Furthermore, changes in brain 

activity can be assessed by measuring glucose metabolism by positron emission tomography 

(PET) (Rascovsky et al., 2011).  

Depending on symptoms, FTD is further classified into different clinical subgroups: Behavioral 

variant frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA), which is 

subdivided into semantic dementia (SD) and progressive non-fluent aphasia (PNFA). Although, 

these syndromes often overlap, a particular feature is usually dominant (Bang et al., 2015; 

Ferrari et al., 2011). Among these variants, bvFTD is the most common form and is mainly 

characterized by cognitive impairment and behavior problems, e.g. changes in personal and 

social conduct, disinhibition, apathy, loss of sympathy or empathy. These symptoms originate 

from degeneration of the frontal lobe (Bang et al., 2015; Hogan et al., 2016; Rosen et al., 2002). 

PPA-patients often present progressive and insidious language impairment interfering with their 

daily life. The two main criteria for SD are anomia and single word comprehension deficits 

caused by degeneration of the anterior lobe. In contrast, atrophy in the left posterior frontal and 
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insular region is predominantly present in PNFA patients who suffer from agrammatism as well 

as hesitant and nonfluent speech (Bang et al., 2015; Gorno-Tempini et al., 2011). 

In later stages, FTD symptoms of the three clinical syndromes often converge, affecting large 

regions in the frontal and temporal lobes and leading to globally impaired cognitive and motor 

deficits. Patients usually die due to pneumonia or other secondary infections (Bang et al., 2015).  

1.1.2. Clinical features of ALS 

ALS was first reported by Jean-Martin Charcot in 1874. He identified ALS as a primary neuronal 

disease, by linking its symptoms to the loss of motor neurons in brain and spinal cord. Charcot 

and his colleague Joffrey observed that lesions in the anterior horn, but not in the lateral column 

of the spinal cord lead to muscle atrophy (Kumar et al., 2011; Rowland, 2001). 

ALS is the most prevalent form of MND and has an average age of onset of 55 years. ALS is 

ruthlessly progressive with 50% of patients dying within 30 months after symptom onset (Chio et 

al., 2013; Ferrari et al., 2011; Kiernan et al., 2011). Diagnosis of ALS consists of a combination 

of physical examination and neurological testing such as nerve conduction studies and 

electromyography. To exclude alternative pathological changes in patients, additional MRI is 

often used (Brooks et al., 2000; Kiernan et al., 2011).  

No biomarkers allow definitive distinction between the pure upper motor neuron disease, primary 

lateral sclerosis (PLS), and the pure lower motor neuron disease, progressive muscular atrophy 

(PMA), during the early stages (Al-Chalabi et al., 2016). Clinically, PLS usually leads to 

hyperreflexia accompanied by spasticity, while PMA is associated with progressive muscle 

weakness and wasting. The main cause for death in ALS patients is respiratory failure (Ferrari et 

al., 2011).  

1.1.3. Clinical features of FTD/ALS  

In 1981, in-depth neuropathological analysis revealed that ALS pathology is often accompanied 

by degeneration of the frontal and frontotemporal regions of the brain, as well as atrophy of the 

substantia nigra and globus pallidus (Ferrari et al., 2011; Hudson, 1981). 

In the following years, cognitive dysfunction and other signs of FTD have been detected in ALS 

patients (up to 50% of patients) and, vice versa, motor deficits have been documented in FTD 

patients suggesting shared pathomechanisms between the two diseases (Burrell et al., 2011; 

Ozel-Kizil et al., 2013; Strong et al., 2003). 
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1.1.4. Genetic evidence and pathological inclusions in FTD/ALS 

Approximately 40% of all FTD patients and 10% of all ALS cases have a positive family history 

suggestive of autosomal dominant inheritance (Rademakers et al., 2012; Snowden et al., 2002; 

Van Damme and Robberecht, 2009).  

In recent years, a number of genes causing pure FTD, ALS or mixed FTD/ALS have been 

identified. Mutations in the microtubule-associated protein Tau (MAPT), progranulin (GRN) or 

less frequently in charged multivesicular body protein 2b (CHMP2B) and triggering receptor 

expressed on myeloid cells 2 (TREM2) are connected to pure FTD (Baker et al., 2006; Borroni et 

al., 2014; Cruts et al., 2006; Hutton et al., 1998; Skibinski et al., 2005). In contrast, mutations in 

the superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and fused in 

sarcoma (FUS) are the most frequent genes associated with pure ALS (Kwiatkowski et al., 2009; 

Rosen et al., 1993; Sreedharan et al., 2008; Vance et al., 2009). In 2011, two groups 

independently identified a massive GGGGCC-repeat expansion mutation upstream of the coding 

region of the chromosome 9 open reading frame 72 gene (C9orf72) (DeJesus-Hernandez et al., 

2011; Renton et al., 2011). These C9orf72 repeat expansions are the most common cause of 

familial FTD/ALS (Majounie et al., 2012; van Blitterswijk et al., 2012). Less common mutations in 

the coiled-coil-helix-coiled-coil-helix domain containing protein 10 (CHCHD10), sequestome 1 

(SQSTM1/p62), optineurin (OPTN), valosin-containing protein (VCP), TANK-binding kinase 1 

(TBK1) and ubiquilin 2 (UBQLN2) are linked to FTD/ALS as well (Fig. 1A) (Bannwarth et al., 

2014; Cirulli et al., 2015; Deng et al., 2011; Fecto et al., 2011; Maruyama et al., 2010; Pottier et 

al., 2015; Rubino et al., 2012; Watts et al., 2004). 

 
Figure 1 Schematic illustration of most common genes and neurophathological inclusions linked to familial FTD and ALS.  
(A) FTD (red) and ALS (blue) are thought as the extreme ends of a disease spectrum. Genes linked to FTD are illustrated in red, to 
ALS in blue and genes associated to both diseases are mixed colored. Genes are arranged based on their frequency in familial 
cases. Adapted from (Guerreiro et al., 2015). (B) Neuropathological protein inclusions in FTD and ALS are classified according to the 
main aggregating protein. TDP-43 and FUS inclusions depict the pathological overlap of these disorders. Adapted from (Ling et al., 
2013). 
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In 2006, the RNA-binding protein (RBP) TDP-43 was identified as the major ubiquitinated protein 

that is present in inclusions of ~45% of FTD and nearly all ALS cases (97%) (Arai et al., 2006; 

Neumann et al., 2006). Subsequently, another RBP, FUS, was found in pathological inclusions 

of FTD patients without TDP-43 pathology resulting in a reclassification of FTD based on the 

main aggregated protein (Mackenzie et al., 2010). Thus, FTD is nowadays divided in FTLD-TAU 

(45%), FTLD-TDP-43 (45%), FTLD-FUS (9%) and FTLD-UPS (ubiquitin-proteasome system, 

1%) (Fig. 1B). Inclusions in TDP-43 and FUS represent the pathological overlap in FTD and 

ALS.  

Altogether, FTD and ALS share several clinical, genetic and pathological features implying 

common pathogenic pathways are involved in disease onset and progression. 

1.2. Pathogenic mechanisms in FTD/ALS 

Similar to other neurodegenerative diseases, multiple pathomechanisms related to protein 

aggregation, protein-homeostasis and mitochondrial functions as well as cell-to-cell transmission 

of protein aggregates that ultimately lead to neuron death, have been described in FTD/ALS 

(Fig. 2). Since two common aggregating proteins in FTD/ALS are RBPs, RNA metabolism plays 

a special role.  

 

Figure 2 Putative pathogenic mechanisms described in FTD/ALS. 

Pathogenic protein aggregates (orange) impair RNA metabolism, autophagy, proteasomal and mitochondrial functions. Moreover, 
cell-to-cell transmission has been described in several neurodegenerative diseases. FTD/ALS associated mutated and/or 
aggregated proteins disrupt these pathways by loss-of-function and/or gain-of-function mechanisms and are listed in red below the 
respective pathway. 
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The nuclear proteins TDP-43 and FUS are involved in multiple steps of RNA processing but both 

proteins form cytoplasmic aggregates in different subtypes of FTD and ALS (Fig. 1) (Neumann 

et al., 2006; Vance et al., 2009). Cells with cytoplasmic TDP-43 and FUS aggregates show 

pronounced nuclear clearance of the respective protein suggesting that nuclear loss-of-function 

(LOF) and cytoplasmic gain-of-function (GOF) mechanisms may contribute to disease (Ling et 

al., 2013; Vance et al., 2009). Rare mutations in the aggregation-prone low complexity domain 

(LCD) of TDP-43 and FUS lead to FTD and ALS and promote protein aggregation (King et al., 

2012). LCDs mediate reversible liquid-liquid phase separation into liquid droplet and transition to 

more solid hydrogel states (Conicella et al., 2016; Murakami et al., 2015), which is crucial for the 

physiological formation of dynamic RNA containing compartments like stress granules (Alberti 

and Hyman, 2016; Courchaine et al., 2016). Since TDP-43 and FUS inclusions contain stress 

granule proteins, it has been suggested that liquid droplets/stress granules are precursors to 

pathological aggregates in FTD/ALS (Alberti and Hyman, 2016; King et al., 2012; Ling et al., 

2013). 

Moreover, the expanded repeat RNA in C9orf72 FTD/ALS, forms nuclear RNA foci that are 

thought to sequester various RBPs and thereby impair their function (Cooper-Knock et al., 2014; 

Mori et al., 2013b). Unconventional translation of sense and antisense repeat transcripts results 

in five aggregating dipeptide repeat (DPR) proteins (poly-GA, -GP, -GR, -PA, -PR), unique to 

C9orf72 patients (Mori et al., 2013a; Mori et al., 2013c). Of those DPR proteins, poly-GR 

and -PR interfere with many LCD-containing RBPs and thereby disrupt their phase separation 

ability (Lee et al., 2016). 

Since the research focus of this thesis is on FTD/ALS-causing mutations in C9orf72 and 

CHCHD10, with a focus on protein aggregation, impaired protein degradation, cell-to-cell 

transmission and mitochondrial impairment, I will describe these pathways in the following 

paragraphs in more detail. 

1.2.1. Protein homeostasis 

The term protein homeostasis describes cellular processes that together maintain the proteome 

intact. Protein biogenesis, folding, trafficking and degradation are tightly controlled and 

coordinated by a complex network. Proteins are co-translationally folded with the help of 

chaperons that recognize misfolded proteins with hydrophobic residues on the protein surface 

and/or incorrect disulfide bond formation. However, some proteins remain misfolded or later 

aggregate due to mutations or cellular stressors such as oxygen radicals or heavy iron metals. 

Protein misfolding and aggregation may cause LOF and GOF mechanisms. Therefore, an intact 

protein quality control system with chaperons, which are constantly monitoring protein folding, is 
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crucial for cells. If misfolded proteins cannot be refolded in their correct conformation, they are 

normally targeted to and finally eliminated by the major protein clearance pathways: autophagy 

and the UPS (Fig. 3) (Ciechanover and Kwon, 2015; Shahheydari et al., 2017; Webster et al., 

2017). 

 

Figure 3 Main degradation pathways of misfolded proteins.  
Cellular chaperons constantly facilitate refolding of misfolded proteins. Misfolded proteins are guided to the UPS by poly-ubiquitin 
(Ub) chains that are added by the three enzymes (E1, E2 and E3). After ubiquitination, those proteins are targeted to the 26S 
proteasome for proteolysis. Misfolded proteins that cannot be degraded via the UPS form poly-ubiquitinated cytoplasmic inclusions 
which are delivered to the autophagosome via the adaptor SQSTM1/p62. Subsequently, fusion of the autophagosome with the 
lysosome occurs forming the autophagolysosome and leading to aggregate digestion by lysosomal hydrolases. Adapted from 
(Ciechanover and Kwon, 2015). 
 

The UPS and its dysfunction in FTD/ALS 

The UPS is a primary route for degradation of short-lived and misfolded proteins. First, lysine 

residues of misfolded proteins are marked by ubiquitin chains added through a specific cascade 

of three major enzymes: the ubiquitin activating (E1), the ubiquitin conjugating (E2) and the 

ubiquitin ligating (E3) enzyme (Shahheydari et al., 2017). Then, poly-ubiquitinated proteins are 

recognized and degraded by the 26S proteasome. The proteasome is a multimeric adenosine 

triphosphate (ATP)-dependent protease complex containing one or two 19S regulatory cap 

subunits and a proteolytic 20S core chamber. After poly-ubiquitinated substrates are bound and 

unfolded by the 19S subunit, they are guided into the 20S core particle. The latter has 

chymotrypsin-like, trypsin-like and caspase-like catalytic activities cleaving substrates into small 

peptides (Driscoll and Goldberg, 1989; Eytan et al., 1989; Heinemeyer et al., 1997; Voges et al., 

1999).  
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Evidence from familial and sporadic cases of ALS supports proteasome dysfunction in disease. 

Pathogenic mutations inhibit substrate delivery to the proteasome (VCP, UBQLN2) and overall 

proteasome activity (SOD1, VCP) (Cheroni et al., 2009; Dai and Li, 2001; Deng et al., 2011; Ko 

et al., 2004; Webster et al., 2017). Additionally, sporadic ALS cases have decreased 20S 

proteasome subunit levels and impaired proteasomal activity in spinal cord (Kabashi et al., 

2012). Conditional knock out (KO) of the proteasome subunit Rpt3 in mice results not only in 

motor neuron degeneration and locomotor defects but also in TDP-43 and FUS containing 

inclusions (Tashiro et al., 2012). In addition, the poly-GA and -PR DPR species in C9orf72 

FTD/ALS have been linked to UPS dysfunction. Poly-GA causes cellular toxicity and traps UPS 

components, however, the mechanistic link of protein aggregation to impaired UPS function is 

unclear (Gupta et al., 2017; May et al., 2014). 

 

The autophagy pathway and its dysfunction in FTD/ALS 

Autophagy is a cellular pathway for degrading cytoplasmic components like misfolded proteins 

or damaged organelles and is especially important in post-mitotic cells such as neurons. 

Misfolded proteins are recruited via autophagy receptors, like SQSTM1/p62 and OPTN, to the 

growing phagophore. The phagophore engulfs the cargo by forming a double membrane 

compartment, the so-called autophagosome. Fusion with lysosomes results to degradation of its 

content by hydrolases (Webster et al., 2017). 

Several genes mutated in familial FTD/ALS are involved in distinct stages of autophagy, e.g. 

initiation (C9orf72), substrate delivery to the autophagosome (UBQLN2, OPTN, SQSTM1/p62, 

TBK1), maturation of the autophagosome (VCP) and autophagic degradation (CHMP2B) 

(Filimonenko et al., 2007; Goode et al., 2016; Ju et al., 2009; Maruyama et al., 2010; Osaka et 

al., 2015; Webster et al., 2016; Webster et al., 2017). Furthermore, mice lacking essential 

autophagy genes, like Atg5 or Atg7, show poly-ubiquitinated inclusions, axonal dystrophy, 

neurodegenerative symptoms and impaired motor function (Hara et al., 2006; Komatsu et al., 

2006).  Since C9orf72 is part of the autophagy initiation complex (Sellier et al., 2016; Webster et 

al., 2016) and decreased levels of the C9orf72 protein have been described in patient brain 

(Waite et al., 2014), impaired autophagy may contribute to disease pathogenesis. Ubiquitin and 

SQSTM1/p62 are enriched in the cytoplasmic inclusions in FTD/ALS (Al-Sarraj et al., 2011; Mori 

et al., 2013a; Neumann et al., 2006; Vance et al., 2009). The cytoplasmic TDP-43, FUS and the 

DPR proteins are probably not sufficiently degraded by the impaired autophagic system and 

accumulate in insoluble inclusions in FTD/ALS (Webster et al., 2016). Taken together, these 

indicate that autophagy is crucial for neuronal health and has a primary role in the pathogenesis 

of FTD/ALS. 

16



  

 
 

Seeding and spreading mechanisms 

Prion diseases are a group of rare fatal neurodegenerative disorders characterized by misfolded 

prion protein (PrP) that is orally transmissible. The first prion disease described in humans was 

Creutzfeldt-Jakob disease (Zabel and Reid, 2015). The infectious cycle starts with a 

conformational change of normal α-helical PrPC to a β-sheet-rich conformation termed PrP 

scrapie (PrPSc). PrPSc triggers conversion of further PrPC into the pathological PrPSc 

conformation in a positive feedback loop that is associated with extremely fast clinical disease 

progression (Jucker and Walker, 2011).  

Later, prion-like templated-aggregation was described as a characteristic feature in common 

non-infectious neurodegenerative diseases for extracellular and intracellular aggregating 

proteins: β-amyloid (Aβ) peptide and tau in Alzheimer´s disease (AD), α-synuclein in Parkinson´s 

disease (PD) and huntingtin in Huntington´s disease (Jucker and Walker, 2011; Luk et al., 2012; 

Sanders et al., 2014). Biophysical characterization and recently cryo-electron tomography 

analyses clearly show that these macromolecular aggregates form β-sheet-rich amyloid fibrils 

(Bauerlein et al., 2017; Fitzpatrick et al., 2017; Guerrero-Ferreira et al., 2018; Schmidt et al., 

2015). For intracellular aggregates template directed aggregation is associated with cell-to-cell 

transmission possibly along synaptic connections. Here, misfolded proteins with amyloid-like 

conformation, serve as templates for further aggregation of native proteins in the receiver cell 

(Fig. 4). This is the molecular correlate of the spreading of Tau pathology through the brain 

during progression of Alzheimer’s disease (Braak and Braak, 1991). 

 
Figure 4 Prion like cell-to-cell transmission of aggregates.   
Misfolded proteins form a seed of aggregation and thereby initiate misfolding of wildtype proteins leading to further seeded 
aggregation. Afterwards, aggregates are released to the extracellular space where they are uptaken by neighboring cells. Here, 
aggregates further induce misfolding and aggregation. Adapted from (Ling et al., 2013). 
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In familial ALS, this prion-like phenomenon was also reported for mutant SOD1, which forms 

fibrils, aggregates with misfolded wildtype protein and shows spreading abilities (Chattopadhyay 

et al., 2008; Grad et al., 2011; Munch et al., 2011). Furthermore, TDP-43 and FUS contain LCDs 

that might contribute to aggregation and seeding (Gitler and Shorter, 2011; Johnson et al., 2008) 

and several in vitro studies demonstrate amyloidogenic features of TDP-43 and FUS (Guo et al., 

2018; Murray et al., 2017).  Insoluble TDP-43, isolated from FTD or ALS patient brains with 

TDP-43 pathology, triggers aggregation of transfected TDP-43 in cultured cells (Nonaka et al., 

2013). Additionally, neuropathological studies of FTLD-TDP-43 cases suggest propagation of 

phosphorylated TDP-43 aggregates in patient brain along anatomical connections 

(Brettschneider et al., 2014). Altogether, these findings suggest a prion-like spreading 

mechanism exists in FTD/ALS.   

Although, short DPR peptides are taken up by cells (Chang et al., 2016; Kwon et al., 2014), 

release and uptake of larger aggregates has not been shown. Studying seeding and spreading 

of DPR proteins is crucial as the poor spatial correlation of all C9orf72-specific changes, 

including DPR inclusions with TDP-43 pathology and neurodegeneration, suggests the non-cell 

autonomous and/or synergistic effects are crucial for C9orf72 pathogenesis. 

1.2.2. Mitochondria  

Mitochondria are essential cellular organelles that regulate energy metabolism, calcium 

homeostasis and apoptosis. Neurons completely depend on an aerobic metabolism and 

mitochondrial calcium homeostasis, e.g. for regulating neurotransmitter release (Fig. 5). 

Moreover, mitochondria are also the main source of reactive oxygen species (ROS) leading to 

oxidative stress, e.g. damages of mitochondrial DNA, proteins and membranes (Fig. 5A). 

Oxidative stress can even induce Cytochrome C release resulting in apoptosis (Fig. 5C).  
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Figure 5 Overview of three major mitochondrial features.  
Mitochondria are essential for many cellular processes. (A) Mitochondria produce most cellular ATP. At the inner mitochondrial 
membrane (IMM), electrons (e-) from NADH and FADH2 pass through the electron transport chain complexes (I-IV) to oxygen (O2) 
reducing it to water (H2O). The released energy is used to generate a proton (H+) gradient across the IMM by actively pumping H+ 
into the intermembrane space (IMS). Finally, ADP is phosphorylated to ATP by the ATP-synthase complex V with the energy of the 
H+ gradient (Hatefi, 1985). Mitochondria are also the major reactive oxygen species (ROS) producers, which can lead to further 
oxidative damage in mitochondria. (B) Mitochondria are capable for storing calcium (Ca2+) and are therefore important for the cellular 
Ca2+ homeostasis. Ca2+ is taken up into the matrix by the mitochondrial Ca2+ uniporter in the IMM (Contreras et al., 2010). (C) The 
intrinsic/mitochondrial apoptotic pathway is characterized by permeabilisation of the outer mitochondrial membrane (OMM) and 
release of Cytochrome C (CytC) into the cytoplasm. CytC is the major inducer of caspase activation downstream of 
mitochondria. First, CytC is involved in the formation of the apoptosome (purple star), a multi-protein complex initiating the 
activation of the caspase cascade through caspase 9. Caspase 9 activates caspase 3 leading to cell death (Elmore, 2007).  

Post-mitotic neurons are vulnerable to accumulation of damage arising from impaired 

mitochondria (Smith et al., 2017). In PD, mitochondrial DNA damage, compromised mitophagy 

and dysfunctional respiratory chain complexes have been observed in patient brains providing a 

solid link between neurodegeneration and mitochondrial impairment (Dolle et al., 2016; Gao et 

al., 2017). In familial ALS, mutant SOD1 accumulates to mitochondria, whereby overexpression 

models show impaired electron transport, inefficient calcium buffering, altered mitochondrial 

morphology and aberrant import mechanism (Damiano et al., 2006; Li et al., 2010; Magrane et 

al., 2012). It is associated with cellular energy imbalance, apoptosis and impaired calcium 

homeostasis (Fig. 5) (Magrane et al., 2014). Additionally, mutations in SOD1 lead to misfolding 

on mitochondrial membranes resulting in a toxic GOF (Vande Velde et al., 2011). Similarly, 

translocation of mutant FUS to mitochondria seems to have an important role in disease 

progression (Deng et al., 2015). Colocalization of TDP-43 with mitochondria in motor neurons 

correlates with damage to mitochondria (Wang et al., 2013). Furthermore, the repeat expansions 

in C9orf72 are linked to mitochondrial dysfunction via characteristic DPR aggregates with poly-

GR, that induce oxidative stress and alterations of mitochondrial architecture (Lopez-Gonzalez 

et al., 2016). Moreover, mutations in mitochondrial CHCHD10 are linked to FTD/ALS, but some 

geneticists are concerned by the low penetrance. Since the precise molecular function of 

CHCHD10 and the molecular mechanism of CHCHD10 mutations remain largely unknown, 

further functional analyses are required. 
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2. C9orf72 –mutations are the most common cause of familial FTD/ALS 

Five years after a locus on chromosome 9p21, associated with FTD and ALS, was identified, two 

groups finally pinpointed the mutation to a GGGGCC- repeat expansion located in a non-coding 

region of the C9orf72 gene (DeJesus-Hernandez et al., 2011; Morita et al., 2006; Renton et al., 

2011; Vance et al., 2006). This mutation is by far the most common known genetic cause of FTD 

and ALS with a prevalence of roughly 25% in familial FTD and 34% in familial ALS in Europe. An 

additional 5% of sporadic FTD and ALS are caused by the C9orf72 mutation (Ng et al., 2015; 

Zou et al., 2017). Clinically, C9orf72 patients have been reported to show a younger age of 

onset, a higher frequency of cognitive deficits and a faster disease progression compared to 

non-C9orf72 FTD/ALS patients (Byrne et al., 2012; Chio et al., 2012).  

2.1. Function and genetic link to FTD/ALS 

The first hint for the cellular functions of the C9orf72 protein came from identification of a so-

called differentially expressed in normal and neoplastic cells (DENN) domain within C9orf72 

suggesting it could act as a guanine nucleotide exchange factor (GEF) of small GTPases, e.g. 

the Rab protein family, comparable to other members of the DENN-like superfamily. Rab 

GTPases are molecular switches involved in several steps of cellular membrane trafficking 

(Levine et al., 2013). Indeed, C9orf72 forms a complex with WDR41 and SMCR8, another 

DENN protein, and interacts with several Rab proteins suggesting C9orf72 might play a role in 

endocytosis and autophagy (Fig. 6C) (Farg et al., 2014; Sellier et al., 2016).  

Three broadly expressed C9orf72 transcripts potentially result in two distinct isoforms of the 

protein. The longer protein product is by far most abundant and is localized to the cytoplasm 

(Saberi et al., 2018). The FTD/ALS linked GGGGCC-repeat expansion is present between the 

two non-coding exons 1a and 1b. Depending on the transcript, the GGGGCC-repeat is either 

located in intron 1 (for V1 and V3) or in the promoter region (for V2) (Fig. 6) (DeJesus-

Hernandez et al., 2011). 

2.2. Current hypothesis of C9orf72 disease related pathomechanisms 

How the GGGGCC-repeat expansion in C9orf72 causes FTD/ALS remains elusive. Both LOF 

and GOF mechanisms through three main mechanisms have been discussed. First, the 

GGGGCC-repeat expansion impairs expression of the longer isoform and may thus cause 

C9orf72 haploinsufficiency. Second, the GGGGCC sense and antisense repeat transcripts 

accumulate in RNA foci that are thought to sequester RBPs (RNA toxicity). Third, repeat 

containing transcripts are unconventionally translated into DPR proteins, which form aggregates 

and trap important cellular proteins (protein toxicity) (Fig. 6) (Edbauer and Haass, 2016). 
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Figure 6 Overview of current hypothesis of C9orf72 repeat expansion mediated pathogenic mechanisms. 

The human C9orf72 gene (grey: non-coding region; green: coding exons) harbors a hexanucleotide (GGGGCC)n repeat expansion 
(purple) between the alternative exons 1a and 1b. Three C9orf72 transcripts are produced. Sense and antisense transcription of the 
repeat RNA also occurs. The three mutually non-excluse pathomechanisms are depicted (see text). Adapted from (Gitler and Tsuiji, 
2016; Ling et al., 2013). 

Based on these three hypothesized mechanisms, many research groups made huge efforts to 

decipher and verify the individual processes. Both, mRNA and protein levels have been reported 

to be reduced in C9orf72 FTD/ALS cases suggesting haploinsufficiency as a possible disease 

cause (DeJesus-Hernandez et al., 2011; Waite et al., 2014). Although C9orf72 knock down (KD) 

in zebrafish led to reduced axon length of motor neurons and locomotion impairment, C9orf72 

ablation in neuron specific KO mice did not show any FTD/ALS-like pathology, such as motor 

neuron degeneration, or motor defects (Ciura et al., 2013; Koppers et al., 2015). Complete KO of 

C9orf72 causes systemic inflammation in mice (Sudria-Lopez et al., 2016). Therefore, C9orf72 

LOF is likely not the main driving mechanism of FTD/ALS but could contribute to disease by 

inhibiting autophagy or promoting inflammation (Fig. 6C) (Sellier et al., 2016; Webster et al., 

2016; Yang et al., 2016).  

Interestingly, it has been shown, that both sense and antisense repeat transcripts form stable 

inter- and intramolecular structures, such as G-quadruplexes (G-Q), R-loops or hairpins, in 

C9orf72 patients. Nuclear RNA foci are found in many cell types and may sequester crucial 
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RBPs (e.g. hnRNPs), and thereby impair overall RNA metabolism (Fig. 6A) (Cooper-Knock et 

al., 2014; Gendron et al., 2013; Kumar et al., 2016; Mori et al., 2013b). 

Repeat associated non-AUG translation was first discovered for CAG repeats in spinocerebellar 

ataxia type 8 (SCA8) and Myotonic dystrophy type 2 (DM2), and has since been reported in 

other repeat expansion disorders (Zu et al., 2011). Surprisingly, even the intronic 

GGGGCC-expansion in C9orf72 is translated in all reading frames into coaggregating DPR 

proteins: poly-glycine-alanine (GA), poly-glycine-proline (GP), poly-glycine-arginine (GR), poly-

proline-arginine (PR) and poly-proline-alanine (PA) (Fig. 6B). These DPR proteins form 

pathological inclusions in neurons of C9orf72 patients. Poly-GA is most abundant in patients 

followed by poly-GP and poly-GR (Mori et al., 2013a; Mori et al., 2013c). DPR inclusions 

colocalize with SQSTM1/p62 in star-shaped cytoplasmic, nuclear, or neuritic inclusions, and only 

rarely colocalize with TDP-43 (Mori et al., 2013c). Several studies showed toxicity of the different 

DPR species in distinct cellular systems, primary neurons, and mice (Jovicic et al., 2015; May et 

al., 2014; Schludi et al., 2017; Yamakawa et al., 2015; Zhang et al., 2016). Poly-GA is highly 

aggregation prone in vitro and GA15 peptides form β-sheet structures with cell-to-cell 

transmission properties (Chang et al., 2016). Poly-GA inclusions trap essential cellular proteins, 

including various components of the UPS, which leads to UPS impairment and thus to toxicity 

(May et al., 2014; Yamakawa et al., 2015; Zhang et al., 2016; Zhang et al., 2014). The arginine 

rich DPR species, poly-GR and poly-PR, trigger nucleolar stress, nuclear transport impairment, 

and RNA processing alterations. Furthermore, they interact with the translation complex and 

ribosomal proteins, thereby impairing overall protein translation and causing neurotoxicity 

(Kanekura et al., 2016; Mizielinska et al., 2014).  

However, it still remains unknown how DPR aggregates exactly contribute to C9orf72 FTD/ALS. 

A better resolution of DPR aggregate structure would provide relevant information, e.g. to 

unravel spreading properties of distinct DPR aggregates or to help to identify interacting cellular 

organelles or macromolecules. 

Of note, in end-stage patient brains neither DPR pathology, RNA foci nor C9orf72 mRNA/protein 

levels robustly correlate with neurodegeneration (Mackenzie et al., 2013). However, the 

temporal course of events cannot be deciphered via post-mortem studies for a rare disease such 

as FTD/ALS. Several neuropathology case reports suggest DPR accumulation starts early in 

disease, before TDP-43 pathology is present, but further cross-sectional and ideally longitudinal 

studies are required to clarify the role of DPR proteins in C9orf72 FTD/ALS pathogenesis 

(Baborie et al., 2015; Proudfoot et al., 2014; Vatsavayai et al., 2016). For this purpose, poly-GP 

might be a suitable biomarker candidate not only because of its relatively high solubility but also 

due to its high expression throughout the central nervous system (CNS) (Peters et al., 2015; 
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Schludi et al., 2015). Furthermore, poly-GP has been detected in cerebrospinal fluid (CSF) in a 

small case series of C9orf72 FTD/ALS (Su et al., 2014). It is unknown whether extracellular poly-

GP reaches the CSF by unconventional secretion or by release from dead cells. Developing an 

in vivo biomarker for repeat translation will be important for preclinical studies, e.g. to monitor 

potential therapies. 

 

3. CHCHD10 - A mitochondrial link to FTD/ALS 

Mitochondria have long been suspected to play a causative, primary role in ALS pathogenesis, 

which was supported by the identification of a CHCHD10 missense mutation (S59L) in a family 

with late onset myopathy and motor and cognitive phenotypes, including MND- and FTD-like 

symptoms (Bannwarth et al., 2014). 

3.1. Structural features and mitochondrial import  

CHCHD10 encodes a soluble 142 amino acid (aa) protein, which is predominantly present in the 

IMS of mitochondria (Bannwarth et al., 2014). It consists of a positively charged N-terminus, a 

central hydrophobic helix and a CHCH domain located at the C-terminal region of the protein 

(Ajroud-Driss et al., 2015; Cozzolino et al., 2015; Perrone et al., 2017) (Fig. 7A). CHCH domains 

are mainly found in mitochondrial localized proteins and are involved in metal binding and in 

protein import in the IMS (Banci et al., 2009b). For other members of the CHCH protein family, 

disulfide bridge formation within two Cysteine-X9-Cysteine (CX9C) motifs stabilizes the protein 

and has been linked to mitochondrial import (Fig. 7B).  

 

Figure 7 Structure of CHCHD10 and its CHCH domain. 
(A) The N-terminal end of CHCHD10 is often referred to as a putative mitochondrial targeting signal (MTS?, blue) and is followed by 
a hydrophobic (purple) and a C-terminal CHCH domain (green). (B) Between two CX9C motifs, disulfide bonds are formed in the 
CHCH domain of CHCHD10. 

Nearly all mitochondrial proteins are encoded in the nucleus, synthesized as cytosolic precursor 

proteins and transported into mitochondria via diverse import machineries (Harmey et al., 1977; 

Modjtahedi et al., 2016; Zhou et al., 2017). The translocase in the outer membrane of 
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mitochondria (TOM) complex is the first contact for proteins entering the mitochondria (Hase et 

al., 1983; Kang et al., 2017; Kiebler et al., 1990; MacPherson and Tokatlidis, 2017). Targeting 

signals within the immature precursor proteins guide them on different transport routes to their 

final mitochondrial localization.  

β-barrel proteins harbor a β-signal and are handed over to the small translocase of the inner 

mitochondrial membrane (TIM) chaperons in the IMS where they are subsequently delivered to 

the outer mitochondrial membrane (OMM) via the sorting and assembly machinery (SAM) 

complex (Kozjak et al., 2003; Lutz et al., 2003; Paschen et al., 2003). The import pathway of 

hydrophobic carrier proteins that are present in the IMM of mitochondria is also mediated by 

small TIM chaperons in conjunction with the translocase TIM22 complex (Dudek et al., 2013; 

Kerscher et al., 1997; MacPherson and Tokatlidis, 2017; Sirrenberg et al., 1996). Moreover, the 

TIM23 complex is the central junction of the mitochondria import pathway for presequence 

containing proteins. Such proteins are either inserted into the IMS or imported to the matrix. For 

matrix translocation an additional motor, named presequence translocase associated import 

motor (PAM), is required. After entering the matrix, presequences are proteolytically cleaved by 

mitochondrial processing peptidases (MPP) (Dudek et al., 2013; Frazier et al., 2004; Kozany et 

al., 2004). Proteins of the IMS, that harbor a cysteine-rich signal (CXnC), typically located in a 

CHCH domain, are imported via the mitochondrial intermembrane space import and assembly 

(Mia) pathway (Fig. 8) (Chacinska et al., 2004). Thus, the Mia pathway could also mediate 

import of CHCHD10, although it also has a predicted N-terminal presequence. 

