Logo Logo
Hilfe
Kontakt
Switch language to English
In-vivo-Quantifizierung neuronaler Netzwerk-Veränderungen mittels metabolischer Konnektivität in Mausmodellen neurodegenerativer Erkrankungen
In-vivo-Quantifizierung neuronaler Netzwerk-Veränderungen mittels metabolischer Konnektivität in Mausmodellen neurodegenerativer Erkrankungen
Among functional imaging methods, metabolic connectivity (MC) is increasingly used for investigation of regional network changes to examine the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD) or movement disorders. Hitherto, MC was mostly used in clinical studies, but only a few studies demonstrated the usefulness of MC in the rodent brain. The goal of the current work was to analyze and validate metabolic regional network alterations in three different mouse models of neurodegenerative diseases (β-amyloid and tau) by use of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) imaging. We compared the results of FDG-µPET MC with conventional VOI-based analysis and behavioral assessment in the Morris water maze (MWM). The impact of awake versus anesthesia conditions on MC read-outs was studied and the robustness of MC data deriving from different scanners was tested. MC proved to be an accurate and robust indicator of functional connectivity loss when sample sizes ≥12 were considered. MC readouts were robust across scanners and in awake/ anesthesia conditions. MC loss was observed throughout all brain regions in tauopathy mice, whereas β-amyloid indicated MC loss mainly in spatial learning areas and subcortical networks. This study established a methodological basis for the utilization of MC in different β-amyloid and tau mouse models. MC has the potential to serve as a read-out of pathological changes within neuronal networks in these models. Background: In vivo assessment of neuroinflammation by 18-kDa translocator protein positron-emission-tomography(TSPO-PET) ligands receives growing interest in preclinical and clinical research of neurodegenerative disorders. Higher TSPOPET binding as a surrogate for microglial activation in females has been reported for cognitively normal humans, but such effects have not yet been evaluated in rodent models of neurodegeneration and their controls. Thus, we aimed to investigate the impact of sex on microglial activation in amyloid and tau mouse models and wild-type controls. Methods: TSPO-PET (18F-GE-180) data of C57Bl/6 (wild-type), AppNL-G-F (β-amyloid model), and P301S (tau model) mice was assessed longitudinally between 2 and 12 months of age. The AppNL-G-F group also underwent longitudinal β-amyloid-PET imaging (Aβ-PET; 18F-florbetaben). PET results were confirmed and validated by immunohistochemical investigation of microglial (Iba-1, CD68), astrocytic (GFAP), and tau (AT8) markers. Findings in cerebral cortex were compared by sex using linear mixed models for PET data and analysis of variance for immunohistochemistry. Results: Wild-type mice showed an increased TSPO-PET signal over time (female +23%, male +4%), with a significant sex × age interaction (T = − 4.171, p < 0.001). The Aβ model AppNL-G-F mice also showed a significant sex × age interaction (T = − 2.953, p = 0.0048), where cortical TSPO-PET values increased by 31% in female AppNL-G-F mice, versus only 6% in the male mice group from 2.5 to 10months of age. Immunohistochemistry for the microglial markers Iba-1 and CD68 confirmed the TSPO-PET findings in male and female mice aged 10 months. Aβ-PET in the same AppNL-G-F mice indicated no significant sex × age interaction (T = 0.425, p = 0.673). The P301S tau model showed strong cortical increases of TSPO-PET from 2 to 8.5 months of age (female + 32%, male + 36%), without any significant sex × age interaction (T = − 0.671, p = 0.504), and no sex differences in Iba-1, CD68, or AT8 immunohistochemistry.
Alzheimer’s disease, Metabolic connectivity, Amyloidosis, Tauopathy, Small-animal PET, Morris water maze Sex, Microglia, TSPO, Amyloid, Tau
Ruch, François
2024
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Ruch, François (2024): In-vivo-Quantifizierung neuronaler Netzwerk-Veränderungen mittels metabolischer Konnektivität in Mausmodellen neurodegenerativer Erkrankungen. Dissertation, LMU München: Medizinische Fakultät
[thumbnail of Ruch_Francois_Michel_Richard.pdf]
Vorschau
Lizenz: Creative Commons: Namensnennung 4.0 (CC-BY)
PDF
Ruch_Francois_Michel_Richard.pdf

9MB

Abstract

Among functional imaging methods, metabolic connectivity (MC) is increasingly used for investigation of regional network changes to examine the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD) or movement disorders. Hitherto, MC was mostly used in clinical studies, but only a few studies demonstrated the usefulness of MC in the rodent brain. The goal of the current work was to analyze and validate metabolic regional network alterations in three different mouse models of neurodegenerative diseases (β-amyloid and tau) by use of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) imaging. We compared the results of FDG-µPET MC with conventional VOI-based analysis and behavioral assessment in the Morris water maze (MWM). The impact of awake versus anesthesia conditions on MC read-outs was studied and the robustness of MC data deriving from different scanners was tested. MC proved to be an accurate and robust indicator of functional connectivity loss when sample sizes ≥12 were considered. MC readouts were robust across scanners and in awake/ anesthesia conditions. MC loss was observed throughout all brain regions in tauopathy mice, whereas β-amyloid indicated MC loss mainly in spatial learning areas and subcortical networks. This study established a methodological basis for the utilization of MC in different β-amyloid and tau mouse models. MC has the potential to serve as a read-out of pathological changes within neuronal networks in these models. Background: In vivo assessment of neuroinflammation by 18-kDa translocator protein positron-emission-tomography(TSPO-PET) ligands receives growing interest in preclinical and clinical research of neurodegenerative disorders. Higher TSPOPET binding as a surrogate for microglial activation in females has been reported for cognitively normal humans, but such effects have not yet been evaluated in rodent models of neurodegeneration and their controls. Thus, we aimed to investigate the impact of sex on microglial activation in amyloid and tau mouse models and wild-type controls. Methods: TSPO-PET (18F-GE-180) data of C57Bl/6 (wild-type), AppNL-G-F (β-amyloid model), and P301S (tau model) mice was assessed longitudinally between 2 and 12 months of age. The AppNL-G-F group also underwent longitudinal β-amyloid-PET imaging (Aβ-PET; 18F-florbetaben). PET results were confirmed and validated by immunohistochemical investigation of microglial (Iba-1, CD68), astrocytic (GFAP), and tau (AT8) markers. Findings in cerebral cortex were compared by sex using linear mixed models for PET data and analysis of variance for immunohistochemistry. Results: Wild-type mice showed an increased TSPO-PET signal over time (female +23%, male +4%), with a significant sex × age interaction (T = − 4.171, p < 0.001). The Aβ model AppNL-G-F mice also showed a significant sex × age interaction (T = − 2.953, p = 0.0048), where cortical TSPO-PET values increased by 31% in female AppNL-G-F mice, versus only 6% in the male mice group from 2.5 to 10months of age. Immunohistochemistry for the microglial markers Iba-1 and CD68 confirmed the TSPO-PET findings in male and female mice aged 10 months. Aβ-PET in the same AppNL-G-F mice indicated no significant sex × age interaction (T = 0.425, p = 0.673). The P301S tau model showed strong cortical increases of TSPO-PET from 2 to 8.5 months of age (female + 32%, male + 36%), without any significant sex × age interaction (T = − 0.671, p = 0.504), and no sex differences in Iba-1, CD68, or AT8 immunohistochemistry.