Logo Logo
Hilfe
Kontakt
Switch language to English
Challenges in machine learning for predicting psychological attributes from smartphone data
Challenges in machine learning for predicting psychological attributes from smartphone data
Predicting psychological attributes using psychometric approaches is a complex task that involves estimating latent constructs that cannot be directly measured. Psychometrics focuses on the measurement and assessment of psychological attributes, such as personality traits, behavioral patterns, or psychological disorders. Traditionally, personality assessment relied on self-report questionnaires, but advancements in technology have opened up new possibilities for assessment, particularly through the analysis of digital footprints. Smartphone sensor data has become particularly valuable in this context. By analyzing data related to movement, conversation patterns, activities, and interests, it is possible to gather insights that can contribute to predicting psychological attributes. Machine learning techniques are commonly employed to develop predictive models in this field. However, it is essential to ensure that the predictions are meaningful, accepted, and interpretable to gain trust from users. Interpreting machine learning models is crucial in the context of psychometric prediction. Interpreting the models helps identify biases, understand their operations, and determine the variables they rely on. This process enhances the accuracy of the models, establishes trust in their predictions, and promotes fairness in the prediction process. Given the large datasets involved in using smartphone sensor data, the issue of multicollinearity arises, making it challenging to identify which features are truly essential for predicting psychological attributes. To address this challenge, this thesis focuses on grouping similar features and quantifying their importance, aiming to reduce data complexity and highlight the most relevant factors. Additionally, visualizing the impact of these feature groups can provide a deeper understanding in the behavior of the predictive models., Psychometrie bezieht sich auf die Messung psychologischer Merkmale wie Persönlichkeitsmerkmale, Verhaltensmuster oder psychischer Störungen. Üblicherweise werden hierfür Selbstauskunftsfragebögen verwendet, da psychologische Merkmale oft nicht direkt messbar sind. Dank technologischer Fortschritte eröffnen sich jedoch moderne Möglichkeiten, psychologische Merkmale vorherzusagen, insbesondere durch die Analyse digitaler Fußspuren. Besonders relevant sind in diesem Zusammenhang Smartphone-Sensordaten. Durch die Auswertung von Daten zu Bewegungsmustern, Gesprächsverhalten, Aktivitäten und Interessen können Erkenntnisse gewonnen werden, die zur Vorhersage psychologischer Merkmale beitragen können. Hierbei kommen häufig maschinelle Lernverfahren zum Einsatz. Dabei ist es wichtig sicherzustellen, dass die Vorhersagen sinnvoll, akzeptiert und interpretierbar sind. Die Interpretation maschineller Lernverfahren spielt bei der Vorhersage psychologischer Merkmale eine entscheidende Rolle. Sie hilft dabei, die Funktionsweise der Modelle zu verstehen und wichtige Variablen zu identifizieren. Bei der Verwendung von Smartphone-Daten entstehen große Datensätze, was das Problem der Multikollinearität mit sich bringt. Dies erschwert die Bestimmung, welche Merkmale tatsächlich relevant sind, um psychologische Merkmale vorherzusagen. Um dieser Herausforderung zu begegnen, konzentriert sich diese Arbeit darauf, ähnliche Merkmale zu gruppieren und ihre Bedeutung zu quantifizieren. Dadurch kann die Komplexität der Daten reduziert und die relevantesten Faktoren hervorgehoben werden. Darüber hinaus kann die Visualisierung der Effekte dieser Merkmalsgruppen ein besseres Verständnis für das Verhalten der Vorhersagemodelle liefern.
Not available
Au, Jiew-Quay
2024
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Au, Jiew-Quay (2024): Challenges in machine learning for predicting psychological attributes from smartphone data. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik
[thumbnail of Au_Jiew-Quay.pdf]
Vorschau
PDF
Au_Jiew-Quay.pdf

12MB

Abstract

Predicting psychological attributes using psychometric approaches is a complex task that involves estimating latent constructs that cannot be directly measured. Psychometrics focuses on the measurement and assessment of psychological attributes, such as personality traits, behavioral patterns, or psychological disorders. Traditionally, personality assessment relied on self-report questionnaires, but advancements in technology have opened up new possibilities for assessment, particularly through the analysis of digital footprints. Smartphone sensor data has become particularly valuable in this context. By analyzing data related to movement, conversation patterns, activities, and interests, it is possible to gather insights that can contribute to predicting psychological attributes. Machine learning techniques are commonly employed to develop predictive models in this field. However, it is essential to ensure that the predictions are meaningful, accepted, and interpretable to gain trust from users. Interpreting machine learning models is crucial in the context of psychometric prediction. Interpreting the models helps identify biases, understand their operations, and determine the variables they rely on. This process enhances the accuracy of the models, establishes trust in their predictions, and promotes fairness in the prediction process. Given the large datasets involved in using smartphone sensor data, the issue of multicollinearity arises, making it challenging to identify which features are truly essential for predicting psychological attributes. To address this challenge, this thesis focuses on grouping similar features and quantifying their importance, aiming to reduce data complexity and highlight the most relevant factors. Additionally, visualizing the impact of these feature groups can provide a deeper understanding in the behavior of the predictive models.

Abstract

Psychometrie bezieht sich auf die Messung psychologischer Merkmale wie Persönlichkeitsmerkmale, Verhaltensmuster oder psychischer Störungen. Üblicherweise werden hierfür Selbstauskunftsfragebögen verwendet, da psychologische Merkmale oft nicht direkt messbar sind. Dank technologischer Fortschritte eröffnen sich jedoch moderne Möglichkeiten, psychologische Merkmale vorherzusagen, insbesondere durch die Analyse digitaler Fußspuren. Besonders relevant sind in diesem Zusammenhang Smartphone-Sensordaten. Durch die Auswertung von Daten zu Bewegungsmustern, Gesprächsverhalten, Aktivitäten und Interessen können Erkenntnisse gewonnen werden, die zur Vorhersage psychologischer Merkmale beitragen können. Hierbei kommen häufig maschinelle Lernverfahren zum Einsatz. Dabei ist es wichtig sicherzustellen, dass die Vorhersagen sinnvoll, akzeptiert und interpretierbar sind. Die Interpretation maschineller Lernverfahren spielt bei der Vorhersage psychologischer Merkmale eine entscheidende Rolle. Sie hilft dabei, die Funktionsweise der Modelle zu verstehen und wichtige Variablen zu identifizieren. Bei der Verwendung von Smartphone-Daten entstehen große Datensätze, was das Problem der Multikollinearität mit sich bringt. Dies erschwert die Bestimmung, welche Merkmale tatsächlich relevant sind, um psychologische Merkmale vorherzusagen. Um dieser Herausforderung zu begegnen, konzentriert sich diese Arbeit darauf, ähnliche Merkmale zu gruppieren und ihre Bedeutung zu quantifizieren. Dadurch kann die Komplexität der Daten reduziert und die relevantesten Faktoren hervorgehoben werden. Darüber hinaus kann die Visualisierung der Effekte dieser Merkmalsgruppen ein besseres Verständnis für das Verhalten der Vorhersagemodelle liefern.