 

Figure 8 Mitochondrial import pathways.  
Precursor proteins such as β-barrel proteins, carrier proteins, presequence containing proteins and proteins with cysteine-rich 
signals (CXnC) are imported in a post-translational manner via specific pathways (see text). The majority of mitochondrial proteins 
enter the mitochondria through the TOM complex. Adapted from (Dudek et al., 2013). 
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The oxidoreductase Mia40 contains two essential structural and functional elements: An N-

terminal redox active cysteine-proline-cysteine (CPC) motif and a C-terminal hydrophobic 

substrate binding cleft (Kawano et al., 2009). Human Mia40 physically interacts with the 

membrane-bound apoptosis inducing factor (AIF) (Hangen et al., 2015; Hofmann et al., 2005; 

Kawano et al., 2009). Mia40 additionally plays a key role in the import of small IMS proteins by 

catalyzing their intact oxidative folding and maturation via covalent disulfide bridges formation 

(Banci et al., 2009a; Weckbecker et al., 2012). Precursor proteins enter the IMS via the TOM 

complex and first interact with the hydrophobic binding pocket of Mia40 (Peleh et al., 2016). 

Oxidized Mia40 then forms transient intermolecular disulfide bonds with free cysteine residues, 

located either in CX3C or CX9C motifs of substrate proteins (Kawano et al., 2009). After complete 

disulfide bond formation, oxidized proteins are released into the IMS and Mia40 remains in its 

reduced state. Re-oxidation of Mia40 is mediated by Erv1 (essential for respiration and 

vegetative growth), a FAD-linked sulfhydryl oxidase (Lee et al., 2000; Muller et al., 2008). 

Subsequently, reduced Erv1 shuttles its electrons to CytC, where they finally enter the 

respiratory chain via the CytC oxidase (COX) complex (Fig. 9) (Dabir et al., 2007).  

 

Figure 9 The Mia40 mediated IMS import pathway. 

Cysteine-rich precursor proteins enter the IMS via the TOM complex. Mia40 forms intermediate disulfides with the emerging 
precursor proteins and catalyzes their oxidation and folding. After complete disulfide bond formation, the proteins are released into 
the IMS. Mia40 itself is reduced and requires oxidation by Erv1. Erv1 transfers electrons directly to CytC where they are finally 
transferred to the COX complex of the respiratory machinery. Adapted from (Dudek et al., 2013; Stojanovski et al., 2008). 

Due to its interspaced conserved arginine residues, several bioinformatic prediction tools 

suggest a classical N-terminal mitochondrial targeting signal (MTS) for CHCHD10. Therefore, 

the N-terminus is often referred as putative MTS (aa 1-16) in literature (Cozzolino et al., 2015; 

Perrone et al., 2017). Since mutations in the N-terminal region (R15L, R15S) still localize to 

mitochondria and mutations in the CHCH domain (Q108*) have not been functionally studied so 

far, it is not clear how CHCHD10 is imported to mitochondria (Ajroud-Driss et al., 2015; Woo et 

al., 2017). 
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3.2. Function and genetic link to FTD/ALS 

Although the exact molecular function of CHCHD10 is still unknown, previous work suggests a 

role in mitochondrial morphology, cristae structure integrity, as well as stability of the 

mitochondrial genome (Bannwarth et al., 2014; Genin et al., 2016). Additionally, it has been 

reported that CHCHD10 is part of the mitochondrial contact site and cristae organizing system 

(MICOS) complex, which is crucial for the formation and integrity of mitochondrial cristae 

structure (Genin et al., 2016). Together, CHCHD10 and CHCHD2, another CHCH containing 

protein that is associated with PD, form complexes that play a key role in cellular respiration, 

especially under stress conditions (Burstein et al., 2018; Straub et al., 2018). Furthermore, it was 

found that CHCHD10 enables phosphorylation of CHCHD2 by recruiting Abl2 kinase and 

thereby stimulating COX activity in mitochondria (Purandare et al., 2018). Rapid protein turnover 

argues for a regulatory function of CHCHD10, i.e. for metal transport and respiratory chain 

complex assembly (Burstein et al., 2018). Some argue CHCHD10 may also enter the nucleus 

and repress genes harboring an oxygen responsive element (ORE) or help to retain TDP-43 in 

the nucleus (Purandare et al., 2018; Woo et al., 2017).  

After the identification of the first missense mutations S59L in CHCHD10, other labs screened 

CHCHD10 in several distinct cohorts of ALS, FTD or mitochondrial myopathy (MM) patients and 

identified many additional missense mutations (Fig. 10) (Ajroud-Driss et al., 2015; Auranen et 

al., 2015; Blauwendraat et al., 2018; Brockmann et al., 2018; Burstein et al., 2018; Chaussenot 

et al., 2014; Dols-Icardo et al., 2014; Genin et al., 2016; Jiao et al., 2016; Johnson et al., 2014; 

Kurzwelly et al., 2015; Muller et al., 2014; Penttila et al., 2017; Perrone et al., 2017; Rubino et 

al., 2018; Straub et al., 2018; Wong et al., 2015; Woo et al., 2017; Xiao et al., 2017). 

 

Figure 10 Reported CHCHD10 variants in families with ALS, FTD, FTD/ALS or MM.  
CHCHD10 mutations and their localization in the respective regions: putative MTS (blue), hydrophobic (purple) and CHCH (green) 
domain. 

CHCHD10 variants, identified in FTD/ALS families, cluster in the N-terminus suggesting a 

functional relevance. However, a clear pathogenic mechanism has not been shown for any of 

these variants (Table 1). Pathogenicity has essential been ruled out for P34S based on genetic 

data. 
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Table 1 Reported CHCHD10 variants linked to ALS, FTD, FTD/ALS or MM and their putative pathogenic phenotypes in 
patient material, cellular and in vivo models.  

variant disease pathogenic phenotypes reference 

patient cells/in vivo 
P12S ALS - - Dols-Icardo et al. 
R15L ALS 

 
fibroblasts: 
reduced protein level, 
mitochondrial hyperfusion, 
respiration deficiency, 
altered OXPHOS 
complexes 
LCL: 
reduced protein level, 
reduced mRNA  

HEK293: 
increased protein degradation 
reduced mito. colocalization 
reduced ATP synthesis 
reduced mito. mRNA level 
NIH3T3: 
fragmented mitochondria 
reduced mito. colocolocalization 
TIA-1 granule induction  
cyto. TDP-43 accumulation 
neurons: 
cyto. TDP-43 accumulation 
reduced pre-/postsynaptic integrity 
HT22: 
increased TDP-43 ind. apoptosis 
transduced mice: 
synaptic damage 

Brockmann et al., Burstein et al., 
Müller et al., Johnson et al., 
Kurzwelly et al., Straub et al., 
Woo et al.  

R15S MM - - Ajroud-Driss et al.  
H22Y FTD - - Jiao et al. 
P23L/S FTD - - Jiao et al. 
P23T FTD - - Zhang et al. 
A32D FTD - - Jiao et al. 
P34S ALS, FTD - HeLa:  

reduced mito. nucleoids  
Brockmann et al., Chaussenot et 
al., Dols-Icardo et al., Genin et 
al., Ronchi et al., Wong et al., 
Zhang et al. 

A35D FTD,AD - - Xiao et al., Zhang et al. 
V57E FTD - - Jiao et al. 
G58R MM - HEK293:  

fragmented mitochondria  
Ajroud-Driss et al.  

S59L FTD/ALS muscle:  
ragged-red/COX-negative 
fibres,  
mtDNA deletions,  
respiration deficiency, 
altered OXPHOS 
complexes 
fibroblasts:  
fragmented mitochondria, 
ultrastructural alterations, 
respiration deficiency, 
altered OXPHOS 
complexes, 
reduced nucleoids, 
partial MICOS 
disassembly 

HeLa:  
fragmented mitochondria, 
ultrastructure alterations, 
reduced nucleoids 
Hek293: 
punctate distribution 
reduced mito. colocalization 
reduced ATP synthesis 
reduced mito. mRNA level 
NIH3T3: 
fragmented mitochondria 
reduced mito. coloclocalization 
TIA-1 granule induction  
cyto. TDP-43 accumulation 
neurons: 
cyto. TDP-43 accumulation  
reduced pre-/postsynaptic integrity 
HT22: 
increased TDP-43 ind. apoptosis 
transduced mice: 
synaptic damage 

Bannwarth et al., Blauwendraat 
et al., Burstein et al., Genin et 
al., Woo et al.  

G66V ALS fibroblasts: 
reduced protein level 

HEK293: 
increased protein degradation, 
respiration deficiency, 
increased ROS 

Auranen et al., Brockmann et al., 
Müller et al., Penttilä et al., 
Purandare et al. 

P80L ALS - HEK293:  
respiration deficiency, 
increased ROS 

Ronchi et al., Zhang et al., 
Purandare et al. 

Q82* FTD - - Dols-Icardo et al. 
P96T MM, ALS, 

FTD 
- - Dols-Icardo et al., Rubino et al., 

Teysso et al. 
Q108* FTD LCL: 

NMD of mutant transcript 
- Perrone et al.  

Abbreviations: Lymphoblastoid cell lines (LCL), mitochondrial (mito.) nonsense-mediated mRNA decay (NMD), oxidative 
phosphorylation (OXPHOS), T-cell intracellular antigen 1 (TIA-1). 
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3.3. Current hypothesis of CHCHD10 disease-related pathomechanisms 

Since very little is known about the exact molecular pathomechanisms of CHCHD10 variants, 

the debate about a LOF or a GOF mechanism is still ongoing. 

Reduced steady state protein levels of CHCHD10 mutants and decreased mRNA support a LOF 

mechanism (Brockmann et al., 2018; Straub et al., 2018). Additionally, respiration defects as 

well as decreased COX activity and ATP levels were reported upon CHCHD10 KD, in patient 

fibroblasts and KO cells (Purandare et al., 2018; Straub et al., 2018). In vivo experiments in C. 

elegans revealed that KO of har-1, the orthologue of mammalian CHCHD10, lead to reduced 

life-span and significant locomotion deficits. Moreover, mutant proteins (R15L, S59L) fail to 

rescue the KO phenotype in C. elegans (Woo et al., 2017; Zubovych et al., 2010). In vivo 

experiments with CHCHD10 KD zebrafish models further strengthened a LOF mechanism, since 

KD caused axonal motoneuron pathology, abnormalities in myofibrillar structure and motility 

deficits (Brockmann et al., 2018). However, recent CHCHD10 KO mice showed neither any 

characteristic symptoms for neurodegenerative diseases nor mitochondrial abnormalities in 

brain, muscle and heart as shown in human patient fibroblasts with reduced CHCHD10 (Burstein 

et al., 2018; Straub et al., 2018). Since impaired respiration could only be detected in muscle but 

not in brain of these mice, cell type specific effects might play an essential role in the CHCHD10 

underlying pathogenesis (Burstein et al., 2018).  

Several studies with patient cells or transiently transfected cellular models reported DNA 

instability, mitochondrial fragmentation and cristae disorganization (Ajroud-Driss et al., 2015; 

Bannwarth et al., 2014; Genin et al., 2016). Moreover, S59L CHCHD10 leads to impairment of 

the respiratory chain, shown in patient muscle as well as fibroblasts (Bannwarth et al., 2014). 

Other missense mutations, such as G66V and P80L, impaired both nuclear and mitochondrial 

function of CHCHD10 (Purandare et al., 2018). 

Since disease progression of CHCHD10 associated FTD/ALS is rather slow (6-12 years), age of 

onset usually pretty late (50s) and penetrance incomplete, some geneticists raised doubts about 

the true pathogenicity of CHCHD10 mutations. A clear underlying pathomechanism that could 

fully support CHCHD10 as bona fide FTD/ALS gene is not known for any of the CHCHD10 

mutations. Furthermore, sequencing of CHCHD10 in larger populations is needed to determine 

the mutation frequency. Functional analysis of several CHCHD10 mutations is crucial to 

strengthen the link between CHCHD10 to FTD/ALS (van Rheenen et al., 2014).  
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4. Clinical biomarkers and therapy approaches in FTD and ALS 

There is no effective disease-modifying therapy for FTD and ALS so far. Although intensive 

efforts are devoted to developing new therapies, and several clinical trials have reached phase 

II/III, only two drugs, riluzole and edaravone, are approved by the Food and Drug Administration 

(FDA) for ALS patients. Unfortunately, these drugs are not very effective. Riluzole only extends 

survival by an average of 2-3 months (Bensimon et al., 1994; Miller et al., 2012). The underlying 

mechanism of edavarone is unknown, but it is presumed to reduce oxidative stress in ALS and 

thereby may slow down disease progression specifically in patients with very aggressive disease 

(Cruz, 2018). The tremendous progress in FTD and ALS genetics in recent years has led to 

better understanding of the underlying pathomechanisms and may improve therapeutic 

interventions in the future. It is likely that many of the pathways identified in familial FTD/ALS will 

be relevant for understanding sporadic FTD/ALS because the neuropathology and clinical 

presentation is often indistinguishable. A key factor to improve future therapeutic studies is to 

include pharmacodynamic biomarkers to document a biological response to therapeutic 

treatment during preclinical and clinical studies (Balendra et al., 2017).  

4.1. Biomarkers for neurodegenerative diseases 

Presymptomatic stages of neurodegenerative diseases offer an interesting window to study early 

disease stages and are usually the ideal time to start therapy before irreversible neuronal 

damage occur. Neuroimaging biomarkers enable visualization of pathological changes in the 

brain, and have already been established for AD and Huntington´s disease. In AD, MRI is used 

to show atrophy, while PET is used to detect Aβ and tau aggregates and metabolic 

abnormalities (e.g. glucose metabolism) (Schilling et al., 2016). As imaging technologies are 

expensive and expose brain and body to radioactive compounds, developing biomarkers from 

body fluid such as CSF, blood or urine is of high interest (Gozes, 2017). Immunoassays are the 

most sensitive and specific technology to validate and measure biomarkers to date. Monoclonal 

antibodies allow a standardized analysis of biomarker levels. Another big advantage is that they 

are not vulnerable to limited availability or batch-to-batch variability, which is critical for the use 

as a therapeutic biomarker.  

Neurofilament light chain (NfL) is a powerful biomarker for axonal injury, reflecting disease 

severity and progression, as well as brain atrophy for FTD, ALS and other neurodegenerative 

disease including AD (Lu et al., 2015; Meeter et al., 2016; Scherling et al., 2014; Zetterberg et 

al., 2016). Currently Aβ42, tau, and phospho-tau are used as biomarkers to confirm AD via the 

CSF. Here, a decrease of CSF Aβ42 burden and an increase in tau correlates with amyloid 

plaque deposition, neuronal death, and accumulation of tangles (Gozes, 2017; Randall et al., 
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2013). Interestingly, soluble TREM2 was shown to change dynamically during respective AD 

stages (Suarez-Calvet et al., 2016). In C9orf72 FTD/ALS, poly-GP has been detected in CSF of 

a small cohort of ALS cases by an immunoassay using polyclonal antibodies (Su et al., 2014). 

Further studies in a large diverse cohort are required to potentially establish poly-GP as a 

pharmacodynamic biomarker. Detecting reduced levels of poly-GP may show target 

engagement in therapeutic trials, e.g. with antisense oligonucleotides (ASO). 

4.2. Therapeutic approaches for FTD/ALS  

TDP-43 is an attractive therapeutic target for FTD/ALS, since nearly all cases of ALS and 45% of 

FTD show TDP-43 positive protein inclusion. As misfolded TDP-43 leads to nuclear LOF and 

cytoplasmic toxic GOF, it would be interesting to promote refolding or degradation of misfolded 

TDP-43 via the UPS and/or autophagy (Scotter et al., 2015). In C9orf72 FTD/ALS, repeat RNA 

and DPR proteins may stepwise trigger TDP-43 pathology resulting in a brain region-specific 

neurodegeneration (Edbauer and Haass, 2016).  

In recent years, several interesting strategies to treat C9orf72-mediated disease have been 

suggested. C9orf72 haploinsufficiency is suspected to contribute to C9orf72 FTD/ALS and 

associated with impaired autophagy. Therefore, induction of C9orf72 expression, e.g. by 

targeting chromatin modification, might be a reasonable treatment strategy to rescue normal 

autophagy, but could also promote repeat-mediated RNA and protein toxicity (DeJesus-

Hernandez et al., 2011; Sellier et al., 2016). 

Another promising approach is to interfere with GGGGCC-repeat containing RNA. Chemically 

modified single-stranded ASO allow long-lasting suppression of target genes through RNase H 

mediated cleavage (Miller and Harris, 2016). For infantile-onset spinal muscular atrophy, an 

ASO-based therapy has already successfully passed phase 3 clinical studies and is now 

approved in Europe (Wan and Dreyfuss, 2017). Specific degradation of the repeat-containing 

introns using ASOs may block both RNA and DPR toxicity in C9orf72. Interestingly, several 

publications demonstrated that ASOs, targeting the GGGGCC-containing intron, reduce RNA 

foci and toxic DPR proteins without affecting overall C9orf72 mRNA levels in patient cells. 

Further ASO studies in C9orf72 BAC-transgenic mice confirmed these observations and 

successfully alleviated behavioral deficits (Donnelly et al., 2013; Jiang et al., 2016; Lagier-

Tourenne et al., 2013).   

Since both RBP sequestration and RAN translation are potentially influenced by the structure of 

GGGGCC-repeat-containing RNAs, targeting the G-Q confirmation may be another exciting 

treatment option. Small molecules targeting G-Qs reduced both RNA foci and DPR proteins in 

neurons, transdifferentiated from fibroblasts, of C9orf72 patients (Su et al., 2014). DPR proteins 
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were also reduced in GGGGCC-repeat-expressing flies and extended survival (Simone et al., 

2018). Altogether, these findings suggest that targeting repeat RNA structure is an encouraging 

strategy to slow down or even prevent C9orf72 mediated disease progression.  

Spreading of toxic protein aggregates is another mechanism thought to contribute to propagation 

of disease pathology. Therefore, antibody-based immunotherapy may slow or stop the spreading 

of protein aggregation by increasing phagocytosis through microglia and/or interfering with 

neuronal uptake. Immunotherapy targeting intracellular tau aggregates has shown beneficial 

neurological effects in a mouse model (Yanamandra et al., 2013). Aβ immunotherapy reduced 

Aβ pathology in AD patients in early disease stages (Sevigny et al., 2016). Although antibodies 

only target extracellular proteins, they are thought to also act on intracellular aggregates during 

transmission between cells. If similar transmission occurs for DPR proteins, vaccination might be 

a promising therapeutic approach to target DPR aggregates in C9orf72 FTD/ALS. 

Another attempt for FTD/ALS treatment may be to restore mitochondrial activity. Several small 

molecules have been designed to act on respiration/ATP production, apoptosis, and ROS-

induced DNA damage (Malty et al., 2015). Nicotinamide administration promotes mitophagy in 

cell culture, prevents cognitive defects, and selectively reduced phospho-tau (Thr 231) in an AD 

mouse model (Green et al., 2008; Jang et al., 2012). Interestingly, the synthetic AMP-activated 

protein kinase (AMPK) activator 5-amino-1-β-D-ribofuranosylimidazole-4-carboxamide (AICAR), 

improved motor performance in mice, e.g. by correcting COX deficiency (Viscomi et al., 2011). 

Pramipexole is a neuroprotective dopamine analogue that prevents activation of the 

mitochondrial/intrinsic apoptotic pathway, and reduces free radical levels in ALS patients (Pattee 

et al., 2003). Another strategy is to induce transcription of genes involved in mitochondrial 

biogenesis or oxidative stress response, e.g. via PPARγ coactivator-1α (PGC-1α). PGC-1α 

mRNA levels in ALS patients are reduced, and activation of PGC-1α shows protective effects in 

a SOD1 mouse model of ALS (Puigserver and Spiegelman, 2003; Thau et al., 2012).  

Edaravone, which is known to reduce oxidative stress in neurons, showed promise in fast-

progressing patients and in is the first mitochondrial therapy approved by the FDA for ALS 

(Mitsumoto et al., 2014; Poppe et al., 2014). 

Neuronal loss in FTD and ALS likely results from a combination of pathomechanisms including 

mitochondrial dysfunction, loss of RNA and/or protein homeostasis, oxidative stress and 

disrupted axonal transport processes. This may explain why single drug approaches have not 

been effective in patients. Further insights into individual pathomechanisms  and their interaction 

will hopefully uncover possibilities for single or multi-drug based disease modifying therapies. 

These studies will greatly benefit from in vivo biomarkers in preclinical and clinical trials.  
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II. Zusammenfassung  

Diese Arbeit beschäftigt sich mit Biomakern und Pathomechanismen in zwei familiären Formen 

der Frontotemporalen Demenz (FTD) und der Amyotrophen Lateralsklerose (ALS). Hierbei 

fokusierte ich mich insbesondere auf das Ubiquitin-Proteasom-System (UPS), interzellulärer 

Übertragung von Protein-Aggregaten und mitochondrialer Dysfunktion. 

Die häufigste genetische Ursache von FTD und ALS ist eine massive Verlängerung einer sonst 

kurzen (GGGGCC)n Sequenz in der Intronregion von C9orf72. Patienten haben hunderte von 

GGGGCC-Wiederholungen, die bidirektional transkribiert werden. Beide Repeat-Transkripte 

bilden RNA-Foci im Zellkern und werden auf unkonventionelle Weise in allen Leserahmen in fünf 

Dipeptid-Repeat (DPR)-Proteine (Poly-GA, Poly-GP, Poly-GR, Poly-PA und Poly-PR) translatiert, 

die im Gehirn von C9orf72 Patienten co-aggregieren. 

Sowohl in C9orf72 FTD/ALS als auch in anderen neurodegenerativen Erkrankungen wird eine 

Dysfunktion des Ubiquitin-Proteasom-Systems (UPS) als Ursache oder Folge von 

Proteinaggregation diskutiert. Um die Ultrastruktur der Poly-GA-Aggregate zu untersuchen, 

führten wir Kryoelektronentomographie in primären Neuronen durch. Dabei fanden wir, dass Poly-

GA-Aggregate aus dicht gepackten “twisted ribbons“ bestehen, an die zahlreiche 26S-

Proteasomen binden. Dabei wird das 26S-Proteasom in einem seltenen Übergangszustand 

blockiert, was auf eine gestörte Degradation hinweist. Ich konnte die Kolokalisation von Poly-GA 

mit dem Proteasom in Zellkultur bestätigten und mit biochemischer Fraktionierung die 

Sequestrierung des Proteasoms zeigen. Zusammengefasst zeigen diese Ergebnisse, dass 

Proteasomen in Poly-GA-Aggregaten eingeschlossen und inaktiviert werden und so das zelluläre 

UPS gestört wird (Publikation II). 

Die interzelluläre Übertragung von intrazellulären Proteinaggregaten scheint ein gemeinsames 

Merkmal von neurodegenerativen Erkrankungen zu sein. Im Rahmen einer größeren Studie zur 

Übertragung von DPR-Proteinen konnte ich in Ko-Kultur Experimenten die Transmission von Poly-

GA zwischen primären Neuronen nachweisen. Überraschenderweise induzierte die 

Überexpression von Poly-GA zudem die RNA-Foci Bildung in C9orf72-Fibroblasten, was auf eine 

positive Rückkopplung der Transkription schließen lässt. Die Übertragung von Poly-GA kann somit 

nicht-zellautonome Effekte in C9orf72 FTD/ALS auslösen (Publikation IV). 

Trotz der Toxizität von DPR-Proteinen in verschiedenen Zellkultur- und Tiermodellen, stellt die 

fehlende Korrelation der DPR-Protein Verteilung in humanem post-mortem Gewebe mit 

Neurodegeneration ihre kausale Rolle in Frage. Um diesen Widerspruch aufzulösen, wollte ich 

den zeitlichen Verlauf der DPR-Expression in C9orf72 Patienten detektieren. Dazu entwickelte ich 

einen neuartigen Poly-GP-Immunoassay mit monoklonalen Antikörpern und untersuchte damit in 
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einer Querschnittsstudie Liquor von C9orf72-Mutationsträgern. Hier konnte ich Poly-GP, im 

Vergleich zu gesunden Kontrollen oder Patienten mit anderen neurodegenerativen Erkrankungen, 

selektiv bei Mutationsträgern nachweisen. Außerdem detektierte ich Poly-GP in einem klinischen 

Alzheimer Patienten, bei dem ein anschließender Gentest die C9orf72 Mutation bestätigen konnte. 

Dies belegt den klinischen Nutzen des neuen Poly-GP Immunoassays. Erstaunlicherweise, waren 

die Poly-GP Mengen bei symptomatischen und asymptomatischen C9orf72-Mutationsträgern 

nahezu identisch. Dies deutet darauf hin, dass die DPR-Proteine wahrscheinlich bereits im 

Prodromalstadium den Krankheitsverlauf initieren, indem sie das UPS überlasten und nicht-

zellautonome Effekte auslösen (Publikation III). 

DPR-Proteine werden zwar mit mitochondrialer Dysfunktion in Verbindung gebracht, allerdings 

sind Mutationen im mitochondrialen Protein CHCHD10 bisher der stärkste Beweis für eine kausale 

Rolle dieses Pathomechanismus bei FTD/ALS. Die langsame Progression und unvollständige 

Penetranz  von CHCHD10-Mutationen hatten jedoch zu heftigen Debatten geführt. Darüber hinaus 

sind die molekularen Mechanismen der bisher bekannten CHCHD10-Mutationen unklar. 

In dieser Arbeit charakterisierte ich eine neue Mutation in CHCHD10 (Q108P), die bei einem 29 

Jahre alten ALS-Patienten mit sehr aggressiver Krankheitsprogression identifiziert wurde. Q108P 

befindet sich in der CHCH-Domäne und betrifft eine hoch konservierte Aminosäure. Meine in vitro 

Experimente zeigen, dass Q108P den mitochondrialen Import fast vollständig blockiert, was zu 

einer verringerten Proteinstabilität und einer diffusen zytoplasmatischen Lokalisierung führt. 

Zusätzlich analysierte ich alle bisher in FTD/ALS Patienten beschriebenen CHCHD10-Varianten 

und entdeckte, dass eine weitere Mutation in der CHCH-Domäne (C122R) auch zu 

zytoplasmatischer Mislokalisierung führt. Einige Mutationen (G66V und E127K) zeigten normalen 

mitochondrialen Import, führten jedoch zu mitochondrialer Cluster-Bildung. Somit können 

CHCHD10-Mutationen zu einem Funktionsverlust als auch zu einer toxischen Fehlfunktion des 

Proteins führen. CHCHD10 Trunkationen zeigten, dass die CHCH-Domäne für den 

mitochondrialen Import wichtig ist, und nicht die N-terminale Sequenz, welche bisher als 

mitochondriales Importsignal postuliert wurde. Entscheidend für den mitochondrialen Import vieler 

CHCH-Proteine ist eine Mia40-abhängige Bildung von Disulfidbrücken. Mit Hilfe von Knockdown-

Experimenten konnte ich in HeLa-Zellen belegen, dass Mia40 auch den mitochondrialen Import 

von CHCHD10 vermittelt. Durch Überexpression von Mia40 konnte der mitochondrialen Import 

von CHCHD10 Q108P aufgrund verstärkter Bildung von Disulfidbindungen wiederhergestellt 

werden. Reduzierte mRNA- und Proteinexpression in Patientenlymphoblasten mit Q108stop-

Mutation deuten zusätzlich auf Haploinsuffizienz hin. Tatsächlich fand ich eine reduzierte Reserve-

Atemkapazität in den Q108stop-Lymphoblasten und in CHCHD10-Knockdown-Zellen. Dies 

bestätigt, dass mitochondriale Dysfunktion wahrscheinlich zur FTD/ALS-Pathogenese beiträgt. Die 
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Entdeckung einer neuartigen CHCHD10-Mutation mit klarem Pathomechanismus unterstützt 

CHCHD10 als bona fide ALS-Gen. Ein möglicher neuer Therapieansatz für diesen FTD/ALS 

Subtypen wäre eine Steigerung der Mia40-Aktivität wodurch der CHCHD10-Import und dessen 

Stabilität erhöht wird (Publikation I). 

Zusammengefasst zeigen meine Daten, dass verschiedene Mechanismen wie chronische 

Beeinträchtigung der Mitochondrien oder des Proteasoms und die Übertragung von 

Aggregaten zwischen Zellen zur Entwicklung von FTD/ALS beitragen. Darüber hinaus ist 

Poly-GP ein geeigneter Biomarker für die C9orf72 FTD/ALS Diagnose und die Überwachung 

klinischer Therapiestudien. 
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III. Summary 

This thesis investigates protein-mediated pathomechanisms and biomarkers in two familial forms 

of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in cell culture and 

patient material. I focused on the ubiquitin-proteasome system (UPS), spreading-mechanisms and 

mitochondrial dysfunction. 

The most frequent genetic cause of FTD and ALS is a GGGGCC-repeat expansion mutation in the 

intronic region of C9orf72. Patients harbor hundreds of repeats that are bi-directionally transcribed. 

Repeat-containing transcripts form nuclear RNA foci and are unconventionally translated in all 

reading frames into five dipeptide repeat (DPR) proteins (poly-GA, poly-GP, poly-GR, poly-PA and 

poly-PR). These DPR proteins coaggregate specifically in C9orf72 patient brains, but their 

pathogenic nature is still under intense debate.  

In C9orf72 FTD/ALS and other neurodegenerative diseases, dysfunction of the UPS has been 

discussed as cause or consequence of protein aggregation. To gain deeper insights into the 

ultrastructure of poly-GA aggregates, we conducted cryo-electron tomography in primary neurons. 

We found that poly-GA aggregates consist of densely packed twisted ribbons immobilizing 

numerous 26S proteasomes that are stalled in a rare transition state indicating an unsuccessful 

degradation attempt. I validated the colocalization of the proteasome with poly-GA and confirmed 

sequestration of the proteasome by biochemical fractionation. Altogether these results indicate 

that proteasomes are trapped in poly-GA aggregates and inhibit the UPS (Publication II).  

Cell-to-cell transmission of intracellular protein aggregates is emerging as a common feature in 

neurodegenerative diseases. As part of a study on transmission of DPR protein, I conducted co-

culture experiments in primary neurons revealing that poly-GA is released and taken up by other 

neurons. Unexpectedly, I observed that overexpression of poly-GA also induced RNA foci 

formation in C9orf72 fibroblasts suggesting a transcriptional feedback mechanism. Together these 

data suggest cell-to-cell transmission of poly-GA causes non-cell autonomous effects in C9orf72 

FTD/ALS (Publication IV).  

Despite ample evidence for DPR protein toxicity in cellular and animal models, the lack of 

correlation between DPR protein expression and neurodegeneration in end-stage tissue have cast 

doubt on the relevance of DPR proteins for C9orf72 pathogenesis. To study the temporal course 

of DPR expression in C9orf72 FTD/ALS, I established a novel poly-GP immunoassay using 

monoclonal antibodies. In a cross-sectional study in the CSF from C9orf72 mutation carrier poly-

GP was clearly detected, compared to controls with other neurodegenerative diseases or healthy 

individuals. Interestingly, poly-GP detection in a clinical AD case and subsequent genetic testing 

identified a misdiagnosed C9orf72 case, demonstrating the clinical utility of this immunoassay. 
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Importantly, I detected similar poly-GP levels in symptomatic and asymptomatic C9orf72 mutation 

carriers, suggesting chronic DPR expression in the prodromal stage may trigger subsequent steps 

in a disease cascade, e.g. by chronic overloading of the UPS, and non-cell autonomous effects 

through cell-to-cell transmission (Publication III). 

While DPR proteins have also been linked to mitochondrial dysfunction, mutations in the 

mitochondrial protein CHCHD10 are so far the strongest evidence for a causal role of this 

pathomechanism in FTD/ALS. However, most CHCHD10 mutations described in FTD/ALS 

patients are associated with late disease onset and slow progression. Incomplete penetrance has 

raised concerns by some geneticists about the pathogenicity. Moreover, the molecular 

mechanisms of known CHCHD10 mutations are unclear. 

Here, we identified a novel mutation in CHCHD10 (Q108P) in a 29-year old ALS patient with very 

aggressive disease progression. Q108P is located in the CHCH domain and affects a highly 

conserved residue. I discovered that Q108P blocked mitochondrial import nearly completely 

resulting in decreased protein stability and diffuse cytoplasmic localization in vitro. I analyzed all 

CHCH10 variants reported in FTD/ALS patients and discovered that another mutation in the 

CHCH domain (C122R) disrupted mitochondrial localization as well. In contrast, other mutations 

(G66V and E127K) showed normal mitochondrial import but resulted in mitochondrial clustering. 

Thus, both loss-of-function and toxic gain-of-function mechanisms might contribute to 

pathogenesis in CHCHD10 FTD/ALS. Truncation experiments show that the CHCH domain is 

critical for import, but not the N-terminal sequence, which has been commonly referred to as a 

mitochondrial import signal. For other CHCH containing proteins a Mia40-depependent formation 

of disulfide bonds is critical for mitochondrial import. Using knockdown experiments in HeLa cells, I 

showed that Mia40 mediates mitochondrial import of CHCHD10. Strikingly, Mia40 overexpression 

fully rescued mitochondrial import of CHCHD10 Q108P by enhancing disulfide-bond formation and 

protein stability. Reduced mRNA and protein levels in lymphoblasts froma FTD patient, carrying a 

Q108stop mutation, further support a loss-of-function mechanism. Interestingly, I also found 

reduced spare respiratory capacity in the patient Q108stop lymphoblasts and CHCHD10 

knockdown cells suggesting that mitochondrial dysfunction can contribute to FTD/ALS 

pathogenesis. The discovery of a novel CHCHD10 mutation with a clear pathomechanism strongly 

supports CHCHD10 as a bona-fide ALS gene. Enhancing Mia40 activity to boost CHCHD10 

import and stability may be a new treatment strategy for this subtype of ALS/FTD (Publication I).  

