Logo Logo
Hilfe
Kontakt
Switch language to English
An enactive approach to perceptual augmentation in mobility
An enactive approach to perceptual augmentation in mobility
Event predictions are an important constituent of situation awareness, which is a key objective for many applications in human-machine interaction, in particular in driver assistance. This work focuses on facilitating event predictions in dynamic environments. Its primary contributions are 1) the theoretical development of an approach for enabling people to expand their sampling and understanding of spatiotemporal information, 2) the introduction of exemplary systems that are guided by this approach, 3) the empirical investigation of effects functional prototypes of these systems have on human behavior and safety in a range of simulated road traffic scenarios, and 4) a connection of the investigated approach to work on cooperative human-machine systems. More specific contents of this work are summarized as follows: The first part introduces several challenges for the formation of situation awareness as a requirement for safe traffic participation. It reviews existing work on these challenges in the domain of driver assistance, resulting in an identification of the need to better inform drivers about dynamically changing aspects of a scene, including event probabilities, spatial and temporal distances, as well as a suggestion to expand the scope of assistance systems to start informing drivers about relevant scene elements at an early stage. Novel forms of assistance can be guided by different fundamental approaches that target either replacement, distribution, or augmentation of driver competencies. A subsequent differentiation of these approaches concludes that an augmentation-guided paradigm, characterized by an integration of machine capabilities into human feedback loops, can be advantageous for tasks that rely on active user engagement, the preservation of awareness and competence, and the minimization of complexity in human- machine interaction. Consequently, findings and theories about human sensorimotor processes are connected to develop an enactive approach that is consistent with an augmentation perspective on human-machine interaction. The approach is characterized by enabling drivers to exercise new sensorimotor processes through which safety-relevant spatiotemporal information may be sampled. In the second part of this work, a concept and functional prototype for augmenting the perception of traffic dynamics is introduced as a first example for applying principles of this enactive approach. As a loose expression of functional biomimicry, the prototype utilizes a tactile inter- face that communicates temporal distances to potential hazards continuously through stimulus intensity. In a driving simulator study, participants quickly gained an intuitive understanding of the assistance without instructions and demonstrated higher driving safety in safety-critical highway scenarios. But this study also raised new questions such as whether benefits are due to a continuous time-intensity encoding and whether utility generalizes to intersection scenarios or highway driving with low criticality events. Effects of an expanded assistance prototype with lane-independent risk assessment and an option for binary signaling were thus investigated in a separate driving simulator study. Subjective responses confirmed quick signal understanding and a perception of spatial and temporal stimulus characteristics. Surprisingly, even for a binary assistance variant with a constant intensity level, participants reported perceiving a danger-dependent variation in stimulus intensity. They further felt supported by the system in the driving task, especially in difficult situations. But in contrast to the first study, this support was not expressed by changes in driving safety, suggesting that perceptual demands of the low criticality scenarios could be satisfied by existing driver capabilities. But what happens if such basic capabilities are impaired, e.g., due to poor visibility conditions or other situations that introduce perceptual uncertainty? In a third driving simulator study, the driver assistance was employed specifically in such ambiguous situations and produced substantial safety advantages over unassisted driving. Additionally, an assistance variant that adds an encoding of spatial uncertainty was investigated in these scenarios. Participants had no difficulties to understand and utilize this added signal dimension to improve safety. Despite being inherently less informative than spatially precise signals, users rated uncertainty-encoding signals as equally useful and satisfying. This appreciation for transparency of