Logo Logo
Help
Contact
Switch language to German
Die Rolle der AMP-Kinase bei der Regulation des Vasotonus
Die Rolle der AMP-Kinase bei der Regulation des Vasotonus
In der vorliegenden Arbeit wurde die potentielle Rolle der AMP-Kinase, eines der Schlüsselenzyme im Energiestoffwechsel, bei der Regulation des Vasotonus kleiner arterieller Blutgefäße untersucht und die Effekte einer AMPK-Stimulation mit der EDHF-vermittelten endothelialen Dilatation verglichen. Mittels Western-Blot Technik wurde auf Proteinebene nachgewiesen, dass in Arterien des Hamsters sowohl die α1-Untereinheit der AMPK - als prädominante katalytische Untereinheit - sowie die β1-Untereinheit der AMPK exprimiert werden. Die funktionellen Untersuchungen erfolgten an isoliert perfundierten Widerstandsarterien aus der Skelettmuskulatur des Hamsters. An diesen wurden gleichzeitige Registrierungen des Außendurchmessers als Maß für den Vasotonus sowie der intrazellulären Kalziumkonzentration in der glatten Gefäßmuskulatur (Kalziumindikator Fura 2) nach Zugabe verschiedener vasoaktiver Substanzen durchgeführt. An mit Noradrenalin vorkontrahierten isolierten Gefäßen führte der auf die β1-Untereinheit wirkende AMPK-Aktivator A769662 (A76) endothelunabhängig zu einer maximalen Dilatation der Gefäße, die mit einem erheblichen Abfall des glattmuskulären Kalziumspiegels einherging. Die beobachteten A76 Effekte auf Gefäßtonus und Kalziumspiegel waren dosisabhängig. Der Vasodilatator Acetylcholin löste ebenfalls einen ausgeprägten Kalziumabfall in der glatten Muskulatur aus. Dies war jedoch nur bei einem intakten Endothel zu beobachten. Eine Transfektion kultivierter Gefäße mit einer dominant negativ Variante der α1-Untereinheit der AMPK führte zu einer partiellen Herabsetzung der Dilatation und des Kalziumabfalls. Zwei weitere Aktivatoren der AMPK, AICAR und Metformin, bewirkten an den Widerstandsgefäßen ebenfalls eine statistisch signifikante Dilatation und einen Kalziumabfall. An Gefäßen, welche anstelle von Noradrenalin durch eine hohe extrazelluläre Kaliumkonzentration vorkontrahiert wurden, ließ sich nach Stimulation mit A76 weder eine Dilatation noch ein Kalziumabfall feststellen, welches als ein Hinweis auf eine Beteiligung von Kaliumkanälen an den A76 mediierten Effekten zu werten war. Zur genaueren Evaluation dieser Hypothese wurden die A76 Effekte nach pharmakologischer Blockade verschiedener Kaliumkanäle untersucht. Hierbei zeigte sich, dass Iberiotoxin, ein selektiver Inhibitor von BKCa-Kanälen keinen Einfluss auf eine A76 vermittelte Dilatation hatte. Ebenso wenig wurde eine Acetylcholin vermittelte Vasodilatation blockiert. Demgegenüber führte Charybdotoxin, ein Hemmer von BKCa-Kanälen und IKCa-Kanälen, zwar zu einer Blockade der Acetylcholinantwort, ließ die A76 Effekte jedoch weitgehend unbeeinflusst. Die Blockade von ATP-abhängigen Kaliumkanälen KATP durch Glibenclamid in hohen Konzentrationen bewirkte hingegen eine deutliche Reduktion sowohl der Dilatation als auch des Kalziumabfalls nach Gabe von A76. Insgesamt konnte im Rahmen dieser Arbeit damit gezeigt werden, dass eine Aktivierung der AMPK in isolierten Widerstandsgefäßen des Hamsters zu einer schnellen und ausgeprägten Vasodilatation führt, welche durch einen vorhergehenden Abfall der intrazellulären Kalziumkonzentration in der glatten Gefäßmuskulatur initiiert wird. Die Hemmwirkung von Glibenclamid weist darauf hin, dass dieser Dilatation ein Effekt der AMPK auf KATP-Kanäle in der glatten Muskulatur zu Grund liegen könnte.
Mikrozirkulation, Vasotonus, Vasodilatation, AMP-Kinase
Kreutz, Claus-Peter
2013
German
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Kreutz, Claus-Peter (2013): Die Rolle der AMP-Kinase bei der Regulation des Vasotonus. Dissertation, LMU München: Faculty of Medicine
[thumbnail of Kreutz_Claus-Peter.pdf]
Preview
PDF
Kreutz_Claus-Peter.pdf