Together, my data show that diverse mechanisms such as chronic impairment of 

mitochondria or the proteasome, and cell-to-cell transmission of aggregating proteins 

contribute to the development of FTD/ALS. Furthermore, poly-GP is a suitable biomarker 

for C9orf72 FTD/ALS diagnosis and/or monitoring of clinical trials.  
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A novel CHCHD10 mutation implicates a Mia40-
dependent mitochondrial import deficit in ALS
Carina Lehmer1, Martin H Schludi1,2, Linnea Ransom1, Johanna Greiling1, Michaela Junghänel1,

Nicole Exner3, Henrick Riemenschneider1, Julie van der Zee4,5, Christine Van Broeckhoven4,5,

Patrick Weydt6, Michael T Heneka6,7 & Dieter Edbauer1,2,*

Abstract

CHCHD10 mutations are linked to amyotrophic lateral sclerosis, but
their mode of action is unclear. In a 29-year-old patient with rapid
disease progression, we discovered a novel mutation (Q108P) in a
conserved residue within the coiled-coil-helix-coiled-coil-helix
(CHCH) domain. The aggressive clinical phenotype prompted us to
probe its pathogenicity. Unlike the wild-type protein, mitochondrial
import of CHCHD10 Q108P was blocked nearly completely resulting
in diffuse cytoplasmic localization and reduced stability. Other
CHCHD10 variants reported in patients showed impaired mitochon-
drial import (C122R) or clustering within mitochondria (especially
G66V and E127K) often associated with reduced expression. Trunca-
tion experiments suggest mitochondrial import of CHCHD10 is
mediated by the CHCH domain rather than the proposed N-terminal
mitochondrial targeting signal. Knockdown of Mia40, which intro-
duces disulfide bonds into CHCH domain proteins, blocked mito-
chondrial import of CHCHD10. Overexpression of Mia40 rescued
mitochondrial import of CHCHD10 Q108P by enhancing disulfide-
bond formation. Since reduction in CHCHD10 inhibits respiration,
mutations in its CHCH domain may cause aggressive disease by
impairing mitochondrial import. Our data suggest Mia40 upregula-
tion as a potential therapeutic salvage pathway.

Keywords amyotrophic lateral sclerosis; CHCHD10; genetics; mitochondria

Subject Categories Genetics, Gene Therapy & Genetic Disease; Neuroscience

DOI 10.15252/emmm.201708558 | Received 14 October 2017 | Revised 13 April

2018 | Accepted 18 April 2018

EMBO Mol Med (2018) e8558

Introduction

The recent identification of mutations in CHCHD10 implicates mito-

chondrial dysfunction in the pathogenesis of frontotemporal

dementia (FTD) and amyotrophic lateral sclerosis (ALS) (Bannwarth

et al, 2014). CHCHD10 is a small soluble protein with a positively

charged N-terminus commonly referred to as a mitochondrial

targeting signal (MTS), a central hydrophobic domain and a C-term-

inal CHCH domain (Perrone et al, 2017). Mutations have been

reported mainly in the N-terminus and the central hydrophobic

domain. However, the exact molecular function of the protein and

the effect of these mutations remain unknown. Electron microscopy

and biochemical studies suggest that CHCHD10 resides in the mito-

chondrial contact site and cristae organizing system (MICOS) in the

intermembrane space of mitochondria (Bannwarth et al, 2014)

although that has been recently disputed by others (Burstein et al,

2018). In the MICOS complex, CHCHD10 interacts with mitofusin,

CHCHD3, and CHCHD6 and it seems to be required for proper pack-

aging of mitochondrial DNA into the nucleoid structures (Genin

et al, 2016).

Several CHCHD10 mutations were identified in association studies

from ALS/FTD kindreds. The S59L mutation was found in an

extended family with variable clinical presentation including classic

motoneuron disease, cerebellar ataxia, and frontal lobar cognitive

symptoms (Bannwarth et al, 2014). Moreover, S59L patients also

show ragged-red fiber myopathy indicative of mitochondrial disease.

The subsequent identification of a R15L mutation as the causal muta-

tion in several pedigrees of familial ALS by three independent groups

corroborated the link to ALS (Johnson et al, 2014; Muller et al, 2014;

Kurzwelly et al, 2015), while a more cautious interpretation of these

association studies was put forward by others due to incomplete

penetrance (van Rheenen et al, 2014). Later, a G66V mutation was

associated with ALS (Muller et al, 2014), the Jokela type of spinal

muscular atrophy (Penttila et al, 2015), and Charcot-Marie-Tooth

disease type 2 (Auranen et al, 2015). The typical age-of-onset in these

families is in the fifties, and patients show variable clinical presenta-

tion and disease duration (1–12 years). Sequencing studies identified

several other CHCHD10 mutations in ALS/FTD cohorts, but lack func-

tional characterization to support pathogenicity (Chaussenot et al,
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2014; Dols-Icardo et al, 2015; Zhang et al, 2015; Jiao et al, 2016;

Zhou et al, 2017; Blauwendraat et al, 2018).

Functional studies of CHCHD10 variants are largely limited to

the S59L mutation and have so far not revealed a clear mode of

action. Patient fibroblasts with the S59L mutation show an altered

mitochondrial network structure, but as mitochondrial fusion is

normal, this may be secondary to instability of mitochondrial DNA

(Bannwarth et al, 2014). Overexpression of human wild-type but

not R15L or S59L CHCHD10 rescues the shorter lifespan of

Caenorhabditis elegans lacking the CHCHD10 homolog har-1 (Woo

et al, 2017). The reported inhibition of apoptosis by CHCHD10 S59L

(Genin et al, 2016) has not been replicated by others (Woo et al,

2017) and is difficult to reconcile with a neurodegenerative process.

The neuropathological features of CHCHD10 cases have not been

comprehensively characterized, but CHCHD10 was recently linked

to synaptic integrity and nuclear retention of TDP-43 (Woo et al,

2017), although the latter has not been replicated (Brockmann et al,

2018).

Here, we report a novel Q108P mutation in the CHCH domain of

CHCHD10 in a very young patient with rapidly progressing classical

ALS symptoms, which is in sharp contrast to the slow progression

in most CHCHD10 patients. We show that the Q108P mutation

blocks mitochondrial import nearly completely, and examine the

mechanism of CHCHD10 mitochondrial import in detail, including

rescue strategies. In addition, we analyzed the effect of all other

reported missense mutations on protein expression and localization.

Results

Identification of CHCHD10 Q108P in an early-onset ALS patient

A 29-year-old male presented with progressive spasticity, starting in

the right foot and spreading to the other extremities over 2 years. He

reported recurring painful cramps and had recently noticed atrophy

in the hand muscles. Neurologic exam revealed spastic tetraparesis,

diffuse fasciculations, muscle atrophy in all extremities, hyperactive

deep tendon reflexes, a positive Babinski on the right and equivocal

on the left. Motor abnormalities were most severe in the right arm.

Bulbar, sensory and coordination functions were normal.

The CSF showed slightly elevated proteins (530.2 mg/l) but was

otherwise unremarkable. The electrophysiological exam showed

chronic and acute neurogenic changes in the cervical, thoracic, and

lumbar region.

The family history was unremarkable for neurodegenerative

diseases. Both parents are alive and well at 56 and 55 years, respec-

tively. No DNA was available from the parents. Repeat primed PCR

detected no C9orf72 repeat expansion in the index case. Sequencing

using a custom panel with genes linked to ALS/FTD and Alzheimer

revealed a heterozygous Q108P mutation in CHCHD10, but no

mutations in APP, CSF1R, CHMP2B, FUS, GRN, HNRNPA1,

HNRNPA2B1, MAPT, MATR3, NEK1, OPTN, PSEN1, PSEN2, SOD1,

TARDBP, TBK1, TUBA4A, TREM2, or VCP (see Materials and Meth-

ods). Sanger sequencing confirmed a heterozygous Q108P mutation

(Fig 1A). Recently, a nonsense variant (Q108*) was reported at the

same position in a case with FTD and atypical Parkinson’s disease

(Perrone et al, 2017). The Q108P variant was not found in the

60,706 control exomes curated in the ExAc database, and the

residue is highly conserved between species (Lek et al, 2016).

Among the species in the ENSEMBL ortholog list, Q108 is fully

conserved apart from yeast (asparagine). While most other reported

CHCHD10 variants lie in the N-terminal region (e.g., R15L) and the

central hydrophobic domain (e.g., S59L and G66V), the novel

Q108P mutation is located in the CHCH domain (Fig 1B).

CHCHD10 Q108P inhibits mitochondrial import nearly completely

CHCHD10 is localized in the intermembrane space of mitochondria,

and several pathogenic mutations are near the putative MTS at the

N-terminus. Therefore, we asked, how the Q108P mutation affects

the localization and function of CHCHD10, and compared it to the

R15L mutation, which was independently discovered in several

ALS/FTD kindreds. In HeLa cells, the levels of R15L and especially

Q108P were reduced in whole cell lysate compared to HA-tagged

wild-type CHCHD10 (Fig EV1A). In immunofluorescence experi-

ments, the wild-type protein showed typical mitochondrial staining

and colocalization with the mitochondrial marker protein ATP5A1

(Fig 1C). In contrast, CHCHD10 Q108P was diffusely localized all

over the cell, without discernible mitochondrial localization,

suggesting that this mutation disrupts the mitochondrial import

and/or impairs protein folding/stability. While CHCHD10 R15L

levels were also reduced, the residual protein still colocalized with

mitochondria similar to the wild-type protein. Line scans confirmed

the lack of correlation of CHCHD10 Q108P and mitochondrial signal

(Fig EV1B).

In addition, biochemical fractionation showed strongly reduced

levels of CHCHD10 Q108P in mitochondria compared to wild-type

despite similar cytosolic levels in a quantitative analysis (Fig 1D and

E). The mitochondrial levels of CHCHD10 R15L consistently

appeared lower than for the wild-type protein without reaching

statistical significance. A C-terminal anti-CHCHD10 antibody showed

comparable expression of exogenous and endogenous CHCHD10,

but poorly detected the Q108P mutant protein. Moreover, transfec-

tion of the mutant and wild-type CHCHD10 had no effect on the

levels and localization of endogenous CHCHD10 arguing against

molecular replacement or dominant negative effects. Next, we trans-

duced primary rat hippocampal neurons with lentivirus expressing

CHCHD10 variants. Similar to the results in HeLa cells, wild-type

and R15L predominantly localized to mitochondria, while Q108P

showed diffuse expression in the soma and neurites (Fig 1F).

Next, we analyzed protein stability, because Q108P and R15L

showed reduced protein levels compared to wild-type CHCHD10.

Therefore, we treated CHCHD10 expressing cells with cyclohex-

imide (CHX) to block protein translation and analyzed the decay of

CHCHD10 over a time course of 24 h (Fig EV1C). Quantification

confirmed rapid degradation of CHCHD10 Q108P compared to the

wild-type (Fig EV1D), which is reflected in an almost fivefold lower

half-life time (Fig EV1E). CHCHD10 R15L showed intermediated

stability. Together, these data suggest that the Q108P mutation

strongly inhibits mitochondrial import leading to enhanced protein

degradation in the cytosol.

CHCHD10 knockdown impairs cellular respiration

Since mitochondrial CHCHD10 levels are likely reduced in the

ALS patient with CHCHD10 Q108P mutation, we addressed the
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functional role of CHCHD10 focusing on cellular respiration in

knockdown experiments using siRNA. CHCHD10 siRNA reduced

expression of CHCHD10 mRNA and protein detected by quantitative

RT–PCR and immunoblotting in HeLa cells compared to control

siRNA (Fig 2A). Using the Seahorse analyzer, we quantified cellular

respiration upon CHCHD10 knockdown in HeLa cells. CHCHD10

knockdown cells showed reduced basal respiration and also reduced

maximal respiration upon uncoupling with FCCP, resulting in a

lower spare respiratory capacity (Fig 2B and C).

Next, we used CRISPR/Cas9 to introduce a frameshift in

CHCHD10 in haploid HAP1 cells near Q108. Deletion of 11

base pairs led to a premature stop codon resulting in the dele-

tion of amino acids 110–142 (p.Leu110HisfsTer5, here called

D10 fs). The frame shift caused significant reduction in the

CHCHD10 mRNA through nonsense-mediated decay (Fig 2D).

While a C-terminal CHCHD10 antibody detected no full-length

protein in the edited cells, an N-terminal antibody still

detected low levels of truncated CHCHD10 (Fig 2D). D10 fs

cells showed reduced spare respiratory capacity (Fig 2E and

F), which is consistent with the knockdown data in HeLa cells

(Fig 2B and C).

Since primary cells of the Q108P patients were unfortunately not

available, we analyzed lymphoblasts from an FTD patient with a

heterozygous Q108* mutation (Perrone et al, 2017). Consistent with

the reported nonsense-mediated decay of the mutant allele and the

findings from the very similar CHCHD10 frame shift allele in HAP1
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Figure 1. CHCHD10 Q108P inhibits mitochondrial import.

A Genomic DNA of an ALS patient was PCR amplified and subjected to Sanger sequencing. The fluorogram revealed a heterozygous Q108P mutation in exon 3 of
CHCHD10.

B Domain structure and known mutations of CHCHD10. R15L is localized in the putative mitochondrial targeting signal (“MTS?”), S59L and G66V in the hydrophobic
region and Q108P in the CHCH domain.

C–F HeLa cells were transfected (C–E) and primary hippocampal neurons were transduced (F) with HA-tagged CHCHD10 (D10-HA) wild-type (WT), Q108P, or R15L. (C, F)
Mitochondrial localization of CHCHD10-HA (D10-HA) was analyzed by co-staining of a mitochondrial ATP synthase subunit (ATP5A1). Cells with similar expression
levels were selected for imaging. Scale bars represent 10 lm. (D) Biochemical fractionation of mitochondria and cytosol from transfected HeLa cells. Immunoblot
using antibodies against HA, CHCHD10 C-terminus (D10-CT), ATP5A1, and actin. (E) Protein quantification of CHCHD10-HA (D10-HA) in mitochondrial (normalized
to ATP5A1) and cytosolic (normalized to actin) fractions. Data are shown as mean � SD. One-way ANOVA (followed by Dunnett’s post hoc test against WT): n = 3
biological replicates, mitochondrial WT versus Q108P: *P = 0.0135.

Source data are available online for this figure.
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cells, Q108* lymphoblasts show reduced CHCHD10 mRNA and

protein levels compared to lymphoblasts from controls with wild-

type CHCHD10 (Fig 2G). Reduced CHCHD10 expression in these

cells is associated with a reduced spare respiratory capacity

compared to the three control lines with wild-type CHCHD10 coding

sequence (Fig 2H and I).
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Figure 2. Partial loss of CHCHD10 reduces spare respiratory capacity.

A–C HeLa cells were transfected with siRNA targeting CHCHD10 (siD10) or control (siCtrl). (A) Quantitative RT–PCR and immunoblotting (using a C-terminal antibody)
show CHCHD10 knockdown. mRNA levels were normalized to GAPDH and B2M mRNA. Data are shown as mean � SD. Welch’s t-test was used for statistical
analysis: n = 3 biological replicates, *P = 0.0102. (B, C) Mitochondrial respiration was quantified in real-time using the Seahorse extracellular flux analyzer. The
oxygen consumption rate was measured in pmol O2 per minute and normalized to total protein concentration. After measuring basal respiration, oligomycin was
added to inhibit ATP synthase (proton leak), followed by the uncoupling agent FCCP (maximal respiration) and antimycin A/rotenone (non-mitochondrial oxygen
consumption). Statistical analysis was done for the spare respiratory capacity (difference of maximal and basal respiration). Data are shown as mean � SD. T-test:
n = 11 biological replicates, ***P < 0.0001.

D–F CHCHD10 inactivation in haploid HAP1 cells using CRISPR/Cas9 leading to a premature stop codon (p.Leu110HisfsTer5, henceforth abbreviated as D10 fs). (D)
Quantitative RT–PCR and immunoblotting (using C- and N-terminal antibodies) show strong reduction of CHCHD10 mRNA expression and loss of full-length
protein in D10 fs cells. mRNA levels were normalized to GAPDH and B2M mRNA. Data are shown as mean � SD. Welch’s t-test was used for statistical analysis:
n = 3 technical replicates, *P = 0.0125. (E, F) Mitochondrial respiration was analyzed as in (B, C). Statistical analysis was done for spare respiratory capacity
(difference of maximal and basal respiration). Data are shown as mean � SD. T-Test: n = 7 technical replicates, **P = 0.0022. A representative experiment of
several experiments is shown.

G–I Lymphoblasts from an FTD patient with a Q108* mutation were compared to three control cases with wild-type CHCHD10. (G) Quantitative RT–PCR and
immunoblotting (using C- and N-terminal antibodies) show both reduced CHCHD10 mRNA expression and 50% CHCHD10 protein in Q108* patient cells. mRNA levels
were normalized to GAPDH and B2M mRNA. Data are shown as mean � SD. One-way ANOVA (followed by Dunnett’s post hoc test against Q108*) was used for
statistical analysis: n = 3 technical replicates, Q108* versus Ctrl1: ***P = 0.0004, Q108* versus Ctrl2: *P = 0.0338, Q108* versus Ctrl3: *P = 0.0105. (H, I) Mitochondrial
respiration was analyzed 1 h after plating an equal number of lymphoblasts. Statistical analysis was done for spare respiratory capacity (difference of maximal and
basal respiration). Data are shown as mean � SD. One of two independent experiments with similar results was analyzed by one-way ANOVA (followed by Dunnett’s
post hoc test against Q108*): n = 4 technical replicates, Q108* versus Ctrl1: ***P = 0.0001, Q108* versus Ctrl2: **P = 0.0017, Q108* versus Ctrl3: ***P = 0.0001.
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Thus, reduced mitochondrial import of CHCHD10 Q108P may

decrease mitochondrial function in the early-onset ALS case with

only one intact allele.

The CHCH domain is critical for mitochondrial import

In the current literature, the N-terminus of CHCHD10 is widely

referred to as a MTS due to the presence of four interspaced arginine

residues. To decipher the contribution of the respective domain to

the mitochondrial import mechanism of CHCHD10, we generated

truncated CHCHD10 expression constructs and analyzed the mutant

proteins by immunofluorescence and biochemical fractionation

(Fig 3A–C). Similar to the R15L mutation, truncation of the

predicted N-terminal MTS (DNT, aa 1–16) had little effect on the

mitochondrial import. Deleting the C-terminal CHCH domain

(DCHCH, aa D92–142) strongly reduced protein levels and

prevented mitochondrial import nearly completely. Importantly, the

Q108* patient variant inhibited mitochondrial import like the Q108P

mutation. Both CHCHD10 DCHCH and Q108* proteins were retained

in the cytosolic fraction, confirming that an intact CHCH domain is

necessary for mitochondrial import of CHCHD10 (Fig 3B and C).

Deleting the N-terminus from the Q108P did not further impair mito-

chondrial import arguing for a dominant role of the CHCH domain

(Fig 3B and C).

To determine which domains of CHCHD10 are sufficient for

mitochondrial import, we fused the N-terminus (NT-GFP, amino

acids 1–33) or the C-terminus (CHCH-GFP and GFP-CHCH, amino

acids 88–142) to GFP. While conventional MTS is widely used in flu-

orescent mitochondrial reporters, the predicted MTS of CHCHD10

was not sufficient for mitochondrial import when fused to GFP

(Fig 3D). Unexpectedly, the CHCH domain fused to either the N- or

C-terminus of GFP also failed to drive mitochondrial import.

D10-HA ATP5A1 Merge+DAPI

BA

W
T

Δ
N

T-
W

T
Δ

C
H

C
H

Q
10

8*
Q

10
8P

C
H

C
H

-G
FP

GFP ATP5A1 Merge+DAPI

N
T-

G
FP

G
FP

-C
H

C
H

D

Actin

ATP5A1

D10-HA

55-

45-

17-

W
T

Δ
C

H
C

H
Q

10
8*

mitochondria cytosol

Δ
N

T-
W

T

Q
10

8P
Δ

N
T-

Q
10

8P
mitochondria cytosol

D
10

-H
A

/A
TP

5A
1

D
10

-H
A

/A
ct

in

W
T

Q
10

8P

2

1

0

3

4

2

1

0

3

4

Δ
N

T-
Q

10
8P

Δ
C

H
C

H
Q

10
8*

Δ
N

T-
W

T

C

** ** ** **

*

W
T

Q
10

8P
Δ

N
T-

Q
10

8P

Δ
C

H
C

H
Q

10
8*

Δ
N

T-
W

T

W
T

Δ
C

H
C

H
Q

10
8*

Δ
N

T-
W

T

Q
10

8P
Δ

N
T-

Q
10

8P

Figure 3. The CHCH domain is necessary for mitochondrial import of CHCHD10.

HeLa cells were transfected with the indicated CHCHD10 variants (D10-HA) and GFP-fusion proteins.

A–D (A, D) Double immunofluorescence using ATP5A1 as a mitochondrial marker protein. Cells with similar expression level are shown. Scale bars represent 10 lm.
(B, C) Representative immunoblot of biochemical fractionation of mitochondria and cytosol using antibodies against HA, ATP5A1, and actin followed by quantitative
analysis of the respective CHCHD10 truncation mutant. Levels of HA-tagged CHCHD10 (D10-HA) were either normalized to ATP5A1 (for mitochondria) or actin (for
cytosol). Data are shown as mean � SD. One-way ANOVA (followed by Dunnett’s post hoc test against WT): n = 3–4 biological replicates, mitochondrial: WT versus
DCHCH **P = 0.0013, WT versus Q108* **P = 0.0019, WT versus Q108P **P = 0.0030, WT versus DNT-Q108P **P = 0.0020; Cytosolic: WT versus Q108* *P = 0.0428.

Source data are available online for this figure.
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However, fusing GFP to the N- or C-terminus of full-length

CHCHD10 also blocked mitochondrial import of wild-type CHCHD10

(data not shown), indicating that the CHCH domain-mediated

import mechanism may not be compatible with large proteins,

which unfortunately precludes definite interpretation of this experi-

ment. The truncation experiments show that mitochondrial import

of CHCHD10 is predominantly driven by the CHCH domain.

Mutations in the hydrophobic region and the CHCH domain
affect subcellular CHCHD10 distribution

To test, whether impaired mitochondrial import is a common patho-

mechanism, we examined steady state protein levels and localiza-

tion of all reported missense CHCHD10 variants (Bannwarth et al,

2014; Ajroud-Driss et al, 2015; Dols-Icardo et al, 2015; Jiao et al,

2016; Perrone et al, 2017; Zhou et al, 2017). In public exome

sequencing data from ~ 2,000 ALS patients (ALSdb, Cirulli et al,

2015), we discovered two additional CHCHD10 mutations in the

CHCH domain that are rare in the ExAc database (Lek et al, 2016).

One case had a heterozygous mutation of an essential cysteine

(C122R), and one case had a charge-altering mutation in a highly

conserved residue (E127K) within the CHCH domain, suggesting

that such mutations significantly contribute to ALS pathogenesis. In

addition, this dataset contained novel R6G and G66S variants. To

facilitate site-directed mutagenesis of the highly GC-rich sequence,

we used a codon-optimized synthetic gene encoding human

CHCHD10 (Fig EV2A). The Q108P and R15L mutants had similar

effects on expression and localization, although the synthetic gene

allowed higher expression levels (Fig EV2B and C).

Importantly, the C122R mutant showed diffuse cytoplasmic local-

ization similar to Q108P (Figs 4A and EV2C). Consistent with previ-

ous reports (Woo et al, 2017), CHCHD10 S59L showed small

punctate staining in mitochondria in many transfected cells. Even

stronger clustering was observed for G66V and E127K in nearly all

cells. Other variants in the hydrophobic domain had little (G58R

and G66S) or no effect (V57E) on CHCHD10 localization but may

have subtle effects on mitochondrial morphology similar to reports

for S59L (Bannwarth et al, 2014; Woo et al, 2017). The other vari-

ants showed no gross abnormalities in expression level and localiza-

tion by immunofluorescence (Fig EV3), highlighting the importance

of the hydrophobic region and the CHCH domain.

For a more quantitative analysis, we analyzed CHCHD10 protein

levels 3 days after transfection (Fig 4B). CHCHD10 P23S, G58R,

G66V, Q108P, and C122R levels were significantly reduced

compared to wild-type. Surprisingly, expression of the common

P34S variant and R6G, R15S, A32D, and A35D was enhanced argu-

ing against pathogenicity. Biochemical fractionation confirmed that

C122R strongly inhibits mitochondrial import similarly to Q108P

suggesting that disulfide-bond formation in the CHCH domain is

critical for mitochondrial import (Fig 4C and D).

Mia40 mediates mitochondrial import of CHCHD10

To test whether CHCHD10 is imported into mitochondria via the

Mia40 redox system similar to other CHCH domain containing

proteins, we used siRNA to inhibit this pathway, also including the

FAD-linked sulfhydryl oxidase Erv1 and AIFM1. RT–qPCR and

immunoblotting confirmed the potency and specificity of all siRNAs

(Fig 5A–C). Strikingly, Mia40 knockdown strongly reduced the

levels of endogenous CHCHD10 protein despite unchanged mRNA

levels. Knockdown of AIFM1 and Erv1 also seemed to decrease

CHCHD10 protein levels slightly, however, without reaching statisti-

cal significance (Fig 5C). Immunofluorescence confirmed colocaliza-

tion of endogenous CHCHD10 with mitochondrial cytochrome c

oxidase II (MTCO2; Fig 5D). In contrast to control, Mia40 knock-

down strongly reduced overall CHCHD10 levels and prevented mito-

chondrial targeting. Due to the low CHCHD10 protein levels in

Mia40 knockdown, we speculate that CHCHD10 mislocalized to the

cytosol is degraded rapidly similar to our findings for Q108P

(Fig EV1C–E).

Mia40 mediates import of its substrates by direct binding and

disulfide-bond formation, which traps the target proteins in the

mitochondria (Peleh et al, 2016). Therefore, we analyzed interac-

tion of CHCHD10 with Mia40 in cotransfected HeLa cells. Co-

immunoprecipitation experiments showed interaction of wild-type,

Q108P, and R15L CHCHD10 with Mia40, but no interaction with the

DCHCH construct and only weak interaction with the Q108*

construct (Fig EV4A).

To directly probe Mia40-mediated disulfide-bond formation in

the CHCH domain, we treated cell extracts with 4-acetamido-40-
maleimidylstilbene-2,20-disulfonic acid (AMS), which is covalently

linked to free thiol-groups and thus leads to slower migration in

SDS–PAGE. AMS treatment of non-reduced extracts had no effect on

wild-type CHCHD10 migration indicating that all cysteine residues

are oxidized under basal conditions (Fig 5E). Prior reduction with

DTT increased the apparent molecular weight of wild-type

CHCHD10, particularly upon heating samples to 95°C, presumably

due to increased reduction efficiency. Similar results were obtained

for endogenous CHCHD10 (Fig EV4B). While CHCHD10 Q108P

levels were lower under all conditions, heating the CHCHD10

Q108P extracts during DTT treatment had no additional effect on

AMS accessibility in contrast to the wild-type. Thus, the Q108P

mutant is completely reduced by DTT already at room temperature

indicating that the CHCH domain in the Q108P mutant may be

misfolded. Moreover, treating CHCHD10 R15L extract with AMS

showed results similar to wild-type, suggesting normal formation of

disulfide bonds in the intermembrane space of mitochondria in this

mutant.

Mia40 overexpression restores mitochondrial import of
CHCHD10 Q108P

Since mitochondrial import of wild-type CHCHD10 depends on

the integrity of the Mia40 system, we asked how the patient-

derived variants are affected by this pathway. First, we analyzed

the impact of Mia40 overexpression on the localization of

CHCHD10 Q108P in HeLa cells. Strikingly, Mia40 promoted mito-

chondrial import of CHCHD10 Q108P (Fig 6A). The rescue of

mitochondrial import of CHCHD10 Q108P due to Mia40 overex-

pression was fully replicated in primary neurons (Fig 6B). Addi-

tionally, biochemical fractionation and quantification confirmed

that overexpression of Mia40 increased the levels of wild-type,

Q108P, and R15L CHCHD10 in isolated mitochondria from HeLa

cells (Fig 6C and D, also seen in input of Fig EV4A). Overex-

pressed Mia40 increased also wild-type and mutant CHCHD10 in

the cytosolic fraction, which may be explained by partial
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cytosolic localization of excess Mia40 (Fig EV4C). Importantly,

Mia40 expression also enhanced CHCHD10 Q108P stability

(Fig EV4D and E). Moreover, biochemical analysis of CHCHD10

disulfide-bond formation using AMS treatment confirmed Mia40-

induced oxidation and mitochondrial import of Q108P CHCHD10.

Without Mia40 overexpression, the CHCHD10 Q108P mutant was

poorly expressed (Fig 6E). However, co-expression of Mia40

resulted in higher protein expression and disulfide-bond forma-

tion comparable to wild-type CHCHD10, suggesting that oxida-

tion via Mia40 is crucial for the stability and mitochondrial

localization of CHCHD10 Q108P. Thus, Mia40 overexpression

likely restores mitochondrial import of CHCHD10 Q108P by

promoting disulfide-bond formation.

Discussion

Unusual phenotypes of genetically determined diseases offer an

opportunity to explore molecular pathomechanisms. The known

CHCHD10 mutations are usually associated with slow progress-

ing forms of late-onset motoneuron disease and frontotemporal

dementia. Here, we identified a novel CHCHD10 mutation in a
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Figure 4. Differential effect of CHCHD10 patient variants on localization and expression.

HeLa cells were transfected with HA-tagged CHCHD10 (D10-HA) patient variants.

A Immunofluorescence shows expression pattern of CHCHD10-HA variants compared to the mitochondrial marker ATP5A1. Arrowheads indicate clustering of CHCHD10
within mitochondria. Scale bar represents 10 lm.

B Quantification of CHCHD10 levels from immunoblots of whole cell lysates. Data are shown as mean � SD. One-way ANOVA (followed by Dunnett’s post hoc test
against WT): n = 3–6 biological replicates, WT versus R6G: *P = 0.0145, WT versus R15S: ***P = 0.0001, WT versus P23S: *P = 0.0189, WT versus A32D: ***P = 0.0001,
WT versus P34S: ***P = 0.0001, WT versus A35D: **P = 0.0044, WT versus G58R: **P = 0.0029, WT versus G66V: ***P = 0.0001, WT versus Q108P: ***P = 0.0001, WT
versus C122R *P = 0.0146.

C Immunoblot of biochemical fractionation of mitochondria and cytosol from transfected HeLa cells expressing different CHCHD10 patient variants using antibodies
against HA, ATP5A1, and actin.

D Quantification of CHCHD10-HA protein level normalized to mitochondrial ATP5A1. Data are shown as mean � SD. One-way ANOVA (with Dunnett’s post hoc test
against WT): n = 4 biological replicates, Mitochondrial CHCHD10 WT versus Q108P: *P = 0.0156, WT versus C122R: *P = 0.0172.

Source data are available online for this figure.
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young ALS patient with an aggressive disease course and

analyze the consequences for protein function. The Q108P muta-

tion inhibits mitochondrial import of CHCHD10 via the Mia40

system nearly completely. Rescue of mitochondrial import by

Mia40 overexpression suggests that Q108P reduces binding affin-

ity to Mia40 and can be compensated for by excess Mia40. In

contrast, the common R15L mutation had a much smaller effect

on protein levels and subcellular distribution, while several

mutations in the hydrophobic domain cause clustering of

CHCHD10 within mitochondria. Thus, the strong effect of

CHCHD10 Q108P on mitochondrial import may explain the

aggressive disease in the mutation carrier and suggests that

CHCHD10 is important for mitochondrial respiration in motoneu-

rons during healthy aging.

Mitochondrial import of CHCHD10 via Mia40

To address the pathogenicity of the novel Q108P variant in

CHCHD10, we expressed the mutant protein in HeLa cells and

primary hippocampal neurons and noticed diffuse localization all

over the cell compared to predominantly mitochondrial localization

of the wild-type. Our findings suggest that impaired mitochondrial

import is the main pathogenic mechanism for the CHCHD10 Q108P

variant and led us to investigate the mitochondrial import mecha-

nisms of wild-type and mutant CHCHD10 in more detail.

Apart from the 13 proteins encoded on the mitochondrial DNA,

all other ~ 1,500 mitochondrial proteins are synthesized in the

cytosol and require active transport into mitochondria (Wiedemann

& Pfanner, 2017). The vast majority of nuclear encoded proteins
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Figure 5. Mitochondrial import of CHCHD10 depends on Mia40.

A–D HeLa cells were transfected with siRNA targeting CHCHD10, Mia40, AIFM1, Erv1, or control (siCtrl). (A) Quantitative RT–PCR confirm specific knockdown of
CHCHD10, Mia40, AIFM1, and Erv1. mRNA levels were normalized to GAPDH and B2M mRNA. Data are shown as mean � SD. One-way ANOVA (followed by
Dunnett’s multiple comparisons test against siCtrl) was used for statistical analysis: n = 4 biological replicates, siCtrl versus siD10 ***P = 0.0001, siCtrl versus
siMia40 ***P = 0.0001, siCtrl versus siAIFM1 ***P = 0.0001, siCtrl versus siErv1 ***P = 0.0001. (B) Immunoblots with indicated antibodies in siRNA transfected
cells. (C) CHCHD10 protein quantification of siRNA transfected cells normalized to actin. Data are shown as mean � SD. Kruskal–Wallis test: n = 4 biological
replicates, siCtrl versus siD10: **P = 0.0013, siCtrl versus siMia40: **P = 0.0136. (D) Immunostaining of Mia40 knockdown HeLa cells shows overall reduced
expression of CHCHD10 compared to control (siCtrl). An antibody against mitochondrially encoded cytochrome c oxidase II (MTCO2) labels mitochondria. Scale bar
represents 10 lm.

E AMS assay to assess disulfide-bond formation in whole cell extracts of HeLa cells transfected with CHCHD10-HA wild-type (WT) and mutants (Q108P, R15L).
Extracts were treated with the thiol-reactive cross-linker AMS (10 mM, 37°C, 60 min) with or without prior reduction with DTT and heat denaturation (95°C,
10 min), and subjected to immunoblotting to analyze AMS-induced gel shift from oxidized (ox) to reduced (red) forms of CHCHD10. Note that 95°C treatment has
no additional effect on AMS accessibility of CHCHD10 Q108P indicating impaired folding compared to wild-type and R15L. Upper and lower panel show short and
long exposure of the same blot, respectively. Asterisk denotes degradation product.

