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Zusammenfassung

Diese Arbeit beschäftigt sich mit kosmologischen Korrelationsfunktionen einer Quan-
tenfeldtheorie in der asymptotischen Zukunft eines beschleunigt expandierenden Uni-
versums. Insbesondere berechnen wir Quantenkorrekturen der Vierpunktsfunktion
eines konform gekoppelten, skalaren Feldes mit quartischem Wechselwirkungsterm bis
zur ersten Schleifenordnung in einer vierdimensionalen de Sitter Raumzeit (dS).

Diese können wir in konformen Blocks einer dualen Theorie entwickeln und deren
konforme Daten bis zur zweiten perturbativen Ordung berechnen. Wir finden geschlossene
Ausdrücke für alle anomalen Dimensionen. Da diese einigen nicht-trivialen, konformen
Konsistenzbedingungen gehorchen, zeigen wir in erster Schleifenordung, dass kosmol-
ogische Korrelationsfunktionen in der asymptotischen Zukunft des dS holographisch
durch eine euklidische, konforme Feldtheorie bestimmt sind.

Als Zwischenschritt berechnen wir Quantenkorrekturen der selben Theorie im eu-
klidischen Anti-de Sitter Raum (EAdS), welche wir wiederum in konformen Blocks
der dualen Theorie am Rand entwickeln und geschlossene Ausdrücke für alle anomalen
Dimensionen extrahieren.

Im Zuge dieser Rechnung entwickeln wir ein Methode die involvierten Integrale auf
äquivalente Ausdrücke in einer flachen Raumzeit abzubilden, welche wir mit Hilfe von
etablierten Techniken aus der Berechnung von Feynmanintegralen analytisch auswerten.
Dazu konstruieren wir ein adaptiertes dimensionelles Regularisierungschema für gekrüm-
mte Raumzeiten. Wir zeigen, dass bis zur betrachteten Ordung alle kosmologischen
Korrelationsfunktionen durch multiple Polylogarithmen gegeben sind, wohingegen die
Integrale im EAdS auch elliptische Polylogarithmen enthalten.





Abstract

In this thesis we consider cosmological correlation functions of a quantum field theory
in the asymptotic future of a Universe with an accelerated expansion. In particular,
we calculate quantum corrections to the four point function of a conformally coupled
scalar field with a quartic interaction term up to one loop order in a four dimensional
de Sitter space-time (dS).

This can be expanded in terms of conformal blocks of a dual theory and we deter-
mine the conformal data up to the second order in perturbation theory. We find closed
expressions for all anomalous dimensions. Since they obey some non-trivial conformal
consistency conditions, we show, up to first loop order, that cosmological correlation
functions in the asymptotic future of dS are holographically determined by a euclidean,
conformal field theory.

In an intermediate step we calculate quantum corrections of the same theory in
euclidean Anti-de Sitter space (EAdS) which we expand in terms of conformal blocks
as well and find closed expressions for all anomalous dimensions.

To perform these computations we develope a method to map the involved integrals
to equivalent expressions in flat space, which we evaluate analytically, using estab-
lished techniques from the calculation of Feynman integrals. For that, we construct an
adapted dimensional regularisation scheme for curved space-times. We show that, up
to the considered order, all conformal correlation functions can be expressed in terms
of multiple polylogarithms while the integrals in EAdS contain elliptic polylogarithms
as well.





Chapter 1

Introduction

1.1 Cosmology and holography

Understanding the large scale structure of the Universe, its history, evolution and origin
has been the desire of humanity for as long as it existed. As in ancient times the
technical and observational tools to make scientific statements about the Universe were
very limited or simply not available, cosmological theories usually consisted of some
postulates which reflected the religious and philosophical mainstream of the society
it originated from. To some extend one can argue that this is still more or less the
case with the big difference being that through the development of experiments and
scientific and mathematical methods we can put our cosmological models on a much
more solid ground. Certain observational facts are indisputable and the influence of
the ideological superstructure of society is left to the philosophical interpretation of the
ontological consequences of the theory.

Modern, scientific cosmology in the above sense, i.e. a dynamical model for the
entire Universe, based on observations and mathematical predictions only began in the
early twentieth century with a work by Einstein [1], proposing a static universe with a
positive cosmological constant. Shortly after, de Sitter developed a different space-time
model [2], given by a static, empty space with a positive cosmological constant as well.
Later it was realized, that de Sitter only considered a special static patch and that his
model actually describes an exponentially expanding universe in both time directions
which will be a major topic of this thesis. It was finally Friedmann [3, 4] who found
the most general solutions to the Einstein equations compatible with the cosmological
principle, postulating spatial homogeneity and isotropy on large scales. Friedmann’s
model led Lemaître [5] and later Hubble [6] to develop the Hubble-Lemaître law which
introduces a proportionality constant that connects the recession velocity of an object
to its distance and could explain the already discovered red shift of distant galaxies.

With the discovery of the cosmic microwave background (CMB) by Penzias and
Wilson [7] the cosmological principle was finally put on a solid experimental basis to
be taken serious as more than just a postulate. The following understanding of the
evolution of the Universe got widely accepted as the standard model of cosmology. The
Universe on very large scales (> 100 Mpc) has the geometry of a Friedmann space-time
with a flat spatial profile. A Big Bang initializes a phase of decelerating expansion
whose evolution is determined by the dominant content of the Universe, which at first
is given by radiation, then dust and, due to the discovery of accelerated expansion [8],
dark energy or a positive cosmological constant.
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To overcome some observational and conceptual problems of this picture, a prequel
to the Big Bang was introduced, which replaces the initial singularity in the decelerating
Friedmann model with a stage of accelerated expansion, called inflation. This idea
was first formulated by Starobinsky [9] and Guth [10] and further developed by Linde
[11], Albrecht and Steinhardt [12]. Geometrically inflation corresponds to de Sitter’s
solution of Einstein’s equations, with a slightly broken symmetry to allow a graceful
exit into a decelerating Friedmann universe. A major breakthrough for inflation was the
discovery by Mukhanov and Chibisov [13] that the spectrum of inhomogeneities of the
temperature of the CMB and matter density distribution in the Universe can be traced
back to quantum fluctuations originating from inflation. Their theory is based on the
idea that Planck sized fluctuations are stretched out by the accelerated expansion and
get frozen as soon as their wavelength exceeds the size of the cosmological horizon.
This makes their evolution independent from the poorly understood phase of reheating
and the very early universe. Their spectrum is predicted to be almost scale invariant
and Gaussian. The scale dependence parametrizes the deviation of the inflationary
Universe from an exact de Sitter geometry (dS). These stretched out fluctuations are
the seeds of inhomogeneities in the gravitational potential.

The discovery of the quantum origin of structure in the Universe has far reaching
consequences. First and foremost it is a big step in cosmology itself since the form of
the density fluctuations can be derived from first principles, while previously they had
to be postulated as initial conditions. Furthermore, it turns the earliest universe into a
gigantic particle collider which can be used to test theories beyond the standard model
of particle physics, since the relevant energies involved during this time are about ∼ 1014

GeV, which is beyond anything ever accessible in an experiment on earth. New, heavy
excitations should produce very weak non-Gaussianities in the spectrum of primordial
fluctuations and even though these have not been detected so far, making theoretical
predictions about their structure has recently been an active field of research (see
e.g. [14–17]).

For this approach to work it is crucial to understand how to formulate quantum
field theory (QFT) in an inflationary background and to specify what the observables
are which we would like to calculate. Experimentally we can directly access the CMB
and the density fluctuations in the distribution of galaxies in the Universe, which are a
result of the inhomogeneities in the gravitational potential. Therefore the observables
are given by correlation functions at the end of inflation. As a simplification of the
problem we will, however, consider an exact dS space-time.

From the point of view of the dS itself, which we refer to as the bulk, these ob-
servables lie on the space-like surface at future infinity. Note, that no observer in the
bulk will ever be able to measure these correlation functions. But since we assume that
inflation ends at some point and the Universe enters a phase of decelerated expansion,
we can consider ourselves as sitting behind future infinity, having access to the section
of the future boundary surface of de Sitter which lies in our past lightcone.

We therefore see a euclidean correlation function which should have the time evo-
lution from the bulk encoded in its structure. This means that the cosmological cor-
relation function is of holographic nature with the bulk time as an emergent direction.
It is tempting to compare the cosmological situation to a different space-time, where
holography is a well established concept, which is Anti-de Sitter space-time (AdS).

Even though AdS is an unrealistic model for any actual physical scenario, it serves
as a useful playground to test potential theories of quantum gravity and quantum field
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theory in curved space-time due to its well understood realization of holography. It is
related to dS by a change in the sign of the cosmological constant. Consequently the
physical behavior and geodesics in AdS are quite different. Instead of experiencing an
accelerated expansion, as in dS, everything is reflected back from spatial infinity into
the bulk, even light rays, which is one of the main reasons why AdS should not be
considered for any realistic scenario. This phenomenon is connected to the fact that
AdS is not globally hyperbolic [18] and we have to impose extra conditions on the
spatial boundary to have a well defined Cauchy problem.

The structure of AdS, however, makes a formulation of holography much more
straightforward than in other space-time models. The AdS/CFT correspondence states
that any quantum field theory and even quantum gravity in the bulk of AdS can
be formulated as a conformal field theory (CFT) living on the boundary at spatial
infinity and there exists a precise dictionary between boundary and bulk degrees of
freedom [19–22]. Intuitively this can be motivated by the fact that the AdS symmetry
group acts on the boundary as the conformal group.

One of the major reasons why holography in AdS is generally accepted as a well
established concept, is the fact that the AdS/CFT correspondence can be derived from
string theory, with a concrete conjecture first proposed by Maldacena [19]. This has
not been achieved yet for other space-times.

A technical reason that makes AdS more attractive for testing holography is the
fact that it is a static space-time, meaning that there exists a time translation invari-
ant vacuum state, which makes a well defined formulation of perturbative quantum
field theory much easier than in a non-static Universe. The technique of visualizing
perturbative QFT calculations through Feynman diagrams can be applied straightfor-
wardly in AdS [21,22] which now graphically depict the boundary correlation functions
in terms of bulk propagators and vertices. At tree-level this method is quite effective
and results were obtained quite early after its introduction [23].

But going beyond tree-level is still very hard since no Fourier transformation in all
space-time directions exists and the calculation has to be performed in position space.
There have been many interesting attempts of getting around this problem. A very
successful method is to make use of the conformal structure on the boundary and apply
the conformal bootstrap to extract information about the bulk theory. This approach
has been followed for example in [24–47]. Another recent advance is to develop new
techniques to perform the calculation in the bulk itself, for example by using unitarity
based methods [48–52], a differential representation of the propagator [53,54] or direct
integration [55–57].

Although the study of perturbative quantum field theory in AdS is mathematically
interesting in itself and can even be turned on its head by using bulk theories to
calculate correlators of a CFT, in this thesis we are mainly motivated by computing
cosmological correlators in dS. Ideally we would like to carry over some results and
methods from AdS calculations. This is less straightforward as one might think. At
first sight AdS and dS seem to look geometrically very similar, in fact they can be
related by an analytic continuation. There are, however, some properties of dS that
make the interpretation of QFT quantities more complicated.

In contrast to AdS, dS is not a static space-time which means that if we quantize a
field theory on space-like slices there is no global vacuum state defined on every slice.
Correlation functions in dS have to be calculated using time-dependent non-equilibrium
techniques like the Schwinger-Keldysh formalism [58,59] and cannot be obtained from
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AdS by a simple analytic continuation. Naive Wick rotation of an AdS correlation
function to dS transforms it into a matrix element between an in and out vacuum (see
e.g. [60]). It is important to stress that there is no scenario in which these two vacua
are the same state since the boundary conditions, which have to be imposed in AdS, get
rotated into conditions at future infinity of dS that are in contradiction with unitary
time evolution.

It turns out that the objects obtained by Wick rotation from AdS still have an
interesting interpretation in dS as the coefficients in the semiclassical expansion of the
wave function of the Universe in the Schrödinger picture of QFT. This idea goes back
to a work by Hartle and Hawking [61] and was further developed in [62–64]. The Wick
rotation performed on the partition function in EAdS naturally selects the Bunch-
Davies vacuum [65–67] as the initial state, which is the unique vacuum that provides
the correct analytic structure of the propagator in the flat space limit [68], and returns
its wave function as the amplitude with respect to a field configuration in the future.

The dS/CFT correspondence, as first formulated in [69], states that the Bunch-
Davies wave function can be interpreted as the generating functional of a euclidean
CFT at future infinity whose correlation functions are calculated by functional deriva-
tion with respect to the boundary values of the bulk field. This idea was further
developed in [14] and led to new approaches to compute the wave function and relate
it to a CFT at the future infinity surface of dS [62–64, 70–79]. Although there exists
an explicit model that conjectures the correspondence between higher spin gravity in
four dimensional dS and a CFT of anticommuting scalar fields at future infinity [80],
the dS/CFT correspondence stands on much weaker feet than its sister in AdS since
no construction based on string theory along the lines of [19] has been found so far.

The wave function, however, is not an observable. If we want to make a connection
to actually measurable quantities, we have to compute the correlation function of the
bulk field in the Bunch-Davies vacuum. In principle this can be done by taking the
expectation value from the wave function. For free field theories this approach leads
straightforwardly to the correct result [14]. For any interacting theory it requires non-
perturbative knowledge of the wave function which, at least at the moment, seems to
be completely out of reach and therefore makes this approach in praxis unrealistic.

A more promising path was started by Weinberg [15] using the Schwinger-Keldysh
or in-in formalism [58, 59]. In this approach, the correlation function is computed by
evolving the vacuum state from past to future infinity and back, introducing time- and
anti-time ordered propagators. It has been used by various authors since, for example
to discuss issues with infrared divergences in the global patch of dS [81–83].