variable assistance reliability is a promising indicator for the feasibility of an adaptive trust calibration in human-machine interaction and marks one step towards a closer integration of driver and vehicle capabilities. A complementary step on the driver side would be to increase transparency about the driver’s mental states and thus allow for mutual adaptation. The final part of this work discusses how such prerequisites of cooperation may be achieved by monitoring mental state correlates observable in human behavior, especially in eye movements. Furthermore, the outlook for an addition of cooperative features also raises new questions about the bounds of identity as well as practical consequences of human-machine systems in which co-adapting agents may exercise sensorimotor processes through one another., Die Vorhersage von Ereignissen ist ein Bestandteil des Situationsbewusstseins, dessen Unterstützung ein wesentliches Ziel diverser Anwendungen im Bereich Mensch-Maschine Interaktion ist, insbesondere in der Fahrerassistenz. Diese Arbeit zeigt Möglichkeiten auf, Menschen bei Vorhersagen in dynamischen Situationen im Straßenverkehr zu unterstützen. Zentrale Beiträge der Arbeit sind 1) eine theoretische Auseinandersetzung mit der Aufgabe, die menschliche Wahrnehmung und das Verständnis von raum-zeitlichen Informationen im Straßenverkehr zu erweitern, 2) die Einführung beispielhafter Systeme, die aus dieser Betrachtung hervorgehen, 3) die empirische Untersuchung der Auswirkungen dieser Systeme auf das Nutzerverhalten und die Fahrsicherheit in simulierten Verkehrssituationen und 4) die Verknüpfung der untersuchten Ansätze mit Arbeiten an kooperativen Mensch-Maschine Systemen. Die Arbeit ist in drei Teile gegliedert: Der erste Teil stellt einige Herausforderungen bei der Bildung von Situationsbewusstsein vor, welches für die sichere Teilnahme am Straßenverkehr notwendig ist. Aus einem Vergleich dieses Überblicks mit früheren Arbeiten zeigt sich, dass eine Notwendigkeit besteht, Fahrer besser über dynamische Aspekte von Fahrsituationen zu informieren. Dies umfasst unter anderem Ereigniswahrscheinlichkeiten, räumliche und zeitliche Distanzen, sowie eine frühere Signalisierung relevanter Elemente in der Umgebung. Neue Formen der Assistenz können sich an verschiedenen grundlegenden Ansätzen der Mensch-Maschine Interaktion orientieren, die entweder auf einen Ersatz, eine Verteilung oder eine Erweiterung von Fahrerkompetenzen abzielen. Die Differenzierung dieser Ansätze legt den Schluss nahe, dass ein von Kompetenzerweiterung geleiteter Ansatz für die Bewältigung jener Aufgaben von Vorteil ist, bei denen aktiver Nutzereinsatz, die Erhaltung bestehender Kompetenzen und Situationsbewusstsein gefordert sind. Im Anschluss werden Erkenntnisse und Theorien über menschliche sensomotorische Prozesse verknüpft, um einen enaktiven Ansatz der Mensch-Maschine Interaktion zu entwickeln, der einer erweiterungsgeleiteten Perspektive Rechnung trägt. Dieser Ansatz soll es Fahrern ermöglichen, sicherheitsrelevante raum-zeitliche Informationen über neue sensomotorische Prozesse zu erfassen. Im zweiten Teil der Arbeit wird ein Konzept und funktioneller Prototyp zur Erweiterung der Wahrnehmung von Verkehrsdynamik als ein erstes Beispiel zur Anwendung der Prinzipien dieses enaktiven Ansatzes vorgestellt. Dieser Prototyp nutzt vibrotaktile Aktuatoren zur Kommunikation von Richtungen und zeitlichen Distanzen zu möglichen Gefahrenquellen über die Aktuatorposition und -intensität. Teilnehmer einer Fahrsimulationsstudie waren in der Lage, in kurzer Zeit ein intuitives Verständnis dieser Assistenz zu entwickeln, ohne vorher über die Funktionalität unterrichtet worden zu sein. Sie zeigten zudem ein erhöhtes Maß an Fahrsicherheit in kritischen Verkehrssituationen. Doch diese Studie wirft auch neue Fragen auf, beispielsweise, ob der Sicherheitsgewinn auf kontinuierliche Distanzkodierung zurückzuführen ist und ob ein Nutzen auch in weiteren Szenarien vorliegen würde, etwa bei Kreuzungen und weniger kritischem longitudinalen Verkehr. Um diesen Fragen nachzugehen, wurden Effekte eines erweiterten Prototypen mit spurunabhängiger Kollisionsprädiktion, sowie einer Option zur binären Kommunikation möglicher Kollisionsrichtungen in einer weiteren Fahrsimulatorstudie untersucht. Auch in dieser Studie bestätigen die subjektiven Bewertungen ein schnelles Verständnis der Signale und eine Wahrnehmung räumlicher und zeitlicher Signalkomponenten. Überraschenderweise berichteten Teilnehmer größtenteils auch nach der Nutzung einer binären Assistenzvariante, dass sie eine gefahrabhängige Variation in der Intensität von taktilen Stimuli wahrgenommen hätten. Die Teilnehmer fühlten sich mit beiden Varianten in der Fahraufgabe