Source data are available online for this figure.
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have to pass through the translocator of the outer membrane

(TOM). Distinct machinery directs these proteins further to their

final destination in the outer membrane, the intermembrane space,

the inner membrane or the matrix, depending on additional

sequence motifs. The classical import pathway is triggered by an

amphipathic N-terminal MTS recognized by the TOM complex. For

CHCHD10, the NCBI annotation and bioinformatic predictions tools

(e.g., Psort2 and MitoProt II) suggest the presence of a classical N-

terminal MTS with interspaced conserved arginines (amino acids

1–16). So far, the N-terminal region has been interpreted as an

MTS in several papers without rigorous experimental validation

(e.g., Perrone et al, 2017). Disruption of this putative MTS could

potentially explain pathogenicity of the common N-terminal muta-

tions. However, the R15L mutant was still localized to mitochondria

and expression levels and stability of CHCHD10 were only slightly

reduced, which is consistent with previous colocalization data for

this mutant (Woo et al, 2017). Other tested N-terminal variants

(R6G, P12S) did not reduce expression levels noticeable or even

increased expression (R15S). The dramatic reduction of endogenous

CHCHD10 levels in Mia40 knockdown cells suggests that cytosolic

CHCHD10 lacking the characteristic disulfide bonds is misfolded

and rapidly degraded. We therefore cannot exclude that the reduced
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Figure 6. Mia40 overexpression rescues CHCHD10 mutants.

Co-transfection of HeLa cells (A, C, D, E) and co-transduction of primary hippocampal rat neurons (B) with the indicated HA-tagged CHCHD10 (D10-HA) variants and Mia40-
MYC or empty vector (Ctrl).

A, B Immunofluorescence shows colocalization of wild-type CHCHD10 with Mia40. Scale bars represent 10 lm. Overexpression of Mia40 promotes expression and
mitochondrial localization of CHCHD10 Q108P.

C, D Immunoblot and quantification of mitochondrial fraction confirms CHCHD10 stabilization and increased mitochondrial localization upon Mia40 expression
compared to empty vector. Quantification normalized to ATP5A1. Data are shown as mean � SD. Kruskal–Wallis test: n = 4 biological replicates. Q108P Ctrl versus
Q108P Mia40 *P = 0.0126.

E AMS treatment visualizes disulfide-bond formation in CHCHD10 Q108P upon Mia40 expression comparable to wild-type CHCHD10 (with endogenous Mia40
levels). Actin is used as loading control. Note that DTT treatment has no effect on AMS cross-linking of actin, because all its cysteines are reduced in the
cytoplasmic environment. Asterisk denotes degradation product.

Source data are available online for this figure.
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expression of R15L is due to slightly less efficient mitochondrial

import. Indeed, consistent with other recent reports, CHCHD10

R15L has a shorter half-life time than wild-type (Brockmann et al,

2018). The N-terminal arginine-rich sequence may enhance mito-

chondrial import although it is neither necessary nor sufficient for

mitochondrial import by itself. Truncation of the N-terminus did not

further impair mitochondrial import in Q108P. The more dramatic

effect of the Q108P mutation on mitochondrial import and half-life

time may explain the early age of onset in our patient.

Deletion of the whole CHCH domain completely abolished mito-

chondrial import of CHCHD10. The Mia40 redox system mediates

import of proteins with twin CX3C and CX9C motifs into the inter-

membrane space, including CHCH domain proteins (Mesecke et al,

2005). We show that mitochondrial import of CHCHD10 critically

depends on Mia40. Strikingly, overexpression of Mia40 promotes

import of not only wild-type CHCHD10 but also the Q108P and

R15L mutants. In yeast, Mia40 levels are rate limiting for mitochon-

drial import suggesting it acts as a trans-site receptor for import

(Peleh et al, 2016). In addition, disulfide-bond formation is impaired

in the Q108P mutant, which may be due to disturbed a-helix forma-

tion in the CHCH domain because proline is a strong helix breaker

(Darshi et al, 2012). Interestingly, exome sequencing of ~ 2,000

mostly sporadic ALS cases revealed a mutation (C122R) in one of

the critical cysteines in the CHCH domain that also impaired mito-

chondrial import (ALSdb, Cirulli et al, 2015).

Our analysis of all reported missense CHCHD10 variants suggests

that mutations within the hydrophobic region (G58R, S59L, G66V,

and G66S) might invoke additional pathomechanisms because they

still allow mitochondrial targeting but lead to intra-mitochondrial

clustering. Surprisingly, a similar localization pattern was observed

for the E127K variant, but not for other variants in the CHCH domain.

Recently, partial nuclear localization and transcriptional effects

of CHCHD10 and a homologous protein, CHCHD2, have been

reported (Aras et al, 2015, 2017; Woo et al, 2017), particularly

under stress conditions such as TDP-43 overexpression or oxidative

stress. We detected some nuclear staining (Figs 1B and 3A) for

CHCHD10 Q108P and other variants with strongly impaired mito-

chondrial import, suggesting they might additionally cause a gain of

toxic function.

Relevance of CHCHD10 impairment for ALS/FTD

Mitochondrial dysfunction has long been implicated in the patho-

genesis of ALS (Smith et al, 2017). ALS-causing mutations in SOD1

inhibit respiration and cause mitochondrial damages (Magrane et al,

2009), and poly-Gly-Arg/Pro-Arg translated from the expanded

C9orf72 hexanucleotide repeat induce oxidative stress and disrupt

mitochondrial architecture (Lopez-Gonzalez et al, 2016). Further-

more, pathogenic OPTN mutations impair mitochondrial clearance

by mitophagy (Wong & Holzbaur, 2014). Mitochondrial dysfunction

has been linked to other neurodegenerative diseases and may

explain the broad clinical symptoms associated with CHCHD10

mutations. Interestingly, we noticed reduced spare respiratory

capacity upon CHCHD10 knockdown or CRISPR/Cas9-mediated

truncation consistent with findings in patient fibroblasts with

CHCHD10 S59L (Genin et al, 2016). Importantly, spare respiratory

capacity was also reduced in lymphoblasts showing reduced

CHCHD10 expression due to nonsense-mediated decay caused by a

Q108* mutation in an FTD patient (Perrone et al, 2017). This may

impair ATP synthesis in patient motoneurons or muscle and may be

accompanied by enhanced formation of damaging reactive oxygen

species. Several previous reports of conflicting findings of respira-

tory function in CHCHD10 cellular models (mutant, knockdown,

and overexpression) and the recent finding of impaired respiration

in muscle but not in whole brain of homozygous CHCHD10 knock-

out mice suggest cell type-specific effects are at play (Burstein et al,

2018; Straub et al, 2018). Interestingly, CHCHD10 knockdown in

zebrafish also causes muscle pathology (Brockmann et al, 2018).

Altered metabolism in muscle may promote to ALS pathogenesis

(Loeffler et al, 2016). AIFM1, which is required for mitochondrial

targeting of Mia40, and thus indirectly of CHCHD10, has been linked

to mitochondrial encephalopathy and axonal neuropathy (Ghezzi

et al, 2010; Rinaldi et al, 2012). AIFM1 knockdown appeared to

reduced CHCHD10 levels after 3 days (without reaching statistical

significance), but longer knockdown may be required for a more

severe effect due to its indirect action via Mia40.

Together, our data demonstrate that the Q108P mutation almost

completely prevents mitochondrial import and perturbed mitochon-

drial function may ultimately lead to motoneuron degeneration. The

stronger effect of Q108P on mitochondrial import compared to

previously characterize pathogenic variants may explain the early

onset and aggressive course of ALS in our patient. Our findings have

implications for genetic counseling of novel CHCHD10 variants and

suggest future therapeutic approaches: (i) Variants in conserved

residues of the CHCH domain and nonsense mutations (e.g., the

previously reported Q108*) are likely pathogenic. Variants in the

hydrophobic region primarily alter CHCHD10 distribution within

mitochondria. Thus, analyzing mitochondrial import and clustering

within mitochondria may be used to assess pathogenicity of novel

variants. (ii) Unless the mutant CHCHD10 causes a toxic gain-of-

function phenotype, epigenetic boosting of CHCHD10 expression

may rescue haploinsufficiency by increasing expression of the wild-

type allele. (iii) It may be possible to pharmacologically activate the

Mia40/Erv1 disulfide relay system using small redox-compounds.

Boosting Mia40 activity or expression may promote import of

mutant and wild-type CHCHD10 and thus restore its function within

mitochondrial respiration. Most importantly, our report of a novel

aggressive mutation with clear functional consequences strongly

supports the genetic linkage of CHCHD10 to ALS/FTD pathogenesis.

Materials and Methods

Patient materials, clinical history, and sequencing

All procedures on human subjects were in accordance with the

WGA Declaration of Helsinki and the Department of Health and

Human Services Belmont Report. The Q108P patient consented to

diagnostic DNA testing for ALS mutations. All information was

obtained from the hospital files. No experiments were done on the

patient or using patient material. Genomic DNA was sequenced with

a TruSeq Custom Amplicon kit on a MiSeq (Illumina) according to

the protocol from the manufacturer. The custom gene panel covered

all exons of CHCHD10, CHMP2B, GRN, MAPT, NEK1, OPTN,

PSEN1, PSEN2, SOD1, TARDBP, TBK1, TUBA4A, TREM2 and the

exons with known pathogenic mutations of APP (exons 12–15),
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CSF1R (exon 13–21), FUS (exon 6, 14, 15), HNRNPA1 (exon 9),

HNRNPA2B1 (exon 10), MATR3 (exon 1), VCP (exons 3, 5, 6, 11).

The CHCHD10 Q108P mutation was confirmed by Sanger Sequenc-

ing of genomic DNA (primers GTGGCCCCAGGTTTGAAAC and

CAATCTGGTGTTGTGGTCTGG). Repeat primed PCR for C9orf72

repeat expansion was performed as described previously (van der

Zee et al, 2013).

Epstein–Barr virus (EBV)-transformed lymphoblast cell lines

were established according to standard procedures for previously

reported patients and controls (Perrone et al, 2017). All subjects

had given informed consent.

DNA constructs, siRNA, and transfection

CHCHD10 and Mia40/CHCHD4 were amplified from HEK293T

cDNA and cloned in the FUW3a lentiviral expression vector contain-

ing a C-terminal HA or myc epitope tag. As controls we used the

empty vectors containing only the epitope tag. The following

CHCHD10 truncations were generated: D1–16 (DNT), D108–142
(Q108*), D92–142 (DCHCH). Q108P and R15L were introduced by

standard mutagenesis. For Figs 4 and EV2, we introduced several

patient variants in a codon-optimized synthetic gene with reduced

GC-content encoding human CHCHD10. All constructs were

sequence verified. We used Silencer Select siRNA targeting human

Mia40/CHCHD4 (s43607, Thermo Fisher Scientific), human

CHCHD10 (s53406, Thermo Fisher Scientific), human Erv1/Gfer

(s5704, Thermo Fisher Scientific), human AIFM1 (s17440, Thermo

Fisher Scientific), and the Silencer Select Negative Control No. 1

(#4390844, Thermo Fisher Scientific). HeLa cells were transfected

using Lipofectamine 2000 (Thermo Fisher Scientific).

CRISPR/Cas9 genome editing

HAP1 cells (Horizon Discovery) were transfected with Cas9

(Addgene plasmid #52962) and sgRNA (TCTGAGTGGTGGAA

CAGTCC in Addgene plasmid #41824) using Lipofectamine 3000

(Thermo Fisher Scientific). After 12 h, medium was exchanged for

24 h before splitting into selection medium containing 8 lg/ml blas-

ticidin and 400 lg/ml Zeocin. After 3 days, selection medium was

removed and cultured for 10–14 days till single cell clones were visi-

ble. Individual clones were picked and cultured in 96 wells. For

screening, genomic DNA was extracted with the NucleoSpin Tissue

96 well kit (Macherey-Nagel) according to manufacturer’s instruc-

tions. The region of CHCHD10 targeted by the sgRNA was PCR

amplified (GGTTTGAAACGCACCTCCAG and AGGTGCAAGAGGA

GGGTTG) using the Q5 High-Fidelity Master Mix (New England

Biolabs) and analyzed by Sanger sequencing.

Antibodies

The following primary antibodies were used: anti-HA (clone 3F10,

Thermo Fisher - IF 1:10, WB 1:50), anti-myc (9E10 hybridoma

supernatant, WB 1:15, supernatant of clone 9E10, IF 1:200, puri-

fied), anti-ATP5A1 (WB 1:1,000, IF 1:250, clone 15H4C4, abcam

14748), anti-CHCHD10 (C-terminal WB 1:500, IF 1:100, abcam

121196), anti-CHCHD10 (N-terminal, WB 1:500, abcam ab124186),

anti-MTCO2 (IF 1:100, abcam 3298), anti-actin (WB 1:3,000, clone

A5316, Sigma), anti-calnexin (WB 1:7,000, clone SPA-860, Enzo Life

Sciences), anti-CHCHD4 (Mia40, WB: 1:1,000, Proteintech 21090-1-

AP) anti-AIF (AIFM1, WB 1:1,000, abcam ab32516), anti-Gfer (Erv1,

WB 1:200, Atlas Antibodies HPA041227).

Cell culture, mitochondrial fractionation

HeLa cells were transfected with plasmids and siRNA using Lipofec-

tamine 2000 (Thermo Fisher Scientific) according to the manufac-

turer’s instructions. Three days after transfection, mitochondria

were isolated using the Qproteome Mitochondria Isolation Kit (Qia-

gen). The cytosolic fraction was precipitated with four volumes of

ice-cold acetone and incubated for 15 min on ice. After centrifuga-

tion (10 min, 12,000 g, 4°C), the pellet was washed twice with

acetone and air dried. The cytosolic pellet and the highly purified

mitochondrial pellet were resuspended in RIPA buffer (137 mM

NaCl, 20 mM Tris pH 7.5, 0.1% SDS, 10% glycerol, 1% Triton X-

100, 0.5% deoxycholate, 2 mM EDTA) containing protease inhibitor

cocktails (1:100, Sigma), incubated for 20 min on ice, and sonicated

for 10s. Afterward, the protein concentration was determined using

BCA assay (Interchim). After adding 4× Laemmli buffer (Bio-Rad)

containing 2-mercaptoethanol, samples were denatured (95°C,

10 min) and loaded with the same protein amount on Novex

10–20% Tris-Tricine gels (Life Technologies).

Protein stability and immunoblotting

For protein stability analysis, HeLa cells were treated 2 days after

transfection with 150 lg/ml cycloheximide dissolved in DMSO or

DMSO only for 0, 4, 8, and 24 h.

For immunoblotting of the whole cell lysates, cells were lysed in

RIPA buffer (137 mM NaCl, 20 mM Tris pH 7.5, 0.1% SDS, 10%

glycerol, 1% Triton X-100, 0.5% deoxycholate, 2 mM EDTA) with

protease inhibitor cocktails (1:100, Sigma) and incubated on ice

(20 min). After centrifugation (18,000 g, 15 min), the supernatant

was transferred into a new tube, protein concentration was deter-

mined by BCA assay (Interchim), and 4× Laemmli buffer (Bio-Rad)

containing 2-mercaptoethanol was added. Samples were denatured

at 95°C for 10 min and loaded on Novex 10–20% Tris-Tricine gels

(Life Technologies) or 12.5% SDS–PAGE gels.

Immunoprecipitation

HeLa cells were lysed at 4°C for 20 min in lysis buffer (120 mM

NaCl, 1 mM EDTA, 0.5% NP-40, 20 mM Tris–HCL pH 8) supple-

mented with protease and phosphatase inhibitors and centrifuged at

13,000 g for 10 min. HA-labeled magnetic beads (Thermo Fischer

88836) were washed with 4°C lysis buffer; 5% of the cell lysate was

used as an input control and the rest of the cell lysate was incubated

at 4°C with HA-labeled beads overnight. Beads were washed

three times with 4°C lysis buffer supplemented with protease and

phosphatase inhibitors, boiled in 50 ll Laemmli buffer (Bio-Rad)

containing 2-mercaptoethanol, and analyzed by immunoblotting on

Novex 10–20% Tris-Tricine gels (Life Technologies).

Neuronal cell culture and lentivirus production

Primary hippocampal cultures were prepared from E19 rats as

described previously and plated on glass coverslips coated with
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poly-D-lysine (Guo et al, 2018). Lentivirus was packaged in

HEK293FT cells as described (Guo et al, 2018).

Immunofluorescence

After washing once with PBS, HeLa cells (2 days after transfec-

tion) and transduced primary hippocampal rat neurons (DIV3 + 4)

were fixed for 10 min at room temperature (4% paraformalde-

hyde and 4% sucrose in PBS). Primary and secondary antibodies

were diluted in GDB buffer (0.1% gelatin, 0.3% Triton X-100,

450 mM NaCl, 16 mM sodium phosphate pH 7.4). For visualizing

the nucleus, cells were stained with DAPI (1:5,000 in PBS,

10 min, RT). After mounting the coverslips with FluoromountTM

Aqueous Mounting medium (Sigma), images were taken with

LSM710 confocal microscope (Carl Zeiss, Jena) using a 63× oil

immersion objective (NA 1.4).

RNA isolation and quantitative RT–PCR

After 3 days of transfection, RNA isolation was conducted with the

RNeasy- and QIAshredder kit (Qiagen) following the manufacturer’s

instructions. cDNA was generated using the TaqMan MicroRNA

Reverse Transcription Kit (Applied Biosystems) with random

hexamer primers according to the manufacturer’s instructions. RT–

qPCR was performed on the CFX384-Real-Time system (Bio-Rad)

using following primers: CHCHD10 (Hs01369775_g1, Thermo

Fisher), Mia40/CHCHD4 (Hs01027804_g1, Thermo Fisher), AIFM1

(Hs00377585_m1, Thermo Fisher), Erv1/GFER (Hs00193365_m1,

Thermo Fisher), B2M (4326319E, Thermo Fisher), GAPDH

(Hs02758991_g1, Thermo Fisher). Signals were normalized to

GAPDH and B2M with the CFX Manager program (Bio-Rad) accord-

ing to the DDCT method.

Analysis of disulfide-bond formation

We used thiol-reactive 4-acetamido-40-maleimidylstilbene-2,20-
disulfonic acid (AMS, Thermo Fisher) to analyze disulfide-bond

formation following the protocol by (Gross et al, 2011). HeLa

cells were lysed in RIPA buffer (137 mM NaCl, 20 mM Tris pH

7.5, 0.1% SDS, 10% glycerol, 1% Triton X-100, 0.5% deoxy-

cholate, 2 mM EDTA) for 20 min on ice. After centrifugation

(18,000 g, 15 min, 4°C), the supernatant was divided and incu-

bated at room temperature or 95°C for 10 min with or without

15 mM dithiothreitol (DTT). Afterwards, proteins were precipi-

tated with trichloroacetic acid (TCA). Here, one volume of a

8 M TCA stock solution was added to four volumes of protein

sample, incubated at 4°C for 10 min, and centrifuged (18,000 g,

5 min, 4°C). After removing the supernatant, the pellet was

washed with ice-cold acetone and again centrifuged (18,000 g,

5 min, 4°C). These washing steps were repeated twice, and the

remaining pellet was dried at 95°C for 5–10 min. After acetone

evaporation, the pellet was resolved in buffer (2% SDS,

100 mM Tris pH 8, 100 mM NaCl, 10 mM EDTA) and 10 mM

AMS or distilled water was added. The samples were incubated

for 60 min at 37°C in the dark. After adding 50 mM iodoacetic

acid (IAA), Laemmli buffer (Bio-Rad) was added and the

proteins were analyzed by immunoblotting using 12.5% SDS–

PAGE gels.

Quantitative analysis of respiration

Oxygen consumption rate (OCR) was measured using the Seahorse

XF96 extracellular flux analyzer (Agilent). The day before,

siCHCHD10 knockdown or control siRNA transfected HeLa cells

were plated in growth medium in 96-well plates (Agilent). For OCR

measurements, growth medium was replaced with pre-warmed XF

assay medium (Agilent) supplemented with 10 mM glucose and

10 mM pyruvate, and cells were incubated at 37°C without CO2 for

60 min. To measure OCR in patient lymphoblastoid cells, 96-well

plates (Agilent) were coated with 30 ll of poly-D-lysine (50 lg/ml)

in 0.1 M borate buffer (pH 8.5) for 2 h and washed twice with

cell culture-grade water. One hour before the measurement,

The paper explained

Problem
Several mutations in CHCHD10 have been reported in familial and
sporadic cases of amyotrophic lateral sclerosis (ALS), frontotemporal
dementia (FTD), spinal muscular atrophy, and mitochondrial myopa-
thy, but their mode of action is unclear. Since disease progression in
mutation carriers is usually slow and penetrance is incomplete, some
geneticists raised concerns, whether CHCHD10 mutations are truly
pathogenic. CHCHD10 is a small protein localized to the intramem-
brane space of mitochondria. It is involved in organizing cristae
morphology and has been linked to stability of mitochondrial DNA.
Loss-of-function and gain-of-function pathomechanisms have been
discussed. Several patient mutations, including R15L, are located in
the proposed N-terminal mitochondrial targeting signal (MTS), but
the mitochondrial import mechanism of CHCHD10 has not been care-
fully analyzed experimentally, although restoring mitochondrial
import of CHCHD10 may be a therapeutic strategy.

Results
We discovered a novel CHCHD10 mutation (Q108P) in a highly
conserved residue within the coiled-coil-helix-coiled-coil-helix (CHCH)
domain in a young ALS patient with aggressive disease progression
and analyzed its pathogenicity in transfected heterologous cells and
primary rat neurons. The Q108P mutation blocked mitochondrial
import nearly completely suggesting a loss-of-function mechanism.
Moreover, reduced CHCHD10 expression in heterologous and patient
cells inhibited mitochondrial respiration. The R15L mutation had only
a small effect on overall protein levels, but largely spared mitochon-
drial localization. Several other CHCHD10 variants reported in ALS/FTD
patients showed diffuse cytoplasmic localization (C122R) or dot-like
clustering within mitochondria (G58R, S59L, G66V, G66S, E127K) and
reduced stability and/or expression (R15L, P23S, G58R, G66V, Q108P,
Q108*, C122R). Mitochondrial import of CHCHD10 is predominantly
driven by Mia40-dependent disulfide-bond formation in the CHCH
domain rather than the putative N-terminal MTS. Overexpression of
Mia40 strikingly boosts mitochondrial import of CHCHD10 Q108P.

Impact
The identification of a novel CHCHD10 mutation resulting in aggres-
sive ALS and a clear loss-of-function phenotype in vitro strongly
supports the genetic role of CHCHD10 in ALS pathogenesis. This
unusual mutation revealed Mia40-dependent mitochondrial import of
CHCHD10 and suggests that activation of the Mia40-dependent mito-
chondrial import pathway could be a novel therapeutic strategy. Our
data supports the pathogenicity of several previously uncharacterized
CHCHD10 variants found in ALS/FTD patients via a loss-of-function
mechanism (R15L, P23S, G58R, G66V, Q108P, Q108*, C122R) and/or
gain-of-function mechanism (G58R, S59L, G66V, G66S, E127K).
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lymphoblasts were plated (1.1 × 105cells/well) in pre-warmed XF

assay medium (Agilent) and incubated at 37°C without CO2. Oligo-

mycin (final concentration 1 lM), FCCP (0.75 lM), and rotenone

and antimycin A (10 lM each) were diluted with pre-warmed assay

medium and loaded into injector ports. Assay cycles included 4 min

of mixing, followed by 4 min of measurement.

Expanded View for this article is available online.
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Figure EV1. CHCHD10 mutants are less stable.

A CHCHD10-HA (D10-HA) level in whole cell lysates of HeLa cells transfected with empty vector (Ctrl) or HA-tagged CHCHD10 variants (WT, Q108P, or R15L).
B Line scans of CHCHD10-HA (D10-HA) and ATP5A1 intensity in immunofluorescence pictures (right) of HeLa cells transfected with the indicated HA-tagged CHCHD10

constructs. Intensities of the red (ATP5A1, here shown in magenta) and the green (D10-HA) channels were measured along a 6.5-lm-long line (yellow), and diagrams
were generated with the plugin RGB-profiler in ImageJ. Scale bar represents 10 lm.

C Protein stability of HA-tagged CHCHD10 (WT, Q108P, or R15L) was measured in HeLa cells transfected for 2 days and then treated with cycloheximide (+CHX) or
vehicle (+DMSO) and harvested after 0, 4, 8, and 24 h. Note that steady state levels of CHCHD10 Q108 and R15L in DMSO-treated cells are also lower at 24 h, i.e.
3 days after transfection.

D Quantification of HA-tagged CHCHD10 (D10-HA) protein levels normalized to ATP5A1. Transfected HeLa cells were treated with cycloheximide for 0, 4, 8, and 24 h.
Data are shown as mean � SD. Two-way ANOVA (followed by Turkey’s multiple comparison): n = 3 biological replicates, t = 4 h WT versus Q108P: ***P < 0.0001,
t = 4 h WT versus R15L: **P = 0.002, t = 8 h WT versus Q108P: ***P < 0.0001, t = 8 h WT versus R15L: **P = 0.0076.

E Half-life analysis of the respective CHCHD10 variant was calculated by nonlinear regression analysis. Data are shown as mean � SD. n = 3 biological replicates.
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Figure EV2. Import deficit of CHCHD10 Q108P is replicated with a high-expressing synthetic gene.

A Sequence of the codon-optimized synthetic CHCHD10 gene used to reduce GC-content in order to facilitate cloning of many patient-derived variants.
B Comparison of HA-tagged CHCHD10 (D10-HA) protein levels in whole cell lysates of HeLa cells transfected with CHCHD10 constructs harboring either the original or

the codon-optimized synthetic cDNA.
C Mitochondrial localization of synthetic CHCHD10-HA (D10-HA) was analyzed in transfected HeLa cells by co-staining with a mitochondrial marker (ATP5A1). Scale bar

represents 10 lm.
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Figure EV4. Mia40 binds and stabilizes CHCHD10.

A Co-immunoprecipitation of Mia40-MYC and CHCHD10-HA (D10-HA) wild-type (WT), variants (Q108P, R15L, DCHCH, Q108*), or empty vector (Ctrl) from transfected
HeLa cells. Input represents 5% of the whole cell lysate used for immunoprecipitation. Immunoblot of the co-immunoprecipitation was detected with antibodies
against Mia40 and HA. Low binding may be explained by the transient interaction of the oxidoreductase Mia40 with its substrate CHCHD10.

B AMS treatment shows disulfide-bond formation of endogenous CHCHD10 in HeLa cells. Note that endogenous CHCHD10, detected with an N-terminal antibody
(D10-NT), shows a similar pattern. The C-terminal CHCHD10 antibody poorly detects AMS coupled endogenous CHCHD10 indicating that the epitope overlaps with
the cysteine residues. Actin is used as loading control. Note that DTT treatment has no effect on AMS cross-linking of actin, because all its cysteines are reduced in
the cytoplasmic environment.

C Immunoblotting shows elevation of CHCHD10 upon Mia40 expression also in cytosolic fractions with indicated antibodies.
D, E Protein stability of HA-tagged CHCHD10 (WT, Q108P, or R15L) upon MIA40 overexpression was measured in HeLa cells treated with cycloheximide (+CHX) and

compared to empty vector co-transfection (Ctrl). Cells were harvested after 0, 4, 8, and 24 h. Quantification of CHCHD10-HA (D10-HA) protein levels normalized to
ATP5A1. Data are shown as mean � SD. Two-way ANOVA (with Sidak’s multiple comparisons test): n = 4 biological replicates, WT: t = 0 h Ctrl versus Mia40:
*P = 0.0146, t = 4 h Ctrl versus Mia40 *P = 0.0168; Q108P: t = 0 h Ctrl versus Mia40: **P = 0.0039, t = 4 h Ctrl versus Mia40 **P = 0.0089; R15L: t = 0 h Ctrl
versus Mia40: **P = 0.0014.
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SUMMARY

Protein aggregation and dysfunction of the ubiquitin-
proteasome system are hallmarks of many neurode-
generative diseases. Here, we address the elusive
link between these phenomena by employing cryo-
electron tomography to dissect the molecular archi-
tecture of protein aggregates within intact neurons
at high resolution. We focus on the poly-Gly-Ala
(poly-GA) aggregates resulting from aberrant transla-
tion of an expanded GGGGCC repeat in C9orf72, the
most common genetic cause of amyotrophic lateral
sclerosis and frontotemporal dementia. We find
that poly-GA aggregates consist of densely packed
twisted ribbons that recruit numerous 26S protea-
some complexes, while other macromolecules are
largely excluded. Proximity to poly-GA ribbons stabi-
lizes a transient substrate-processing conformation
of the 26S proteasome, suggesting stalled degrada-
tion. Thus, poly-GA aggregates may compromise
neuronal proteostasis by driving the accumulation
and functional impairment of a large fraction of
cellular proteasomes.

INTRODUCTION

The ubiquitin-proteasome system (UPS) is the main cellular

pathway for targeted protein degradation (Collins and Goldberg,

2017; Hershko et al., 2000). UPS alterations have been impli-

cated in many human diseases, including multiple neurodegen-

erative disorders (Dantuma and Bott, 2014; Hipp et al., 2014;

Schmidt and Finley, 2014). In particular, frontotemporal demen-

tia (FTD) and amyotrophic lateral sclerosis (ALS) have been

associated with mutations in UPS components (Deng et al.,

2011; Johnson et al., 2010; Watts et al., 2004) and altered UPS
696 Cell 172, 696–705, February 8, 2018 ª 2018 Elsevier Inc.
function (Cheroni et al., 2009; Tashiro et al., 2012). However,

the contribution of UPS dysfunction to neurodegeneration and

its underlying mechanisms are not yet well understood.

UPS impairment also has been linked to C9orf72 mutations,

the most common genetic cause of ALS/FTD (Edbauer and

Haass, 2016; Freibaum and Taylor, 2017; Gendron and Petru-

celli, 2017; Lin et al., 2017). A massive expansion of a GGGGCC

(G4C2) repeat in a non-coding region of theC9orf72 gene to up to

several thousand copies is found in 10%–50% of familial

ALS/FTD cases and in 5%–7% of patients with sporadic disease

(DeJesus-Hernandez et al., 2011; Majounie et al., 2012; Renton

et al., 2011; van der Zee et al., 2013). Three non-mutually exclu-

sive mechanisms have been suggested tomediate the toxicity of

the G4C2 repeat expansion: (1) loss of native function of the

C9orf72 protein due to reduced transcription of themutant allele,

(2) aberrant RNA interactions, and (3) production of toxic

translation products and aggregates via repeat-associated

non-ATG (RAN) translation (Zu et al., 2011).

Although the G4C2 repeat is found in a non-coding region of

the C9orf72 gene, sense and anti-sense transcripts are

unconventionally translated in all reading frames into five

dipeptide-repeat proteins (Ash et al., 2013; Gendron et al.,

2013; Mori et al., 2013a, 2013b; Zu et al., 2013): poly-GA,

poly-GR, poly-GP, poly-PR, and poly-PA. While all five proteins

form TDP-43-negative, p62-positive inclusions in ALS/FTD

patient brain, the vast majority of these aggregates contain

poly-GA (Mackenzie et al., 2015; Mori et al., 2013b; Zhang

et al., 2014).

Poly-GA expression leads to toxicity in heterologous cells,

primary neuron cultures, and mice (Jovi�ci�c et al., 2015; May

et al., 2014; Schludi et al., 2017; Yamakawa et al., 2015; Zhang

et al., 2014, 2016). Similar to other toxic aggregating proteins

(Olzscha et al., 2011; Park et al., 2013), poly-GA aggregates

sequester critical cellular factors including Unc119 and multiple

UPS components (May et al., 2014; Zhang et al., 2016). UPS

impairment is critically involved in poly-GA-mediated toxicity

(Yamakawa et al., 2015; Zhang et al., 2014, 2016), but our
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Figure 1. In Situ Neuronal Poly-GA Aggre-

gates Form Twisted Ribbons

(A) Tomographic slice of an aggregate within a

(GA)175-GFP-transducedneuron (DIV5+5).Colored

boxes show macromolecules magnified in (C).

(B) 3D rendering of the aggregate shown in (A).

Selected poly-GA ribbons (red) magnified in (D) are

indicated.

(C) Series of higher magnification tomographic

slices of representative protein complexes de-

tected in the tomogram shown in (A). Yellow and

magenta boxes show the typical smaller (yellow)

and larger (magenta) ring-like structures found in

the aggregate region. Blue and orange boxes

show side views of single-capped (blue) and

double-capped (orange) 26S proteasomes.

(D) Selected ribbons from (B) rotated and magni-

fied for visualization. Note the variable width of the

ribbons (a-c). Some ribbons show bifurcations

(d and e).

(E and F) Higher magnification tomographic slices

of aggregates within neurons transduced with

(GA)175-GFP (DIV 5 + 5) (E) or untagged (GA)175
(DIV 5 + 5) (F). Yellow boxes mark similar small

ring-like structures like in (A). Note that (GA)175-

GFP ribbons (red arrowheads) are decorated by

additional densities (green arrowheads), which are

missing from untagged (GA)175 ribbons. Tomo-

graphic slices are 5 nm thick.

Scale bars, 200 (A and B) and 50 nm (C–F).

See also Figure S1.
understanding of the underlying mechanisms remains incom-

plete. This is aggravated by the limited structural information

currently available on poly-GA aggregates, especially within

an unperturbed cellular context.

Here, we address these challenges using state-of-the-art

cryo-electron tomography (cryo-ET) technologies, which allow

3D imaging of the cell interior in close-to-native conditions and

at molecular resolution (Beck and Baumeister, 2016). We reveal

the structure and cellular interactions of poly-GA aggregates

within intact neurons to an unprecedented level of detail. Inter-

estingly, we find that poly-GA aggregates consist of densely

packed twisted ribbons that recruit large numbers of 26S

proteasome complexes. Structural analysis of these proteasome

complexes by subtomogram averaging and classification into

functional states provides mechanistic insights into proteasomal

dysfunction in C9orf72 ALS/FTD.