2MB

Abstract

In der vorliegenden Arbeit wurde die potentielle Rolle der AMP-Kinase, eines der Schlüsselenzyme im Energiestoffwechsel, bei der Regulation des Vasotonus kleiner arterieller Blutgefäße untersucht und die Effekte einer AMPK-Stimulation mit der EDHF-vermittelten endothelialen Dilatation verglichen. Mittels Western-Blot Technik wurde auf Proteinebene nachgewiesen, dass in Arterien des Hamsters sowohl die α1-Untereinheit der AMPK - als prädominante katalytische Untereinheit - sowie die β1-Untereinheit der AMPK exprimiert werden. Die funktionellen Untersuchungen erfolgten an isoliert perfundierten Widerstandsarterien aus der Skelettmuskulatur des Hamsters. An diesen wurden gleichzeitige Registrierungen des Außendurchmessers als Maß für den Vasotonus sowie der intrazellulären Kalziumkonzentration in der glatten Gefäßmuskulatur (Kalziumindikator Fura 2) nach Zugabe verschiedener vasoaktiver Substanzen durchgeführt. An mit Noradrenalin vorkontrahierten isolierten Gefäßen führte der auf die β1-Untereinheit wirkende AMPK-Aktivator A769662 (A76) endothelunabhängig zu einer maximalen Dilatation der Gefäße, die mit einem erheblichen Abfall des glattmuskulären Kalziumspiegels einherging. Die beobachteten A76 Effekte auf Gefäßtonus und Kalziumspiegel waren dosisabhängig. Der Vasodilatator Acetylcholin löste ebenfalls einen ausgeprägten Kalziumabfall in der glatten Muskulatur aus. Dies war jedoch nur bei einem intakten Endothel zu beobachten. Eine Transfektion kultivierter Gefäße mit einer dominant negativ Variante der α1-Untereinheit der AMPK führte zu einer partiellen Herabsetzung der Dilatation und des Kalziumabfalls. Zwei weitere Aktivatoren der AMPK, AICAR und Metformin, bewirkten an den Widerstandsgefäßen ebenfalls eine statistisch signifikante Dilatation und einen Kalziumabfall. An Gefäßen, welche anstelle von Noradrenalin durch eine hohe extrazelluläre Kaliumkonzentration vorkontrahiert wurden, ließ sich nach Stimulation mit A76 weder eine Dilatation noch ein Kalziumabfall feststellen, welches als ein Hinweis auf eine Beteiligung von Kaliumkanälen an den A76 mediierten Effekten zu werten war. Zur genaueren Evaluation dieser Hypothese wurden die A76 Effekte nach pharmakologischer Blockade verschiedener Kaliumkanäle untersucht. Hierbei zeigte sich, dass Iberiotoxin, ein selektiver Inhibitor von BKCa-Kanälen keinen Einfluss auf eine A76 vermittelte Dilatation hatte. Ebenso wenig wurde eine Acetylcholin vermittelte Vasodilatation blockiert. Demgegenüber führte Charybdotoxin, ein Hemmer von BKCa-Kanälen und IKCa-Kanälen, zwar zu einer Blockade der Acetylcholinantwort, ließ die A76 Effekte jedoch weitgehend unbeeinflusst. Die Blockade von ATP-abhängigen Kaliumkanälen KATP durch Glibenclamid in hohen Konzentrationen bewirkte hingegen eine deutliche Reduktion sowohl der Dilatation als auch des Kalziumabfalls nach Gabe von A76. Insgesamt konnte im Rahmen dieser Arbeit damit gezeigt werden, dass eine Aktivierung der AMPK in isolierten Widerstandsgefäßen des Hamsters zu einer schnellen und ausgeprägten Vasodilatation führt, welche durch einen vorhergehenden Abfall der intrazellulären Kalziumkonzentration in der glatten Gefäßmuskulatur initiiert wird. Die Hemmwirkung von Glibenclamid weist darauf hin, dass dieser Dilatation ein Effekt der AMPK auf KATP-Kanäle in der glatten Muskulatur zu Grund liegen könnte.