In [84–86] it was realized that the late time correlation functions in dS in the
Schwinger-Keldysh formalism can be rewritten as a linear combination of EAdS corre-
lators. This result has led to the formulation of an auxiliary EAdS action in [87]. The
perturbative calculations in dS can therefore be mapped to an equivalent computation
in EAdS and as a consequence cosmological correlation functions should be given by
a euclidean CFT at future infinity as well. A non-perturbative approach to quantum
field theory at future infinity of dS was developed in [88], where methods from the
conformal bootstrap [89] are used to obtain constraints on the QFT in the bulk.

While the above works found some general conditions and bounds on cosmological
correlators at tree level, most of them still make some additional assumptions about
their conformal structure at loop level. Therefore they do not provide a test of the
correspondence between the cosmological correlators and a CFT beyond tree level.
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One aim of this thesis is to fill this gap and consider a concrete model in the bulk and
compute cosmological correlation functions including quantum corrections. The results
are subject to some non-trivial consistency conditions dictated by conformal symmetry
which are used to test the correspondence for the first time at one-loop level.

1.2 Content and results of this thesis

In this thesis we calculate loop corrections to cosmological correlation functions of a
scalar field with quartic interaction in the Poincaré patch of four dimensional dS [90].
We achieve this goal by first performing the computation of loop corrected boundary
correlators in EAdS [57] which we are able to relate to the dS calculation. For both
cases we show that the correlation functions are governed by a euclidean CFT.

This approach does not claim to describe a realistic model for quantum fluctuations
from the early universe. We rather intend to uncover general properties of QFT in
(A)dS in an easy enough model, such that explicit calculations are possible. We com-
pute two and four point functions up to one loop order by direct integration in position
space, using Feynman parametrisation. The calculation is visualized through Feynman
diagrams which in (A)dS are conventionally called Witten diagrams [22].

We start with the calculation in EAdS [57], which has been attempted before in
[55, 56]. Concretely, we take a conformally coupled field in which case there are two
possible choices for the boundary conditions of the bulk field φ, leading to two different
dual operators O∆ in the CFT with scaling dimension either ∆ = 1 or ∆ = 2. It was
shown in [55, 56] that the loop corrections to the two point function can be absorbed
into the mass of the bulk field or, equivalently, the boundary scaling dimension ∆. We
choose our renormalisation condition such that the value of ∆ corresponds to that of a
conformally coupled field in the bulk.

Since there are no three point functions in our model we continue with the calcu-
lation of the four point functions. The disconnected piece is completely determined by
products of the two point functions of O∆. The theory on the boundary is therefore
given by a generalized free field [91], which is defined by the property that the correla-
tion functions factorize in the same way as in a free field theory. However, by a simple
scaling argument, we know that the theory of O∆ cannot by given by a local action.
From the bulk perspective this can be explained by the fact that we do not consider
fluctuations of the metric which, according to the AdS/CFT dictionary, would result
in an energy momentum tensor and require a local boundary theory. Consequently the
dual CFT to our bulk field will be given by a non-local theory, similar to the long range
Ising model at the critical point [92], for example. These theories were first considered
in [93] in the context of AdS/CFT.

The operator product expansion (OPE) of a generalized free field theory is well
known [94] and the four point function can be expanded in terms of conformal blocks
of the double trace operators :O∆�n∂`O∆: in the CFT. From the bulk perspective
these can be understood as bound states which do not appear as external operators.
Introducing interactions in the bulk deforms the generalized free field at the boundary
and will generate anomalous dimensions of the double trace operators, parametrized
by the bulk coupling constant. To extract these we need to perform the perturbative
computation of the four point function in the bulk.

By analyzing the properties of the propagator in AdS under the antipodal map and
under the action of the conformal group on the boundary we are able to recast the
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four point function into the form of a flat space Feynman integral with three external
momenta. This allows us to reproduce the results for the tree-level contribution to the
four point function first calculated in [23].

At higher loop order we encounter short-distance (UV) divergences in the Witten
diagrams which require regularisation and renormalisation. In [55, 56] an explicit cut-
off scheme was used which has the advantage of preserving the AdS symmetries at
the cost of complicating the structure of the propagator. This makes the subsequent
computations technically very involved and harder to generalize.

We follow a different approach and implement an adapted version of dimensional
regularisation. This is a non-trivial endeavor, since this method a priori breaks AdS in-
variance and as a consequence leads to non-conformally invariant boundary correlators.
We develop a method to solve this problem by introducing a loop dependent analytical
parameter in the integration measure which adds a finite piece to the counter-term and
restores the symmetry of the renormalised correlator [57]. The advantage of this method
is that most methods to solve Feynman integrals in flat space are based on dimensional
regularisation (see e.g. [95–101]), making them applicable to our computation.

We show that most of the Feynman integrals we encounter are linearly reducible
in the sense of [102] and can therefore be expressed in terms of single valued multiple
polylogarithms [103]. The one loop diagram of the ∆ = 1 case contains an elliptic
integral for which we find an efficient way to extract the relevant information. To
simplify the calculation further we establish a decent relation in the form of several
differential operators which raise the scaling dimensions of external legs by one unit.

Comparing our bulk calculation to the conformal block expansion we can extract
deformations to the conformal data in the form of OPE coefficients and anomalous
dimensions of the double trace operators of the generalized free field. One of the main
results of this thesis is a closed expression for all anomalous dimensions at one-loop
order for all double trace operators :O∆�n∂`O∆:, which is given by

γ
(2)
n>0,`>0(∆) = λ2

R

(16π2)2T
∆
n,` ,

with

T∆
n,` = − 2(`2 + (2∆ + 2n− 1)(∆ + n+ `− 1))

`(`+ 1)(2∆ + 2n+ `− 1)(2∆ + 2n+ `− 2)−
2(−1)∆(H(1)

` −H
(1)
2∆+2n+`−2)

(2∆ + 2n+ 2`− 1)(∆ + n− 1) ,

where H(1)
i = ∑i

n=1 n
−1 is the harmonic sum and λR is the renormalised bulk coupling

constant. Similar results for all values of n and ` are derived in chapter 5, generalizing
the expressions found in [56].

Using the Wick rotation from EAdS to dS as described in [14], we obtain the Bunch-
Davies wave function from the partition function in EAdS. Consequently we can deduce
the conformal data of the corresponding CFT directly from the EAdS results. We show
that the CFTs coincide [71], where the boundary condition ∆ = 2 corresponds to fixing
the field configuration at future infinity while ∆ = 1 gives the canonical momentum to
the bulk field evaluated at infinity.

We are now ready to calculate the cosmological correlation functions in the late
time limit [90]. Choosing as the initial condition the Bunch-Davies vacuum at past
infinity we perform the computation by applying the Schwinger-Keldysh formalism. In
this approach one performs a closed time integration from past to future infinity and
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back with field insertions on each side of the contour, therefore doubling the field con-
tent into time-ordered and anti-time ordered contributions. By Wick rotating the field
insertions on each side of the contour independently and performing a change of basis
in the propagators, we express the calculation as a sum over fields with either ∆ = 1
or ∆ = 2 boundary conditions in EAdS. This relation between the Schwinger-Keldysh
propagators and EAdS Witten diagrams was first explained in [84–86] and reformu-
lated into an auxiliary EAdS action in [87]. We can therefore apply the machinery
developed for the EAdS calculation in [57], including the loop dependent dimensional
regularisation scheme.

The results we obtain are quite remarkable. Although, at first sight, the computa-
tion looks more involved, since more diagrams have to be evaluated, the final results
are actually much simpler than the corresponding expressions in the EAdS calculation.
Specifically we find an interesting cancellation in the loop contributions which lead to
the disappearance of any elliptic integrals. As a consequence all expressions are linearly
reducible and can be expressed in terms of single valued multiple polylogarithms.

Comparing the late time cosmological correlation function to the four point function
of a CFT, we show that the disconnected part is given by a generalized free field, while
the interaction generates a deformation of this theory which is different from the one
obtained in EAdS or, equivalently, the Bunch-Davies wave function. In this CFT, three
different trajectories of double trace operators, denoted by OS

n,`, OA
n,` and :O1�n∂`O2:,

acquire anomalous dimensions. The two different deformations of the generalized free
field are schematically depicted in figure 1.1.

Cosmological correlator CFT CFT(OS
n,`,O

A
n,`, :O1�n∂`O2:)

︷ ︸︸ ︷
GFF(O1) × GFF(O2)

Wave function CFT CFTΨ[π] × CFTΨ[φ]

Figure 1.1: Deformations of the generalized free field (GFF) CFTs in the wave func-
tion CFTs (down) and cosmological correlator CFT (up). OS

n,` and OA
n,` are orthogonal

linear combinations of :O1�n∂`O1: and :O2�n∂`O2:.

We show that the cosmological correlators obey several CFT consistency conditions
at different loop orders, reflecting the fact that the theory at future infinity is in fact
a CFT. These conditions relate the tree-level results to the loop computation and can
be interpreted as a condition on the sequential discontinuities of the Witten diagrams.
An equivalent relation exists in EAdS and we show how to connect it to the flat space
Cutkosky rules which extract discontinuities of Feynman integrals by putting certain
internal propagators on-shell.

The main and final result of this work is the computation of all one-loop anomalous
dimensions for the double trace operators OS

n,`, OA
n,` and :O1�n∂`O2:, given by

γ
(2)S
n>0,`>0 = − λ2

R

(16π2)2
1

`(`+ 1); γ
(2)A
n>0,`>0 = − λ2

R

(16π2)2
1

(2n+ `)(2n+ `+ 1)
γ

(2)
n,2`>0 = γ

(2)S
n,2`>0; γ

(2)
n,2`+1>0 = γ

(2)A
n,2`+2 ,
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where the expressions for all values of n and ` are derived in chapter 6. These formulas
highlight an interesting symmetry between the anomalous dimensions at different spins.
From the bulk perspective, this could be a consequence of the symmetry in the auxiliary
EAdS action, enforced by the Schwinger-Keldysh formalism and the fact that we take
a conformally coupled scalar field. We do not expect this symmetry to hold for general
masses. The equations for γ(2)S

n>0,`>0 and γ
(2)
n,2`>0 show a degeneracy for the conformal

dimensions of these operators for all values of n, which seems quite remarkable.

Outline

This thesis is structured as follows:
In chapter 2 we start with a brief review of the properties of a conformal field

theory in d > 2 dimensions, including the OPE and conformal block expansion. We
touch on the example of a generalized free field, explain how the OPE can be derived
and consider the toy model of the free O(N) vector model to illustrate our point. The
chapter closes with a short remark about conformal perturbation theory to lay the
foundation for later calculations.

The framework for the further computations in this thesis is built in chapter 3.
Here we review the geometry of maximally symmetric space-times, focusing on (Anti-
)de Sitter space-times and explain how to define perturbative quantum field theory in
these spaces and how holography comes into play. This is crucial in understanding the
similarities and differences in the QFT computations in these space-times and how they
can be reduced to the evaluation of EAdS Witten diagrams.

Chapter 4 then discusses the mathematical structure and methods that we use
to solve the integrals for the Witten diagrams. First, we explain how to map the
diagrams to flat space Feynman integrals and how to implement a loop dependent
dimensional regularisation scheme that preserves AdS invariance. We then review some
well established methods of solving Feynman integrals which we will apply in the further
course of the thesis. These include the Cutkosky rules to extract the discontinuity of a
Feynman integral as well as multiple polylogarithms which are the solutions of linearly
reducible Feynman integrals.

In chapters 5 and 6 we present the actual calculations of correlation functions, wave
function coefficients and cosmological correlation functions, first published in [57,71,90].

The appendices at the end of this thesis collect useful expressions and lengthy
calculations that were not included in the main body to keep the text readable.
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of AdS4 Witten diagrams as flat space multi-loop Feynman integrals, 2201.09626
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Chapter 2

Aspects of conformal field theory

Conformal field theory (CFT) plays a major role in the formulation of holography in
(A)dS. Since we will consider four-dimensional (A)dS, where the holographic CFT is
three-dimensional it is necessary and important to review some aspects of CFTs in
d > 2 dimensions in this chapter, especially since this topic is much less studied than
two-dimensional CFTs. This chapter is mainly based on the reviews [104,105].

2.1 CFT basics in d > 2
Consider a d-dimensional (pseudo-)Riemannian manifold (M, gµν) and a smooth map
φ : M → M . We call φ a conformal map (see e.g. [106]) if the pullback of the metric is
given by

φ∗gµν = Ω(x)2gµν , (2.1)

where Ω is a positive real function. If we consider a one-parameter group φt of conformal
transformations, then the vector field X generating φt is called a conformal Killing field
and (2.1) translates into the following condition on the Lie derivative of the metric

LXgµν = ∇µXν + ∇νXµ = 2
d

∇γX
γgµν (2.2)

If M is flat (2.2) has the following solutions

Pµ := −i∂µ Translations
Mµν := i(xµ∂ν − xν∂µ) Lorentz transformations
D := −ixµ∂µ Dilatations
Kµ := −i(2xµxν∂ν − x2∂µ) Special conformal transformations

The first two Killing vector fields are the generators of the Poincaré group, while the
other two are new and have the interpretation of a local rescaling and a translation
after the location of the origin and infinity have been swapped. The non-vanishing Lie
brackets of these vector fields are given by

[D,Pµ] = iPµ, [D,Kµ] = −iKµ, [Kµ, Pν ] = 2i(ηµνD −Mµν), (2.3a)
[Kγ ,Mµν ] = i(ηγµKν − ηγνKµ), [Pγ ,Mµν ] = i(ηγµPν − ηγνPµ), (2.3b)
[Mµν ,Mγρ] = i(ηνγMµρ + ηµρMνγ − ηµγMνρ − ηνρMµγ), (2.3c)
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where (2.3c) is just the Lorentz algebra, (2.3b) means that both Pµ and Kµ transform
like vectors while (2.3a) are new.