RESULTS

Poly-GA Aggregates Contain Densely Packed Twisted
Ribbons
To study neuronal poly-GA aggregates without interference

from C9orf72 loss-of-function and RNA-mediated toxicity, we

transduced primary rat neuronal cultures with a GFP-tagged

codon-modified synthetic construct expressing (GA)175-GFP

using an ATG start codon (May et al., 2014). We have

previously shown that lentiviral poly-GA expression results in

inclusions of similar size and poly-GA intensity as in C9orf72 pa-

tient tissue (May et al., 2014). Neurons were transduced at day

in vitro (DIV) 5 and allowed to express the protein for another
5 days (DIV 5 + 5). The cultures were then vitrified and subse-

quently imaged by cryo-light microscopy to locate cellular

poly-GA inclusions (Figure S1A). Correlative microscopy al-

lowed the production of 100 to 200 nm-thick lamellas at the

location of these aggregates using cryo-focused ion beam

milling (Bauerlein et al., 2017; Rigort et al., 2012) (Figures

S1B–S1D). Lastly, the samples were transferred to a cryo-trans-

mission electron microscope for high-resolution 3D imaging by

cryo-ET (Figures S1E and S1F).

Poly-GA aggregate cross-sections were typically �3 mm in

diameter and consisted of a dense network of elongated poly-

morphic ribbons (Figures 1A and 1B). Whereas the thickness

of the ribbons was well defined (13–15 nm), their length

(100 nm–1 mm) and width (20–80 nm) varied considerably (Fig-

ure 1D, top). Our measurements likely underestimate ribbon

length, as the parts of ribbons oriented perpendicular to the

electron beam were not reliably detected because of missing

information along this direction (Luci�c et al., 2005). The ribbons

were twisted along their axis with a variable helical pitch, and

often bifurcated and/or associated laterally with neighboring

ribbons (Figure 1D, bottom). This polymorphism contrasts

with the uniform fibrils forming polyQ-expanded huntingtin

exon 1 aggregates in mammalian cells (Bauerlein et al., 2017).

Poly-GA ribbons were also more densely packed than polyQ

fibrils, which occupied a lower fraction of the inclusion volume

(poly-GA,R 10%; polyQ,% 4%). Thus, different amyloids adopt

different morphologies in situ.

However, similarly to GFP-tagged polyQ fibrils, GFP-labeled

poly-GA ribbons were decorated by additional densities (Fig-

ure 1E). To investigate the nature of these densities, neurons
Cell 172, 696–705, February 8, 2018 697
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Figure 2. Mapping Macromolecules within

Poly-GA Aggregates Shows a Substantial

Recruitment of 26S Proteasomes

(A) 3D rendering of an aggregate within a neuron

transduced with (GA)175-GFP (DIV 5 + 5) showing

different macromolecules found either within or at

the periphery of the aggregate. Red, poly-GA rib-

bons; green, 26S proteasomes; yellow, ribosomes;

purple, TRiC/CCT chaperonins. The macromole-

cules are mapped in their original locations and

orientations, computationally determined by tem-

plate matching and subtomogram averaging.

(B–E) Maximum intensity projection heatmaps of

the molecular species shown in (A). Note that the

proteasomes (C) aremostly found in between poly-

GA ribbons (B), whereas ribosomes (D) almost

exclusively occur outside of the aggregate. TRiC/

CCT molecules (E) mostly populate the aggregate

periphery, but some can also be found between

poly-GA ribbons.

See also Figures S2–S5 and Movie S1.
were co-transduced with untagged poly-GA and tagRFP-p62,

as p62 co-localizes with poly-GA aggregates (May et al.,

2014; Mori et al., 2013b; Yamakawa et al., 2015; Zhang et al.,

2014) and allows targeting untagged poly-GA by correlative mi-

croscopy. As for polyQ fibrils (Bauerlein et al., 2017), the deco-

rating densities were absent from untagged poly-GA ribbons

(Figure 1F), demonstrating that these additional densities

require GFP for their formation and that the ribbons consisted

indeed of poly-GA aggregates. Thus, poly-GA forms amyloid-

like ribbons in neurons.

26S Proteasomes Are Recruited to Poly-GA Aggregates
Unlike polyQ fibrils (Bauerlein et al., 2017), poly-GA ribbons did

not visibly interact with cellular endomembranes. However,

both the aggregate interior and periphery were densely popu-

lated by macromolecular complexes (Figures 1A, 1C, 1E, and

1F). Ribosomes were abundant around poly-GA aggregates but

largely absent from their interior. In contrast, the space between

poly-GA ribbons was densely populated with macromolecules

that appeared as �10-nm rings in tomographic cross-sections.

Larger (�20 nm) cross-sectioned rings were also found at the

aggregate periphery and occasionally in the interior. To investi-

gate the identity of these macromolecules, we performed unbi-

ased subtomogram averaging (Figure S2A). A small set of parti-

cles were hand-picked from the tomogram, aligned, and

averaged. The resultant average was used as a template to

computationally search the tomogram for additional occurrences

of the same structure. These additional particles were then visu-

ally inspected, aligned, classified, and averaged again to

produce a higher resolution average. The iterative application of

this procedure yielded an average structure unequivocally corre-
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sponding to the 26S proteasome (Chen

et al., 2016a; Huang et al., 2016; Schweit-

zer et al., 2016; Wehmer et al., 2017) for

the smaller ring-like structures, and to

the TRiC/CCT chaperonin (Leitner et al.,

2012; Zang et al., 2016) for the larger
ones (Figures 2, 3, and S3A–S3C; Movie S1). Other large UPS

components, such as p97/VCP, did not appear abundant at

poly-GA aggregates.

The abundance of TRiC/CCT complexes was not significantly

different around poly-GA aggregates compared to the cell body

of control neurons (untransduced or transduced with GFP only).

However, the estimated concentration of proteasomes within the

aggregate (�7 mM) was approximately 30-fold higher than in the

cell body (Figure S4B) or the processes (Asano et al., 2015) of con-

trol cells. Given that poly-GA expression did not increase overall

proteasome expression levels (Figure S4C), these data suggest

that proteasomes are removed from other regions of the cell to

accumulate within poly-GA aggregates. This is consistent with

immunofluorescence staining (Figure S4A) and biochemical frac-

tionation experiments showing reduced levels of Triton-soluble

neuronal proteasomes (Figure S4C). Furthermore, our tomograms

showed that 26S proteasomes almost exclusively accumulated

within the aggregate interior (Figures 2 and S5A–S5D). Taken

together, these results show that a substantial fraction of neuronal

26S proteasomes is sequestered into poly-GA aggregates.

To test the influence of the poly-GA expression level on

proteasome recruitment, we analyzed aggregates formed in

neurons at an earlier time point after transduction (DIV 5 + 3).

Although these aggregates were smaller, they contained a

similar concentration of proteasomes in their interior (Fig-

ure S5E). Importantly, analogous observations were made for

poly-GA aggregates generated from a RAN-translated (G4C2)73
construct, which more closely mimics the C9orf72 patient situa-

tion (Figures S4E and S5F). Thus, poly-GA aggregate

morphology and proteasome recruitment were comparable in

all the experimental conditions tested.
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Figure 3. Subtomogram Classification of

26S Proteasomes Reveals Enrichment of

Substrate Processing Conformations

(A–C) To analyze the functional state of protea-

some regulatory particles, we cut single- and

double-capped proteasomes by the half of the CP.

The resultant half proteasomes were classified

according to RP conformation into ground- or

substrate-processing states (Asano et al., 2015),

yielding two ground states (GS1, GS2) and two

substrate-processing classes (SPS1, SPS2).

(A and B) The four density maps are displayed in

solid surface representation in two different views.

The positions of the Rpn1, Rpn5, and Rpn6 sub-

units are indicated. Prominent densities in the

substrate binding region of SPS1 and SPS2 are

colored in pink. For each class, the percentage of

the total number of classified particles and the

global resolution are indicated.

(C) Same view as (A), with semi-transparent maps

superimposed with the atomic models generated

by MDFF. The classes, respectively, represent the

s1 state with different Rpn1 positions (GS1, GS2),

the s2 state (SPS1), and the s4 state (SPS2). Atomic

models are colored by subunits: Rpn1 (brown),

Rpn2 (yellow), Rpn9/5/6/7/3/12 (different shades of

green), Rpn8/Rpn11 (light/dark magenta), Rpn10

and Rpn13 (purple), AAA-ATPase hexamer (blue),

and CP (red).

See also Figures S2 and S3 and Table S1.
Poly-GA Aggregation Alters Proteasome Structure
The 26S proteasome consists of a barrel-shaped 20S core par-

ticle (CP) that harbors the catalytic activity, bound to one or two

19S regulatory particles (RP). Regulatory particles are respon-

sible for substrate recognition, unfolding, and translocation into

the CP for proteolysis. Recent single-particle cryoelectron

microscopy (cryo-EM) studies have revealed how RP conforma-

tional dynamics are coupled to the functional cycle of the 26S

complex (Chen et al., 2016a; Unverdorben et al., 2014; Wehmer

et al., 2017). Initial binding of substrates to the 26S proteasome

presumably occurs in a low-energy ground state (s1) (see also Lu

et al., 2015). Bound substrates are committed for degradation

(s2 state) and then translocated into the CP (s3-s4 states). In

the s4 state, the gate of the 20S CP is open, allowing the sub-

strates to access the proteolytic chamber. We took advantage

of the large number of proteasome complexes recruited to

poly-GA aggregates to investigate their functional states in situ

by subtomogram averaging and classification (Figure S2B).

We first sorted 26S proteasomes according to the number of

regulatory particles (one or two) bound per CP. Previous struc-

tural (Asano et al., 2015) and biochemical (Tai et al., 2010) data

indicated that in control neurons the largemajority of 26S protea-

somes contain only one RP (single-capped 26S). In striking

contrast, 76% of poly-GA-associated 26S proteasomes were

double-capped (Figures S3D and S3F). Therefore, the labile
interaction between the proteasome

core and regulatory particles (Kleijnen

et al., 2007) is apparently stabilized within

poly-GA aggregates.
We further classified 26S proteasomes by RP conformation

(Asano et al., 2015; Unverdorben et al., 2014). This yielded four

well-defined classes, two of which (GS1, GS2) were consistent

with the RP ground state conformation (s1), whereas the other

two (SPS1, SPS2) corresponded to substrate processing states

(s2-s4) (Figure 3). Interestingly, 37% of all 26S proteasomes

belonged to substrate processing classes, almost twice the

number than in control neurons (Asano et al., 2015) (Figures

S3E and S3G). Thus, poly-GA aggregates recruit a large number

of 26S proteasome regulatory particles, a substantial fraction of

which adopts substrate processing conformations.

The relatively high resolution of the classes (11.8–15.4 Å) (Fig-

ures 3 and S3H) enabled us to assign each class to a functional

state. To this end we employed molecular dynamics flexible

fitting (MDFF) (Trabuco et al., 2009) initiated through the atomic

models of the s1–s4 states of the yeast 26S proteasome (Fig-

ure 3C) (Wehmer et al., 2017). The s1 state was clearly the

best fit for the GS1 and GS2 classes (Table S1). The yeast s1

structure fitted GS1 (49% of the total number of particles)

without large discrepancies except for the position of the Rpn1

subunit, which in GS1 was similar to that observed in the human

26S proteasome (Chen et al., 2016a; Huang et al., 2016;

Schweitzer et al., 2016). Also, in agreement with these studies,

no prominent density was visible in our data for the Rpn13 sub-

unit. The GS2 class (13.7% of particles) was overall similar to
Cell 172, 696–705, February 8, 2018 699
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Figure 4. Detailed Structural Differences be-

tween 26S Proteasome Conformations

Highlight Its In Situ Structural Dynamics

and Interactions

(A) Superimposition of GS1 (green) and GS2 (cyan)

density maps aligned by their CP. Both classes are

consistent with the s1 state and differ only in the

position of Rpn1.

(B) Magnified view of the region boxed in (A)

showing a 25� rotation of the Rpn1 subunit in the

GS2 map.

(C) Atomic model of the GS2 class colored ac-

cording to the root-mean-square deviation (RMSD)

from the GS1 model. Note that the only substantial

differences are found in the Rpn1 region.

(D) Two views of the SPS1map (consistent with the

s2 state) shown in surface representation super-

imposedwith its atomicmodel. A prominent density

in the substrate binding region is colored in pink.

(E and F) Magnified view of the regions boxed in

(D). The atomic models of Rpn1 (E), Rpn2, and

Rpn10 (F) are shown in brown, yellow, and purple,

respectively. Parts of the additional density de-

noted by asterisks may correspond to protea-

some-bound ubiquitin or UBL domain proteins.

(G) Two views of the SPS2map (consistent with the

s4 state) shown in surface representation super-

imposed with its atomic model. A prominent

density in the substrate binding region is colored in

pink.

(H and I) Magnified view of the regions boxed in (G).

Note that the density in the Rpn2/10 region is

similar in the SPS1 and SPS2 class averages (I),

whereas no additional density was found on the

Rpn1 region of the SPS2 map (H).
GS1, but the Rpn1 subunit pivoted 25� on its N-terminal region to

shift its C terminus toward the CP with respect to GS1 (Figures

4A–4C). This is a novel conformation of Rpn1, a particularly dy-

namic subunit (Asano et al., 2015; Huang et al., 2016; Schweitzer

et al., 2016; Wehmer et al., 2017) that serves as binding hub for

26S regulatory cofactors containing ubiquitin-like (UBL) domains

(Elsasser et al., 2002; Leggett et al., 2002) and was recently iden-

tified as an ubiquitin receptor (Shi et al., 2016).

SPS1 proteasomes (14.2% of particles) were most similar to

the substrate commitment state s2 (Table S1). In contrast, the

SPS2 class (23.1% of particles) was best fitted by the s4 model

of actively translocating proteasomes (Table S1). This is remark-

able because, in vitro, the s4 state was only recently discovered

in proteasomes incubated with non-hydrolyzable nucleotide an-

alogs (Wehmer et al., 2017), suggesting that it is normally a highly

transient conformation. Thus, the interaction of poly-GA aggre-

gates with the proteasome appears to stall its s4 conformation.

Both substrate processing classes showed prominent addi-

tional densities in the substrate binding region of the protea-

some, in contact with the ATPase ring (Figure 3). In SPS1 the

density was well defined (Figure 3), indicating a relatively stable

interaction with the 26S complex that may in part correspond to

bound UBL domain proteins (Aufderheide et al., 2015; Bashore

et al., 2015). The density contacted Rpn1 (Figures 3, 4D, and

4E), consistent with the bound UBL domains of Rad23 or the

ubiquitin C-terminal hydrolase 6 (Ubp6)/USP14 (Chen et al.,
700 Cell 172, 696–705, February 8, 2018
2016b; Shi et al., 2016), and extended to another binding site

of Rad23 at the Rpn10 subunit (Hiyama et al., 1999; Mueller

and Feigon, 2003;Walters et al., 2002) (Figures 4D and 4F). Inter-

estingly, similar to our SPS1 class, Ubp6-bound proteasomes

have been shown to mainly adopt the s2 conformation (Aufder-

heide et al., 2015). Because the Rpn1 and Rpn10 UBL binding

sites also interact with ubiquitin, proteasome-bound ubiquiti-

nated substrates may also contribute to the extra density.

Consistent with this notion, the estimated molecular mass of

the density (�70 kDa) was larger than Ubp6 (56 kDa) or Rad23

(40/44 kDa for Rad23A/B). For the SPS2 class, the additional

density contacted the Rpn10 subunit but not Rpn1 (Figures

4G–4I). The density was overall less well defined than for

SPS1, indicating a more dynamic interaction, perhaps involving

a more extensive participation of substrates (see below). There-

fore, both substrates and cofactors may contribute to the addi-

tional densities found on substrate processing proteasomes.

Direct Interactions with Poly-GA Aggregates Impair
Proteasome Function
To address the physiological role of the different proteasome

conformations observed, we investigated their cellular distribu-

tion bymapping the particles back into the tomograms (Figure 5).

We found that proteasome conformation correlated with the

distance to poly-GA ribbons (Figures 5B–5E, p < 0.001, chi-

square test, n = 6,080 regulatory particles from 4 tomograms).
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Figure 5. Spatial Mapping of Proteasomes within Poly-GA Aggregates Reveals Poly-GA Influence on Proteasome Conformation

(A) 3D rendering of an aggregate within a neuron transduced with (GA)175-GFP (DIV 5 + 5). Poly-GA ribbons (red), proteasomes in ground state (green), and

proteasomes in substrate processing states (blue). Proteasome location and orientation were determined by template matching and subtomogram averaging.

(B and C) Magnification of the region boxed in (A) showing only proteasomes less than 15 nm away from poly-GA ribbons (B) or 30–45 nm away (C). Poly-GA

ribbons are shown as a transparent red surface. Note that substrate processing proteasomes are more abundant close to poly-GA ribbons.

(D) Examples of SPS2 proteasomes directly touching poly-GA ribbons in the tomogram shown in (A). The additional density in the substrate binding region

overlaps with the poly-GA ribbons.

(E) Plot of proteasome conformation versus distance to poly-GA ribbons. The influence of the distance to poly-GA ribbons in proteasome conformation was

statistically significant (p < 0.001, chi-square test, n = 6,080 regulatory particles from 4 tomograms).

Scale bars, 200 nm (A) and 100 nm (B and C).

See also Figure S4.
For proteasomes directly touching (Figure 5D) or very close to

ribbons, the SPS2 class was overrepresented (36% versus

23% of the total proteasomes (Figure 5E), whereas the fraction

of GS1 proteasomes was smaller than within the total (40%

versus 49%) (Figure 5E). The fraction of GS1 proteasomes

increased with their distance to ribbons, whereas SPS2 protea-

somes followed the opposite trend. For SPS2 proteasomes

associated with poly-GA ribbons, the contact interface was

consistent with the location of the additional density observed

in this class (Figures 3 and 4G–4I). Only small variations were

found in the fractions of GS2 and SPS1 particles with respect

to the distance to poly-GA ribbons (Figure 5E). These results indi-

cate that association with poly-GA aggregates modifies the

functional state of the 26S proteasome.

In agreement with this notion, functional measurements show

that poly-GA expression impairs proteasome function (Fig-

ure S4D) (Yamakawa et al., 2015; Zhang et al., 2014). Interest-

ingly, GA-rich sequences have been reported to slow or even

stall proteasomal substrate processing in the context of the Ep-

stein-Barr virus-encoded nuclear antigen 1 protein (Hoyt et al.,

2006; Kraut, 2013; Levitskaya et al., 1997). Whereas in vitro the

s4 state was only observed in the presence of non-hydrolysable

nucleotide analogs (Wehmer et al., 2017), 23% of all protea-

somes within neuronal poly-GA aggregates, and 36% of the pro-

teasomes located in the immediate vicinity of poly-GA ribbons

adopted the s4 conformation in situ (SPS2 class). Therefore,

our results suggest that proteasomal degradation is slowed
down by poly-GA-mediated stalling of the otherwise highly

transient s4 state. This may play an important role in the proteo-

stasis impairment observed in poly-GA models.

DISCUSSION

Previous studiesusingclassical EMreported that cellular poly-GA

inclusions consist of a network of filaments 15–17 nm in diameter

(Zhang et al., 2014, 2016). Our 3D imaging of unstained fully hy-

drated neurons shows that rather than filaments, poly-GA forms

twisted ribbonssimilar to thoseobserved in vitro for (GA)15 (Chang

et al., 2016).Whereasmostamyloids arebelieved tobe largely un-

branched (Knowles et al., 2014), poly-GA ribbons bifurcated

extensively. Together with their variable width, this suggests

that in situ poly-GA ribbons are formed by different numbers of

laterally stacked protofilaments. Furthermore, the similar

morphology of (GA)15 (Chang et al., 2016) and (GA)175 (this study)

ribbons is consistent with a molecular arrangement in which

stackedGA-repeats give rise to the long axis of the protofilament.

Poly-GA aggregates recruited striking numbers of 26S protea-

somes, whereas other macromolecules were excluded from the

aggregate interior. This is remarkably different from our recent

observations on polyQ inclusions, which interact with and may

disrupt the membranes of the endoplasmic reticulum (ER) and

other organelles, but do not harbor substantial numbers of 26S

proteasomes or other large macromolecules (Bauerlein et al.,

2017). This difference is surprising as proteasomes were also
Cell 172, 696–705, February 8, 2018 701
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reported to colocalize with polyQ aggregates (Bennett et al.,

2005; Waelter et al., 2001). Thus, different aggregating proteins

may trigger UPS dysfunction and cellular toxicity by distinct

mechanisms, and how proteasomes associate with other dis-

ease-related aggregates remains to be elucidated (Deriziotis

et al., 2011; Myeku et al., 2016). Future work should also address

the extent of proteasome recruitment by aggregates of poly-GA

proteins expressed at endogenous levels, as well as by other

C9orf72 dipeptide-repeat proteins.

UPS impairment is known to play an important role in poly-GA

induced toxicity (Yamakawa et al., 2015; Zhang et al., 2014,

2016). The proteasome and other UPS components are major

poly-GA interactors in neurons (May et al., 2014), and poly-GA

expression leads to reduced proteasome activity (Yamakawa

et al., 2015; Zhang et al., 2014; our results). Our data provide

mechanistic insights into these phenomena. First, poly-GA ag-

gregates sequester a large fraction of cellular proteasomes,

depleting them from other cellular functions critical for proteo-

stasis maintenance, such as ER-associated degradation (Zhang

et al., 2014). This may be particularly damaging to neurons given

their extended morphology. Second, many of the poly-GA asso-

ciated proteasomes may be functionally impaired. The fraction

of double-capped proteasomes and proteasome RPs in sub-

strate processing conformations was much higher within poly-

GA aggregates than in control cells. Given that CP/RP interac-

tions are stabilized during substrate degradation (Kleijnen

et al., 2007), these data suggest that many poly-GA-associated

proteasomes are processing substrates or stalled in the process.

Consistently, our analysis shows that contact with poly-GA

ribbons causes the proteasomes to adopt the s4 conformation,

an otherwise highly transient intermediate state of substrate

translocation (Wehmer et al., 2017). This is in line with previous

reports that GA-rich sequences slow proteasomal translocation

or even stall it (Kraut, 2013; Levitskaya et al., 1997). Interestingly,

despite the strong association between proteasomes and poly-

GA aggregates observed here, inhibiting proteasomal degrada-

tion does not affect poly-GA levels (Yamakawa et al., 2015).

Therefore, the recruitment of proteasomes to poly-GA aggre-

gates may be unproductive and may not lead to poly-GA degra-

dation. The mechanisms driving such recruitment, which may

involve ubiquitination of poly-GA and/or of associated factors,

require further investigation.

Our data may also provide insights into the cellular mecha-

nisms of proteasome regulation in the presence of protein aggre-

gates. Poly-GA-associated proteasomes in substrate process-

ing states showed additional densities that may correspond to

bound ubiquitin and/or UBL domain-containing cofactors such

as the deubiquitinating enzyme Ubp6/USP14 or the substrate

shuttle factor Rad23 (Aufderheide et al., 2015; Bashore et al.,

2015; Chen et al., 2016b; Shi et al., 2016). Although the binding

of these factors to poly-GA-associated proteasomes remains

to be conclusively demonstrated, several UBL domain proteins

(Rad23, ubiquilin2, or Bag6) were highly enriched in the poly-

GA interactome (May et al., 2014), and Rad23 is an important

regulator of poly-GA induced toxicity (Zhang et al., 2016). UBL

domain proteins strongly modulate proteasome activity (Finley

et al., 2016) and have recently been implicated in neurodegener-

ation and aggregate clearance (Deng et al., 2011; Hjerpe et al.,
702 Cell 172, 696–705, February 8, 2018
2016). Our results are consistent with the notion that UBL domain

cofactors regulate the interactions of the proteasome with

protein aggregates.
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Goat anti mouse Alexa 555 Thermo Fisher Scientific Cat# A-21424; RRID: AB_141780
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Mouse monoclonal anti-GA Mackenzie et al., 2013 N/A

Rabbit polyclonal anti-Calnexin Enzo Life Sciences Cat# ADI-SPA-860; RRID: AB_10616095

Chemicals, Peptides, and Recombinant Proteins

4x Laemmli buffer Biorad Cat# 1610747

B27 Thermo Fisher Scientific Cat# 17504044

Borax anhydrous Sigma Cat# 71996

Bovine serum albumin Sigma Cat# BQ3716

DMEM, high glucose, GlutaMAX Thermo Fisher Scientific Cat# 10566-016

DNase Sigma Cat# DN25

Fetal calf serum Sigma-Aldrich Cat# F7524

Gelatin Sigma-Aldrich Cat# G9391

HEPES Biomol Cat# 05288

L-Glutamine Thermo Fisher Scientific Cat# 25030081

Lipofectamine 2000 Thermo Fisher Scientific Cat# 11668-019

MEM non-essential amino acids solution Thermo Fisher Scientific Cat# 11140050

MgCl2 Merck Cat# 105833

NaCl Merck Cat# 106404

Na2HPO4 * 2 H2O Merck Cat# 106580

Neurobasal medium Thermo Fisher Scientific Cat# 21103049

Opti-MEM reduced serum medium Thermo Fisher Scientific Cat# 31985070

Paraformaldehyde Sigma-Aldrich Cat# 76240

Penicillin-streptomycin Thermo Fisher Scientific Cat# 15140122

Poly-D-lysine Sigma Cat# P1149

Protease inhibitor cocktail Sigma Cat# P8340

Sucrose Sigma Aldrich Cat# S9378

Tricine gels Thermo Fisher Scientific Cat# EC66252BOX

Dulbecco’s modified Eagle medium (DMEM) Biochrom Cat# F0435

Fetal bovine serum GIBCO Cat# 10270-106

L-Glutamine GIBCO Cat# 25030-024

Non-essential amino acids GIBCO Cat# 11140-035

Trypsin GIBCO Cat# 12605-010

PBS GIBCO Cat# 20012-068

FuGENE 6 Promega Cat# E2691

Deposited Data

Cryo-EM model of the S. cerevisiae 26S proteasome (s1 state) Wehmer et al., 2017 PDB: 5MP9, 5MPD

Cryo-EM model of the S. cerevisiae 26S proteasome (s2 state) Wehmer et al., 2017 PDB: 5MPA, 5MPE

Cryo-EM model of the S. cerevisiae 26S proteasome (s3 state) Wehmer et al., 2017 PDB: 5MPB

Cryo-EM model of the S. cerevisiae 26S proteasome (s4 state) Wehmer et al., 2017 PDB: 5MPC
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Hybrid model of the S. cerevisiae TRiC/CCT Leitner et al., 2012 PDB: 4V94

Cryo-EM map of the human 80S ribosome Khatter et al., 2015 EMDB: 2938

In situ subtomogram average of the GS1 conformation of

the 26S proteasome from rat neurons

This paper EMDB: EMD-3916

Fitted model of the GS1 conformation of the 26S

proteasome from rat neurons

This paper PDB: 6EPF

In situ subtomogram average of the GS2 conformation of

the 26S proteasome from rat neurons

This paper EMDB: EMD-3913

Fitted model of the GS2 conformation of the 26S

proteasome from rat neurons

This paper PDB: 6EPC

In situ subtomogram average of the SPS1 conformation of

the 26S proteasome from rat neurons

This paper EMDB: EMD-3914

Fitted model of the SPS1 conformation of the 26S

proteasome from rat neurons

This paper PDB: 6EPD

In situ subtomogram average of the SPS2 conformation of

the 26S proteasome from rat neurons

This paper EMDB: EMD-3915

Fitted model of the SPS2 conformation of the 26S

proteasome from rat neurons

This paper PDB: 6EPE

In situ subtomogram average of TRiC from rat neurons This paper EMDB: EMD-3917

In situ cryo-electron tomogram of C9ORF72 poly-GA

aggregates within a rat neuron

This paper EMDB: EMD-4191

Experimental Models: Cell Lines

HEK293FT Thermo Fisher Scientific Cat# R70007

UbG76V-GFP HEK293 stable cell line De Smet et al., 2017 N/A

Experimental Models: Organisms/Strains

Primary neuronal cultures from CD (SD) IGS rats Charles River CD-SIFA; RRID: RGD_734476

Recombinant DNA

Plasmid: FhSynW-GFP May et al., 2014 N/A

Plasmid: FhSynW-175xGA-GFP May et al., 2014 N/A

Plasmid: FU3a-tagRFP-T2 human p62 This paper N/A

Plasmid: FhSynW -GA149stop This paper N/A

Plasmid: pcDNA3.1-VSVG Kuhn et al., 2010 N/A

Plasmid: psPAX2 Gift from Didier Trono

(unpublished data)

Addgene Cat# 12260

Plasmid: pcDNA3.1-STOP-GA(G4C2)73-GFP This paper N/A

Software and Algorithms

SerialEM Mastronarde, 2005 http://bio3d.colorado.edu/SerialEM/

TomSegMemTV Martinez-Sanchez

et al., 2014

https://sites.google.com/site/

3demimageprocessing/tomosegmemtv

MaskTomRec Fernandez et al., 2016 https://sites.google.com/site/

3demimageprocessing/masktomrec

K2Align Dimitry Tegunov https://github.com/dtegunov/k2align

Pytom Hrabe et al., 2012 http://pytom.org/

RELION Bharat and

Scheres, 2016

http://www2.mrc-lmb.cam.ac.uk/relion/

index.php/Main_Page

UCSF CHIMERA Pettersen et al., 2004 http://www.cgl.ucsf.edu/chimera

OriginPro OriginLab https://www.originlab.com/

index.aspx?go=Products/Origin

MATLAB MathWorks https://www.mathworks.com/

IMOD Kremer et al., 1996 http://bio3d.colorado.edu/imod/
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VTK N/A https://www.vtk.org; RRID: SCR_015013

Python scripts used to measure the distance between

proteasomes and poly-GA aggregates

This paper https://github.com/anmartinezs/poly-GA

QwikMD Ribeiro et al., 2016 http://www.ks.uiuc.edu/Research/qwikmd/

VMD Humphrey et al., 1996 http://www.ks.uiuc.edu/Research/vmd/

NAMD Phillips et al., 2005 http://www.ks.uiuc.edu/Research/namd/

TOM toolbox Nickell et al., 2005 https://www.biochem.mpg.de/tom

Amira Thermo Fisher Scientific https://www.fei.com/software/amira-

3d-for-life-sciences/; RRID: SCR_014305

Other

Quantifoil grids 200 mesh Gold R2/1 Quantifoil Micro Tools N/A

Whatman filter paper #1 Whatman Cat# 1001090

Nunc 12 well plates Thermo Fisher Cat# 150628

Glass coverslips VWR Cat# 631-1581
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Wolfgang

Baumeister (baumeist@biochem.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
HEK293 cells (female) stably expressing UbG76V-GFP (Dantuma et al., 2000; De Smet et al., 2017) were cultured in Dulbecco’s

modified Eagle’s medium (DMEM; Biochrom) supplemented with 10% (v/v) fetal bovine serum (GIBCO), 2 mM L-glutamine (GIBCO),

penicillin-streptomycin (Thermo Fisher) and non-essential amino acids (GIBCO). Transfection was carried out using FuGENE 6

(Promega).

Rats (IGS background, Charles River; RRID:RGD_734476) were housed in a pathogen-free facility with 12:12 h light/dark cycle and

food/water available ad libitum. All animal experiments were performed in compliance with institutional policies approved by the gov-

ernment of Upper Bavaria following x11 Ab.1 TierSchG for the DZNE animal facility (Inst.-Nr. 04-26). Primary cortical neurons were

prepared from embryonic day 19 animals of both sexes. Neocortex and hippocampus were dissected in ice-cold dissection media

(HBBS, penicillin-streptomycin, 10mMHEPES pH 7.3). The tissue was enzymatically dissociated at 37�C (for cortices 20min in 0.2%

trypsin, 0.7 mg/ml DNase I; for hippocampi 15 min in 0.25% trypsin in dissection media) followed by gentle trituration.

For EM analysis, 250,000 cells/ml cortical neuronswere plated on EMgrids and cultured in Neurobasal medium containing 2%B27

(Thermo Fisher), penicillin-streptomycin, 0.5 mM L-glutamine (Thermo Fisher). For biochemical analysis, 250,000 cells/ml cortical

neurons were plated on 12-well plates (Thermo Fisher) and cultured in Neurobasal medium. For immunofluorescence experiments,

85,000 cells/ml hippocampal neurons were plated on 12-well plates containing glass coverslips (VWR) coated with poly-D-lysine and

cultured in Neurobasal medium supplemented with 12.5 mM glutamate.

METHOD DETAILS

Lentivirus Packaging
HEK293FT cells (female; from Thermo Fisher) of low passage number were plated in three 10 cm dishes (5,000,000 cells/dish) and

cultured in DMEM (Thermo Fisher), penicillin-streptomycin, 1% non-essential amino acids (Thermo Fisher) and 10% fetal bovine

serum (Sigma). A transfection mix was set up as follows: 18.6 mg transfer vector (FhSynW-(GA)175-GFP, FhSynW (GA)149, FU3a-

tagRFP-p62 or FhSynW-GFP), 11 mg pSPAX2 and 6.4 mg pVSVg in 4.5 mL Opti-MEM were combined with 108 ml Lipofectamine

2000 in 4,5 mL Opti-MEM (Thermo Fisher) and incubated for 20 minutes. Cell media was replaced with 5 mL Opti-MEM and 3 mL

of transfection mix were added per dish. The transfection media was replaced after 6 h by plating media supplemented with

13 mg/ml bovine serum albumin, and the supernatant was collected after additional 24 h. Lentiviral particles were harvested by

ultracentrifugation using a Sw28 rotor (22,000 rpm, 2 h), resuspended in 150 ml Neurobasal media on a rocking platform overnight

and stored in aliquots at �80�C.
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Generation of pcDNA3.1 – STOP-GA(G4C2)73-GFP
The method to generate the construct was adapted from Lee et al. (2013). Complementary G4C2 repeat oligonucleotides with phos-

phorylated ends (50-PHOS-(G4C2)5-3
0 and 50-PHOS-CC(G2C4)4GGCC-30) were energetically optimized to maximize heterodimer

formation. After initial denaturation for 5 min at 95�C in T4 ligase buffer (New England Biolabs), the complementary oligonucleotides

were allowed to anneal by slow cool down to room temperature during 2 h. Hybridized oligonucleotides were then self-ligated for 1 h

to extend the G4C2 DNA sequence. Adaptor oligonucleotides containing NheI (50) and BamHI (30) restriction sites (50 adaptor oligo-
nucleotides containing NheI: 50-GCCGTCAAGGCCGCATCTAGTAGCTAGC-30 and 50-PHOS-CCGCTAGCTACTAGATGCGGCCTT

GACGGC-30; 30 adaptor oligonucleotides containing BamHI: 50-PHOS-GGGATCCCTAGTACTGGGCCTCATGGGC-30 and 50-GCC

CATGAGGCCCAGTACTAGGGATC-30) were separately hybridized and sequentially added in excess to the ligation reaction mix

to stop G4C2 elongation. Ligation products were separated in a 1.25% agarose gel, and bands running at the desired molecular

size were excised. The DNA was then purified with the Zymolclean Gel DNA recovery kit (Zymo Research) according to the manu-

facturer’s guidelines. The resulting blunt-end fragments were phosphorylated and cloned into a dephosphorylated SmaI-restricted

pUC18 plasmid for amplification. Colonies were screened for G4C2 repeat length, and a construct with 73 G4C2 repeats was chosen

for further experiments. The selected sequence was subcloned into the mammalian expression vector pcDNA3.1(+)/myc-His be-

tween NheI and BamHI in front of a GFP-encoding region. Finally, multiple stop codons were added by site-directed mutagenesis

in every reading frame at the 50 of the sequence of interest, thereby removing all initiator codons between the T7 promoter and

the sequence of interest. The sequence was verified by multiple sequencing reactions as well as restriction digest.