unterstützt, besonders in Situationen, die von ihnen als kritisch eingeschätzt wurden. Im Gegensatz zur ersten Studie hat sich diese gefühlte Unterstützung nur geringfügig in einer messbaren Sicherheitsveränderung widergespiegelt. Dieses Ergebnis deutet darauf hin, dass die Wahrnehmungsanforderungen der Szenarien mit geringer Kritikalität mit den vorhandenen Fahrerkapazitäten erfüllt werden konnten. Doch was passiert, wenn diese Fähigkeiten eingeschränkt werden, beispielsweise durch schlechte Sichtbedingungen oder Situationen mit erhöhter Ambiguität? In einer dritten Fahrsimulatorstudie wurde das Assistenzsystem in speziell solchen Situationen eingesetzt, was zu substantiellen Sicherheitsvorteilen gegenüber unassistiertem Fahren geführt hat. Zusätzlich zu der vorher eingeführten Form wurde eine neue Variante des Prototyps untersucht, welche räumliche Unsicherheiten der Fahrzeugwahrnehmung in taktilen Signalen kodiert. Studienteilnehmer hatten keine Schwierigkeiten, diese zusätzliche Signaldimension zu verstehen und die Information zur Verbesserung der Fahrsicherheit zu nutzen. Obwohl sie inherent weniger informativ sind als räumlich präzise Signale, bewerteten die Teilnehmer die Signale, die die Unsicherheit übermitteln, als ebenso nützlich und zufriedenstellend. Solch eine Wertschätzung für die Transparenz variabler Informationsreliabilität ist ein vielversprechendes Indiz für die Möglichkeit einer adaptiven Vertrauenskalibrierung in der Mensch-Maschine Interaktion. Dies ist ein Schritt hin zur einer engeren Integration der Fähigkeiten von Fahrer und Fahrzeug. Ein komplementärer Schritt wäre eine Erweiterung der Transparenz mentaler Zustände des Fahrers, wodurch eine wechselseitige Anpassung von Mensch und Maschine möglich wäre. Der letzte Teil dieser Arbeit diskutiert, wie diese Transparenz und weitere Voraussetzungen von Mensch-Maschine Kooperation erfüllt werden könnten, indem etwa Korrelate mentaler Zustände, insbesondere über das Blickverhalten, überwacht werden. Des Weiteren ergeben sich mit Blick auf zusätzliche kooperative Fähigkeiten neue Fragen über die Definition von Identität, sowie über die praktischen Konsequenzen von Mensch-Maschine Systemen, in denen ko-adaptive Agenten sensomotorische Prozesse vermittels einander ausüben können.
Enactivism, Sensory Augmentation, Driver Assistance, Tactile Interfaces, Uncertainty
Krüger, Matti
2022
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Krüger, Matti (2022): An enactive approach to perceptual augmentation in mobility. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik
[thumbnail of Krueger_Matti.pdf]
Vorschau
PDF
Krueger_Matti.pdf

6MB

Abstract

Event predictions are an important constituent of situation awareness, which is a key objective for many applications in human-machine interaction, in particular in driver assistance. This work focuses on facilitating event predictions in dynamic environments. Its primary contributions are 1) the theoretical development of an approach for enabling people to expand their sampling and understanding of spatiotemporal information, 2) the introduction of exemplary systems that are guided by this approach, 3) the empirical investigation of effects functional prototypes of these systems have on human behavior and safety in a range of simulated road traffic scenarios, and 4) a connection of the investigated approach to work on cooperative human-machine systems. More specific contents of this work are summarized as follows: The first part introduces several challenges for the formation of situation awareness as a requirement for safe traffic participation. It reviews existing work on these challenges in the domain of driver assistance, resulting in an identification of the need to better inform drivers about dynamically changing aspects of a scene, including event probabilities, spatial and temporal distances, as well as a suggestion to expand the scope of assistance systems to start informing drivers about relevant scene elements at an early stage. Novel forms of assistance can be guided by different fundamental approaches that target either replacement, distribution, or augmentation of driver competencies. A subsequent differentiation of these approaches concludes that an augmentation-guided paradigm, characterized by an integration of machine capabilities into human feedback loops, can be advantageous for tasks that rely on active user engagement, the preservation of awareness and competence, and the minimization of complexity in human- machine interaction. Consequently, findings and theories about human sensorimotor processes are connected to develop an enactive approach that is consistent with an augmentation perspective on human-machine interaction. The approach is characterized by