The algebra (2.3) can be mapped to the Lorentz algebra of a d + 2-dimensional
Minkowski ambient space with metric signature (−,+, ...+,−) by the following isomor-
phism

Mµν = Jµν , D = Jd+1,d, Pµ = 1√
2

(Jµ,d+1 − Jµ,d) , Kµ =
√

2 (Jµ,d+1 + Jµ,d) ,

where JAB are the Lorentz generators in the ambient space, obeying the algebra

[JAB, JCD] = i (ηADJBC + ηBCJAD − ηACJBD − ηBDJAC) .

They are the generators of the group SO(d, 2). To see how the ambient Minkowski
space is related to the original d dimensional flat space, we restrict to the projective
light-cone, given by the lines on the light-cone through the origin

LPd := {[X] ∈ RPd+1 : ηABXAXB = 0} .

It can be shown [104] that an element of SO(d, 2) acts on LPd such that the induced
metric transforms as (2.1). The embedding of Minkowski space Rd−1,1 into the projec-
tive space RPd+1 is defined by

ι : Rd−1,1 → RPd+1

xµ 7→
(
xµ : 1 − x2

2 : 1 + x2

2

)
,

where x2 = ηµνx
µxν and ηµν is the standard Minkowski metric. With this embedding

we have the following simple identity

X · Y = 1
2 |x− y|2

For technical reasons it is usually convenient to use the ambient space coordinates for
calculations, since they transform linearly under the conformal group and only restrict
to the projective lightcone at the end.

Quantizing a conformally invariant theory is most easily done in radial quantiza-
tion. This means that instead of defining states on equal time slices we foliate the
manifold in terms of spheres around the origin and define states as path-integrals over
a sphere [105]. The exponentiation of the dilatation operator is a rescaling, which moves
a state between different spheres and therefore is the equivalent to the time evolution
operator in canonical quantization. The dilatation operator then takes the role of the
Hamiltonian.

To fully exploit that analogy we label states by ∆ and ` where the former is the
eigenvalue of the dilatation operator and the latter the spin of the irreducible SO(d)
representation. The action of D and Mµν on a state |∆, `〉 is then given by

D |∆, `〉 = −i∆ |∆, `〉 , Mµν |∆, `〉 = iD(`)(Mµν) |∆, `〉

where D(`)(Mµν) is the spin ` representation matrix of Mµν . From the first two equa-
tions in (2.3a) we can follow that Pµ raises ∆ by 1 while Kµ lowers it. The states which
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are annihilated by Kµ, i.e. Kµ |∆, `〉 = 0, are called primary states and states created
by acting subsequently with Pµ on a primary are called descendant states.

Let us now introduce local field operators O∆,`(x), with scaling dimension ∆ and
spin `, such that they transform under rescaling as

O∆(λx) = 1
λ∆O∆(x) .

We can define a state |∆, `〉 by inserting an operator O∆,` on the conformally invariant
vacuum at the origin. At the same time we can take any state, defined on some sphere
and rescale it to a point which will behave just like a local operator insertion at that
point. This is the idea behind the operator state correspondence of a CFT (see [105]).
The transformation behaviour of an operator away from the origin is then completely
fixed by the algebra (2.3) and is given by

[D,O∆,`(x)] = −i(∆ + xµ∂µ)O∆,`(x)
[Pµ,O∆,`(x)] = −i∂µO∆,`(x)
[Kµ,O∆,`(x)] = −i(2xµ∆ + 2xµxν∂ν − x2∂µ − 2xνD(`)(Mνµ))O∆,`(x)

[Mµ,ν ,O∆,`(x)] = −i(xµ∂ν − xν∂µ − iD(`)(Mµν))O∆,`(x)

Following the terminology introduced above for the states we call operators which
vanish under the action of Kµ primary operators, while those generated by acting with
Pµ on a primary are called descendants.

What makes a CFT special compared to an ordinary QFT is the fact that large
parts of the theory are already fixed by symmetry such as the two point function, the
three point function up to a constant [107] and the general structure of the four point
function. For scalar operators, which are most relevant for our purpose, they are given
by (see e.g. [104,105,108] for a derivation)

〈O∆1(x1)O∆2(x2)〉 = δ∆1∆2

x2∆1
12

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 = λ123

x∆1−∆3+∆2
12 x∆1−∆2+∆3

13 x∆2−∆1+∆3
23

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 = Ts(xi)G(v, Y ) , (2.5)

where we introduced the shorthand notation xij = |xi − xj | and G(v, Y ) is a function
of the conformal cross ratios

v = x2
12x

2
34

x2
14x

2
23

=; 1 − Y = x2
13x

2
24

x2
14x

2
23
.

The kinematic prefactor is given by

Ts(xi) = 1
x∆1+∆2

12 x∆3+∆4
34

(
x14
x24

)∆2−∆1 (x14
x13

)∆3−∆4

.

A major feature of a CFT is the convergence of the operator product expansion
(OPE). For any quantum field theory we can express the product of two operators
O∆1(x1)O∆2(x2) in the limit x1 → x2 as a sum over local operators at x2 denoted as

O∆1(x1) × O∆2(x2) =
∑
i

C12i(x12)Oi(x2)
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In a general QFT this sum is only asymptotic. In a CFT this expansion is convergent,
since it is equivalent to a sum over a complete set of states due to the operator state
correspondence. In this case it takes the form

O∆1(x1) × O∆2(x2) =
∑
Õ

a12
Õ
D12Õ(x12, ∂2)Õi(x2) .

where a
ij

Õ
are called OPE coefficients and D12Õ is a differential operator whose coeffi-

cients are completely fixed by conformal symmetry. The entire information about the
dynamics of the theory is therefore contained in the spectrum of operators and the
OPE coefficients. Knowing those solves the theory completely and as a consequence
they are referred to as the CFT data, defining the theory. Plugging the OPE into the
three point function and using the orthogonality of the two point function we realize
that the OPE coefficients a12

Õ
are given by the undetermined constants λ12O in the

three point function (2.5). This means that knowing the operator spectrum and all
three point functions actually solves the theory completely.

The main focus of our calculations in chapters 5 and 6 will be the four point function.
For any four point function we can calculate the OPE pairwise between two operators
in three different ways

〈(O1 × O2)(O3 × O4)〉 , 〈(O1 × O3)(O2 × O4)〉 , 〈(O1 × O4)(O3 × O2)〉 , (2.6)

where the three cases are refered to as the s, t and u channel respectively.1 In each of
the channels we can rewrite the double OPE as a sum over conformal blocks G∆,`(v, Y ).
Focusing on the s channel, they are defined through

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = Ts(xi)
∑
∆,`

a12
O∆,`

a34
O∆,`

Gs
∆,`(v, Y ) . (2.7)

The conformal blocks are eigenfunctions of the conformal casimir C2 = JABJ
AB and a

closed expression for them was first found in [109].
This derivation works in the following way [105]. Let us consider a four point

function of a scalar operators O with equal dimensions ∆ for simplicity. The double
OPE of equation (2.6) can then be explicitly expressed as

〈O(x1)O(x2)O(x3)O(x4)〉 =
∑
Õ

˜̃
O

aOO
Õ

aOO
˜̃
O

DOOÕ(x12, ∂2)D
OO

˜̃
O

(x34, ∂4)
〈
Õ(x2) ˜̃

O(x4)
〉

= 1
(x12x34)2∆

∑
Õ

(
aOO
Õ

)2
Gs

∆̃,`(v, Y ) (2.8)

⇒ Gs
∆̃,`(u, v) = (x12x34)2∆DOOÕ(x12, ∂2)DOOÕ(x34, ∂4)

〈
Õ(x2)Õ(x4)

〉
where we chose an orthogonal basis of operators Õ and ˜̃

O.
To see why the conformal blocks are eigenfunctions of the casimir operator let us

consider the same four point function in radial quantization. The radially ordered four
point function with |x3| , |x4| ≥ |x1| , |x2| can be written as

〈O(x1)O(x2)O(x3)O(x4)〉 = 〈0|R{O(x3)O(x4)}R{O(x1)O(x2)} |0〉 ,
1Note, that this is not what we mean by the three channels in our calculation in later chapters. We

will always perform the OPE in the s channel.
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where R{...} denotes radial ordering.
We can introduce an operator ΠÕ that projects a state into a conformal multiplet,

i.e. a primary Õ and its descendants. The sum over all primaries then gives the unit
operator because of the operator state correspondence

ΠÕ =
∑

φ,ψ=Õ,P Õ,PP Õ

|φ〉 〈ψ| ; I =
∑
Õ

ΠÕ .

Now the four point function can be written as

〈O(x1)O(x2)O(x3)O(x4)〉 =
∑
Õ

〈0|R{O(x3)O(x4)}ΠÕR{O(x1)O(x2)} |0〉

and should be equivalent to equation (2.8), which means that(
aOO
Õ

)2
Gs

∆̃,`(v, Y )
(x12x34)2∆ = 〈0|R{O(x3)O(x4)}ΠÕR{O(x1)O(x2)} |0〉 (2.9)

The quadratic casimir is given by

C2 = 1
2J

ABJAB = D(D − d) − 1
2M

µνMµν

and it acts on the projector ΠO as

C2ΠO = [∆(∆ − d) + l(l + d− 2)] ΠO . (2.10)

At the same can we define a differential operator C12
2 representing the action of the

quadratic casimir on the fields O(x1)O(x2) as

C12
2 O(x1)O(x2) = [C2,O(x1)O(x2)] . (2.11)

Plugging equations (2.11), (2.10) into (2.9) we find that the conformal blocks have to
obey the following differential equation

C2G∆,`(v, Y ) = [∆(∆ − d) + l(l + d− 2)]G∆,`(v, Y ) , (2.12)

where the differential operator C2 is the differential representation of the quadratic
Casimir in terms of conformal cross ratios and given in [110]. For even dimensions d
equation (2.12) can be solved exactly (see [109]). For general dimensions no analytic
solution is known for all spins. The spin zero conformal block has been calculated
in [109] as well and in the s-channel OPE limit, defined by v, Y → 0, is given by

G∆,0(u, v) = v
∆
2

∞∑
m,n=0

(
∆
2

)2

m

(
∆
2

)2

m+n
m!n!(∆ + 1 − d/2)m(∆)2m+n

vmY n

with the Pochhammer symbol defined as: (x)n = Γ(x+ n)
Γ(x) . (2.13)

A similar expansion for general spins ` > 0 was found in [111] and is given in ap-
pendix D.

The advantage of using the conformal block expansion lies in the fact that it orga-
nizes the calculation automatically in terms of conformal multiplets, since a conformal
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∑
∆,`

O1

O2

O3

O4

a12
O∆,`

a34
O∆,`

Gs
∆,` =

∑
∆,`

O1

O2

O3

O4

a13
O∆,`

a24
O∆,`

Gt
∆,`

Figure 2.1: Graphical depiction of the conformal block expansion and OPE associa-
tivity. These pictures should not be confused with Feynman or Witten diagrams.

block G∆,` contains all information about the primary operator O∆,` and its descen-
dants.

Note that we could have done the double OPE in the t- and u channel as well
which would have given us another conformal block expansion. However, since the
OPE is a convergent sum, it should not matter in which order the OPE is done and
the end result for the four point function should be the same after summing over all
terms. This associativity of the OPE is the basis of the conformal bootstrap, which
we will not consider any further and refer the interested reader to the review [105] and
references therein.

2.2 OPE of a generalized free field
A concrete example of a CFT which will play a role in subsequent calculations is a
generalized free field theory [91] sometimes also referred to as mean field theory. It is
given by a certain number of fields O1, ...On with scaling dimensions ∆1, ...,∆n. The
theory is then defined by its n-point correlation functions which vanish for odd n and
for even n are given by all pairwise combinations of two point functions, which take
the form

〈Oi(xi)Oi(xj)〉 =
δ∆i∆j

x2∆i
ij

.

The four point function of a generalized free field with equal scaling dimensions ∆ is
for example given by

〈O(x1)O(x2)O(x3)O(x4)〉 = 1
x2∆

12 x
2∆
34

(
1 + v∆ +

(
v

1 − Y

)∆
)
.

Note that a theory like this cannot by constructed from a local action of the fields
O1, ...,On for obvious dimensional reasons, unless ∆ = d

2 − 1. It is therefore a free
field theory in the sense that the n point functions look like they were generated by a
Gaussian path-integral even though no local action exists.

A generalized free field theory can emerge as an effective description of another
theory in some limit. To understand how this works let us consider the free O(N)
vector model, defined by the action (see e.g. [112])

S =
∫
Rd

dxd 1
2

N∑
i=1

∂µφ
i∂µφi ,
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which of course has the simple two point functions for the fundamental field φi〈
φi(x1)φj(x2)

〉
= δij

xd−2
12

. (2.14)

We can, however, also consider other operators, composed out more than one funda-
mental field. For example we can define

O2 := 1√
2N

Tr(:φ2:) := 1√
2N

N∑
i=1

:φiφi:=
N∑
i=1

(
φiφi −

〈
φiφi

〉)
,

and calculate the correlation functions of this operator. The two point function can be
straightforwardly calculated from (2.14) by Wick contraction and is given by

〈O2(x1)O2(x2)〉 = 1
x

2(d−2)
12

,

meaning O2 has scaling dimension d−2. We can proceed in this way building operators
of the form

On := 1√
n!N

Tr(:φn:) ,

with scaling dimension n(d/2 − 1). The four point functions of these operators is easily
obtained by Wick contraction, using equation (2.14) and in the limit N → ∞ are given
by

〈On(x1)On(x2)On(x3)On(x4)〉 = 1
(x12x34)n(d−2)

1 + v
n(d−2)

2 +
(

v

1 − Y

)n(d−2)
2

 .