Immunofluorescence and Cellular Fractionation
Immunofluorescence stainings were performed on primary hippocampal neurons 5 days after infection with (GA)175-GFP or GFP

lentivirus on day 5, or 3 days upon transfection with G4C2 on day 3 using Lipfectamine 2000 (Thermo Fisher). Cells were fixed for

10 min at room temperature (4% paraformaldehyde, 4% sucrose in PBS). Anti-PSMC4 (Bethyl Laboratories, 1:250, RRI-

D:AB_2620201) or anti-GA (Mackenzie et al., 2013, 1:200) primary antibodies as well as secondary antibodies (Alexa 555, Alexa

647, Thermo Fisher, 1:400, RRID:AB_2535850, RRID:AB_141780, RRID:AB_2535813) were diluted in staining buffer (0.1% gelatin,

0.3% Triton X-100, 450 mM NaCl, 16 mM sodium phosphate pH 7.4). After mounting the coverslips, images were taken using a

LSM710 confocal microscope (Carl Zeiss, Jena) with a 63 3 oil immersion objective.

Biochemical experiments were performed on primary cortical neurons 10 days after infection with either (GA)175-GFP or GFP lenti-

virus on day 3. Cells were lysed (PBS with 1% Triton X-100, 15 mMMgCl2, 0.2 mg/ml DNase with protease inhibitor cocktail). Upon

centrifugation (18,000 xg, 4�C for 30min) the soluble fraction was collected from the supernatant. The pellets were washed twice with

lysis buffer yielding the insoluble fraction. After adding 4x Laemmli buffer (Bio-Rad), samples were denaturated (95�C for 10 min) and

loaded on Tricine gradient gels (Thermo Fisher). The following antibodies were used: Anti-PSMC4 (Bethyl Laboratories, 1:1000), anti-

GFP (NeuroMab, 1:5000, RRID:AB_10671445) and anti-Calnexin (Enzo Life Sciences, 1:7000, RRID:AB_10616095). The data in Fig-

ure S4C was normalized to the total proteasome levels in GFP-transduced control neurons.

Flow Cytometry
HEK293 cells stably expressing UbG76V-GFP were harvested 72 h after transient transfection with (GA)175-tagRFP or tagRFP as

control and analyzed with a BD FACSAriaIII flow cytometer, as described previously (Hipp et al., 2012a, 2012b). In brief, to ensure

a sufficient number of cells with elevated levels of the transfected proteins > 100,000 events were analyzed per condition. To plot

the level of the reporter protein versus the level of the transfected protein, a set of gates was established in the tagRFP

channel. HEK293 cells transfected with tagRFP were used as single-color control to compensate the bleed-through between

GFP and tag-RFP individually for each gate, and to correct for effects due to high expression of tagRFP. The compensated

mean fluorescence of the reporter protein UbG76V-GFP in each of these gates was plotted on the y axis and the gate number

(corresponding to the log of fluorescence intensity of the transfected protein) was plotted on the x axis. The data shown in Figure S4D

are from a single representative experiment out of three independent repeats. Cells expressing low levels of tagRFP (gates 1-9) and

gates with < 1000 events were not included in the analysis. Raw flow cytometry data were analyzed using FlowJo software

(version 9.9; Tree Star).

Cryo-EM Sample Preparation
Quantifoil grids (R2/1, Au 200mesh grid, Quantifoil Micro Tools, Germany) were coatedwith an additional carbon layer (�20 nm thick)

using a carbon evaporator (MED 020, BAL-TEC). Before use, the grids were glow discharged using a plasma cleaner (PDC-3XG, Har-

rick) for 20 s and neurons were seeded as described above. Neurons were vitrified 5 days after transduction with GFP or tagRFP-

p62/untagged (GA)175 on day 5, 3 or 5 days after transduction with (GA)175-GFP on day 5, and 3 days after transfection with

(G4C2)73 on day 3. Untransduced and untransfected control neurons were vitrified on DIV 10.

For vitrification, the grids were blotted for 10 s from the back side using filter paper and immediately plunged into a liquid ethane/

propanemixture (Tivol et al., 2008) using amanual plunge freezer. Grids were transferred to sealed boxes and stored in liquid nitrogen

until usage.
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Cryo-Fluorescent Light Microscopy and Cryo-FIB Microscopy
EM grids were mounted onto modified Autogrid (FEI, Hillsboro, OR, USA) sample carriers, allowing subsequent FIB milling with a

shallow incident ion beam (Rigort et al., 2012), and then transferred to the cryo-stage of an FEI CorrSight microscope for cryo-light

microscopy. Overview images of the grid and poly-GA-GFP/tagRFP-p62 signal were respectively acquired in transmitted light and

the spinning disk confocal modes using a 20x lens (air, N.A. 0.8). Image acquisition was done with FEI MAPS software. The samples

were then transferred into a FEI Scios dual beam cryo-FIB/scanning electron microscope (SEM) using a cryo-transfer system.

To improve the sample conductivity, a layer of organometallic platinum was deposited onto the grid using the in situ gas injection

system with the following parameters: 10 mm working distance, 26�C pre-heating temperature, and 8 s gas injection time. MAPS

software allowed correlation between cryo-light microscopy and SEM images via the 3-point alignment method. Thin lamellas

were prepared in the regions of poly-GA-GFP/tagRFP-p62 fluorescence signal using the Ga2+ ion beam at 30 kV under a 20� stage
tilt angle. 0.5 nA beam current was used for rough milling, followed by sequentially lower currents during the thinning procedure.

A current of 30 pA was used for the final polishing step to reach a final lamella thickness of 150-200 nm. SEM imaging was used

to monitor the milling progress.

Cryo-Electron Tomography and Reconstruction
The specimens were examined at liquid nitrogen temperature in an FEI Titan Krios cryo-electron microscope operated at 300 kV and

equipped with a field emission gun and a Gatan post column energy filter. Lamellas were loaded vertical to the tilt axis, and were

precisely aligned by adjusting the b angle of the cryo-stage. Imageswere collected using a 4 k x 4 k K2 Summit (Gatan) direct detector

camera operated in dose fractionation mode (0.4 s, 0.3 electrons/Å2 per frame). Tilt series were recorded using SerialEM software

(Mastronarde, 2005) at a nominal magnification of 42,000 X, resulting in a pixel size of 3.42 Å at the specimen level. Unidirectional

tomographic tilt series were recorded from�50� to +70� with an increment of 2�. On average, 6 frameswere collected for each image

resulting in a total dose between 100 e-/Å2 to 110 e-/Å2 per tilt series. K2 frames were aligned using in house software (K2Align) based

on previous work (Li et al., 2013). Tilt series were aligned using fiducial-less patch tracking, and the tomograms were reconstructed

byweighted back projection using the IMOD software package (Kremer et al., 1996). For tomograms of lamellas superficially contam-

inated by ice crystals, a surface cleaning procedure was employed after alignment (Fernandez et al., 2016). The resulting tilt series

were then aligned and reconstructed again to obtain the final reconstructions.

Template Matching and Subtomogram Averaging
To identify the macromolecules found in the tomograms, a de novo subtomogram averaging procedure without any external

structural information was developed (Figure S2A). TheMATLAB (Mathworks) TOM toolbox (Nickell et al., 2005) was used as general

platform for image processing. First, all the tomograms were binned twice (13.68 Å3 per voxel) for processing. In one tomogram,

several identical small ring-like structures were hand-picked, aligned and averaged to obtain a first tube-like average structure.

This was used as an initial template for templatematching in all the binned tomograms using PyTom (Hrabe et al., 2012). The resulting

subtomograms were cropped, CTF-corrected and classified using Relion (Bharat and Scheres, 2016). The resulting structure clearly

showed a 20S proteasome core complex, but because of the missing wedge and the preferred orientation induced by the initial

template, the 19S regulatory particles (RP) were not well resolved. This structure was used to perform a new round of template

matching and classification, which clearly resolved proteasomes either single- or doubled-capped. The single-capped proteasome

were low-pass filtered to 40 Å and used as a reference for template matching again to produce the final dataset. In total, 10,367

proteasome subtomograms of 1803 pixel volume were picked for further analysis from 9 tomograms containing large (GA)175-GFP

aggregates (DIV 5 + 5). The same template matching procedure was applied to tomograms of control neurons, either untransduced

(16 tomograms) or transduced with GFP only (17 tomograms).

The subtomograms were then 3D classified using Relion (Figure S2B). They were first divided into single-capped and double-cap-

ped proteasomes. To further rule out reference bias, a single-capped proteasome, a double-capped proteasome and a mirrored

single-capped proteasome were used as references for classification. The results were similar, indicating negligible reference

bias during classification. To further analyze the conformational status of the 19S regulatory particles, all subtomograms were cut

in silico between the b-rings of the 20S, resulting in two independent particles for the double-capped proteasomes (Asano et al.,

2015). All cut-out half proteasomes were merged into a new dataset for another round of classification. Ground state and substrate

processing state structures were distinguished by the relative orientation of the Rpn5 and Rpn6 subunits (Asano et al., 2015; Unver-

dorben et al., 2014). Ground state and substrate processing state structures were further classified by applying a soft sphere mask in

the RP region only. Identical subclasses were merged resulting in two ground state and two substrate processing state classes,

which were further refined to achieve the final structures. A similar analysis could not be applied to control neurons (GFP-transduced

or untransduced) due to the low numbers of proteasomes found in these samples. Therefore, the results from untransduced neurons

from a previous study (Asano et al., 2015) were used as reference. Visualization of the subtomogram averages was performed in

UCSF Chimera (Pettersen et al., 2004). Resolution was determined using the 0.143 criterion according to the gold standard Fourier

Shell Correlation (Scheres and Chen, 2012).

To identify the larger ring-like structures found in the tomograms, a similar template matching procedure was employed. A spher-

ical structure was generated after processing, which showed a clear eight-fold symmetry by rotational correlation coefficient analysis

(Figure S3B). Furthermore, the size of the average fitted well with the crystal structure of TRiC/CCT (PDB: 4V94) (Leitner et al., 2012),
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indicating that these larger rings correspond to the TRiC/CCT chaperonin. A total of 1,366 TRiC subtomograms were used for aver-

aging. For ribosome template matching, a human 80S ribosome structure (EMDB 2938) (Khatter et al., 2015) was filtered to 40 Å and

used as a template.

Atomic Model Fitting
The S. cerevisiae proteasome models of the states s1 (PDB: 5MP9, 5MPD), s2 (PDB: 5MPA, 5MPE), s3 (PDB: 5MPB), and s4 (PDB:

5MPC) (Wehmer et al., 2017) were used as initial models. The core particles of themodels were fitted into each of the groups obtained

by classification of the poly-GA proteasome dataset using rigid body docking within UCSF Chimera. For each class, MDFF was per-

formed to refine the s1-4 models according to the density maps. Then, the RMSD between the best fitting atomic models and the

initial s1-4 state models was calculated (Table S1). This showed that the GS1 class reflected the s1 state with the Rpn1 positioning

of the human s1 state (PDB: 5L5K) (Schweitzer et al., 2016), GS2 reflected the s1 state with a rotated Rpn1 position, SPS1 reflected

the s2 state and SPS2 reflected the s4 state. To obtain the final atomic rat models, the best fitting yeast structures for each class were

used as templates for comparativemodeling and real-space structure refinement (Goh et al., 2016).MDFF simulations were prepared

using QwikMD (Ribeiro et al., 2016), analyzed with VMD (Humphrey et al., 1996), and carried out with NAMD (Phillips et al., 2005).

Segmentation of Poly-GA Aggregates and Distance Measurement
Poly-GA ribbons are locally planar and were consequently segmented using a filter based on tensor voting, which distinguishes

planar-like from line- and blob-like structures (Martinez-Sanchez et al., 2014). The filter outputs a scalar map, where voxel intensity

value is proportional to the local similarity with a plane. The final segmentation was generated by thresholding the filter output

combined with a manually generated mask to discard other locally planar structures like membranes and correct minor artifacts.

Due to the missing information along the electron beam direction (Luci�c et al., 2005), poly-GA ribbons were not clearly visible

when oriented within the xy plane. Segmentations were visualized using Amira (Thermo Fischer, RRID:SCR_014305).

For Figure 5, proteasome regulatory particles and poly-GA ribbons were represented by an isosurface, properly placed and

oriented in their original tomogram. For regulatory particles, surfaces were obtained by applying the marching cubes algorithm, im-

plemented in the VTK Open Source library (https://www.vtk.org/; RRID:SCR_015013; Schroeder et al., 2006), on the corresponding

subtomogram average. Isosurface threshold was set manually for every case with the criterion of choosing theminimum value avoid-

ing noisy features. For poly-GA ribbons, isosurfaces were generated from the output of the planar filter using the marching cubes

algorithm. The final ribbon surfaces were obtained by masking the isosurface with the corresponding ribbon segmentation from

the tomogram. To calculate the fraction of the volume of poly-GA inclusions occupied by poly-GA ribbons, total ribbon volume

was measured from the segmentations and divided by the total tomogram volume. For this calculation, tomograms (n = 4,

(GA)175-GFP transduced neurons at DIV 5 + 5) were selected in which the largemajority of the volume contained poly-GA aggregates.

RP to poly-GA ribbon distance was defined as the shortest Euclidean distance between the center of the RP to any surface point of

any ribbon in the same tomogram. A custom Python software package was developed to measure RP-to-ribbon distance for every

RP in all tomograms. The results were grouped by particle class to facilitate statistical analysis. The shortest distance among surfaces

was computed with the help of a VTK library (Schroeder et al., 2006).

QUANTIFICATION AND STATISTICAL ANALYSES

To measure proteasome concentration, for each tomogram (n = 9, (GA)175-GFP transduced neurons, DIV 5 + 5; n = 17, GFP trans-

duced neurons; n = 16, untransduced neurons) the number of proteasomes found by template matching and subtomogram

averaging was divided by the total tomogram volume. Because other cellular structures (such as poly-GA aggregates, other macro-

molecules or cellular organelles) were also present in the tomogram volume, this calculation underestimates the cytosolic concen-

tration of proteasomes. For poly-GA aggregates, only tomograms with more than half volume occupied by aggregates were consid-

ered for the concentration calculation. In Figure S4B, the top and bottom boundaries of the boxes indicate ± 2x standard error, and

whiskers extend to themaximum andminimum values. Statistical analysis was performed by the non-parametric Mann-Whitney test,

as not all data was normally distributed according to the Shapiro-Wilk test.

For the analysis of proteasome conformation as a function of the distance to poly-GA ribbons (Figures 5B, 5C, and 5E), 6080 reg-

ulatory particles from 4 tomograms of (GA)175-GFP transduced neurons (DIV 5 + 5) were analyzed. The data were divided in a 4x4

Table (4 RP states x 4 distance bins) resulting in 9 degrees of freedom. Statistical analysis was performed by Chi-square test.

The proteasome levels in the total, soluble and insoluble fractions of (GA)175-GFP transduced neurons were quantified from west-

ern blots by measuring the gray levels using Fiji (Schindelin et al., 2012). Error bars in Figure S4C indicate standard error. All data was

normally distributed according to the Shapiro-Wilk test (95% confidence level). Statistical analysis was performed by two-sided

paired t test (n = 6 replicates from 4 independent experiments). All graphs were plotted using OriginPro (OriginLab).

DATA AND SOFTWARE AVAILABILITY

The Python scripts used to calculate the distance between proteasomes and poly-GA ribbons are available at https://github.com/

anmartinezs/poly-GA.
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The tomogram analyzed in Figure 2 has been deposited at the Electron Microscopy Data Base with accession number EMDB:

EMD-4191. The structures of the proteasome and TRiC/CCT obtained by in situ subtomogram averaging have been deposited at

EMDB with the following accession numbers: EMDB: EMD-3916 (GS1 proteasome), EMD-3913 (GS2 proteasome), EMD-3914

(SPS1 proteasome), EMD-3915 (SPS2 proteasome), EMD-3917 (TRiC/CCT). The fitted atomic models of the different proteasome

states have been deposited at the Protein Data Base with the following accession numbers: PDB: 6EPF (GS1), 6EPC (GS2),

6EPD (SPS1), 6EPE (SPS2).
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Supplemental Figures

Figure S1. Correlative Cryo-light and Cryoelectron Microscopy Workflow, Related to Figure 1

(A) Rat cortical neurons were cultured on EM grids and transduced with (GA)175-GFP on day 5. Upon vitrification by plunge freezing 5 days after transfection, the

grids were imaged by cryo-light microscopy. (A) shows an overlay of phase and GFP channels.

(B) EMgrids were transferred to a cryo-FIB/SEMmicroscope. To locate cells of interest (boxed), SEM images were aligned and superimposedwith the GFP signal

from the cryo-LM image.

(C) FIB-induced secondary electron image of the cell shown in (B), superimposedwith theGFP signal. Yellow boxesmark the regions of the cell removed by FIB to

produce a lamella containing the GFP-positive region.

(D) SEM image of the lamella resulting from FIB milling, with a final thickness of �200 nm, superimposed with the GFP signal.

(E) Cryo-TEM low magnification image of the lamella shown in (D).

(F) 5 nm-thick tomographic slice of a tomogram recorded in the areamarked by a white square in (E), containing the GFP signal. A dense network of poly-GA-GFP

ribbons (red arrowheads) is visible. The inset shows a high magnification of a poly-GA-GFP ribbon decorated by GFP-associated additional densities (green

arrowheads). Scale bar: 20 nm.
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Figure S2. Subtomogram Averaging and Classification Workflow, Related to Figures 2 and 3

(A) Unbiased template matching procedure. Several identical structures were first hand-picked from one tomogram, aligned and averaged. The resulting average

was used as a template to search more tomograms for additional occurrences of the same structure. These additional particles were then visually inspected,

aligned, classified and averaged again to produce a higher resolution average. This average was low-pass filtered and used as a template to search all the

tomograms to produce the final subtomogram dataset.

(B) All proteasome subtomograms were first classified into single-capped or double-capped. To further analyze the conformational status of the regulatory

particles, all the subtomograms were cut in silico between the b-rings of the core particle (Asano et al., 2015), resulting in two independent particles for double-

capped proteasomes. Cut out caps from all proteasomes were merged and subjected to a further round of classification.
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Figure S3. Subtomogram Averaging and Classification for TRiC/CCT and the 26S Proteasome, Related to Figures 2 and 3

(A) Unsymmetrized average structure of TRiC/CCT at a resolution of 20.5 Å superimposed on its atomic model (purple; PDB: 4V94).

(B) Rotational correlation coefficient analysis of (A) indicating 8-fold symmetry.

(C) Average structure of TRiC/CCT at a resolution of 17.1 Å upon application of D8 symmetry to (A) superimposed on its atomic model. Resolutions were

estimated by gold-standard Fourier shell correlation using the 0.143 criterion.

(D and F) Overall distribution of single-capped and double-capped 26S proteasomeswithin aggregates in (GA)175-GFP transduced neurons (D) and untransduced

neurons (Asano et al., 2015) (F).

(E and G) Distribution of the ground and substrate processing states for all regulatory particles within aggregates in neurons transduced with (GA)175-GFP (E) and

untransduced (Asano et al., 2015) (G).

(H) Gold-standard Fourier shell correlation curves of the four proteasome structures, yielding the following resolution estimations: 11.8 Å (GS1), 12.3 Å (GS2),

15.4 Å (SPS1) and 12.8 Å (SPS2).
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Figure S4. Proteasome Abundance and Function at Poly-GA Aggregates, Related to Figures 2 and 5

(A) Poly-GA-GFP aggregates (green) in primary neurons expressing a synthetic (GA)175-GFP construct with a start codon colocalize with proteasomes detected

with a PSMC4/Rpt3 antibody (red). Proteasome staining is diffuse in GFP-expressing control cells. Nuclei are labeled with DAPI (blue). Scale bar: 50 mm.

(B) Proteasome concentration for (GA)175-GFP aggregates (DIV 5 + 5), control neurons transduced with GFP only (DIV 5 + 5) or untransduced (DIV 10) (n = 9

tomograms, (GA)175-GFP; n = 17, GFP; n = 16, untransduced). For poly-GA aggregates, only tomograms with more than half volume occupied by aggregates

were considered for the concentration calculation. The top and bottom boundaries of the boxes indicate ± 2x standard error, and whiskers extend to the

maximum and minimum values. Proteasome concentration within poly-GA aggregates was significantly higher than in control conditions (***p < 0.001 by Mann-

Whitney test), whereas the difference between GFP-transfected and untransfected control neurons was not significant (n. s.).

(C) Quantification of proteasome levels in the soluble and insoluble fractions as well as total, analyzed by immunoblotting. The data was normalized to the total

proteasome levels in GFP-transduced control neurons. Error bars indicate standard error. * and ** indicate respectively p < 0.05 and p < 0.01 by paired t test (n = 6

replicates from 4 independent experiments). Proteasomes are enriched in the insoluble fraction in the presence of poly-GA aggregates.

(D) Poly-GA expression leads to the stabilization of a reporter for the ubiquitin-proteasome system. HEK293 cells stably expressing an unstable green fluorescent

reporter for the ubiquitin-proteasome system (UbG76V-GFP) were transfected with the indicated constructs. After 72 h, UbG76V-GFP levels were analyzed by

flow cytometry. The relationship between poly-GA-tagRFP levels on the x axis and of UbG76V-GFP on the y axis shows a concentration-dependent accumulation

of UbG76V-GFP in the presence of poly-GA. The data shown are from a single representative experiment out of three independent repeats.

(E) Poly-GA-GFP aggregates (green) in primary neurons expressing a non-ATG (G4C2)73 construct containing a downstream GFP in the poly-GA reading frame.

RAN translation-derived poly-GA-GFP aggregates are stained by a poly-GA antibody (red) and colocalize with proteasomes detected with a PSMC4/Rpt3

antibody (white). Nuclei are labeled with DAPI (blue). Scale bar: 10 mm.
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Figure S5. Macromolecule Mapping in Different Poly-GA Aggregates, Related to Figure 2

(A–C) Tomographic slices of aggregates within neurons transduced with (GA)175-GFP (main panels) and analyzed at DIV 5 + 5. Regions containing poly-GA

ribbons are outlined in red. For the whole tomogram, proteasomes (green) and ribosomes (yellow) are mapped to their original positions and orientations by

template matching and subtomogram averaging. For each tomogram, maximum intensity projection heatmaps of poly-GA ribbons, proteasomes and ribosomes

were generated (right column of each panel).

(D–F) Numbers of proteasomes and ribosomes detected in the tomograms shown in (A)–(C) plotted versus the volume of the region containing poly-GA ag-

gregates. The number of proteasomes detected shows a positive correlation with poly-GA aggregate volume. (E and F) Tomographic slices and mapped 26S

proteasomes of aggregates within neurons transduced with (GA)175-GFP at an earlier time point (DIV 5 + 3) (E), or transfected with a RAN-translated (G4C2)73
construct with GFP in the poly-GA reading frame (F). Note that despite the smaller size compared to DIV 5 + 5 (GA)175-GFP aggregates, similar concentrations of

proteasomes accumulatedwithin these aggregates (�7 mM for (GA)175-GFP, DIV 5 + 3;�5 mM for G4C2). Due to the lower thickness of the cryo-FIB lamella (70 nm

versus 100-200 nm in all other cases) fewer proteasomes are visible in (F). The inset in (F) shows a high magnification of a poly-GA ribbon (red arrowhead)

decorated by GFP-associated additional densities (green arrowheads). Note that the morphology of RAN-translated poly-GA ribbons is indistinguishable from

aggregates formed by the (GA)175-GFP construct. Tomographic slices are 7 nm thick. Scale bars: 200 nm in main panels, 20 nm in inset.
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Contribution to Publication II 

As second author of this publication, I was involved in the initiation of this project, where I 

infected primary rat neurons for all cryo-EM experiments. Furthermore, I validated the cryo-EM 

findings in primary rat neurons, including immunofluorescence (Fig. S4A and E) and biochemical 

fractionation experiments (Fig. S4C).  
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Report

Poly-GP in cerebrospinal fluid links C9orf72-
associated dipeptide repeat expression to the
asymptomatic phase of ALS/FTD
Carina Lehmer1,†, Patrick Oeckl2,†, Jochen H Weishaupt2, Alexander E Volk3, Janine Diehl-Schmid4,

Matthias L Schroeter5,6, Martin Lauer7, Johannes Kornhuber8, Johannes Levin1,9, Klaus Fassbender10,

Bernhard Landwehrmeyer2, German Consortium for Frontotemporal Lobar Degeneration‡,

Martin H Schludi1, Thomas Arzberger1,11,12, Elisabeth Kremmer13, Andrew Flatley14, Regina Feederle1,14,

Petra Steinacker2, Patrick Weydt2,15, Albert C Ludolph2, Dieter Edbauer1,†,* & Markus Otto2,†,**

Abstract

The C9orf72 GGGGCC repeat expansion is a major cause of amyo-
trophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD).
Non-conventional repeat translation results in five dipeptide
repeat proteins (DPRs), but their clinical utility, overall significance,
and temporal course in the pathogenesis of c9ALS/FTD are unclear,
although animal models support a gain-of-function mechanism.
Here, we established a poly-GP immunoassay from cerebrospinal
fluid (CSF) to identify and characterize C9orf72 patients. Signifi-
cant poly-GP levels were already detectable in asymptomatic
C9orf72 mutation carriers compared to healthy controls and
patients with other neurodegenerative diseases. The poly-GP levels
in asymptomatic carriers were similar to symptomatic c9ALS/FTD
cases. Poly-GP levels were not correlated with disease onset, clini-
cal scores, and CSF levels of neurofilaments as a marker for axonal
damage. Poly-GP determination in CSF revealed a C9orf72 muta-
tion carrier in our cohort and may thus be used as a diagnostic
marker in addition to genetic testing to screen patients. Presymp-
tomatic expression of poly-GP and likely other DPR species may

contribute to disease onset and thus represents an alluring
therapeutic target.
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fluid; frontotemporal dementia
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Introduction

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia

(FTD) are neurodegenerative diseases with similar neuropathologi-

cal features and overlapping clinical symptoms and pathomecha-

nisms (Ling et al, 2013). To date, a genetic cause can be identified in
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around two-thirds of familial and 10% of sporadic ALS (Renton et al,

2014). Similarly, a genetic cause is described in about 25% of famil-

ial and 10% of sporadic FTD (Belzil et al, 2016). The most frequent

genetic cause of ALS, FTD, or a combination of both is a large

GGGGCC repeat expansion in the C9orf72 gene (c9ALS/FTD). Three

non-mutually exclusive mechanisms are discussed to mediate the

effects of the hexanucleotide expansion. The C9orf72 protein has

been linked to autophagy and its expression is reduced in ALS/FTD

patients (Sellier et al, 2016). While C9orf72 knockout mice show no

neurodegeneration, repeat expressing mice develop neuron loss and

TDP-43 pathology depending on the expression levels (Hayes &

Rothstein, 2016; Jiang et al, 2016; O’Rourke et al, 2016). Formation

of repeat RNA foci in the nucleus and the accompanying sequestra-

tion of RNA-binding proteins are thought to alter RNA processing

(DeJesus-Hernandez et al, 2011). The expanded repeat is translated

into aggregating dipeptide repeat proteins (DPRs) by a non-conven-

tional mechanism termed repeat-associated non-ATG (RAN) transla-

tion (Ash et al, 2013; Mori et al, 2013b; Zu et al, 2013), which was

first discovered for expanded CAG repeats (Zu et al, 2011).

Five DPR species result from the translation from sense (poly-GA,

poly-GP, poly-GR) and antisense RNA (poly-PA, poly-PR, and further

poly-GP) in all reading frames (Gendron et al, 2013; Mori et al,

2013a; Zu et al, 2013). DPRs accumulate in p62-positive but TDP-43-

negative neuronal inclusions in the brain, a pathognomonic feature

of c9ALS/FTD (Al-Sarraj et al, 2011; Mori et al, 2013b). In vitro and

in vivo studies showed toxicity of the different DPR species by inhibi-

tion of gene expression, nucleocytoplasmic transport, and the ubiq-

uitin-proteasome system (May et al, 2014; Zhang et al, 2014; Jovicic

et al, 2015). Poly-GA is the most abundant DPR species in the brain

whereas overexpression of the arginine-containing species (poly-

GR/-PR) causes the most severe toxicity in cellular and fly models

(Mizielinska et al, 2014; Schludi et al, 2015).

However, in end-stage brains DPR pathology does not correlate

with the degree of neurodegeneration, which challenges the

concept of DPRs as the driving force of acute neurodegeneration

as overly simplistic (Mackenzie et al, 2013), although mouse

models strongly support a gain-of-function mechanism (Chew

et al, 2015; Jiang et al, 2016; Liu et al, 2016). However, post-

mortem studies cannot provide conclusions on the temporal

sequence of events (DPR/TDP-43 deposition and neurodegenera-

tion). Neuropathological reports from rare cases suggest that DPRs

accumulate in the brain prior to TDP-43 pathology early in disease

or even prior its onset (Baborie et al, 2014; Proudfoot et al, 2014;

Vatsavayai et al, 2016). Thus, the study of DPR expression in the

asymptomatic phase of C9orf72 mutation carriers is essential to

clarify the role of DPRs in the pathogenesis of c9ALS/FTD. So far

only poly-GP has been detected in cerebrospinal fluid (CSF) in a

small case series of symptomatic c9ALS patients (Su et al, 2014).

It is unclear how accurately CSF levels of poly-GP reflect the over-

all DPR load, but it is currently the only way to analyze RAN

translation in living patients.

Therefore, we performed a cross-sectional study of CSF samples

of patients in different stages of the disease, even before onset of

either dementia or motor symptoms to elucidate the temporal course

of poly-GP expression in c9ALS/FTD pathogenesis. In addition, we

correlated poly-GP levels with clinical scores (ALSFRS-R, FTLD-

CDR), markers of neurodegeneration/axonal damage (neurofilament

light chain, NfL; phosphorylated neurofilament heavy chain, pNfH),

age at disease onset, disease duration at CSF collection, and

estimated repeat length to assess the interaction between DPR load

and disease severity.

Results

Monoclonal antibodies specifically detect poly-GP

To develop an anti-GP sandwich immunoassay with optimal sensi-

tivity, we rescreened all our monoclonal anti-GP clones from rat for

affinity as a capture antibody (Schludi et al, 2015). As expected, the

two best anti-GP clones 18H8 and 3F9 specifically detected neuronal

cytoplasmic poly-GP inclusions by immunohistochemistry in a

c9ALS/FTD patient, but not in a C9orf72-negative ALS/FTD case

(Fig 1A). An optimized immunoassay using these antibodies reliably

detected GST-GP15 down to a concentration of 0.03 ng/ml (Figs 1B

and EV1). No cross-reactivity with other GST-DPR fusion proteins

was observed even at 1 lg/ml (Fig 1C). Due to the different number

of epitopes in the GST-GP15 and endogenous poly-GP from patients

with variable repeat length, we present only background-corrected

raw values of CSF samples. To confirm assay stability, we repeat-

edly measured the concentration of four recombinant GST-GP15
calibration samples ranging from 0.0064 to 0.8 ng/ml (Fig EV1).

The coefficient of variance was between 1.59 and 9.41% for intra-

plate replicates, between 7.36 and 15.95% for inter-plates replicates,

and between 4.77 and 14.53% for day-to-day replicates, suggesting

the assay is sufficiently accurate for diagnostic use.

Poly-GP is detectable in the CSF of asymptomatic and
symptomatic c9ALS/FTD

Poly-GP levels were measured in CSF in a group of 125 clinically

well-characterized patients and controls from the German FTLD

Consortium. The demographic characteristics of the participants are

listed in Table 1. The sample includes 30 subjects with evidence of

a repeat C9orf72 expansion (C9-F1, n = 10; c9ALS, n = 9; c9FTD,

n = 11) in the peripheral blood. The median response in the poly-

GP immunoassay in the CSF of all 30 C9orf72 patients was > 35-fold

higher than in ND-CON and NonC9-F1 controls (median 140.3,

interquartile range 66.5 to 335.3 vs. median 4.0, interquartile range

�1.25 to 24.9), which indicates a specific response (Fig 2A). We

performed receiver operating characteristic (ROC) curve analysis of

all C9orf72 mutation carriers vs. all other samples. The area under

the curve (AUC) was 0.95 (95% CI: 0.92–0.99) (Fig 2B) and at a

cutoff of 43.5 the sensitivity was 93.3% (95% CI: 77.9–99.2%) and

the specificity was 91.6% (95% CI: 84.1–96.3%).

Of note, we detected poly-GP signal in eight out of 95 from

patients in the C9orf72-negative groups. One patient who eventually

received the clinical diagnosis of sporadic ALS and was initially seen

under the differential diagnosis of hereditary spastic paraplegia

(HSP) showed elevated poly-GP levels in CSF. One ND-CON patient

with very high poly-GP signal had undergone a lumbar puncture in

order to exclude a chronic inflammatory process. This patient

presented with dysaesthesia of the lower limbs, a small spinal lesion

in MRI, but without oligoclonal bands or motor and frontal signs.

