Logo Logo
Hilfe
Kontakt
Switch language to English
Multi-Slice-Computertomographie an der distalen Radiusmetaphyse. Korrelation der kortikalen Knochenstruktur mit Geschlecht, Alter, osteoporotischem Status und mechanischer Kompetenz
Multi-Slice-Computertomographie an der distalen Radiusmetaphyse. Korrelation der kortikalen Knochenstruktur mit Geschlecht, Alter, osteoporotischem Status und mechanischer Kompetenz
We explore the relationship of region-specific densitometric and geometry-based (cortical) parameters at the distal radial metaphysis with gender, age, and osteoporotic status, using multislice computed tomography (CT). We specifically test the hypothesis that these parameters can improve the prediction of mechanical strength of the distal radius vs bone mass (bone mineral content [BMC]). The BMC was determined in 56 forearm specimens with peripheral dual-energy X-ray absorptiometry (DXA). Trabecular and cortical density and geometric properties of the metaphyseal cortex were determined using multislice CT and proprietary image analysis software. Specimens were tested to failure in a fall simulation, maintaining the integrity of the elbow joint and hand. Women displayed significantly lower failure strength (-34%), BMC (-35%), trabecular density (-26%), and cortical area (-12%) than men. The reduction of trabecular density with age and osteoporotic status was stronger than that of cortical density or thickness. DXA explained approx 50% (r2) of the variability in bone failure loads. This proportion was slightly increased (55%) when adding geometry-based parameters. The study suggests that high-resolution tomographic measurements with current clinical imaging methodology can marginally improve the prediction of mechanical failure strength. Further efforts are required to improve spatial resolution for determining metaphyseal cortical properties clinically.
multislice computed tomography (CT), dual-energy X-ray absorptiometry (DXA), fall simulation, loco-typico fracture
Well, Harald
2005
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Well, Harald (2005): Multi-Slice-Computertomographie an der distalen Radiusmetaphyse: Korrelation der kortikalen Knochenstruktur mit Geschlecht, Alter, osteoporotischem Status und mechanischer Kompetenz. Dissertation, LMU München: Medizinische Fakultät
[thumbnail of Well_Harald.pdf]
Vorschau
PDF
Well_Harald.pdf

749kB

Abstract

We explore the relationship of region-specific densitometric and geometry-based (cortical) parameters at the distal radial metaphysis with gender, age, and osteoporotic status, using multislice computed tomography (CT). We specifically test the hypothesis that these parameters can improve the prediction of mechanical strength of the distal radius vs bone mass (bone mineral content [BMC]). The BMC was determined in 56 forearm specimens with peripheral dual-energy X-ray absorptiometry (DXA). Trabecular and cortical density and geometric properties of the metaphyseal cortex were determined using multislice CT and proprietary image analysis software. Specimens were tested to failure in a fall simulation, maintaining the integrity of the elbow joint and hand. Women displayed significantly lower failure strength (-34%), BMC (-35%), trabecular density (-26%), and cortical area (-12%) than men. The reduction of trabecular density with age and osteoporotic status was stronger than that of cortical density or thickness. DXA explained approx 50% (r2) of the variability in bone failure loads. This proportion was slightly increased (55%) when adding geometry-based parameters. The study suggests that high-resolution tomographic measurements with current clinical imaging methodology can marginally improve the prediction of mechanical failure strength. Further efforts are required to improve spatial resolution for determining metaphyseal cortical properties clinically.