(2.15)

This shows that the free O(N) vector model at infinite N is an example of a generalized
free field theory. The operators On constructed in this way are called single trace
operators and, following conventions in the AdS/CFT literature [113], we will refer
to them as such in subsequent calculations, even if we do not know whether they are
actually constructed as a trace over fundamental fields in a large N vector or matrix
model. With this terminology established, we can reformulate the defining property
of a generalized free field theory that all correlators are determined by the two point
function of single trace operators.

The theory is therefore solved completely, which for the CFT data means that we
should have access to all three point functions and operators. The three point functions
of single trace operators vanish, which is obvious from the above discussion. To obtain
non-vanishing three point functions we have to consider more general objects such as
double trace operators.

We can construct double trace primary operators out of single trace operators,
by adding combinations of Pµ = −i∂µ acting on O1 and O2 in such a way that the
sum is annihilated by Kµ. A general double trace operator can then be denoted by
:O1�n∂`O2: and it has scaling dimension ∆n,` = ∆1 +∆2 +2n+` and has spin `, where
the Lorentz indices of ∂µ1 ...∂µ`

are implicit in ∂`. An recursive algorithm on how to
construct double trace primaries in this way has been developed in [94].
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A more efficient way of constructing double trace operators, also described in [94],
is by conglomeration which means we write them as a convolution

:O1�
n∂`O2: (x) =

∫
ddx1ddx2f∆1+∆2+2n+`,`(x, x1, x2)O∆1(x1)O∆2(x2) . (2.16)

Where f∆1+∆2+2n+`,`(x, x1, x2) is given by the three point function of :O1�n∂`O2: (x)
with the so called shadow operators Od−∆1 and Od−∆2 .

As it was shown in [114] in the ambient formalism the three point function of two
scalar operators with a spin ` operator O

A1...A`
∆,` is given by

YA1 ...YA`

〈
O∆1(X1)O∆2(X2)OA1...A`

∆,` (X3)
〉

=

= a12
∆,`

((Y ·X1)X2 ·X3 − (Y ·X2)X1 ·X3)`

(X1 ·X2)
∆1+∆2−∆+`

2 (X1 ·X3)
∆1+∆−∆2−`

2 (X2 ·X3)
∆2+∆−∆1−`

2

,

(2.17)

where Y is an auxiliary vector with Y · X3 = 0. From equation (2.17) we can see
immediately that the three point function of two equal scalar operators and an operator
with odd spin vanishes, meaning that there are no operators with odd spin in the OPE.

The function f∆1+∆2+2n+`,`(x, x1, x2) in equation (2.16) is now given by

f∆1+∆2+2n+`,`(x, x1, x2) = YA1 ...YA`

〈
Od−∆1(X1)Od−∆2(X2)OA1...A`

∆n,`,`
(X3)

〉
. (2.18)

For a generalized free field we know the four point functions exactly so we can use
that knowledge together with equations (2.16), (2.17) and (2.18) to extract the OPE
coefficient of a specific double trace operator by setting∫

ddx1ddx2f∆1+∆2+2n+`,`(x, x1, x2) 〈O∆1(x1)O∆2(x2)O∆1(x3)O∆2(x4)〉 =

=
〈
:O1�

n∂`O2: (x)O∆1(x3)O∆2(x4)
〉

This integration is most easily performed in Mellin space [94, 115] where it reduces to
a system of linear equations. The final result for the squared OPE coefficients

Ai,j[OiOj ]n,l
:=
(
ai,j[OiOj ]n,l

)2

for the double trace operator :O1�n∂`O2: (x) is given by

Ai,j
[OiOj ]n,l

=
(−1)l

(
∆i − d

2 + 1
)

n

(
∆j − d

2 + 1
)

n
(∆i)l+n(∆j)l+n

l!n!
(
l + d

2

)
n

(∆i + ∆j + n − d + 1)n(∆i + ∆j + 2n + l − 1)l

(
∆i + ∆j + n + l − d

2

)
n

,

where the Pochhammer symbol (x)n is defined in equation (2.13).
Since we know the exact expressions for the conformal blocks and the OPE coeffi-

cients for all double trace operators we obtained all the conformal data as defined in
section 2.1. In general a CFT will not be as simple as a generalized free field. However,
we will see that theories which originate from a bulk theory in AdS will deform a gen-
eralized free field by their interaction terms in a very specific way namely by generating
anomalous dimensions in for the double trace operators.
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2.3 Perturbation theory in CFT
So far we have only discussed general features of CFTs and one particularly simple
example. In general, solving a CFT exactly is usually not possible but there are certain
types of CFTs, containing a parameter which can be considered small. Then we can
perform a perturbative expansion in this parameter. In fact, we already encountered
an example of such a theory in the previous section with the free O(N) vector model.
We found that the four point function behaves like a generalized free field theory in the
limit N → ∞ but equation (2.15) tells us that there are corrections if we go to finite
values of N . We can therefore use N−1 as the small perturbative parameter to expand
around. This approach to perturbation theory of a CFT was first described in [93].

In general, if we have a small parameter λ and know the CFT data for λ = 0, we
can expand CFT data, i.e. the OPE coefficients and operator dimensions, in λ such
that

AO1O2
O3

= ĀO1O2
O3

+ λA
O1O2(1)
O3

+ 1
2λ

2A
O1O2(2)
O3

+ ...

∆ = ∆̄ + λ∆(1) + 1
2λ

2∆(2) + ... (2.19)

In this work we will mostly be concerned with four point functions and the only effect
of the perturbation will be felt by the exchanged double trace operators. For this case
it is most convenient to parametrize the perturbation in terms of the anomalous dimen-
sions of the exchanged double trace operator, meaning that we absorb the expansion
parameter λ in equation (2.19) into the expansion coefficients, such that equation (2.19)
becomes

∆ = ∆̄ + γ(1) + γ(2) + ... with: γ(i) ∝ λi .

The perturbative expansion of the OPE coefficients is then given by

AO1O2
O3

= ĀO1O2
O3

+ (γ(1) + γ(2) + ...)AO1O2(1)
O3

+ 1
2(γ(1) + γ(2) + ...)2A

O1O2(2)
O3

+ ... .

Expanding the conformal blocks in terms of anomalous dimensions as well, will provide
us with the perturbative expansion of the four point function. We will use this method
in chapters 5 and 6 where the small expansion parameter is given by the bulk coupling
constant of the dual theory.





Chapter 3

Quantum field theory in
maximally symmetric, curved
space-times

Quantum field theory in curved space-time has a long history [116], however calculations
beyond tree-level are hard to perform due to the lack of symmetry of a general curved
space. From a technical as well as a phenomenological point of view it is therefore
reasonable to restrict ones analysis to specific classes of curved space-times, which
have certain symmetries. Following the treatment in flat space one can then construct
a Hilbert space out of irreducible representations of that symmetry group, therefore
providing a framework for a well defined quantum field theory.

The simplest non-flat space-times are arguably (Anti-)de Sitter space-times ((A)dS)
since they have the same number of symmetries as Minkowski space. At the same time,
dS is phenomenologically relevant since it approximately describes the inflationary stage
of our Universe [9,10]. In this chapter we will show how to define an interacting scalar
quantum field theory in these spaces. We will emphasize the similarities and differences
and make connection to the conformal field theory on the boundary. This lays the
theoretical groundwork for the computation of cosmological correlation functions. Parts
of this chapter contain reproductions of [57,71,90].

3.1 Geometry of (Anti-)de Sitter space-time
Let us first specify what we mean by maximal symmetry (see e.g. [117]). For a given
space-time (M, gµν) a one parameter group of diffeomorphisms φt : M → M is an isom-
etry if φ∗

t gµν = gµν . The vector field ξµ to which φt is the flow is called a Killing vector
field and the fact that φt is an isometry translates to the Killing equation

Lξgµν = ∇µξν + ∇νξµ = 0 . (3.1)

Maximal symmetry means that the number of linearly independent Killing vectors for
a space-time of dimension d + 1 is the maximum allowed by equation (3.1). Taking
another derivative of the Killing equation and performing some algebra leads to the
following second order differential equation for the Killing vectors

∇µ∇νξα = −R λ
ναµ ξλ . (3.2)
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Equation (3.2) can be turned into a system of first order differential equations deter-
mining the evolution of ξµ along a curve between two points a and b

tα∇αξµ = tαΞαµ, tα∇αΞµν = −R λ
µνα ξλt

α ,

where tα is the tangent vector along the curve and Ξµν := ∇µξν . It is obvious that ξµ is
completely determined by specifying ξµ and Ξµν at a. Since ξµ can have maximally d+1
independent components and Ξµν only has (d+1)d/2 components, due to equation (3.1),
the maximal number of linearly independent Killing vectors is (d + 2)(d + 1)/2. The
symmetries generated by ξµ are d+1 translations while the anti-symmetric components
of Ξµν generate the d(d+ 1)/2 rotations.

The Riemann tensor of a space-time with this number of symmetries should be
the same in every direction and invariant under rotations at every point. The invariant
symbols that obey this property are the metric gµν and the volume form √

gεµναλ. Con-
sidering the algebraic constraints on the Riemann tensor, the most general expression
we can build out of the invariant symbols is [118]

Rµνλγ = R

d(d+ 1)(gµλgνγ − gµγgνλ) , (3.3)

where R is the constant Ricci scalar. Up to the value of the Ricci scalar the geometry
is therefore completely determined by the symmetries. To fix the value of R we plug
(3.3) into the vacuum Einstein equations

Rµν − 1
2gµνR− Λgµν = 0 ,

to obtain

R = 2d+ 1
d− 1Λ , (3.4)

where Λ is the cosmological constant. Equation (3.4) tells us that there are three
types of maximally symmetric space-times classified by the sign of the cosmological
constant [119]. If Λ = 0 the Riemann tensor vanishes and we are left with Minkowski
space, if Λ > 0 we are in dS, while Λ < 0 defines AdS. In the following we will explore
the geometric properties and similarities and differences between the latter two.

3.1.1 Anti-de Sitter space-time

Let us first consider the maximally symmetric space-time with a negative cosmological
constant, denoted as anti-de Sitter space-time. A d+1 dimensional AdS can be defined
as a hyperboloid in a d + 2 dimensional ambient Minkowski space Rd,2 equipped with
a metric ηAB with signature (−,+, ...,+,−)

X2 := ηABXAXB = −(X0)2 +
d∑
i=1

(Xi)2 − (Xd+1)2 = − 1
a2 , (3.5)

where X = (XA), A = 0, . . . , d + 1 and a is the inverse of the anti-de Sitter radius.
From equation (3.5) it is clear that AdS is the Lorentzian version of Lobachevsky space.
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The induced metric on AdS is then given by

ds2 = −
a2
(

d∑
i=1

XidXi − Xd+1dXd+1
)2

1 + a2

(
d∑
i=1

(Xi)2 − (Xd+1)2

) +
d∑
i=1

(dXi)2 − (dXd+1)2 ,

which gives the Riemann tensor

RABCD = −a2(gACgBD − gADgBC) . (3.6)

This shows that the definition of AdS given by equation (3.5) is equivalent to the
definition as a maximally symmetric space-time with negative cosmological constant.
Comparing equation (3.6) to (3.3) and (3.4) we can relate the AdS radius to the cos-
mological constant through Λ = −d(d−1)

2 a2.
We proceed by analyzing the global structure of AdS (see e.g. [113]). There exists a

conformal boundary which can be seen by taking the limit X → ∞. Then equation (3.5)
becomes the lightcone equation for the ambient Minkowski space Rd,2

ηABXAXB := −(X0)2 +
d∑
i=1

(Xi)2 − (Xd+1)2 = 0 . (3.7)

The boundary of AdS is then given by the lines on the light-cone going through the
origin of Rd,2, which we write as

∂AdSd+1 = {[X] ∈ RPd+1 : ηABXAXB = 0} .

It is straightforward to see that any point on ∂AdSd+1 has to fulfill

d∑
i=1

(Xi)2 = 1, (X0)2 + (Xd+1)2 = 1.

This means that the topology of the boundary of AdS is given by (S1 × Sd−1)/Z2
where the quotient comes from the fact that X and −X are identified in projective
space RPd+1. To see that the boundary is actually a conformal compactification of
three-dimensional Minkowski space-time we define the null coordinates

U = Xd+1 + Xd, V = Xd+1 − Xd

such that equation (3.7) becomes

UV = −(X0)2 +
d−1∑
i=1

(Xi)2

If V 6= 0 this equation can always be rescaled such that V = 1. Then we can solve for
U , showing that for V 6= 0 the boundary ∂AdSd+1 is a three dimensional Minkowski
space. The value V = 0 corresponds to points at infinity which we have to add by hand.
They are essential to establish the conformal symmetry, which includes the exchange
of the origin with infinity. Such a construction is called a conformal compactification
of Minkowski space-time [120].



24 3. Quantum field theory in maximally symmetric, curved space-times

The geodesic distance in AdS can be obtained by symmetry considerations. It is
given by

d(X,Y) = 1
a

arccosh
(
−a2X · Y

)
.