The other patients included four patients with a clinical diagnosis of

AD and two control patients with the clinical diagnosis of a
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vestibular neuritis and a polyneuritis. However, for the latter two

patients, the poly-GP levels were just above the calculated cutoff

level. In these patients, there was no clinical sign for a neurodegen-

erative disease. The genetic C9orf72 status of these patients was

(re)analyzed except for the two control patients with vestibular

neuritis and polyneuritis, where no DNA was available. We did not

detect a C9orf72 repeat expansion in peripheral blood, but cannot

rule out a somatic mosaicism in the brain as autopsy samples were

not available for a definitive diagnosis. In an additional poly-GP-

positive AD case, genotyping indeed revealed a C9orf72 mutation,

which led to reclassification as c9FTD (Fig 2A, red dot).

Importantly, there was no significant difference in the poly-GP

levels of asymptomatic and symptomatic C9orf72 mutation carriers

and also not between c9ALS and c9FTD cases. In contrast, only

c9ALS and sALS patients, but not C9-F1 cases, showed increased

CSF concentrations of pNfH and NfL (Fig 2C and D). Thus, poly-GP

in CSF is a biomarker for the identification of both symptomatic and

asymptomatic C9orf72 mutation carriers, while neurofilament levels

in CSF are associated with the symptomatic but not the premanifest

phase of the disease.

Association of poly-GP with other CSF biomarkers and
clinical scales

Next, we analyzed the correlation of poly-GP levels in the CSF of

c9ALS/FTD cases with different markers of neurodegeneration and

disease severity (Fig 3). There was no significant correlation of

poly-GP levels with the axonal damage markers NfL (r = �0.02,

P = 0.98 in c9ALS; r = 0.04, P = 0.92 in c9FTD) and pNfH (r = 0.13,

P = 0.74 in c9ALS; r = �0.41, P = 0.21 in c9FTD) (Fig 3A and B).

Furthermore, no significant correlation was observed with clinical

scores (r = 0.12, P = 0.79 for ALSFRS-R in c9ALS; r = �0.10,

P = 0.81 for FTLD-CDR in c9FTD), disease duration at the time of

CSF collection (r = 0.67, P = 0.06 in c9ALS; r = �0.18, P = 0.63 in

c9FTD) (Fig 3C and D), and age at disease onset (r = 0.29, P = 0.44

in c9ALS; r = �0.38, P = 0.28 in c9FTD) (Fig 3E and F). Current

technologies allow only a rough estimate of the repeat length,

because the expanded allele presents as a smear rather than a distinct

band in Southern blots and somatic variability between blood and

brain DNA is well described (Nordin et al, 2015). Given these limita-

tions, no significant correlation of poly-GP levels with the estimated

repeat length from blood (available for 11 patients) was identified

(r = 0.58, P = 0.07 for c9ALS and c9FTD combined) (Fig 3G).

Despite being a cross-sectional study, we used a similar approach

as that used in the GENFI study (Rohrer et al, 2015) in order to

determine the changes of CSF poly-GP throughout the evolution of

the disease. That is, we used parental age of onset as a proxy to

calculate the estimated years to disease onset. We did not find any

association between the estimated years to disease onset and CSF

poly-GP (r = 0.28, P = 0.46) (Fig 3H). Thus, poly-GP expression

starts at least several years prior to clinical disease onset and

remains unchanged in late stages.

Discussion

Using a novel immunoassay, we measured poly-GP in the CSF from

C9orf72 ALS and bvFTD cases and carefully selected control groups.
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Figure 1. Validation of a novel poly-GP-specific immunoassay.

A Immunohistochemistry of frontal cortex from ALS/FTD cases with or without C9orf72 repeat expansion using poly-GP antibodies 18H8 and 3F9. Both antibodies
detect neuronal cytoplasmic inclusions specifically in the C9orf72 case (arrows). Hybridoma supernatants were used at 1:250 dilution as described previously
(Schludi et al, 2015). Scale bar 20 lm.

B, C Poly-GP sandwich immunoassay with anti-GP antibodies 18H8 and 3F9 detects purified GST-GP15 below 0.03 ng/ml (B), but no other 15-mer DPRs fused to GST at
1 lg/ml. Data are shown as mean � SD (n = 2) (C). A four-parameter logistic curve was used to fit the dose–response using Prism 7.01 software.
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Our main results were as follows: (i) Significant poly-GP levels are

detectable in the CSF of 93.3% of the C9orf72 ALS and bvFTD cases

but not in 91.6% of the control cases; (ii) rapid poly-GP immunoas-

say is useful to detect individuals with a C9orf72 expansion misdiag-

nosed with other diseases (e.g. AD); and (iii) poly-GP levels are

already increased in asymptomatic stages of the disease, suggesting

DPRs may be most important for the early pathogenic events in

C9orf72 ALS/FTD rather than driving acute neurodegeneration in

late-stage patients.

Poly-GP immunoassay from CSF

Previously, poly-GP had been detected in CSF of c9ALS cases by

immunoassay using polyclonal antibodies (Su et al, 2014). Here, we

developed an analogous immunoassay using two monoclonal anti-

GP antibodies. The monoclonal antibodies allow standardized

analysis and are not vulnerable to limited antibody availability or

batch-to-batch variation, which will be critical for the use as a

therapeutic biomarker for repeat-directed clinical trials (Jiang et al,

2016). The repeat expansion in C9orf72 patients seems to vary

mostly between 400 and > 5,000 (GGGGCC)n repeats (Beck et al,

2013; Fratta et al, 2013) and is notoriously difficult to determine

precisely (Akimoto et al, 2014). We present raw responses instead

of absolute poly-GP concentrations, because the repeat length

affects epitope numbers and thus likely capture and detection of

poly-GP antigens in the immunoassay (compare Fig 3G). While low-

level release and intercellular transmission of all five DPR species

have been reported in cell culture systems (Westergard et al, 2016),

we have so far not been able to detect the other DPR species in

patient CSF using a similar approach suggesting that these species

might be released into the CSF at lower levels.

Poly-GP signal in apparently C9orf72-negative cases

Using ROC analysis, we established a cutoff that allows sensitive

and specific discrimination of most C9orf72 cases from controls.

Table 1. Patient characteristics.

Characteristic
ND-CON
(n = 20)

NonC9-F1
(n = 8)

AD
(n = 24)

PD
(n = 14)

sALS
(n = 18)

sFTD
(n = 11)

C9-F1
(n = 10)

c9ALS
(n = 9)

c9FTD
(n = 11)

Age (years)a 63.5 (52.8 to
70.0)

42.3 (34.6
to 48.0)b

67.5 (56.6 to
70.2)

72.5 (67.0 to
77.0)

60.0 (52.0
to 67.5)

64.0 (53.0
to 68.0)

44.8
(39.4 to
51.2)b

65.1 (54.4
to 71.1)

56.3 (44.9
to 61.1)

Gender (F/M) 11/9 3/5 14/10 5/9 6/12 4/7 8/2 3/6 4/7

ALSFRS-Ra n.a. n.a. n.a. n.a. 41.0 (32.0
to 44.0)

n.a. n.a. 39.0 (36.3
to 44.0)

n.a.

FTLD-CDRa n.a. n.a. n.a. n.a. n.a. 4.5 (1.0 to
5.5)

n.a. n.a. 7.0 (3.8
to 11.8)

Disease duration
at LP (months)a

n.a. n.a. n.a. n.a. 14.5 (8.8
to 26.0)

21.0 (15.0
to 39.0)

n.a. 11.3 (4.8
to 29.9)

56.0 (23.4
to 163)c

Poly-GP in CSF
(arbitrary units)a

4.0 (�1.3 to
24.9)

�1.8 (�5.5
to 7.0)

6.0 (3.6 to
16.3)d

�10.5 (�18.9 to
�3.6)

�1.3 (�9.6
to 5.3)

�13.5 (�16.0
to 7.0)

129 (68.0
to 393)e

113 (80.0
to 279)f

151
(51.5 to
333)e

NfL in CSF
(pg/ml)a

909 (759 to
2,297)

720 (581
to 1,093)

2,232 (1,768 to
2,655)

2,911 (2,185 to
5,907)g

6,319 (3,000
to 27,013)h

4,455 (2,515
to 8,397)i

716 (620
to 1,043)

13,644
(9,313 to
29,818)j

2,614
(1,903 to
3,771)

pNfH in CSF
(pg/ml)a

264 (188 to
474)

188 (188
to 188)

353 (254 to
495)k

499 (343 to
675)l

1,593 (790
to 5,325)m

309 (241
to 768)

188 (188
to 188)

3,740
(2,028 to
5,487)n

303 (246
to 485)

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale—revised; bvFTD, behavioral variant of frontotemporal dementia;
C9-F1, asymptomatic C9orf72 mutation carriers; c9ALS, symptomatic ALS C9orf72 mutation carriers; c9FTD, symptomatic bvFTD C9orf72 mutation carriers; CSF,
cerebrospinal fluid; F, female; FTLD-CDR, Frontotemporal Lobar Degeneration-specific Clinical Dementia Rating; LP, lumbar puncture; M, male; n.a., not available;
ND-CON, age-matched control population without signs of a neurodegenerative disease; NfL, neurofilament light chain; NonC9-F1, C9orf72-negative offspring of
a C9orf72 mutation carrier; PD, Parkinson’s disease; pNfH, phosphorylated neurofilament heavy chain; sALS, sporadic ALS; sFTD, sporadic bvFTD.
aValues are median and interquartile range.
bP < 0.05 vs. ND-CON, P < 0.01 vs. AD, P < 0.001 vs. PD.
cP < 0.05 vs. sFTD.
dP < 0.01 vs. PD.
eP < 0.05 vs. ND-CON, NonC9-F1, P < 0.001 vs. sFTD, PD, sALS.
fP < 0.05 vs. ND-CON, NonC9-F1, P < 0.001 vs. sALS, sFTD, PD.
gP < 0.05 vs. NonC9-F1, P < 0.01 vs. C9-F1.
hP < 0.01 vs. ND-CON, P < 0.001 vs. NonC9-F1, C9-F1.
iP < 0.001 vs. C9-F1, NonC9-F1.
jP < 0.01 vs. AD, P < 0.001 vs. ND-CON, NonC9-F1, C9-F1.
kP < 0.05 vs. C9-F1.
lP < 0.05 vs. NonC9-F1, P < 0.01 vs. C9-F1.
mP < 0.01 vs. ND-CON, P < 0.001 vs. NonC9-F1, C9-F1.
nP < 0.05 vs. ND-CON, P < 0.001 vs. NonC9-F1, C9-F1.
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A

C

B

D

Figure 2. Poly-GP expression is increased in CSF of asymptomatic and symptomatic C9orf72 mutation carriers.

A Poly-GP was measured using immunoassay in an age-matched control population without signs of a neurodegenerative disease (ND-CON, n = 18–20), C9orf72-
negative offspring of C9orf72 mutation carriers (NonC9-F1, n = 8) in patients with other neurodegenerative diseases, that is, Alzheimer’s (AD, n = 24) and
Parkinson’s disease (PD, n = 14), sporadic ALS (sALS, n = 18) and FTD (sFTD, n = 11) patients, and asymptomatic (C9-F1, n = 10) and symptomatic C9orf72 mutation
carriers with ALS (c9ALS, n = 9) and FTD (c9FTD, n = 11). The c9FTD patient indicated by the filled, red circle was initially seen under the differential diagnosis of AD,
but after poly-GP measurement followed by C9orf72 genotyping reclassified as c9FTD.

B Receiver operating characteristic (ROC) curve analysis of poly-GP levels for the discrimination of C9orf72 mutation carriers vs. non-carriers. The cutoff (43.5) was
calculated using the Youden index and is shown as a dotted line in (A). AUC, area under the curve; Sens, sensitivity; Spec, specificity.

C, D (C) Phosphorylated neurofilament heavy chain (pNfH) and (D) neurofilament light chain (NfL) were measured using an established ELISA.

Data information: Groups were compared by Kruskal–Wallis test and Dunn’s post hoc test. Bars and whiskers are median and interquartile range, and circles are
individual values. Exact P-values poly-GP (A): ND-CON vs. c9FTD: P = 0.0477; PD vs. AD: P = 0.0053; ND-CON vs. c9ALS: P = 0.0483; ND-CON vs. C9-F1: P = 0.0236;
NonC9-F1 vs. c9FTD: P = 0.0365; NonC9-F1 vs. c9ALS: P = 0.0334; NonC9-F1 vs. C9-F1: P = 0.0194; sALS vs. c9FTD: P = 0.0006; sALS vs. c9ALS: P = 0.0007; sALS vs. C9-F1:
P = 0.0003; sFTD vs. c9FTD, sFTD vs. c9ALS, sFTD vs. C9-F1, PD vs. c9FTD, PD vs. c9ALS, and PD vs. C9-F1: P < 0.0001. Exact P-values pNfH (C): PD vs. C9-F1: P = 0.0121;
PD vs. NonC9-F1: P = 0.0261; sALS vs. ND-CON: P = 0.0103; C9-F1 vs. AD: P = 0.0334; ND-CON vs. c9ALS: P = 0.0142; NonC9-F1 vs. c9ALS, C9-F1 vs. c9ALS, sALS vs. C9-F1,
and sALS vs. NonC9-F1: P < 0.0001. Exact P-values NfL (D): sFTD vs. C9-F1: P = 0.0013; sFTD vs. NonC9-F1: P = 0.0038; PD vs. C9-F1: P = 0.0122; PD vs. NonC9-F1:
P = 0.0245; c9ALS vs. AD: P = 0.0107; sALS vs. ND-CON: P = 0.0017; sALS vs. NonC9-F1: P = 0.0001; sALS vs. C9-F1, ND-CON vs. c9ALS, NonC9-F1 vs. c9ALS, and C9-F1 vs.
c9ALS: P < 0.0001.
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Only two of our genetically verified c9ALS/FTD cases had low

poly-GP levels in CSF. In contrast, some of the non-mutation

carriers (one sALS, four AD, and one ND-CON) showed strongly

elevated poly-GP signals. We offer three potential explanations.

First, the repeat length in C9orf72 patients is known to vary

widely between different tissues (Nordin et al, 2015) and it is

possible that the repeat length is normal in blood lymphocytes,

but pathological in the central nervous system. Thus, somatic

mosaicism could prevent detection of bona fide C9orf72 cases

using genotyping from peripheral blood. Emerging single-cell

A C

B

G H

D

E

F

Figure 3. Poly-GP expression in CSF correlates neither with markers of neurodegeneration nor with clinical disease severity.

A–F Correlation analysis of poly-GP levels in CSF of c9ALS (A, C, E) and c9FTD cases (B, D, F). Correlation with phosphorylated neurofilament heavy chain (pNfH) and
neurofilament light chain (NfL) (A, B), with disease duration at lumbar puncture (LP) and the ALSFRS-R or FTLD-CDR score (C, D) and with age at disease onset (E, F).

G Correlation of poly-GP levels in CSF with the largest repeat length estimated by Southern blotting.
H Association of poly-GP levels in CSF with disease duration at LP in c9ALS/FTD patients and with time to expected disease onset in C9-F1 cases. Time to expected

disease onset was calculated using parental age at disease onset.

Data information: Correlation analysis was performed using Spearman’s rank correlation coefficient.
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genome data show an unexpected degree of mosaicism in health

and disease (Forsberg et al, 2016). Second, other pathologically

expanded repeats in the genome, for example, the intronic

(GGCCTG)n repeat expansion in the gene for the nucleolar protein

NOP56 causing spinocerebellar ataxia type 36 (SCA36), could

result in poly-GP expression (Kobayashi et al, 2011). Third, other

CSF proteins with short poly-GP stretches that are upregulated

preferentially in a subgroup of AD patients may cross-react in the

immunoassay.

High poly-GP levels in presymptomatic C9orf72 carriers

Animal models support a predominant gain-of-function mechanism

for C9orf72 pathogenesis, but the role of DPR proteins in disease

initiation and progression in human ALS and FTD patients remains

unresolved. Here, we show that poly-GP is already elevated in CSF

of asymptomatic C9orf72 mutation carriers ~14 years younger than

the symptomatic group, suggesting that DPR expression is present

in the earliest disease phase (compare Table 1). This is in agreement

with the neuropathological detection of DPRs in presymptomatic

C9orf72 cases at young age (Baborie et al, 2014; Proudfoot et al,

2014; Vatsavayai et al, 2016). Interestingly, cross-sectional data

from the GENFI cohort show subtle brain volume loss and behavioral

changes in C9orf72 carriers already 20 years prior to the expected

disease onset, while MAPT (microtubule-associated protein tau) and

GRN (granulin) mutation carriers show the first significant differences

much closer to the disease onset (Rohrer et al, 2015). Presymp-

tomatic DPR expression suggests that DPRs may be most critical for

initially triggering the disease, while progression may largely depend

on TDP-43 pathology (Edbauer & Haass, 2016).

Moreover, poly-GP levels are similar in c9ALS and c9FTD

although disease duration is much shorter in ALS. Poly-GP levels in

CSF of c9ALS/FTD cases did not correlate with markers of neurode-

generation such as the axonal damage markers NfL and pNfH and

with markers of disease severity (clinical scores, disease duration,

and onset). This is consistent with neuropathological findings show-

ing no spatial correlation of DPR pathology with neurodegeneration

(Mackenzie et al, 2013; Schludi et al, 2015). It is unclear how CSF

levels of poly-GP correlate the amounts of poly-GP and the other

DPR species within the neuronal inclusions. Although the total DPR

levels vary between patients, we are not aware of cases with vastly

different ratios of the different DPR species (Mackenzie et al, 2015;

Schludi et al, 2015).

Since poly-GR/PR and poly-GA are by far more toxic than poly-

GP in cellular and animal models (Mizielinska et al, 2014), it will be

critical to determine their levels during disease progression to better

address the role of DPRs in c9ALS/FTD pathogenesis.

In conclusion, poly-GP determination in CSF may be used as an

alternative or addition to genetic testing to identify C9orf72 mutation

carriers. Our data indicate that poly-GP expression is already present

in the presymptomatic phase of c9ALS/FTD, and thus, DPRs may

predominantly contribute to triggering the disease rather than

driving acute neurodegeneration in late-stage patients. This has

implications for developing drugs and designing clinical trials. A

standardized monoclonal-based anti-GP immunoassay will be criti-

cal to determine whether antisense oligonucleotide treatment in

patients reduces DPR expression in patients similar to the preclinical

trials in mice (Su et al, 2014).

Materials and Methods

Patients

We investigated nine different patient groups: (i) symptomatic ALS

C9orf72 mutation carriers (c9ALS), (ii) symptomatic patients of the

behavioral variant of FTD (bvFTD) C9orf72 mutation carriers

(c9FTD), (iii) asymptomatic C9orf72 mutation carriers (C9-F1), (iv)

C9orf72-negative offspring of a C9orf72 mutation carrier (NonC9-

F1), (v) sporadic ALS patients (sALS), (vi) sporadic FTD patients

(sFTD), two groups of other neurodegenerative diseases, namely

(vii) Parkinson’s disease (PD) and (viii) Alzheimer’s disease (AD),

and (ix) an age-matched control population without clinical signs of

a neurodegenerative disease (non-neurodegenerative control, ND-

CON). Diagnosis was made according to standard criteria.

C9orf72 ALS cases and NonC9-F1 cases were recruited from the

German Presymptomatic (GPS)-ALS cohort (Weydt et al, 2016). AD

and bvFTD patients (including C9orf72 cases) were enrolled at dif-

ferent clinical centers coordinated by the German FTLD consortium

(Erlangen, Leipzig, Munich, Ulm, Würzburg). All other patients

were recruited at the Department of Neurology, Ulm University

Hospital, Germany. Group size for the groups ND-CON, PD, sALS,

and sFTD was estimated by experience because no preliminary data

were available. For the groups NonC9-F1, AD, C9-F1, c9ALS, and

c9FTD, all samples available from the cohorts of the GPS-ALS and

FTLD consortium were used. All patients gave written informed

consent. All procedures were in accordance with the WGA Declara-

tion of Helsinki and the Department of Health and Human Services

Belmont Report. The ethics committees of the participating centers

approved the study (Otto et al, 2011).

All patients underwent neuropsychological testing using stan-

dard procedures. Disease severity in ALS patients was assessed

using the ALS Functional Rating Scale—revised (ALSFRS-R) and in

bvFTD patients using the FTLD-specific Clinical Dementia Rating

(FTLD-CDR) score. PCR-based screening methods were used for

the detection of C9orf72 repeat expansion. If enough DNA was

available, Southern blot analyses were conducted (Akimoto

et al, 2014).

Cerebrospinal fluid was collected by lumbar puncture, centri-

fuged, and stored within 2 h at �80°C following standard operating

procedures at all sites.

Poly-GP sandwich immunoassay from CSF

By immunizing Lou/c rats with synthetic GP10 peptides, the poly-

GP-specific monoclonal antibodies 18H8 (IgG1/j) and 3F9 (IgG2a/j)
were raised using previously described protocols (Mackenzie et al,

2013). These new monoclonal antibodies against poly-GP had

higher affinity than the previously described clone 7A5 (Schludi

et al, 2015). An immunoassay was performed using the Meso

Scale Discovery platform (MSD). Streptavidin plates (MSD Gold

96-well Streptavidin) were coated with biotinylated 18H8 antibody

(capture antibody, 1:8,000) in PBS, washed three times (0.05%

Tween-20, PBS) using a Biotek 405US Microplate washer, and

blocked for 1 h at room temperature (0.05% Tween-20, 1% BSA

in PBS). Plates were incubated with 80 ll/well of CSF samples

diluted with one volume of RIPA buffer (137 mM NaCl, 20 mM

Tris pH = 7.5, 10% glycerol, 1% Triton X-100, 0.5% sodium
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deoxycholate, 0.1% SDS, 2 mM EDTA) and supplemented with a

protease inhibitor cocktail (Sigma) for 2 h at room temperature on

a shaking platform. Pseudonymized samples were randomly

distributed on the plate and measured blindly in two replicates.

After three washing steps, the plates were incubated with MSD

sulfo-tag-labeled 3F9 antibody (detection antibody, 1:1,000) for 2 h

at room temperature on a shaking platform followed by three final

washing steps. Upon adding 100 ll MSD Read Buffer T, the plates

were immediately measured. The electrochemical signal was

detected using a MSD SECTOR Imager 2400. 15-mer GST-DPR

fusion proteins were purified from Escherichia coli as described

(Mori et al, 2013b). After background correction, data are

presented in arbitrary units.

Measurement of neurofilament levels

Neurofilament, that is, NfL and pNfH, levels were measured using

commercial ELISA kits from Quanterix, Lexington (NfL), and

BioVendor (pNfH) (Steinacker et al, 2016a,b). Values of pNfH below

the detection limit (188 pg/ml) were set to 188 pg/ml to permit

statistical analysis.

Statistics

Statistical analysis was performed using GraphPad Prism 5.0 and

JMP software 11.1.1. The data did not follow a normal distribution,

and therefore, non-parametric tests were used. Groups were

compared by Kruskal–Wallis test and Dunn’s post hoc test

(> 2 groups) or Mann–Whitney test. Correlation analysis was

performed with Spearman’s rank correlation coefficient. ROC curve

analysis was used to calculate sensitivity and specificity of poly-GP

expression, and a threshold to separate C9orf72 mutation carriers

and non-carriers was selected using the Youden index. A P-value

< 0.05 was regarded as statistically significant.

Expanded View for this article is available online.
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Expanded View Figures
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Figure EV1. The poly-GP immunoassay is reproducible.

A–D Poly-GP sandwich immunoassay with anti-GP antibodies 18H8 and 3F9 was used to analyze the GST-GP15 standard at four concentrations. Background-corrected
absolute values, mean, and standard deviation (SD) for n = 4 GST-GP15 intra-plate replicates (A), n = 3 inter-plate replicates (B), and n = 3 day-to-day replicates
(C). Mean, SD, and the coefficient of variance (CV) for all conditions are listed in (D).
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Abstract

Cell-to-cell transmission of protein aggregates is an emerging
theme in neurodegenerative disease. Here, we analyze the dipep-
tide repeat (DPR) proteins that form neuronal inclusions in
patients with hexanucleotide repeat expansion C9orf72, the most
common known cause of amyotrophic lateral sclerosis (ALS) and
frontotemporal lobar degeneration (FTLD). Sense and antisense
transcripts of the (G4C2)n repeat are translated by repeat-asso-
ciated non-ATG (RAN) translation in all reading frames into five
aggregating DPR proteins. We show that the hydrophobic DPR
proteins poly-GA, poly-GP, and poly-PA are transmitted between
cells using co-culture assays and cell extracts. Moreover, uptake or
expression of poly-GA induces nuclear RNA foci in (G4C2)80-expres-
sing cells and patient fibroblasts, suggesting an unexpected
positive feedback loop. Exposure to recombinant poly-GA and cere-
bellar extracts of C9orf72 patients increases repeat RNA levels and
seeds aggregation of all DPR proteins in receiver cells expressing
(G4C2)80. Treatment with anti-GA antibodies inhibits intracellular
poly-GA aggregation and blocks the seeding activity of C9orf72
brain extracts. Poly-GA-directed immunotherapy may thus reduce
DPR aggregation and disease progression in C9orf72 ALS/FTD.

Keywords amyotrophic lateral sclerosis; C9orf72; immunotherapy;

RAN translation; seeding
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Introduction

Intracellular protein aggregation is a common feature of Alzheimer’s

disease and many other neurodegenerative disorders. Cell-to-cell

transmission of intracellular protein aggregates has been described

for intracellular tau and a-synuclein aggregates forming amyloid fib-

rils (Chai et al, 2012; Sanders et al, 2014). The secretion and reup-

take mechanisms are largely unknown, but the transmitted small

aggregates seem to act as nucleation seeds that template further

aggregation in the receiving cell (Jucker & Walker, 2011). The

spreading of aggregates between cells is thought to cause the stereo-

typic progression of tau pathology through synaptically connected

brain regions during disease progression (Braak et al, 2006; Iba

et al, 2015; Takeda et al, 2015). Ongoing preclinical and clinical

trials aim to interrupt the spreading of intraneuronal pathology

using mostly passive vaccination (Yanamandra et al, 2013).

In 2011, a (G4C2)n repeat expansion upstream of the coding

region of C9orf72 was found to cause frontotemporal lobar degener-

ation (FTLD) and/or amyotrophic lateral sclerosis (ALS) in about

10% of all Caucasian patients with these related fatal neurodegener-

ative conditions (DeJesus-Hernandez et al, 2011; Renton et al,

2011; Gijselinck et al, 2012). C9orf72 haploinsufficiency, toxic

nuclear RNA foci, and translation into toxic dipeptide repeat (DPR)

proteins have been suggested as drivers of pathogenesis (Edbauer &

Haass, 2016). Animal models expressing the repeat expansion

strongly support a gain-of-function mechanism (Mizielinska et al,

2014; Chew et al, 2015; Jiang et al, 2016; Liu et al, 2016). Repeat

RNA accumulates in nuclear foci and sequesters several RNA-

binding proteins (Mori et al, 2013b), but even high level expression

of the repeat RNA from an intron is not toxic in Drosophila models
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(Tran et al, 2015). Sense and antisense repeat transcripts are trans-

lated in all reading frames into five aggregating DPR proteins (Ash

et al, 2013; Mori et al, 2013a,c) by an unconventional mechanism.

This so-called repeat-associated non-ATG (RAN) translation was

first described for expanded CAG repeats and seems to require

formation of RNA hairpins (Zu et al, 2011). Poly-GA is abundantly

expressed in the C9orf72 brains, followed by poly-GP and poly-GR,

while poly-PA and poly-PR resulting from translation of the anti-

sense transcript are rare. In addition to RNA foci and DPR pathol-

ogy, C9orf72 patients also develop TDP-43 pathology that correlates

well with neurodegeneration like in other forms of FTLD/ALS

(Mackenzie et al, 2013), but it is still unclear how the C9orf72

repeat expansion triggers TDP-43 pathology. In contrast, several

neuropathology studies failed to detect a strong correlation of the

different DPR species (or RNA foci) with the region-specific

neurodegeneration seen in C9orf72 ALS and FTLD patients

(Mackenzie et al, 2013; Schludi et al, 2015), suggesting an interplay

of several factors and/or non-cell autonomous effects such as

spreading and seeding may be crucial for pathogenesis. Interest-

ingly, GA15 peptides form amyloid-like fibrils that are taken up by

N2a cells (Chang et al, 2016).

Thus, we asked whether poly-GA and the other DPR species are

transmitted between cells and how DPR uptake affects the receiving

cells. We detected cell-to-cell transmission of all hydrophobic DPR

species and show that poly-GA boosts repeat RNA levels and DPR

expression, suggesting DPR transmission may trigger a vicious

cycle. Treating cells with anti-GA antibodies reduced intracellular

aggregation of DPRs. Poly-GA antibodies blocked the seeding activ-

ity of C9orf72 brain extracts which further supports the therapeutic

potential of our discovery.

Results

Poly-GA and poly-PR differentially affect repeat RNA expression
and translation

To allow better interpretation of DPR seeding experiments, we first

analyzed DPR protein co-localization in cell lines co-expressing

repeat RNA and synthetic DPR constructs. Thus, we cotransfected

ATG-initiated synthetic DPR expression plasmids with GFP tag

together with a (G4C2)80 expression vector driven by the strong

CMV promoter (Mori et al, 2016). As expected, RAN translation

leads to GA80-flag aggregation under all conditions. We observed

co-aggregation of GA80-flag with GA175-GFP, but little specific

co-localization with the other DPR proteins, which were mainly dif-

fusely localized in the cytoplasm as reported previously (May et al,

2014; Zhang et al, 2014). Compared to the GFP co-expression, GA80-

flag aggregates appeared larger particularly in GA175-GFP- and

PR175-GFP-expressing cells and to a lesser extent also with the other

DPR proteins (Fig 1A). Quantification confirmed the increased size

of GA80-flag aggregates in GA175-GFP- and PR175-GFP-expressing

cells and showed no significant effects on the number of aggregates

upon co-expression of any DPR species (Fig 1B and C). Similarly, fil-

ter-trap analysis showed enhanced aggregation of GA80-flag particu-

larly in GA175-GFP- and PR175-GFP-expressing cells (Fig 1D and E).

Since poly-PR binds RNA and RNA-binding proteins (Kwon et al,

2014; Kanekura et al, 2016) and thus might affect mRNA

expression, we quantified the expression levels of the repeat mRNA

(Fig 1F). Poly-PR had no significant effect on the repeat RNA,

suggesting it may mainly induce RAN translation. In contrast, poly-

GA expression unexpectedly also increased the levels of the (G4C2)n
RNA.

Together, these data indicate that especially poly-GA and poly-

PR proteins promote repeat transcription and/or RAN translation. In

contrast to patient tissue, poly-GA did not specifically co-aggregate

with the other DPR species under our conditions. Thus, uptake of

poly-GA may affect both expression and nucleation in receiver cells.

Poly-GA, poly-GP, and poly-PA are transmitted between cells

To address whether large DPR proteins are transmitted between

cells, we performed co-culture experiments. HEK293 cells were first

transfected separately with either DPR-GFP, GFP, or RFP expression

vectors. After 24 h, RFP-transfected cells were resuspended and

mixed with GFP- or DPR-GFP-transfected cells. Double-positive cells

were quantified using flow cytometry analysis immediately after

mixing or after 24 h of co-culture (Fig 2A and B). In mixtures of

GFP- and RFP-transfected cells, double-positive cells were extremely

rare (~0.3%) at both time points. In contrast, GA175-GFP was

detected in 1–2% of RFP-positive cells after 24 h of co-culture indi-

cating transmission of GA175-GFP to RFP-transfected neighboring

cells (Fig 2C and D). Furthermore, double-positive cells were sorted

to image GFP-tagged DPR proteins in RFP-positive receiver cells

(Fig EV1), thus implying secretion and uptake of poly-GA by neigh-

boring cells. We detected even higher intercellular transmission of

GP47-GFP and PA175-GFP, which show mostly diffuse cytoplasmic

expression (May et al, 2014; Zhang et al, 2014).

In contrast, positively charged GFP-GR149 and PR175-GFP, which

localize to cytoplasm and nucleus, were not detected in the RFP-

positive receiving cells above background levels. To compensate for

the different transfection and expression levels of the GFP-DPR

proteins, we also normalized the double-positive cells to the total

population of GFP-positive cells (Fig 2D), which showed a similar

result compared to the absolute fraction of double-positive cells

(Fig 2C). Thus, the hydrophobic cytoplasmic DPR proteins are

transmitted between cells regardless of their aggregation properties.

GA175 aggregates seed further poly-GA aggregates in
repeat RNA-expressing cells

To test whether transmitted DPR proteins act as a seed for further

aggregation, we next used (G4C2)80-transfected cells as receiving

cells in co-culture experiments. We first confirmed that (G4C2)80-

transfected cells also take up GA175-GFP by co-staining of GA80-flag

and GA-GFP for analysis by flow cytometry after 3 days of co-

culture to allow sufficient levels of RAN translation (Fig 3A and B).

We detected a similar fraction of double-positive cells for co-culture

of (G4C2)80 and GA175-GFP-, GP47-GFP-, or PA175-GFP-expressing

cells as with RFP-positive receiver cells (compare Figs 2 and 3B).

Since (G4C2)80 drives mainly poly-GA expression (Mori et al, 2016),

we focused on this DPR species for the following experiments.

To further increase the load of transmissible DPR proteins, we

incubated (G4C2)80-transfected cells for 3 days with GA175-RFP

aggregates (Fig 3C). Immunofluorescence confirmed intracellular

uptake of GA175-RFP aggregates (Fig 3D). The exogenous aggregates
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co-localized with GA80-flag derived from the (G4C2)80 vector

(Fig 3D, arrow), indicating that transmitted poly-GA can seed

further aggregation. Importantly, even cells without prominent

GA175-RFP staining showed increased GA80-flag levels compared to

cells treated with RFP extracts, suggesting that even trace amounts

of GA175-RFP can accelerate poly-GA aggregation in the receiving

cells (Fig 3D, arrowhead). Importantly, also the fraction of GA80-

flag-positive cells increased significantly, suggesting that genuine

seeding occurred (Fig 3E).

