Heckelbacher, Till (2022): On holographic methods in cosmology. Dissertation, LMU München: Fakultät für Physik |
Vorschau |
PDF
Heckelbacher_Till.pdf 1MB |
Abstract
In this thesis we consider cosmological correlation functions of a quantum field theory in the asymptotic future of a Universe with an accelerated expansion. In particular, we calculate quantum corrections to the four point function of a conformally coupled scalar field with a quartic interaction term up to one loop order in a four dimensional de Sitter space-time (dS). This can be expanded in terms of conformal blocks of a dual theory and we determine the conformal data up to the second order in perturbation theory. We find closed expressions for all anomalous dimensions. Since they obey some non-trivial conformal consistency conditions, we show, up to first loop order, that cosmological correlation functions in the asymptotic future of dS are holographically determined by a euclidean, conformal field theory. In an intermediate step we calculate quantum corrections of the same theory in euclidean Anti-de Sitter space (EAdS) which we expand in terms of conformal blocks as well and find closed expressions for all anomalous dimensions. To perform these computations we develope a method to map the involved integrals to equivalent expressions in flat space, which we evaluate analytically, using established techniques from the calculation of Feynman integrals. For that, we construct an adapted dimensional regularisation scheme for curved space-times. We show that, up to the considered order, all conformal correlation functions can be expressed in terms of multiple polylogarithms while the integrals in EAdS contain elliptic polylogarithms as well.
Dokumententyp: | Dissertationen (Dissertation, LMU München) |
---|---|
Themengebiete: | 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 530 Physik |
Fakultäten: | Fakultät für Physik |
Sprache der Hochschulschrift: | Englisch |
Datum der mündlichen Prüfung: | 24. Juni 2022 |
1. Berichterstatter:in: | Sachs, Ivo |
MD5 Prüfsumme der PDF-Datei: | bf9aaf1df3748d071e8b0195c1a7918b |
Signatur der gedruckten Ausgabe: | 0001/UMC 28902 |
ID Code: | 30174 |
Eingestellt am: | 11. Jul. 2022 14:17 |
Letzte Änderungen: | 11. Jul. 2022 14:17 |