Since the appearance of the hyperbolic function complicates calculations unnecessarily,
we only use the hyperbolic “angle” and define the quantity

K(X,Y) := − 1
a2X · Y (3.8)

For simplicity we will refer to this quantity as the inverse geodesic distance.
We are now ready to cover AdS with different coordinate patches. We will only

discuss the two patches relevant to our analysis. The global patch is important to
understand the overall causal structure and draw the conformal diagram. The Poincaré
patch will be useful for the calculation we perform later since the Wick rotation to
euclidean AdS is straightforward and the relation to the cosmological patch of dS is
more obvious.

AdSd+1

t

r 2
a2

Unfolding of t

X0

Xd

Xd+1

Figure 3.1: AdS2 as a hyperboloid embedded in three dimensional Minkowski space.

The global coordinates are defined by the following parametrisation

X0 = 1
a

cosh r cos t, Xi = 1
a
ωi sinh r, Xd+1 = 1

a
cosh r sin t,

where ωi parametrize the d − 1 sphere Sd−1, while r ∈ [0,∞) is the radial coordinate
and t ∈ [0, 2π) is the time. The metric in these coordinates becomes

ds2 = 1
a2

(
− cosh2 r dt2 + dr2 + sinh2 r dΩ2

d−1

)
where dΩ2

d−1 is the metric on Sd−1. This metric possesses a global time-like Killing
vector given by ∂t. However, the time-coordinate is circular and leads to closed time-
like curves as depicted in figure 3.1. To avoid the causality problems this would cause,
we consider from now on the universal cover of AdS. This means we unfold the time
coordinate to t ∈ R by not identifying 0 and 2π. To analyze the causal structure we
draw the conformal diagram of this space-time [113]. In order to do this we redefine
the radial coordinate by ρ = arctan(sinh(r)) to obtain a metric which is given by

ds2 = 1
a2 cos2 ρ

(
−dt2 + dρ2 + sin2 ρ dΩ2

d−1

)
(3.9)
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where ρ now has a finite range of ρ ∈ [0, π2 ). The point ρ = π
2 corresponds to the

conformal boundary ∂AdS at spatial infinity J. In order to have the Cauchy problem
in the bulk of AdS well-posed, i.e. guarantee global hyperbolicity, we have to add ρ = π

2
by hand [18]. The topology of this space is now R × Sd−1 and the conformal diagram
is given by figure 3.2.

J

ρ = −π
2

t → ∞

J

π
2

z = 0

t = 0

z
=

∞

z =
∞

Figure 3.2: Conformal diagram of AdS with the boundary at spatial infinity denoted
by J. The Poincaré patch with z = const. slicing is contained in the triangle.

The conformal diagram is infinite in the timelike direction due to the unfolding of t.
A lightlike geodesic reaches the boundary in finite time and is reflected into the bulk.
For further discussion of the geodesics we refer the interested reader to [121].

The second parametrisation we consider is the Poincaré patch, also depicted in
figure 3.2. It has the geometry of the upper half plane

H+
d+1 :=

{
X := (~x, z), ~x ∈ Rd, z > 0

}
, (3.10)

equipped with the metric

ds2 = 1
a2z2 (dz2 + ηµνdxµdxν), (3.11)

where ηµν is the d dimensional Minkowski metric. It is defined through

X0 = 1√
2az

(1 − ηµνx
µxν

2 − z2

2 ), Xi = xi

az
, Xd+1 = 1√

2az
(1 + ηµνx

µxν

2 + z2

2 ) .

The conformal boundary now lies at z = 0. The metric on the boundary can be found
by rescaling (3.11) with a function γ(z, xµ), which must have a second order zero at
z = 0. Taking the choice γ(z, xµ) = a2z2γ̃(xµ) we get the boundary metric [122]

ds2
∂AdS = γ(xµ)ηµνdxµdxν ,

which is an equivalence class of conformally Minkowski metrics reflecting the conformal
symmetry on the boundary.

Another property of the Poincaré patch is the fact that it only covers half of AdS,
the other half lying behind the coordinate singularity at z → ∞, which corresponds to
a cosmological horizon as can be seen in figure 3.2.
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The other half of AdS can be accessed through the anti-podal map

σ(~x, z) := (~x,−z). (3.12)

The fixed point of the anti-podal map, σ(~x, z) = (~x, z) is the conformal boundary of
AdS at z = 0. This operation exchanges the upper half space in (3.10) where z > 0
with the lower half space H−

d+1 :=
{
X := (~x, z), ~x ∈ Rd, z < 0

}
.

Just as for the global patch we find the global time-like Killing vector ∂t. This
property of AdS is a major difference with respect to dS when performing perturbative
quantum field theory calculations which we will discuss in section 3.3.

3.1.2 Euclidean Anti-de Sitter space

For the calculation of boundary correlation functions we are going to work in the
Wick rotated version of AdS called euclidean Anti-de Sitter (EAdS) or Lobachevsky
space, the reason being that the relation to the late-time physics in dS is much more
straightforward. Another advantage is the fact that the Poincaré patch actually covers
the entire space since it consists of two disconnected parts.

EAdS is defined similarly to AdS as a hyperboloid embedded in a d+ 2 dimensional
ambient Minkowski space-time, however, with a different signature given by the analytic
continuation Xd+1 → iXd+1, leading to

X2 := ηABXAXB = −(X0)2 +
d+1∑
i=1

(Xi)2 = − 1
a2 , (3.13)

This space consists of two disconnected parts as can be seen in the following way.
Choose the points where ∑d+1

i=1 (Xi)2 = 0. Since all terms in this sum have positive
signature this corresponds to choosing Xi = 0 for all i = 1, ..., d + 1. The solution to
equation (3.13) are the two points X0

± = ± 1
a . Unless a → ∞ the two points cannot

be transformed into one another by a continuous transformation meaning they are
disconnected. The same can be done for all other values of ∑d+1

i=1 (Xi)2, with the result
depicted in figure 3.3. Note that the situation differs from Lorentzian AdS due to the
sign difference of (Xd+1)2, which turns the point ∑d+1

i=1 (Xi)2 = 0 into a null surface
connecting the points X0

± = ± 1
a .

EAdSd+1

H+
d+1

H−
d+1

2
a2

X0

Xd

Xd+1

Figure 3.3: EAdS2 as a hyperboloid embedded in three dimensional Minkowski space.
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Taking the limit X → ∞ in equation (3.13) we find a lightcone equation

X2 = ηABXAXB = −(X0)2 +
d+1∑
i=1

(Xi)2 = 0, (3.14)

defining a conformal boundary given by the lines on the light-cone going through the
origin

∂EAdS := {[X] ∈ RPd+1 : ηABXAXB = 0}.

The difference in the signature of the metric manifests itself on the boundary as well.
We choose the null coordinates

U = X0 − Xd+1, V = X0 + Xd+1

such that equation (3.14) turns into

UV =
d∑
i=1

(Xi)2 . (3.15)

Equation (3.15) can be rescaled such that V = 1 if V 6= 0, so we can solve for U . This
means that the boundary of EAdSd+1 is a d dimensional euclidean space (Rd, δµν) with
points added at infinity corresponding to V = 0. We write ∂EAdS ' Rd ∪ {∞}.

As we noted above the Poincaré patch is enough to cover the entire connected part
of EAdS. It is given the upper half plane as defined in (3.10) with the metric given by

ds2 = 1
a2z2

(
dz2 + d~x2

)
, where: d~x2 =

d∑
i=1

(dxi)2,

and parametrically defined by

X0 = 1√
2az

(
1 − ~x2

2 − z2

2

)
, Xi = xi

az
, Xd+1 = 1√

2az

(
1 + ~x2

2 + z2

2

)
. (3.16)

The inverse geodesic distance defined in equation (3.8) expressed in Poincaré coor-
dinates is given by

K(X,Y) = 2zw
(~x− ~y)2 + z2 + w2 .

For later convenience we introduce the euclidean norm in the Poincaré patch, by
defining a d+ 1 vector X = (z, ~x), such that its norm is given by

‖X‖2 = z2 + ~x2 . (3.17)

Introducing an auxiliary vector u = (1,~0) we can express the inverse geodesic distance
K in terms of the euclidean norm as

1
K(X,Y) = 1 + ‖X − Y ‖2

2(u ·X)(u · Y ) ,

where the dot product is done with respect to the euclidean metric. We will make use
of this notation in the perturbative calculation in chapters 5 and 6.
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3.1.3 De-Sitter space-time

The cosmologically relevant example of a maximally symmetric space-time is the case
with a positive cosmological constant, called de Sitter (dS) space-time. Very similarly
to EAdSd+1 a d + 1 dimensional dS can be defined as an embedding into a d + 2
dimensional Minkowski space-time Rd+1,1 equipped with a metric ηAB with signature
(−,+, ...,+) (see e.g. [120])

X2 := ηABXAXB = −(X0)2 +
d+1∑
i=1

(Xi)2 = 1
a2 . (3.18)

From this equation it is obvious that dS is the Lorentzian version of a sphere with
radius 1/a. The induced metric is given by

ds2 = −
a2
(
d+1∑
i=1

XidXi

)2

1 + a2
d+1∑
i=1

(Xi)2
+
d+1∑
i=1

(dXi)2

leading to the Riemann tensor

RABCD = a2(gACgBD − gADgBC) ,

confirming the fact that the definition of dS from equation (3.18) is equivalent to the
statement that dS is a maximally symmetric space-time with a positive cosmological
constant.

We can find the conformal boundary by taking X → ∞ leading to the lightcone
equation (3.14). Note that contrary to the Lorentzian AdS case the boundary is now
time-like instead of space-like as depicted in figure 3.4.

dSd+1

r

t

2
a2

X0

Xd

Xd+1

Figure 3.4: dS2 as a hyperboloid embedded in three dimensional Minkowski space.

The boundary of dS is given by the lines on the lightcone going through the origin

∂dS := {[X] ∈ RPd+1 : ηABXAXB = 0}

and since the defining equation is the same as for EAdS the boundary has the same
geometry, i.e. is given by Rd ∪ {∞} with a euclidean metric.
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The geodesic distance in dS can again be obtained from pure symmetry considera-
tions and is given by (see e.g. [83])

d(X,Y) = 1
a

arccos(a2X · Y) ,

with the angular quantity given by

K(X,Y) = 1
a2X · Y .

Starting from an observer at the origin we can separate dS into causally disjoint regions
based on the value of K. The region of points with K < 1 distance to the observer
are time-like separated, while K > 1 corresponds to space-like and K = 1 to null
separation.

Let us cover dS with different coordinate patches [123]. We will again only discuss
the global patch and the Poincaré patch. The global patch covers the entire manifold
and is important in order to analyze the causal structure and draw the conformal
diagram. It has the cosmological interpretation of a Friedmann universe only filled with
dark energy and positive spatial curvature. The Poincaré patch is interesting from a
technical and phenomenological point of view. Technically it is appealing since it does
not contain any cosmological horizons and we only see the boundary at future infinity.
Phenomenologically it is relevant since it corresponds to a spatially flat Friedmann
universe, filled with dark energy, which, according to current observations, is a likely
scenario for the asymptotic future and the inflationary stage in the past of our universe.

The global patch is given by

X0 = 1
a

sinh(at), Xi = 1
a

cosh(at) sin rωi, Xd+1 = 1
a

cosh(at) cos r , (3.19)

where ωi parametrize the d − 1 sphere Sd−1, while r ∈ [0, π] and t ∈ (−∞,∞). The
metric in this parametrisation is given by

ds2 = −dt2 + 1
a2 cosh(at)

(
dr2 + sin2 rdΩ2

d−1

)
.

An important difference with respect to AdS is the fact that this metric does not posses
a global time-like Killing vector. This will lead to major complications when we want
to describe the time evolution of a scalar field, since the vacuum is not invariant under
time translations anymore, as will be discussed in section 3.3.

To draw the conformal diagram we have to compactify the time direction by intro-
ducing conformal time η̃ as η̃ = 2 arctan(tanh(at/2)) to obtain a metric which is given
by

ds2 = 1
a2 cos2 η̃

(
−dη̃2 + dr2 + sin2 r dΩ2

d−1

)
.

The conformal time coordinate now has a finite range η̃ ∈ [0, π] where the locations
η̃ = 0, π correspond to the conformal time-like boundary ∂dS which we will call future
and past infinity J± and the coordinate singularities at r = 0, π correspond to the
poles of the spherical spatial slicing. We can therefore draw the conformal diagram of
dS given in figure 3.5.
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r = 0
η̃ = 0

πJ−

J+

η = 0
π

η
=

−∞η =const

Figure 3.5: Conformal diagram of dS in the gobal patch and the Poincaré patch.

The second parametrisation we consider is the Poincaré patch which for dS is given
by

X0 = 1√
2aη

(
1 + ~x2

2 − η2

2

)
, Xi = xi

aη
, Xd+1 = 1√

2aη

(
1 − ~x2

2 + η2

2

)
, (3.20)

where ~x ∈ Rd and η ∈ (−∞, 0]. It corresponds to the lower half space

H−
d+1 := {X := (~x, η) : ~x ∈ Rd, η < 0} .

As depicted in figure 3.5 it only covers half of dS, while the other half is behind a
cosmological horizon and therefore causally disconnected. The conformal boundary at
future infinity is now located at η = 0 and by following a similar argument as for AdS,
we find that the metric on the boundary is given by a class of conformally related
euclidean spaces, reflecting the euclidean conformal symmetry on the boundary.

The inverse geodesic distance in this parametrisation is given by [68]

K(X,Y) := 1
a2X · Y = 2ηxηy

η2
x + η2

y − (~x− ~y)2 . (3.21)

Just as for the global patch we notice that there is no globally defined time-like
Killing vector.