Filter-trap experiments and flow cytometry analysis confirmed

increased expression/aggregation of RAN translation-derived GA80-

flag and to a lesser extent also of GR80-HA and GP80-myc in GA-

RFP-treated cells on a biochemical level (Fig 3F and G). Similar to

direct poly-GA expression (Fig 1F), exposure to GA175-RFP lysates

also increased the levels of the (G4C2)80 mRNA transcripts (Fig 3H),

indicating that poly-GA may affect transcription or stability of the

expanded C9orf72 repeat RNA. Taken together, uptake of poly-GA

promotes further aggregation of poly-GA, poly-GR, and poly-GP in

cells expressing the C9orf72 repeat expansion.

Dipeptide repeat proteins promote repeat RNA foci formation

To corroborate the effect of poly-GA on repeat RNA levels, we

analyzed nuclear RNA foci, which are another disease hallmark of

C9orf72 FTLD/ALS. We switched from HEK293 to HeLa cells,

because they attach better to glass coverslips and can sustain the

harsh washing steps for in situ hybridization. As (G4C2)80 expres-

sion resulted in many coalescing RNA foci, which made counting

their number unreliable, we analyzed the size of RNA foci. Cotrans-

fection of GA175-GFP, PA175-GFP, and GFP-GR149 significantly

increased foci size compared to GFP control, while GP47-GFP and

PR175-GFP expression had no effect (Fig 4A and B). The effects of

DPR proteins on RNA foci in HeLa cells are comparable to their effects

on repeat RNA levels in HEK293 cells (compare Figs 4B and 1F).

To verify the effects of DPR proteins on the repeat RNA under

physiological conditions, we used primary fibroblasts derived from

patients with expanded G4C2 repeats and transduced them with

individual DPR-GFP-expressing lentiviruses. Since DPR expression

in primary patient-derived cells (including induced pluripotent stem

cells) is extremely low, we investigated the effect on RNA foci

formation. Consistent with the effects of DPR proteins on RNA foci

in HeLa cells (Fig 4B), expression of poly-GA, poly-PA, and poly-GR

increased the number of foci per cell (Fig 4C and D), whereas poly-

PR had no effect on foci formation. Thus, poly-GA, poly-PA, and

poly-GR seem to promote transcription or stability of the expanded

repeat RNA.

Poly-GA is transmitted between neurons

To replicate our data in primary neurons, we transduced donor

and receiver cells on separate coverslips for 3 days and co-

cultured both coverslips with spacers from paraffin dots for

another 4 days. We focused on poly-GA and used both (G4C2)80
and empty vector-transduced receiver cells. Unfortunately, repeat-

transduced neurons show only low GA80-flag expression, presum-

ably due to poor packaging efficiency of the repeat RNA (Fig 5A).

In contrast, lentiviral transduction of primary neurons with GA175-

GFP results in inclusions of size and intensity comparable to the

aggregates in cortex of C9orf72 patients (May et al, 2014).

Consistent with Figs 2 and 3, we did not detect transmission

from the GFP control donor to the receiver cells (Fig 5A, first row).

In contrast, we detect GA175-GFP inclusions in several receiver

neurons after 4 days of co-culture (Fig 5A, second row), suggesting

that neurons can release and take up poly-GA similar to HEK293

cells. In addition, we noticed co-localization of transmitted GA175-

GFP and RAN-translated GA80-flag in some receiver cells expressing

(G4C2)80 (Fig 5A, fourth row).

To directly assess poly-GA release from neurons, we collected

conditioned media every 24 h and performed a poly-GA immuno-

assay. We first detected poly-GA levels in GA175-GFP-transduced

cells compared to GFP controls 48 h after transduction (Fig 5B), but

poly-GA release was significantly higher on the third and fourth

day. Thus, neurons are able to release and take up low levels of

poly-GA similar to tau and other intracellular aggregates.

Brain lysates from C9orf72 mutation carriers seed poly-GA
aggregates in repeat RNA-expressing cells

Next, we asked whether patient-derived DPR aggregates can

induce seeding. Therefore, we homogenized cerebella of FTLD

patients with or without C9orf72 mutation, because in this brain

region, DPR levels are very high and TDP-43 aggregation is virtu-

ally absent (Mackenzie et al, 2013). Similar to established proto-

cols for tau seeding, we used liposome-mediated transfection to

promote aggregate uptake in (G4C2)80-expressing cells (Nonaka

et al, 2010; Sanders et al, 2014).

Cerebellar extracts from C9orf72 patients increased the number

of GA80-flag-positive cells compared to C9orf72-negative controls as

quantified by flow cytometry (Fig 6A and B). Filter trap confirmed

the enhanced GA80-flag aggregate levels in cells treated with extracts

from a C9orf72 patient compared to a C9orf72-negative control

(Fig 6C and D). Cerebellar extracts from a C9orf72 patient also

increased the levels of GR80-HA and GP80-myc (Fig 6C and D).

◀ Figure 1. DPR expression promotes RAN translation from (G4C2)80.
HEK293 cells cotransfected with (G4C2)80 containing a flag-tag in the poly-GA reading frame and GFP or DPR-GFP for 3 days to analyze effects on RAN translation.

A Immunofluorescence for the GFP-tagged proteins and RAN translation-derived GA80-flag. DAPI labels nuclei. Scale bar 20 lm.
B, C Quantification of GA80-flag aggregate area and number from n = 4 independent experiments with five images each (containing 60–90 cells per image). Aggregate

and cell number were counted manually, and aggregate size was determined by thresholding. Data are shown as mean � SD. One-way ANOVA with Dunnett’s
multiple comparisons test; GFP vs. GA-GFP P = 0.0025; GFP vs. PR-GFP P = 0.0095; **P < 0.01.

D Filter-trap analysis of GA80-flag in two dilutions. A representative of four experiments is shown.
E Quantification of GA80-flag from four independent experiments. Data are shown as mean � SD. Statistics were performed by one-way ANOVA with Dunnett’s

multiple comparisons test; GFP vs. GA-GFP P = 0.0009; GFP vs. PR-GFP P = 0.0325; *P < 0.05, ***P < 0.001.
F Expression of the G4C280 RNA was measured by qPCR targeting the 30 region of the repeat sequence. RNA levels were normalized to GAPDH mRNA. Data are shown

as mean � SD (n = 3). Statistics were performed by one-way ANOVA with Dunnett’s multiple comparisons test; GFP vs. GA-GFP P = 0.0241; *P < 0.05.
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Similar to the experiments with cell lysates, this was associated with

an upregulation of (G4C2)80 mRNA expression in the cells receiving

extracts from different C9orf72 mutant patients (Fig 6E). Thus,

uptake of patient-derived DPR proteins induces DPR aggregation in

(G4C2)-repeat-expressing cells by seeding aggregation and increas-

ing repeat RNA levels.

Treatment with specific antibodies blocks poly-GA aggregation
and seeding

Since antibody treatment has been shown to reduce intracellular

aggregation of tau and a-synuclein, which are also known to be

transmitted between cells (Boutajangout et al, 2011; Chai et al,

2011, 2012; Yanamandra et al, 2013), we tested whether anti-GA

antibodies could inhibit aggregation in our cell culture model.

Treating GA175-GFP-transfected HEK293 cells with anti-GA reduced

GA175-GFP aggregation compared to isotype control (Fig 7A and

B). Filter-trap assays using a stable cell line expressing GA149-GFP

confirmed that anti-GA reduced poly-GA aggregate levels

compared to isotype control antibodies (Fig 7C). To analyze the

efficacy of anti-GA antibodies in neurons, we transduced primary

neurons with GA175-GFP and treated with antibodies for 6 days

(Fig 7D). Treatment with anti-GA significantly reduced poly-GA

levels compared to an isotype control (Fig 7E).

We next assessed the ability of anti-GA antibodies to block the

seeding activity of brain extracts from C9orf72 patients on repeat-

expressing cells. Brain lysates were pre-incubated with anti-GA or

IgG2a control for 16 h and then added to (G4C2)80-expressing

HEK293 cells for 48 h before measurement. We detected increased

expression of GA80-flag in cells receiving cerebellar extracts from a

C9orf72 patient (compare Figs 7F and G, and 6A–D). Pre-incubation

with anti-GA antibodies reduced the GA80-flag expression to control

levels, without affecting expression of GR80-HA or the repeat RNA

levels (Fig EV2), indicating that poly-GA is crucial for the seeding

activity of C9orf72 brains.

Together, these data suggest that anti-GA immunotherapy may

prevent seeding and spreading of poly-GA in C9orf72 disease.

Discussion

We demonstrate intercellular spreading and seeding of the

hydrophobic DPR species poly-GA, poly-GP, and poly-PA. Uptake

of poly-GA from transfected cells or from brain homogenates

promotes expression of the expanded repeat RNA and RAN

translation products, suggesting a vicious cycle of DPR expres-

sion and repeat RNA expression. Anti-GA antibodies block the

seeding activity of C9orf72 brain extracts and reduce poly-GA

aggregation in cell lines, suggesting immunotherapy may be a

useful therapeutic option to treat the DPR component of C9orf72

disease.

Hydrophobic DPR proteins are transmitted between cells

Using co-culture assays, we show intercellular transmission of the

hydrophobic DPR species poly-GA, poly-GP, and poly-PA in cell

lines (Fig 1) and we confirmed poly-GA release and uptake in rat

primary neurons (Fig 5). Moreover, cells treated with poly-GA-

containing cell extract or C9orf72 brain homogenates show induced

aggregation of RAN-translated GA80-flag (Figs 3, 6, and 7).

Our data add to previous reports that fibrillar GA15 peptides are

taken up by N2a cells and promote intracellular poly-GA aggrega-

tion (Chang et al, 2016), because we show intercellular transmis-

sion of much larger synthetic poly-GA and even patient-derived

poly-GA. In contrast to Ab seeding, which is very inefficient with

synthetic peptides and seems to require an elusive cofactor from

patient brain (Stohr et al, 2012), at least poly-GA seeding seems to

work with synthetic peptides and lysates from cell culture or cere-

bellum. In addition, we detected intercellular spreading of poly-GP

and poly-PA. Poly-GP is readily detectable in CSF of C9orf72 patients

(Su et al, 2014), but whether extracellular poly-GP in the CSF origi-

nates from active secretion or cellular debris is unclear. Our co-

culture data rather point to unconventional secretion or passive

release of small amounts of hydrophobic DPR proteins as it has been

shown for intracellular tau or a-synuclein (Chai et al, 2012),

because DPR expression is not toxic in HEK293 cells under our

conditions (May et al, 2014). We did not find significant transmis-

sion of arginine-rich DPRs at physiological levels, although synthetic

GR20 and PR20 peptides are taken up by cells and cause toxicity by

interfering with RNA expression and splicing when applied at

10 lM (Kwon et al, 2014).

While this manuscript was under review, Westergard et al

reported cell-to-cell transmission of the hydrophobic DPR 50-mers,

GR50-GFP, and in case of direct cell contact also of PR50-GFP

(Westergard et al, 2016). Even low-level transmission of these

species might be relevant due to their high toxicity (Mizielinska

et al, 2014). The different results between our studies may be due to

different repeat length or expression levels, as the arginine-rich

Figure 3. Poly-GA uptake seeds DPR aggregation and induces repeat RNA expression.

A, B Co-culture assay in HEK293 cells. 24 h after transfection with either (G4C2)80, GFP, or DPR-GFP, cells were mixed in the indicated combination. After 72 h of co-
culture, cells were fixed, permeabilized, and stained with anti-flag to detect GA80-flag for flow cytometry analysis. Flow cytometry dot plots are shown based on
levels of GA80-flag (x-axis) and GFP (y-axis) expression. The fraction of indicated populations is indicated in percent. Graphs shows mean � SD fraction of double-
positive cells from three independent experiments. Statistics were performed by one-way ANOVA with Dunnett’s multiple comparisons test; GFP vs. GA-GFP
P = 0.0316; GFP vs. GP-GFP P = 0.0331; GFP vs. PA-GFP P = 0.0513; *P < 0.05.

C–H HEK293 cells transfected with (G4C2)80 for 48 h were treated for 72 h with cell lysates from HEK293 transfected with RFP or GA175-RFP as depicted in (C). The RAN-
translated GA80-flag, GR80-HA, GP80-myc are detected by anti-flag immunofluorescence (D) and quantified (E). Arrowheads indicate GA80-flag aggregates in cells
without prominent GA175-RFP uptake, arrows indicate co-localization of exogenous GA175-RFP with GA80-flag. Results from n = 4 independent experiments with
five images each quantified and analyzed by two-tailed unpaired t-test. Data are shown as mean � SD. P = 0.0061; *P < 0.05. Scale bar 20 lm. Filter trap (F) and
flow cytometry analysis (G) confirmed the increased levels of GA80-flag in GA175-RFP-treated cells. The percentage of DPR-positive cells in GA-RFP-treated cells
compared to the RFP control is indicated. A representative of three independent experiments is shown. (H) Expression of the (G4C2)80 RNA in DPR-treated cells was
measured by qPCR targeting the tag region downstream of the repeat sequence. RNA levels were normalized to GAPDH mRNA. Data are shown as mean � SD
(n = 3). Statistics were performed by one-way ANOVA with Dunnett’s multiple comparisons test; (G4C2)80 + RFP vs. (G4C2)80 + GA-RFP P = 0.007; **P < 0.01.
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DPRs show lower expression in our system (Fig 1 and May et al,

2014).

Dipeptide repeat proteins affect repeat RNA expression
and/or stability

Surprisingly, poly-GA uptake did not only promote GA80-flag levels,

but also increased expression of the other two RAN products

poly-GP and poly-GR (Fig 3F and G). These findings complicate

interpretation of the data, but two lines of evidence support seeding

of poly-GA. First, poly-GA uptake in recipient cells increased the

number of GA80-flag inclusions. Second, poly-GA antibody treatment

reduced GA80-flag aggregation without affecting its mRNA levels.

Moreover, treating cells with poly-GA extracts induced repeat

RNA levels (Fig 3H), suggesting an effect on repeat transcription

and/or translation. To exclude variable uptake, we transfected DPR

expression constructs and analyzed the repeat RNA. In heterologous

cells and in patient fibroblasts, poly-GA and poly-PA expression

promoted RNA foci formation and poly-GA increased the levels of

repeat RNA (Figs 3H and 4). Since neither of the hydrophobic DPR
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A, B In situ hybridization of RNA foci (red) in HeLa cells cotransfected with (G4C2)80 and GFP or DPR-GFP for 3 days. Representative images (A) and quantification
(B) of foci size from three experiments (at least 30 cells per condition per experiment) are shown. DAPI labels nuclei. Scale bar 10 lm. Summary indicated the
means � SD. GFP vs. GA-GFP P = 0.0210; GFP vs. PA-GFP P = 0.0163; GFP vs. GR-GFP P = 0.0413; *P < 0.05 by one-way ANOVA with Dunnett’s multiple
comparisons test.

C, D In situ hybridization of (G4C2)n RNA foci in fibroblast of C9orf72 patients transduced with GFP or DPR-GFP lentivirus for 8–9 days. Note that we could not analyze
poly-GP, because we failed to generate a codon-modified lentivirus. Representative images (C) and quantification of foci number (D) are shown. Brightness and
contrast were digitally enhanced for better visibility for the presentation only. Scale bar 40 lm. Summary indicated the means � SEM of n = 7 experiments for
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proteins is known to bind RNA or RNA-binding proteins directly,

we speculate that the DPR proteins trigger a stress response (Zhang

et al, 2014) leading to transcriptional upregulation of repeat

transcription. Moreover, about 10% of DPR inclusions are found in

the nucleus in patients, where they mainly co-localize with hete-

rochromatin next to the nucleolus, which may support a direct effect

***

+G
A

-G
FP

+G
FP

+G
A

-G
FP

+G
FP

(G
4C

2)
80

co
nt

ro
l

DAPI GFP FLAG Merge

***

A

B

0

1000

2000

3000

po
ly

-G
A 

re
le

as
e

[A
U

]

0 48 72 9624

GFP
GA-GFP

Figure 5. Release and uptake of poly-GA by neurons.

A Co-culture assay in rat primary neurons. Cortical neurons (400,000/well) on coverslips were transduced with GFP or GA175-GFP as donor. Hippocampal neurons
(85,000/well) on coverslips were transduced with (G4C2)80 or empty vector as receiver cells. Three days later, the washed coverslips were put into well with paraffin
spacers. GFP and GA80-flag expression was analyzed 4 days later in the receiver cells by immunofluorescence. Arrows indicate co-localization of GA175-RFP with
GA80-flag. Scale bar 10 lm.

B Cortical neurons transduced with GFP or GA175-GFP. Conditioned media were exchanged 24 h prior to transduction and collected right before and every 24 h after
infection. Poly-GA levels in media were determined by immunoassay. Data are shown as mean � SEM. Two-way ANOVA with Sidak’s multiple comparisons test
(n = 4). t = 72 h: GA-GFP vs. GFP ***P < 0.0001; t = 96 h: GA-GFP vs. GFP ***P < 0.0001.
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A, B Flow cytometry analysis of GA80-flag-positive cells using n = 5 C9orf72-positive and n = 6 C9orf72-negative cases (three healthy controls, two ALS, one FTLD)
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one control were quantified and analyzed by two-tailed unpaired t-test. Data are shown as mean � SD. Anti-flag (GA) P = 0.0079; anti-HA (GR) P = 0.0043;
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on gene expression (Schludi et al, 2015). Surprisingly, poly-PR

expression induced poly-GA by RAN translation with little effect on

repeat RNA levels or foci formation (Figs 1 and 4). Poly-PR binds

directly to RNA and many RNA-binding proteins (Kwon et al, 2014;

Kanekura et al, 2016). Sequestration of certain RNA-binding

proteins might impair the tight control of ATG-mediated transla-

tional initiation and thus promote RAN translation. Interestingly,

antisense oligonucleotides consistently reduce DPR levels stronger

than repeat RNA levels independently supporting a feedback mecha-

nism (Jiang et al, 2016). Thus, DPR expression may trigger a vicious

cycle of increasing repeat RNA and DPR expression ultimately lead-

ing to neurodegeneration.

Poly-GA immunotherapy

Poly-GA, the most abundant DPR protein in patients, could be at the

center of C9orf72 gain-of-function toxicity, because it forms amyloid-

like fibrils capable of spreading between cells to seed further DPR

aggregation and enhance RNA foci formation. Therefore, we tested

whether we could reduce poly-GA aggregation using specific antibod-

ies. Anti-GA antibodies lowered poly-GA levels in both transiently and

stably transfected HEK293 cells and also in primary neurons (Fig 7).

Moreover, pre-incubation with anti-GA antibodies also prevented

uptake from C9orf72 brain extracts into HEK293 cells (Fig 7).

Immunotherapy targeting extracellular Ab aggregates has

finally shown promising results in patients with Alzheimer’s disease

in its early stages (Sevigny et al, 2016). Surprisingly, anti-tau

immunotherapy lowers intracellular tau aggregation and neurologi-

cal deficits in mouse models (Boutajangout et al, 2011; Chai et al,

2011, 2012; Yanamandra et al, 2013). Even for intracellular aggre-

gates, the antibodies are thought to act on extracellular proteins in

transit between two cells. Antibody binding may induce phagocyto-

sis through microglia via Fc receptors or inhibit neuronal uptake

(Yanamandra et al, 2013). Given our results for cell-to-cell transmis-

sion of the different DPR species, only the hydrophobic poly-GA/GP/

PA would be accessible for antibodies. Thus, anti-GA immunother-

apy may be a future treatment option for C9orf72 ALS/FTLD. Consid-

ering the long prodromal DPR accumulation accompanied by subtle

brain atrophy in C9orf72 patients (Proudfoot et al, 2014; Rohrer

et al, 2015; Edbauer & Haass, 2016), mutation carriers may require

very early treatment as proposed for Alzheimer’s disease.

Taken together, our work shows an unexpected link between

RNA and DPR toxicity and suggests a vicious cycle that may ulti-

mately lead to neuron loss after a prodromal phase. Non-cell auton-

omous effects due to spreading and seeding of poly-GA, poly-GP,

and poly-PA could explain the poor correlation of DPR proteins and

RNA foci with neurodegeneration in C9orf72 patients and suggest a

novel therapeutic approach through passive vaccination.

Materials and Methods

Antibodies

The following antibodies were used: anti-DYKDDDDK/flag (filter

trap 1:1,000, FACS 1:250, Cell Signaling), anti-myc (1:1,000, clone

9E10, Santa Cruz), anti-HA (1:1,000, clone 3F10, Roche), anti-GFP

(1:1,000, clone N86/8, NeuroMab), anti-GA clone 5F2 (1 lg/ml)

(Mackenzie et al, 2013), mouse IgG2a (1 lg/ml, Sigma), and rabbit

IgG (1:250, Sigma).

Plasmids and lentivirus production

ATG-initiated epitope-tagged synthetic expression constructs for

GA175-GFP, PA175-GFP, GFP-GR149, and PR175-GFP in pEF6 or

lentiviral backbone (FhSynW2) were described previously (May

et al, 2014; Schludi et al, 2015). pEGFP-GP47 was a kind gift from

Dr. Leonard Petrucelli (Zhang et al, 2014) and was for some experi-

ments subcloned into pEF6 vector. The triple-tagged (G4C2)80
construct to analyze RAN translation was recently reported (Mori

et al, 2016). Lentivirus was produced in HEK293FT cells (Life Tech-

nologies) as described previously (Fleck et al, 2013).

Cell lines and cell culture

HEK293-T-REx GA149-GFP stable cells were generated using T-REx

system (Thermo Scientific) according to the manufacturer’s instruc-

tion. Briefly, GA149-GFP was cloned into the pcDNA 5/FRT/TO under

the control of CMV promoter and two tetracycline operator 2 (TetO2)

sites and transfected in T-REx 293 cells containing the tet-repressor

protein. The stable cell line was maintained in high-glucose DMEM

medium supplemented with 5 lg/ml blasticidin, 10% FCS, 1% pen/

strep, and 2 mM L-glutamine. Expression of GA149-GFP was induced

with 10 ng/ml tetracycline. HEK293FT cells were cultured with

DMEM containing 10% FCS and penicillin/streptomycin.

Neuron culture

Primary cortical and hippocampal cultures were prepared from

E19 rats as described previously (May et al, 2014) and plated on

Figure 7. Anti-GA antibodies inhibit poly-GA aggregation and prevent seeding from brain tissue.

A, B HEK293 cells transfected with GA175-GFP were treated with anti-GA antibodies or mouse IgG2a isotype control (in the indicated concentration) for 3 days.
Fluorescence microscopy image of GA-GFP aggregation (scale bar 100 lm). (B) The percentage of poly-GA-positive cells was quantified semi-automatically using
BioTek Gen5 software. Data are shown as mean � SD. IgG2a vs. anti-GA 0.5 lg/ml P = 0.0109; IgG2a vs. anti-GA 1.0 lg/ml P = 0.0113; *P < 0.05 by one-way
ANOVA with Dunnett’s multiple comparisons test from three independent experiments.

C HEK293-T-REx GA149-GFP stable cells cultured in the presence of 10 ng/ml tetracycline were treated with anti-GA antibodies or isotype control as in (A) and
analyzed by filter trap. Representative filter-trap blot of three independent experiments is shown.

D, E Rat primary neurons were transduced with GA175-GFP after 5 days in vitro (DIV) and treated with 1 lg/ml antibody on the following day. Neurons were analyzed
after 6 days of treatment by GFP fluorescence and DAPI staining (scale bar 100 lm). The percentage of poly-GA-positive cells was quantified semi-automatically
using BioTek Gen5 software. Data are shown as mean � SD. P = 0.0366; *P < 0.05 by two-tailed unpaired t-test from n = 6 independent experiments.

F, G HEK293 cells transfected with (G4C2)80 were treated with cerebellar extracts pre-incubated with anti-GA or isotype control. The fraction of RAN translation-derived
GA80-flag was quantified by flow cytometry. Data indicated the means � SD of n = 3 patients and controls in independent experiments. Non-C9 + IgG2a vs. C9
mut + IgG2a P = 0.0438; C9 mut + IgG2a vs. C9 mut + anti-GA P = 0.0013; *P < 0.05, **P < 0.01 by one-way ANOVA with Dunnett’s multiple comparisons test.
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poly-D-lysine-coated coverslips. For co-culture experiments, primary

neurons on coverslips with 1 to 2 mm paraffin dots glued on to

them were transduced with lentivirus. After 3 days, coverslips were

extensively washed and put face to face into one well for 4 days.

Patient-derived fibroblasts

We included cell lines from three C9orf72 ALS patients as reported

previously (Japtok et al, 2015; Mori et al, 2016). All procedures were

in accordance with the Helsinki convention and approved by the

Ethical Committee of the University of Dresden (EK45022009;

EK393122012). Patients were genotyped using EDTA blood in the

clinical setting after given written consent according to German legis-

lation independent of any scientific study by a diagnostic human

genetic laboratory (CEGAT, Tübingen, Germany or Dept. Human

Genetics, University of Ulm, Germany) using diagnostic standards.

Poly-GA immunoassay

Poly-GA in neuronal media was measured by immunoassay on the

Meso Scale platform (MSD) using the anti-GA clone 5F2 (Mackenzie

et al, 2013). Streptavidin plates (MSD Gold 96-well streptavidin)

were coated overnight with biotinylated 5F2 antibody (capture anti-

body, 1:400) in PBS. The next day, the plates were washed three

times (0.05% Tween-20, PBS) and blocked for 1 h at room tempera-

ture (0.05% Tween-20, 1% BSA in PBS). Plates were incubated with

pre-cleared media (5 min, 1,000 g) for 2 h at room temperature on

a shaking platform. After three washes, the plates were incubated

with MSD sulfo-tag-labeled 5F2 antibody (detection antibody, 1:400)

for 2 h at room temperature on a shaking platform followed by

three final washing steps. Upon adding 100 ll MSD Read Buffer T,

the plates were immediately measured. The electrochemical signal

was detected using a Meso Scale Discovery SECTOR Imager 2400.

After background correction, data are presented in arbitrary units.

Transfection, immunofluorescence, and filter trap

HEK293FT cells and primary rat neurons were transfected using Lipo-

fectamine 2000 (Thermo Scientific) according to the manufacturer’s

instructions. For immunofluorescence, cells were fixed with 4%

paraformaldehyde and 4% sucrose for 10 min and stained with the

indicated antibodies in GDB buffer (0.1% gelatin, 0.3% Triton X-100,

450 mM NaCl, 16 mM sodium phosphate pH 7.4). Images were taken

using an LSM710 confocal laser scanning system (Carl Zeiss) with

40× or 63× oil immersion objectives. For filter trap, cells were lysed in

Triton buffer (1% Triton X-100, 15 mM MgCl2 in PBS, supplemented

with 10 lg/ml DNase and protease inhibitor) on ice. Protein concen-

tration was determined using BCA assay (Thermo Scientific), and

equal amount of protein was used. Insoluble pellets were collected by

centrifugation at 13,000 rpm/17,949 g at 4°C for 30 mins and resus-

pended in SDS–Tris buffer (2% SDS and 100 mM Tris pH = 7) for 1 h

at room temperature. Samples were diluted in SDS–Tris buffer as indi-

cated and filtered through a cellulose acetate membrane (0.2 lm pore).

Preparation of cell lysates and brain extracts for seeding

Transfected HEK293FT cells or human brain tissue were homoge-

nized in 0.1% Triton X-100 PBS buffer supplemented with

DNase, protease inhibitor, and phosphatase inhibitor cocktails,

and sonicated for 2 × 20 pulses with 10% amplitude (Branson

Digital Sonifier, W-250 D). After brief centrifugation (1,000 g for

5 min), the protein concentration in the supernatant was deter-

mined using BCA assay (Thermo Scientific). For the seeding

assay, 25 lg of cell lysates was applied. To promote aggregate

uptake of brain lysates, 25 lg of brain lysates was mixed with

4 ll Lipofectamine 2000 as described previously (Sanders et al,

2014). To block the aggregation and spreading of poly-GA, brain

lysates were pre-incubated with 2 lg anti-GA antibodies [clone

5F2 (Mackenzie et al, 2013)] or mouse IgG2a as control for

16 h.

Antibody treatment

HEK293 cells transfected with GA175-GFP were treated with anti-GA

antibodies or mouse IgG2a isotype control at the indicated concen-

tration for 3 days. To assess the efficacy of anti-GA antibodies in

neurons, rat primary neurons were transduced with GA175-GFP on

DIV 5 and treated with anti-GA antibodies or mouse IgG2a isotype

control at 1 lg/ml for 6 days. Cells were fixed and counterstained

with DAPI. Fluorescence microscopy image of GA-GFP aggregation

was taken using Cytation 3 image reader (BioTek). The percentage

of poly-GA-positive cells normalized to total cells was quantified

semi-automatically using BioTek Gen5 software. For filter trap,

HEK293-T-REx GA149-GFP stable cells cultured in the presence of

10 ng/ml tetracycline were treated with anti-GA antibodies or

isotype control.

RNA isolation and qPCR

Total RNA was prepared using the RNeasy and QIAshredder kit

(Qiagen) according to the manufacturer’s instructions. RNA prepara-

tions were treated with RNase-Free DNase Set (Qiagen) to minimize

residual DNA contamination. 2 lg of RNA was used for reverse

transcription with M-MLV Reverse Transciptase (Promega) using

oligo-(dT)12–18 primer (Invitrogen). qRT–PCR was performed using

CFX384 Real-Time System (Bio-Rad) with TaqMan technology.

Primers and probes to the tag region of (G4C2)80 construct were

designed as described previously (Mori et al, 2016). Signals of

repeat construct-derived cDNA were normalized to GAPDH cDNA

according to DDCT method.

Flow cytometry and fluorescence-activated cell sorting

HEK293 cells transfected with GFP or RFP were harvested and

resuspended in PBS containing 1% FCS and 0.1% (w/v) NaN3

(FACS-PBS). To perform intracellular staining of GA80-flag,

1–2 × 106 cells/staining were fixed with 4% PFA for 10 min at

37°C, washed once with PBS, permeabilized with FACS-PBS

containing 0.1% (w/v) saponin (FACS-saponin), and incubated with

4% goat serum for 10 min at 4°C to block unspecific binding sites.

Cells were then incubated with saturating amount of anti-

DYKDDDDK/flag antibody (1:250) or rabbit IgG (1:250) as control

for 30 min at 4°C in the dark, followed by a single wash and incuba-

tion with saturating amount of secondary antibody (Alexa Fluor

647-labeled anti-rabbit IgG) for 30 min at 4°C. Cells were then

washed two times with flow cytometry buffer and analyzed using
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MACSQuant VYB (Miltenyi). Data analysis was performed using

FlowJo vX software (Treestar).

To perform fluorescence-activated cell sorting of transmitted

hydrophobic DPR proteins in a co-culture assay, HEK293 cells were

transfected with RFP, GFP, or DPR-GFP for 24 h and mixed in the

indicated combination for additional 24 h. Double-positive cells

were sorted using a FACSAria Fusion (BD Biosciences) cell sorter

and plated on poly-D-lysine-coated coverslips for imaging 17 h

later.

In situ hybridization

In situ hybridization was performed as described previously with

minor changes (Mori et al, 2016). Cells were fixed with 4%

paraformaldehyde, rinsed twice with SSC, and then incubated in

pre-hybridization solution (40% formamide, 2× SSC, 2.5% BSA) at

65°C for 30 min. Cells were then incubated with hybridization solu-

tion (40% formamide, 2× SSC, 0.8 mg/ml tRNA (Roche), 0.8 mg/ml

single-stranded salmon sperm DNA (Sigma), 0.16% BSA, 8%

dextran sulfate (Sigma), 1.6 mM ribonucleoside vanadyl complex

(New England Biolabs), 5 mM EDTA, 10 lg/ll 50 Cy3-labeled 20-O-
methyl-(CCCCGG)4 probe [IDT probe as in (DeJesus-Hernandez

et al, 2011)] at 65°C for HeLa cells and 60°C for primary human

fibroblasts. The following day, cells were sequentially washed with

40% formamide/0.5× SSC for three times 30 min each at 65°C and

then with 0.5× SSC three times 10 min each at room temperature.

After a brief rinse with PBS, nuclei were counterstained with

0.5 lg/ml of DAPI for 20 min and then washed three times with

PBS (3 min each). Glass coverslips were mounted and analyzed on

an LSM710 confocal microscope (Carl Zeiss).

Patient tissue

Patient tissue was collected and provided by the Neurobiobank

Munich according to the guidelines of the ethical committee at the

Medical Faculty of Ludwig-Maximilians-University (LMU) Munich

following the WMA Declaration of Helsinki and the Department of

Health and Human Services Belmont Report.

Expanded View for this article is available online.
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Figure EV1. Transmission of hydrophobic DPR proteins in a co-culture assay.
HEK293 cells were transfected with RFP, GFP, or DPR-GFP for 24 h andmixed in the indicated combination for additional 24 h as in Fig 2 before cell sorting by flow cytometry.
Gating was performed on RFP-expressing cells vs. mixture of all green fluorescent cells. The fraction of double-positive cells is indicated in percent. Double-positive cells were
sorted and plated on poly-D-lysine-coated coverslips and imaged 17 h later. Images show uptake of DPR-GFP into RFP-positive cells. Arrows indicate co-localization of GA175-
RFP aggregates with GA175-GFP and GP47-GFP. Scale bar 10 lm.
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Figure EV2. Anti-GA antibodies do not reduce expression of poly-GR and repeat RNA.
HEK293 cells transfected with (G4C2)80 were treated with cerebellar extracts pre-incubated with anti-GA or isotype control.

A The fraction of RAN translation-derived GR80-HA was quantified by flow cytometry. Data indicated the means � SD of n = 3 patients and controls in independent
experiments. Statistics were performed by one-way ANOVA with Dunnett’s multiple comparisons test.

B Quantitative RT–PCR shows repeat RNA transcripts upon treatment with cerebellar extracts pre-incubated with anti-GA or isotype control. Data are shown as
mean � SD from n = 3 patients and controls in independent experiments. Statistics were performed by one-way ANOVA with Dunnett’s multiple comparisons test;
non-C9 + IgG2a vs. C9 mut + IgG2a P = 0.0168; *P < 0.05.
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As second author of this publication, I conducted experiments shown in Fig. 4C, D and Fig. 5.  
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