enabling drivers to exercise new sensorimotor processes through which safety-relevant spatiotemporal information may be sampled. In the second part of this work, a concept and functional prototype for augmenting the perception of traffic dynamics is introduced as a first example for applying principles of this enactive approach. As a loose expression of functional biomimicry, the prototype utilizes a tactile inter- face that communicates temporal distances to potential hazards continuously through stimulus intensity. In a driving simulator study, participants quickly gained an intuitive understanding of the assistance without instructions and demonstrated higher driving safety in safety-critical highway scenarios. But this study also raised new questions such as whether benefits are due to a continuous time-intensity encoding and whether utility generalizes to intersection scenarios or highway driving with low criticality events. Effects of an expanded assistance prototype with lane-independent risk assessment and an option for binary signaling were thus investigated in a separate driving simulator study. Subjective responses confirmed quick signal understanding and a perception of spatial and temporal stimulus characteristics. Surprisingly, even for a binary assistance variant with a constant intensity level, participants reported perceiving a danger-dependent variation in stimulus intensity. They further felt supported by the system in the driving task, especially in difficult situations. But in contrast to the first study, this support was not expressed by changes in driving safety, suggesting that perceptual demands of the low criticality scenarios could be satisfied by existing driver capabilities. But what happens if such basic capabilities are impaired, e.g., due to poor visibility conditions or other situations that introduce perceptual uncertainty? In a third driving simulator study, the driver assistance was employed specifically in such ambiguous situations and produced substantial safety advantages over unassisted driving. Additionally, an assistance variant that adds an encoding of spatial uncertainty was investigated in these scenarios. Participants had no difficulties to understand and utilize this added signal dimension to improve safety. Despite being inherently less informative than spatially precise signals, users rated uncertainty-encoding signals as equally useful and satisfying. This appreciation for transparency of variable assistance reliability is a promising indicator for the feasibility of an adaptive trust calibration in human-machine interaction and marks one step towards a closer integration of driver and vehicle capabilities. A complementary step on the driver side would be to increase transparency about the driver’s mental states and thus allow for mutual adaptation. The final part of this work discusses how such prerequisites of cooperation may be achieved by monitoring mental state correlates observable in human behavior, especially in eye movements. Furthermore, the outlook for an addition of cooperative features also raises new questions about the bounds of identity as well as practical consequences of human-machine systems in which co-adapting agents may exercise sensorimotor processes through one another.

Abstract

Die Vorhersage von Ereignissen ist ein Bestandteil des Situationsbewusstseins, dessen Unterstützung ein wesentliches Ziel diverser Anwendungen im Bereich Mensch-Maschine Interaktion ist, insbesondere in der Fahrerassistenz. Diese Arbeit zeigt Möglichkeiten auf, Menschen bei Vorhersagen in dynamischen Situationen im Straßenverkehr zu unterstützen. Zentrale Beiträge der Arbeit sind 1) eine theoretische Auseinandersetzung mit der Aufgabe, die menschliche Wahrnehmung und das Verständnis von raum-zeitlichen Informationen im Straßenverkehr zu erweitern, 2) die Einführung beispielhafter Systeme, die aus dieser Betrachtung hervorgehen, 3) die empirische Untersuchung der Auswirkungen dieser Systeme auf das Nutzerverhalten und die Fahrsicherheit in simulierten Verkehrssituationen und 4) die Verknüpfung der untersuchten Ansätze mit Arbeiten an kooperativen Mensch-Maschine Systemen. Die Arbeit ist in drei Teile gegliedert: Der erste Teil stellt einige Herausforderungen bei der Bildung von Situationsbewusstsein vor, welches für die sichere Teilnahme am Straßenverkehr notwendig ist. Aus einem Vergleich dieses Überblicks mit früheren Arbeiten zeigt sich, dass eine Notwendigkeit besteht, Fahrer besser über dynamische Aspekte von Fahrsituationen zu informieren. Dies umfasst unter anderem Ereigniswahrscheinlichkeiten, räumliche und zeitliche Distanzen, sowie eine frühere Signalisierung relevanter Elemente in der Umgebung. Neue Formen der Assistenz