Comparing the Poincaré patches in dS and EAdS we notice that they are related
by the double Wick rotation z → −iη and a → −ia. Even though this relation is very
useful to carry over results from EAdS to dS it has to be treated with much caution
since it interchanges to roles of space and time.

3.2 Irreducible representations of the (Anti-)de Sitter sym-
metry group

Having analyzed the geometry of (A)dS as the two maximally symmetric space-times
with a non-vanishing cosmological constant we want to proceed by considering the
symmetry groups of these space-times [124–126]. Our goal is to follow the example
from flat space and find unitary irreducible representations of the symmetry groups
which we can use to build a Hilbert space.



3.2 Irreducible representations of the (Anti-)de Sitter symmetry group 31

The defining equations (3.5), (3.13) and (3.18) are all of the form

ηABXAXB = const , (3.22)

where ηAB is the metric of the ambient Minkowski space with signature (−,+, ...,+,−)
for Lorentzian AdS and (−,+, ...) for EAdS and dS. The groups, preserving equation
(3.22) are the orthogonal groups O(d, 2) and O(d + 1, 1). We are interested in the
representations of the Lie algebra and will therefore focus on the subgroup of transfor-
mations with unit determinant, given by proper orthochronous (A)dS groups SO(d, 2)
and SO(d+1, 1). Both groups have (d+2)(d+1)/2 generators, matching the number of
Killing vectors of a maximally symmetric space-time. The Lie algebra of these groups
is given by

[JAB, JCD] = −i (ηADJBC + ηBCJAD − ηACJBD − ηBDJAC) , (3.23)

where we have to choose the correct signature for the metric ηAB depending on whether
we consider SO(d, 2) or SO(d + 1, 1). The isomorphism from the generators JAB of
SO(d, 2) to the conformal algebra on d dimensional Minkowski space, given by the
generators of the Poincaré group Mµν , Pµ, the dilatation D and the special conformal
generators Kµ, is defined by

Mµν = Jµν , D = Jd+1,d, Pµ = 1√
2

(Jµ,d+1 − Jµ,d) , Kµ =
√

2 (Jµ,d+1 + Jµ,d) ,

(3.24)

with the indices µ, ν ∈ {0, ..., d− 1}. It is straightforward to check that equation (3.24)
together with (3.23) gives the algebra of conformal generators given by (2.3). The
unitary irreducible representations of SO(d, 2) can be decomposed into a product of
irreducible representations of its maximal compact subgroup given by SO(d) × SO(2).

They are labeled by the spin ` and the scaling dimension ∆. Unitarity implies the
following boundaries on the scaling dimensions [105]

∆ ≥ `+ d− 2, for ` > 0, and ∆ ≥ d− 2
2 .

In both cases ∆ ∈ R and there is no upper limit.
This is a major difference when considering the de Sitter group SO(d + 1, 1). The

algebra of generators is again given by equation (3.23), this time, however, with the
metric signature (−,+, ...,+). The isomorphism from the generators JAB to the gen-
erators of the euclidean conformal group then becomes

Mij = Jij , D = J0,d+1, Pi = 1√
2

(Ji,0 − Ji,d+1) , Ki =
√

2 (Ji,0 + Ji,d+1) , (3.25)

with the indices i, j ∈ {1, ..., d}. Again we can label the irreducible representations by
the spin of the SO(d) part and the scaling dimension ∆. This time, however, unitarity
puts some more complicated restrictions on the values of ∆. Contrary to the SO(d, 2)
case it can now take complex values, but is restricted to fall into different classes.

The principal series exists for any spin ` and the scaling dimension can take values

∆ = d

2 + iν with ν ∈ R . (3.26)
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As we will discuss in section 3.3 this representation corresponds to heavy fields in dS.
The complementary series, corresponding to light fields in dS, is given by

∆ = d

2 + ν with ν ∈ R , (3.27)

where −d
2 < ν < d

2 for ` = 0 and 1 − d
2 < ν < d

2 − 1 for ` > 0. As we will discuss
in section 3.3, this representation will be most relevant to us, since we will consider
conformally coupled massless fields. For an in depth discussion of the representation
theory of SO(d+ 1, 1) we refer to [125].

EAdS can be constructed from the same ambient Minkowski space as dS with the
same signature of the metric. Therefore, we could conclude that the Hilbert space of
EAdS should be constructed from unitary irreducible representations of SO(d + 1, 1).
But this is well-known not to be the case. The scaling dimension for EAdS can be
obtained by setting a → ia in equation (3.32). The value for ∆ is therefore always
real and the fields transform under unitary irreducible representations of SO(d, 2) the
symmetry group of the Lorentzian version of EAdS. This is not a problem since QFT
in EAdS is a euclidean field theory. Only after Wick rotation to Lorentzian AdS the
Hilbert space should be given by unitary representations which it clearly does.

The situation for dS is different. In the four-point function that we analyze in our
perturbative calculation in chapter 6, we will see that there are operators appearing
in the spectrum with arbitrary dimensions not obeying any SO(d + 1, 1) unitarity
constraints. However, since there is no operator state correspondence in dS, this does
not really pose a problem, it just hints at the fact that the relation between the bulk
and boundary degrees of freedom is more obscure in dS than in AdS. These points have
been raised recently in the context of a proposed cosmological bootstrap in [87,88].

Finally we would like to express the generator of the SO(d+ 1, 1) symmetry groups
in term of the local coordinates of the Poincaré patch. The action of a generator ĴAB
as an operator on a local scalar field operator φ̂(X) is defined as

[ĴAB, φ̂(X)] = i

(
XA

∂

∂XB
− XB

∂

∂XA

)
φ(X) .

Using the isomorphism from equation (3.25) together with the definition of the Poincaré
patch in (3.20), we can express the generators of the dS group in terms of differential
operators on smooth functions

J0,d+1 = i

(
X0

∂

∂Xd+1 −Xd+1
∂

∂X0

)
= i

(
η∂η + xi∂i

)
(3.28)

Jij = i

(
Xi

∂

∂Xj
−Xj

∂

∂Xi

)
= i(xi∂j − xj∂i) = Mij

Ji0 = i

(
Xi

∂

∂X0 −X0
∂

∂Xi

)
= i√

2

(
−xiη∂η − xix

j∂j +
(

1 + ~x2

2 − η2

2

)
∂i

)

Ji,d+1 = i

(
Xi

∂

∂Xd+1 −Xd + 1 ∂

∂Xi

)
= i√

2

(
−xiη∂η − xix

j∂j −
(

1 − ~x2

2 + η2

2

)
∂i

)
⇒ Ji0−Ji,d+1 =

√
2i∂i =

√
2Pi

⇒ Ji0+Ji,d+1 = i√
2

(
−2xiη∂η − 2xixj∂j + (~x2 − η2)∂i

)
.
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Taking the limit η → 0 just reduces the de Sitter generators to the generators of the
conformal group on Rd

Jij = Mij , Ji0 − Ji,d+1 =
√

2i∂i =
√

2Pi, J0,d+1
η→0−→ ixi∂i = D,

Ji0 + Ji,d+1
η→0−→ i√

2

(
x2∂i − 2xixj∂j

)
= 1√

2
Ki .

The expressions in EAdS can be found by making the corresponding substitu-
tion η → iz.

Finally we want to calculate the quadratic Casimir of SO(d+ 1, 1). First, consider
the well known result for the Casimir of the conformal group in d dimensions [104]
given by

C2 = 1
2J

ABJAB = D2 − 1
2
(
KiP

i + PiK
i
)

− 1
2MijM

ij = ∆(∆ − d) + `(`+ d− 2) .
(3.29)

At the same time we can use equations (3.28) to express the quadratic Casimir as a
differential operator acting on a scalar field which is given by

C2 = 1
2J

ABJAB = η2∂2
η − (d− 1)η∂η − η2∇2 = − 1

a2�dS . (3.30)

The expression for EAdS can be obtained by doing the substitutions η → iz and a → ia.
If we consider a massive scalar field in dS it will evolve according to the Klein-Gordon
equation

(−�dS +m2)φ = 0 . (3.31)

Comparing equations (3.29), (3.30) and (3.31) we find the following relation between
the mass of scalar field and scaling dimension on the boundary

∆(∆ − d) = −m2

a2 ⇔ ∆± = d

2 ±

√
d2

4 − m2

a2 . (3.32)

We immediately recognize the two unitarily equivalent representations of the principle
and complementary series given in (3.26) and (3.27). For heavy fields m2

a2 > d2

4 the scal-
ing dimension becomes complex and we are in the principal series, while for light fields
we are in the complementary series. In any case, the equations of motion guarantee
that any free field transforms in a unitary irreducible representation of the dS group.

The situation is slightly different for EAdS. The scaling dimension can be obtained
by setting a → ia in equation (3.32). The value for ∆ is therefor always real and
the fields do not necessarily transform under unitary irreducible representations of
SO(d+ 1, 1), but rather SO(d, 2). Since this is the symmetry group of the Lorentzian
version of EAdS, this is to be expected.

3.3 Perturbative quantum field theory in (A)dS
Now that we analyzed the geometry of (A)dS and specified the Hilbert space, we can
proceed with defining a quantum field theory in those respective space-times. We
will only discuss massive scalar fields. Starting with the somewhat simpler case of
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(E)AdS we will describe how the AdS/CFT correspondence arises naturally through a
state operators correspondence between the bulk and the boundary. Subsequently we
will consider dS where the situation is much more complicated, since no state operator
correspondence exists and the time translation is not an isometry of the space-time. We
have to introduce the Schrödinger picture of quantum field theory and non-equilibrium
techniques in perturbation theory, known as the Schwinger-Keldysh formalism to make
sense of the calculation. From now on we will always work in the Poincaré patch.

The main references for this section are given by [15, 22, 68, 83, 113, 116, 127, 128].
This section contains reproductions of [57,71,90].

3.3.1 Scalar field theory in (E)AdS

Let us start with the classical theory of a scalar field in AdS in the Poincaré patch. Our
strategy is to start with the euclidean theory. This will give us a unique definition of the
propagator, up to the choice of boundary conditions. Once we found these solutions in
EAdS we can Wick rotate to Lorentzian AdS which will automatically provide us with
the correct conformal vacuum and time-ordered propagator with an iε prescription.

The classical action in EAdS is given by

S[φ] =
∫

EAdS

√
gdd+1X

(1
2(∂φ)2 + 1

2m
2φ2

)
. (3.33)

The mass term m2 in the action is in fact an effective mass, given by the expression

m2 = m̃2 + ξR , (3.34)

where m̃ is the actual physical mass of the field, while ξR is the non-minimal coupling
to the background geometry with R being the Ricci scalar. The case ξ = 0 corresponds
to so called minimal coupling, meaning that the only interaction of the field with the
background happens through the integration measure and the metric in the kinetic
term. A minimally coupled, massless field therefore has effective mass m2 = 0 and,
comparing to (3.32), corresponds to the scaling dimensions ∆ ∈ {d, 0}.

The most relevant case to us is the conformally coupled, massless field. After
setting the physical mass m̃ = 0, we demand that the trace of the energy-momentum
tensor vanishes on-shell. This leads to the condition on the non-minimal coupling
parameter [116]

ξ = 1
4
d− 1
d

. (3.35)

Plugging in the Ricci scalar of AdS and using equation (3.32) with a → ia we obtain
the following values for the scaling dimensions of a conformally coupled, massless field

∆± = d± 1
2 . (3.36)

For now we will keep the value of m general and only specialize to the conformally
coupled, massless case once we perform perturbative calculations of the interacting
theory.

The equation of motion for the free field in the Poincaré patch of EAdS is given by

(−�EAdS +m2)φ(z, ~x) =
(

−z2∂2
z + (d− 1)z∂z − ∆ + m2

a2

)
φ(z, ~x) = 0 , (3.37)
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where ∆ is the usual d dimensional Laplace operator. This equation, however, is only
valid in the interior of EAdS. To have a well-posed Cauchy problem we need to specify
conditions at the boundary. We consider the on-shell action which is given by plugging
the solution of (3.37) into the action (3.33). Upon using Green’s second identity, the
variation of the action becomes [127]

δS[φ] =
∫

EAdS

√
gdd+1Xδφ

(
−�EAdS +m2

)
φ+ 1

2

∫
∂EAdS

dd~x
(az)d−1 (φ∂zδφ− δφ∂zφ) .

The first term vanishes on-shell due to the equation of motion in the bulk, while for
the second term to vanish we have to impose boundary conditions the form

z∂zφ|z→0 = Aφ|z→0, ⇒ z∂zδφ|z→0 = Aδφ|z→0 , (3.38)

with A an arbitrary constant.
Let us now analyze the equation of motion in the bulk. The d’Alembertian �EAdS

can be expressed in terms of the inverse hyperbolic distance K defined in the equation
(3.8). After fixing boundary conditions the configuration of a field φ(X) will be given
in terms of the configuration at an initial value φ0(Y ) as

φ(X) =
∫
EAdS

√
gdd+1Y Λ(X,Y )φ0(Y )

where Λ(X,Y ) is the euclidean Green function determined by the equation of motion
in terms of K[

K2(1 −K2) d2

dK2 + 2K
(

1 −K2 − d+ 1
2

) d
dK + m2

a2

]
Λ(K) = 1

√
g
δ4(X − Y) .

(3.39)

It is clear that the solution only depends on K. We find the general solution

Λ(X,Y; ∆±) =C+(∆+)K∆+ 2F1

(∆+
2 ,

∆+ + 1
2 ; ∆+ − d− 4

2 ;K2
)

+ C−(∆+)K∆− 2F1

(∆−
2 ,

∆− + 1
2 ; ∆− − d− 4

2 ;K2
)
, (3.40)

expressed in terms of Gauss’ hypergeometric function 2F1(a, b; c; z), where ∆ is given by
equation (3.32) with a → ia. The coefficients C± are fixed by the boundary conditions
as defined in equation (3.38) and the flat limit. To see how this works, we expand
equation (3.40) at the boundary z → 0 which gives us

lim
z→0

Λ(X,Y; ∆+) = C+(∆+)
(

(2zw)∆+

((~x− ~y)2 + w2)∆+
+ · · ·

)
+ C−(∆+)

(
(2zw)∆−

((~x− ~y)2 + w2)∆−
+ · · ·

)
.

In the limit z → 0 a field which solves the equation of motion will therefore be given
by

lim
z→0

φ(X) =
(
φ0(~x)z∆− + ...

)
+
(
φ̃0(~x)z∆+ + ...

)
,

where φ0 and φ̃0 only depend on the boundary coordinates. If we now go back to
equation (3.38) we get the following condition

(∆− −A)φ0z
∆− + (∆+ −A)φ̃0z

∆+ = 0 .
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We immediately see, that the choice A = ∆+ requires φ0 = 0, meaning the field falls off
like ∼ z∆+ , while A = ∆− means φ̃0 = 0, i.e. the fall-off behaviour at the boundary is
∼ z∆− . For the Green function this corresponds to either setting C− or C+ to zero. We
will see that these two choices are the equivalent to Dirichlet and Neumann boundary
conditions in flat space.

To completely fix the value of the integration constant C± we have to demand that
we obtain the usual euclidean flat space Green function when taking the flat limit. To

do this, we define the radial coordinate r2 =
d+1∑
i=1

(Xi)2 = −a−2 + (X0)2. Then we can

express K(X,Y) in terms of r by choosing Y = (a−1, 0, ..., 0) so K becomes

K(X,Y) = 1
a2X · Y

= 1√
1 + a2r2

. (3.41)

The flat limit is given by taking the curvature radius a−1 to be much larger than the
radial distance r, corresponding to taking the limit ar → 0, such that

K = 1 − 1
2(ar)2 + O((ar)4) .

The Green function (3.40) with either Dirichlet or Neumann boundary conditions im-
posed in this limit is given by

lim
ar→0

Λ(X,Y,∆) =
Γ
(
d−1

2

)
Γ
(
∆ − d

2 + 1
)

Γ
(

∆+1
2

)
Γ
(

∆
2

) C(∆)
(ar)d−1 :=

Γ
(
d+1

2

)
2(d− 1)π d+1

2 rd−1
(3.42)

where in the last step we set the limit equal to the flat space propagator in d dimensions.
We can therefore solve for C(∆) and arrive at the canonically normalized propagator

Λ(X,Y,∆) = N∆K
∆

2F1

(∆
2 ,

∆ + 1
2 ; ∆ − d− 4

2 ;K2
)
, (3.43)

were the normalization constant is given by

N∆ := ad−1

4π d+1
2

Γ
(

∆+1
2

)
Γ
(

∆
2

)
Γ
(
∆ − d

2 + 1
) . (3.44)

If we consider the singular structure of this propagator we notice that there are two
singularities at K = ±1, corresponding to coinciding and antipodally coinciding points.
In EAdS this is not a problem since the antipodally related points lie on disconnected
parts of the space and after Wick rotating to Lorentzian AdS, are always space-like
separated, as we discussed in section 3.1.

We can obtain the time-ordered Feynman propagator in the Lorentzian AdS theory
in the same way as in flat space by Wick rotating the time direction from euclidean
time to Lorentzian time. In the Poincaré patch this means continuing xd → −ix0.
To implement time-ordering we have to introduce an iε prescription which we will
choose to be the same that gives the correct flat limit (see [18] for details). Then the
time-ordered Feynman propagator is given by

ΛF (X,Y,∆) = ad−1

4π d+1
2

Γ
(

∆+1
2

)
Γ
(

∆
2

)
Γ
(
∆ − d

2 + 1
) K∆

2F1

(∆
2 ,

∆ + 1
2 ; ∆ − d− 4

2 ;K2 − iε

)
.
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At this point we should comment on the choice of the vacuum. As is well known
the choice of a Green function, with fixed boundary conditions corresponds to choosing
a vacuum state. We saw in equation (3.36) that a conformally coupled massless scalar
field in d+1 = 4 bulk dimensions corresponds to ∆+ = 2 and ∆− = 1. The propagator
(3.43) for these scaling dimensions simplifies drastically and is given by

Λ(X,Y; ∆) =
(
a

2π

)2 K(X,Y)∆

1 −K(X,Y)2 . (3.45)

Since these fields are conformally invariant and the Poincaré patch of EAdS is related
to the upper half space by a Weyl transformation, a natural choice for the vacuum is
the conformal vacuum which is defined through the Green function as [116]

ΛF (X,X ′) = Ω(X)−1Ω(X ′)−1GF (X,X ′) . (3.46)

Here GF (X,X ′) is the Feynman Green function in flat space and Ω(X) is the scale
factor relating AdS to flat space such that gAdSµν = Ω2ηµν .
To choose the correct vacuum state in the half space we have to specify boundary
conditions at z = 0. If we choose Dirichlet boundary conditions the mode functions in
euclidean space have to behave like sin(kzz)ei(kxx+kyy+k0x0). The euclidean propagator
in the upper half space is therefore

G
(D)
E (X,X ′) ∝

∫
d4k

sin(kzz) sin(−kww)
k2 ei(kx(x−x′)+ky(y−y′)+k0(x0−x′

0))

= π

2

 1
2∑
i=0

(xi − x′
i)2 + (z − z′)2

− 1
2∑
i=0

(xi − x′
i)2 + (z + z′)2

 . (3.47)

This result can be obtained by putting an additional “source” at σ(z′, ~x′) = (−z′, ~x′),
which is the familiar method of mirror charges. It can be easily checked that equation
(3.47) is related to (3.45) for ∆ = 2 by (3.46). The equivalent argument holds for the
Neumann propagator and a Wick rotation automatically provides us with the correct
Feynman propagator. These propagators therefore correspond to the conformal vacuum
with respect to the upper half space with respective boundary conditions.

State operator correspondence

A major feature for defining quantum field theory in AdS and basis for the AdS/CFT
correspondence is the existence of on operator state correspondence between local op-
erators in the bulk and states on the boundary. We follow the argumentation in [129].

Starting in the conformal global patch of AdS given by (3.9) we can Wick rotate to
EAdS in global coordinates and quantize the theory on equal time-slices t. An equal
time slice in the global patch corresponds to a hemisphere in the Poincaré patch given
by

z2 + ~x2 = e2t . (3.48)

Equation (3.48) makes it clear that t → −∞ corresponds to a point. So if we place a
local operator O(t, x) in the infinite past in the global patch, the wave function of the
corresponding state at finite time represented in the Poincaré patch will be given by

〈φ0 |O(0)| 0〉 = ΨO[φ0] =
∫

z2+x2=e2t

Dφe−S[φ]O(0) (3.49)
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where φ0 is the configuration of the field on the hemisphere. This is obviously just
the Schrödinger representation of a state produced by acting with an operator on the
vacuum. Since we established that each bulk field in AdS corresponds to a boundary
operator with a definite scaling behaviour under dilatations we conclude that equation
(3.49) corresponds to a state on the boundary, where global time evolution in the bulk
translates into radial evolution in ‖~x‖.

∂EAdS

z

O
r

ΨO

Figure 3.6: An operator inserted at past infinity in global time corresponds to a state
ΨO on the hemisphere in the Poincaré patch. The hemisphere can be contracted to a
point, defining a local operator O for every state on the hemisphere at the origin.

To show the other direction is straightforward as well. Consider two hemispheres as
defined in equation (3.48) with radii defined through global time t1, t2 with t1 < t2. We
define an eigenstate of the dilatation operator Ψ∆[φ1] with eigenvalue ∆ as the path
integral over the interior of the hemisphere with radius et1 and define a weighted path
integral from t1 to t2 by ∫

Dφ2Dφ1e−S[φ]e∆(t1−t2)Ψ∆[φ1] . (3.50)

The integral from t1 to t2 corresponds to free propagation which can be undone by
acting with the dilatation operator given by e∆(t2−t1), revealing that equation (3.50)
is equivalent to Ψ∆[φ1]. Taking the limit t1 → −∞ collapses the inner hemisphere
to a point on the boundary which can again be thought of as a local operator on the
boundary with scaling dimension ∆.

This reasoning establishes a state operator correspondence between bulk fields in
AdS and states on the boundary, schematically depicted in figure 3.6. A good expla-
nation of this point can also be found in [87].

Perturbative calculations in EAdS and Witten diagrams

Having set up the framework for quantum field theory in AdS we are now in a position to
perform perturbative calculations. We are interested in obtaining correlation functions
of field operators on the boundary of AdS, which is the analogue of the S-Matrix in
flat space. The Poincaré patch in AdS has a globally defined time-like Killing vector,
therefore making the vacuum defined on some initial time-slice invariant under time-
translations. We can therefore Wick rotate to EAdS, perform all the calculations in
euclidean time and interpret the result in Lorentzian AdS by Wick rotating back.

An n point correlation function of a scalar field φ(x) in euclidean field theory is
uniquely defined by insertions into the path integral over the entire manifold〈

n∏
i=1

φ(Xi)
〉

:=
∫
Dφe−S[φ]∏n

i=1 φ(Xi)∫
Dφe−S[φ] = δn

δj(X1)...j(Xn) log(Z[j])|j=0 , (3.51)
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with the the generating functional Z[j] defined as the path integral over the euclidean
action S[φ] coupled to a source j(X)

Z[j] =
∫

Dφe−S[φ]+
∫

dd+1Xφ(X)j(X) .

For a free scalar field defined action (3.33) the path integral in (5.27) reduces to Gaus-
sian integration which can be performed exactly, leading to

Zfree[j] = Z[0]e− 1
2

∫
dd+1Xdd+1Y j(X)Λ(X,Y,∆)j(Y ) . (3.52)

Plugging equation (3.52) into (3.51), we see that the free field only has correlation
functions between even numbers of points, which are given by products of the two
point function, which in turn is given by the Green function Λ.

Each operator in the bulk can be associated to an operator on the boundary that
transforms like an eigenstate of the dilatation operator. The scaling dimension is set
by the boundary condition imposed on the bulk field. The correlation function of the
conformal operators at the boundary can therefore be obtained by extrapolating the
bulk-to-bulk correlation functions from equation (3.51) to the boundary [21] by taking
the limit 〈

n∏
i=1

O∆(~xi)
〉

:= lim
zi→0

z−∆
i

〈
n∏
i=1

φ(Xi)
〉
,

where the additional rescaling by z−∆
i is done to obtain a finite result. The propagator

with on external point on the boundary and one point in the bulk is the bulk-to-
boundary propagator, defined as

Λ̄(~x, Y ) := lim
z→0

z−∆Λ(X,Y; ∆) =
ad−1Γ

(
∆
2

)
Γ
(

∆+1
2

)
4π d+1

2 Γ
(
∆ − d

2 + 1
) (2w)∆

((~x− ~y)2 + w2)∆ (3.53)

=
ad−1Γ

(
∆
2

)
Γ
(

∆+1
2

)
4π d+1

2 Γ
(
∆ − d

2 + 1
) 2(u · Y )∆

‖~x− Y ‖2∆ ,

where in the last step we expressed K by the euclidean norm introduced in (3.17) and
the auxiliary vector u is defined as u = (0, ..., 1) such that u · Y = w.

Introducing interactions is straightforward and follows the same steps as in flat
space. If we add a self-interaction term of the form 1

n!λφ
n in the action of the path

integral, we can expand in orders of λ and replace the φ of the interaction vertex with
functional derivatives in terms of j(x). This adds an internal vertex for each order in
λ. A boundary m point correlation function at order O(λk) is therefore given by〈

m∏
i=1

O∆(~xi)
〉∣∣∣∣∣

λn

= lim
zi→0

z−∆
i

δm

δj(X1)...j(Xn) log
(

(−λ)k
k∏
l=1

∫
dd+1Xl

δn

δj(Xl)n
Z[j]

)∣∣∣∣∣
j=0

There is a nice diagrammatic representation of these correlation functions, called Wit-
ten diagrams [22], which applies the concept of Feynman diagrams to AdS. Drawing
a Witten diagram works the following way. The boundary of AdS is represented by a
circle. For each boundary operator, draw a point on the boundary and for each bulk
vertex draw a point in the bulk. Then connect the points in all possible ways allowed
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by the interaction vertex, where boundary points can only attach to one line. Sum-
ming over all possible diagrams drawn this way and multiplying by the corresponding
symmetry factor [130] provides us with the contribution to the correlation function at
the given order in λ. An example of a four point function is depicted in figure 3.7. In

~x1

F∆

~x2

~x3

~x4

X1 X3

X2 X4

Figure 3.7: Example of a four-point Witten diagram, where F∆ only depends on
bulk-to-bulk propagators.

chapter 4 we will analyse the mathematical properties of these diagrams which we will
use extensively in chapters 5 and 6 to calculate four point functions of λφ4 theory in
(A)dS.

3.3.2 Scalar field theory in dS

Defining quantum field theory in dS is somewhat more complicated than in AdS. We
will start again with the classical theory of a free scalar field in the Poincaré patch of
dS. To define the propagator we will go to the euclidean version of dS, which is just a
sphere. This will give us a unique Green function and upon Wick rotating back and to
dS and restricting to the Poincaré patch we will obtain a unique definition of a vacuum,
called the Bunch-Davies or euclidean vacuum (see [65–68]).