können sich an verschiedenen grundlegenden Ansätzen der Mensch-Maschine Interaktion orientieren, die entweder auf einen Ersatz, eine Verteilung oder eine Erweiterung von Fahrerkompetenzen abzielen. Die Differenzierung dieser Ansätze legt den Schluss nahe, dass ein von Kompetenzerweiterung geleiteter Ansatz für die Bewältigung jener Aufgaben von Vorteil ist, bei denen aktiver Nutzereinsatz, die Erhaltung bestehender Kompetenzen und Situationsbewusstsein gefordert sind. Im Anschluss werden Erkenntnisse und Theorien über menschliche sensomotorische Prozesse verknüpft, um einen enaktiven Ansatz der Mensch-Maschine Interaktion zu entwickeln, der einer erweiterungsgeleiteten Perspektive Rechnung trägt. Dieser Ansatz soll es Fahrern ermöglichen, sicherheitsrelevante raum-zeitliche Informationen über neue sensomotorische Prozesse zu erfassen. Im zweiten Teil der Arbeit wird ein Konzept und funktioneller Prototyp zur Erweiterung der Wahrnehmung von Verkehrsdynamik als ein erstes Beispiel zur Anwendung der Prinzipien dieses enaktiven Ansatzes vorgestellt. Dieser Prototyp nutzt vibrotaktile Aktuatoren zur Kommunikation von Richtungen und zeitlichen Distanzen zu möglichen Gefahrenquellen über die Aktuatorposition und -intensität. Teilnehmer einer Fahrsimulationsstudie waren in der Lage, in kurzer Zeit ein intuitives Verständnis dieser Assistenz zu entwickeln, ohne vorher über die Funktionalität unterrichtet worden zu sein. Sie zeigten zudem ein erhöhtes Maß an Fahrsicherheit in kritischen Verkehrssituationen. Doch diese Studie wirft auch neue Fragen auf, beispielsweise, ob der Sicherheitsgewinn auf kontinuierliche Distanzkodierung zurückzuführen ist und ob ein Nutzen auch in weiteren Szenarien vorliegen würde, etwa bei Kreuzungen und weniger kritischem longitudinalen Verkehr. Um diesen Fragen nachzugehen, wurden Effekte eines erweiterten Prototypen mit spurunabhängiger Kollisionsprädiktion, sowie einer Option zur binären Kommunikation möglicher Kollisionsrichtungen in einer weiteren Fahrsimulatorstudie untersucht. Auch in dieser Studie bestätigen die subjektiven Bewertungen ein schnelles Verständnis der Signale und eine Wahrnehmung räumlicher und zeitlicher Signalkomponenten. Überraschenderweise berichteten Teilnehmer größtenteils auch nach der Nutzung einer binären Assistenzvariante, dass sie eine gefahrabhängige Variation in der Intensität von taktilen Stimuli wahrgenommen hätten. Die Teilnehmer fühlten sich mit beiden Varianten in der Fahraufgabe unterstützt, besonders in Situationen, die von ihnen als kritisch eingeschätzt wurden. Im Gegensatz zur ersten Studie hat sich diese gefühlte Unterstützung nur geringfügig in einer messbaren Sicherheitsveränderung widergespiegelt. Dieses Ergebnis deutet darauf hin, dass die Wahrnehmungsanforderungen der Szenarien mit geringer Kritikalität mit den vorhandenen Fahrerkapazitäten erfüllt werden konnten. Doch was passiert, wenn diese Fähigkeiten eingeschränkt werden, beispielsweise durch schlechte Sichtbedingungen oder Situationen mit erhöhter Ambiguität? In einer dritten Fahrsimulatorstudie wurde das Assistenzsystem in speziell solchen Situationen eingesetzt, was zu substantiellen Sicherheitsvorteilen gegenüber unassistiertem Fahren geführt hat. Zusätzlich zu der vorher eingeführten Form wurde eine neue Variante des Prototyps untersucht, welche räumliche Unsicherheiten der Fahrzeugwahrnehmung in taktilen Signalen kodiert. Studienteilnehmer hatten keine Schwierigkeiten, diese zusätzliche Signaldimension zu verstehen und die Information zur Verbesserung der Fahrsicherheit zu nutzen. Obwohl sie inherent weniger informativ sind als räumlich präzise Signale, bewerteten die Teilnehmer die Signale, die die Unsicherheit übermitteln, als ebenso nützlich und zufriedenstellend. Solch eine Wertschätzung für die Transparenz variabler Informationsreliabilität ist ein vielversprechendes Indiz für die Möglichkeit einer adaptiven Vertrauenskalibrierung in der Mensch-Maschine Interaktion. Dies ist ein Schritt hin zur einer engeren Integration der Fähigkeiten von Fahrer und Fahrzeug. Ein komplementärer Schritt wäre eine Erweiterung der Transparenz mentaler Zustände des Fahrers, wodurch eine wechselseitige Anpassung von Mensch und Maschine möglich wäre. Der letzte Teil dieser Arbeit diskutiert, wie diese Transparenz und weitere Voraussetzungen von Mensch-Maschine Kooperation erfüllt werden könnten, indem etwa Korrelate mentaler Zustände, insbesondere über das Blickverhalten, überwacht werden. Des Weiteren ergeben sich mit Blick auf zusätzliche kooperative Fähigkeiten neue Fragen über die Definition von Identität, sowie über die praktischen Konsequenzen von Mensch-Maschine Systemen, in denen ko-adaptive Agenten sensomotorische Prozesse vermittels einander ausüben können.