The classical action of a free scalar field in a de Sitter space-time is given by

S[φ] =
∫

dS

√
gdd+1X

(
−1

2(∂φ)2 − 1
2m

2φ2
)
, (3.54)

where m2 is the effective mass term given in equation (3.34). We can repeat the
same analysis as we did for EAdS. By considering the general formula for the scaling
dimension (3.32) we find that the minimally coupled massless case is given by ∆ ∈
{d, 0}. For the conformally coupled case we plug in equation (3.35) together with the
Ricci scalar of dS. Note that the dS Ricci scalar has an opposite sign with respect to
EAdS, cancelling the sign difference in the scaling dimension. This means we obtain
the same values for the scaling dimension of a conformally coupled scalar field given by
equation (3.36).

In the global patch of dS, given by (3.19), a Wick rotation t → it leads to X0 → iX0

which turns the defining equation of dS (3.18) into the equation of the d + 1 sphere.
The conformal boundaries at future and past infinity just become the north and south
pole of the sphere, since the sphere obviously does not possess any spatial boundaries.
From the euclidean action we obtain the Klein-Gordon equation on the sphere, which
is given by equation (3.39), with the difference that K(X,Y) is now

K(X,Y) = 1
a2δABXAXB

.
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The solutions to the equation of motion in terms of K are in principle the same as
for EAdS. There is however a different basis for the solutions, related to (3.40) by an
identity on the hypergeometric functions which is more appropriate for the boundary
conditions imposed in dS. The solutions are given by [83]

Λ(X,Y) = A+
2F1

(
∆+,∆−; d+ 1

2 ; K − 1
2K

)
+A−

2F1

(
∆+,∆−; d+ 1

2 ; K + 1
2K

)
.

(3.55)

Since the sphere does not posses a boundary we have to find a different way to fix
the integration constants A±. We notice that the first term in (3.55) has a singularity
at K = 1 while the second term at K = −1. The former singularity corresponds to
coinciding points, while the latter appears for antipodally coinciding points. As the
second situation would imply non-local interactions, we choose the boundary condition
A− = 0. A+ can be fixed by taking the flat limit equivalently to the EAdS case in
equation (3.42), to get the following normalized Green function on the sphere

ΛS(X,Y) = NdS 2F1

(
∆+,∆−; d+ 1

2 ; K − 1
2K

)
, (3.56)

with the normalization constant given by

NdS = Γ(∆+)Γ(∆−)
(4π) d+1

2 Γ
(
d+1

2

) .
The Green function in dS is obtained from equation (3.56) by Wick rotating back and
restricting to the Poincaré patch, which we will denote by Λ(K(X,Y)). To obtain the
correct time ordering for the Feynman propagator when taking the flat limit, we have
to demand the correct behavior across the branch cut at 0 < K < 1 which coincides
with the region of time-like separation. We therefore demand that the commutator
between two fields at space-like separation should vanish, while at time-like separation
it should be non-vanishing. Expressed in terms of two point functions of the vacuum
state defined by the analytic continuation of (3.56), this means

〈0 |[φ(X), φ(Y )]| 0〉 = Λ(K(X,Y)) − Λ(K(Y,X)) .

For this expression to be non-vanishing for time-like separation we have to demand that
we approach the branch cut from above and below depending on the time-ordering. In
the Poincaré patch this leads to the replacement K → K − iεsgn(|ηx| − |ηy|), where ε
is an infinitesimal, positive, real parameter. The two point function with the correct
behavior across the branch cut is therefore given by

ΛTA(X,Y) := Λ(K(X,Y) − iεsgn(|ηx| − |ηy|) . (3.57)

The time ordered Feynman two point function is therefore given by

ΛTT (K(X,Y)) := 〈0 |T{φ(X1)φ(X2)}| 0〉
= θ(|ηx| − |ηy|)ΛTA(X,Y) + θ(|ηy| − |ηx|)ΛTA(Y,X) .

This can be written in a more compact form replacing K → K+ iε in (3.56). The time
ordered Feynman Green function in dS is therefore given by

ΛTT (K(X,Y)) = NdS 2F1

(
∆+,∆−; d+ 1

2 ; K − 1
2K − iε

)
, (3.58)
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while the anti-time ordered two point function is given by

ΛAA(K(X,Y)) :=
〈
0
∣∣∣T̄{φ(X1)φ(X2)}

∣∣∣ 0〉
= θ(|ηx| − |ηy|)ΛTA(Y,X) + θ(|ηy| − |ηx|)ΛTA(X,Y)
= Λ(K(X,Y) + iε) . (3.59)

These Green functions define the Bunch-Davies or euclidean vacuum. Let us mention
that this is not the unique de Sitter invariant vacuum. There is an infinite space of
de Sitter invariant vacua parametrised by two continuous parameters [68]. All these
vacua have singularities at points related by the antipodal map and therefore do not
provide the correct flat limit. The Bunch-Davies vacuum is therefore special from a
physical perspective. Also, from a cosmological point of view, the Bunch-Davies vacuum
seems to be the only reasonable choice, since it gives mode functions for the field that
behave like in flat space when going to the infinite past or to wavelengths much smaller
than the horizon. From now on we will only work in the Bunch-Davies vacuum and
recommend [68] to the interested reader for an in depth discussion of alternative vacua.

Bunch-Davies wave function

At this point we have to discuss a major difference between quantum field theory in dS
and AdS. dS does not posses a globally defined time-like Killing vector in the Poincaré
or the global patch. If we prepare a vacuum state on an equal time slice, it will not stay
a vacuum when we evolve it in time [116]. This complicates perturbative calculations
significantly as we cannot assume that the asymptotic vacua in the infinite past and
future to be the same.

There are, however, two ways to get around this problem and still define meaningful
observables at future infinity. The first one is to go to the Schrödinger picture of QFT
(see e.g. [131]) and consider the wave function of the universe as introduced in [61]. We
start with a vacuum state on some initial time slice and project it against some out
state, defining a configuration of the field and therefore providing a future boundary
condition for the path integral formulation of the wave function [69,132]

Ψ0[φ(t)] := 〈φ(t) |U(t, t0)| 0〉 =
∫
φ(t)

φ(t0)=0

DφeiS[φ] .

To prepare the Bunch-Davies vacuum as our initial state in the infinite past we
have to the Wick rotation from the sphere, which does not have an equivalent to the
Poincaré patch. We consider a space which is given by dS in the Poincaré patch up the
equator at X0 = Xd+1 = 0, which corresponds to the infinite past η → −∞, and glue
to it a hemisphere with radius 1/a.

The Bunch-Davies vacuum is then defined as the euclidean path integral over the
hemisphere, defining the initial condition in the Poincaré patch on the initial time-
slice [14]. From then on we evolve the state with the Hamiltonian in the bulk. The
wave function in field configuration space |φ0(η, ~x)〉 on a time slice η is therefore given
by

ΨBD[φ(η, ~x)] := 〈φ(η, ~x) |U(η,−∞)| 0BD〉 =
∫

φ(η,~x)=φ0(η,~x)
φ(−i∞,~x)=0

DφeiS[φ] .
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|φ(η, ~x)〉

η → 0

ΨBD

Figure 3.8: Schematical depiction of the Bunch-Davies wavefunction as a path-integral
over a hemisphere attached to the Poincaré patch of dS at past infinity.

We are interested in the late-time limit of this wave function [64] which is given by
taking the limit η → 0. For a free field, given by the action (3.54) we can calculate
the path integral exactly. To do this we to compute the on-shell action. Note that the
projection against a configuration eigenstate |φ0(η, ~x)〉 acts like a Dirichlet boundary
condition at future infinity.

The on-shell action for a free field in dS in the Poincaré patch is given by

Son−shell =1
2

∫
dd~x 1

(aη)d−1 φ̄(x)∂ηφ̄(x)|η→0 . (3.60)

Here φ̄ is the solution of the Klein-Gordon equation with future Dirichlet boundary
condition fixing the value of the field to be φ0 at future infinity

φ̄(η, ~x) =
∫
Rd

dd~yΛ̄D(~y,X)φ0(~y)

where Λ̄D(~y,X) is the Green function imposing Dirichlet boundary conditions at future
infinity. Comparing the Poincaré patches in dS and EAdS we already noticed that they
are related by the Wick rotation z → iη and a → −ia. In section 3.3.1 we derived the
Green functions imposing Dirichlet and Neumann boundary conditions in the Poincaré
patch of EAdS. The same analysis can be repeated in the Wick rotated version. We
end up with the same Green functions

ΛD/N (X,Y,∆±) = iN∆K
∆

2F1

(∆±
2 ,

∆± + 1
2 ; ∆± − d− 2

2 ;K2 − iε

)
,

where this time K is given by (3.21) and similarly the bulk to boundary propagator is
given by the Wick rotated version of (3.53),

Λ̄D(~y,X) = iN∆+

(2ηx)∆+

((~x− ~y)2 − η2
x)∆+

. (3.61)

Plugging equation (3.61) into the on-shell action (3.60) we obtain the result

Son−shell[φ0] =1
2

∫
Rd

dd~x 1
(aη)d−1φ0(~x)∂ηx

∫
Rd

dd~y Λ̄D(~y,X)φ0(~y)
∣∣∣
η→0

=
iN∆+

2

∫
R2d

dd~xdd~y φ0(~x)φ0(~y)
‖~x− ~y‖2∆+

. (3.62)
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By fixing the value of φ at future infinity, all quantum fluctuations are given by vacuum
loops which do not contribute at future infinity. The free Bunch-Davies wave function
in configuration space is therefore given by

ΨBD[φ0(~x)] = eiSon−shell[φ0] ,

with Son−shell[φ0] given by (3.62).
A similar expression can be derived by imposing Neumann instead of Dirichlet

boundary conditions at future infinity meaning we fix the time derivative ∂ηφ at future
infinity. This can be thought of as going to canonical momentum space at future infinity
and we call the value of the time derivative of at future infinity π0(~x) := ∂ηφ(η, ~x)|η→0.
The solution of the field with Neumann boundary condition at future infinity is therefore
given by

φ̄(η, ~x) =
∫
Rd

dd~yΛ̄N (~y,X)π0(~y) .

Repeating the same steps as for the Dirichlet boundary conditions we find that the
Neumann bulk to boundary propagator is given by (3.61) with ∆+ → ∆−. The Bunch-
Davies wave function in momentum space at future infinity is therefore given by

ΨBD[π0(~x)] = eiSon−shell[π0]; Son−shell[π0] =
iN∆−

2

∫
R2d

dd~xdd~y π0(~x)π0(~y)
‖~x− ~y‖2∆−

Having calculated the late time limit of the wave function for a free scalar field, we
would like to analyse how to treat an interacting theory in this picture. Let us consider
an interaction of the form 1

n!λφ
n. To explain the formalism we only use Dirichlet

boundary conditions and note that the Neumann wave function can be obtained by
following the same steps, just replacing the Green function.

The classical equation of motion is

(−�dS +m2)φ = − λ

(n− 1)!φ
n−1

The tree level contributions to the wave function are given by the classical solutions
to the classical equation motion in perturbation, which is given by

φ̄(X) =
∑
i

λiφi(X)

φ0(X) =
∫
Rd

d3~yΛ̄(~y,X)Dφ0(~y)

φi+1(X) = − λ

(n− 1)!

∫
H−

d+1

d4Y Λ(X,Y)Dφn−1
i (Y )

Solving these equations iteratively and plugging them into the on-shell action (3.60),
we get an infinite expansion in terms of λ, which up to order λ, is given by

Son−shell[φ0] =
iN∆+

2

∫
R2d

dd~xdd~y φ0(~x)φ0(~y)
‖~x− ~y‖2∆+

− λ

n!

∫
H−

d+1

dd+1X

(az)d+1

∫
Rn

n∏
i=1

dd~xiΛ̄D(~xi, X)φ0(~xi) + O(λ) (3.63)



3.3 Perturbative quantum field theory in (A)dS 45

This structure is very similar to the situation in EAdS. In fact, if we interpret
the wave function as a generating functional of CFT and the boundary values φ0 as
sources, we can calculate the tree-level correlation functions of this CFT by functional
differentiation with respect to the sources〈

m∏
i=1

O(~xi)
〉

= δm

δφ0(~x1)δφ0(~x2)...δφ0(~xm)ΨBD[φ0(~x)] . (3.64)

This is the basis of the dS/CFT correspondence [14,69]. As we will see, equations (3.51)
and (3.64) are at least perturbatively related by the Wick rotation z → iη and a → −ia.
In chapter 6 we will show that they give rise to the same correlation functions for λφ4

theory, at least in perturbation theory.
To visualize the calculation the Witten diagrams developed for AdS/CFT can be

applied to this calculation in a slightly modified way.
The bulk to boundary propagator Λ̄D(~y,X) with point ~y at future infinity and X

at finite time is represented by

~y

X
.

The bulk to bulk propagator ΛD(X,Y ) with points X and X at finite time

Y X .

For example the tree-level contributions to the four point function of λφ4 theory,
generated by the terms of the on shell action given in (3.63) can be represent in terms
of Witten diagrams as

〈O(~x1)O(~x2)O(~x3)O(~x4)〉 = δ4

δφ0(~x1)δφ0(~x2)δφ0(~x3)δφ0(~x4)eiSon−shell

=
~x1 ~x2~x3 ~x4

+
~x1~x2 ~x3~x4

+
~x1~x2 ~x3~x4

− iλ
~x1

X

~x2 ~x3 ~x4

The wave function of the full quantum theory is given by the path integral over
all field configurations with Bunch-Davies boundary conditions in the past and fixed
boundary conditions in the future:

ΨBD[φ0(~x)] =
∫

φ(0,~x)=φ0(~x)
φ(−i∞,~x)=0

DφeiS[φ] = eiΓ[φ0] ,

where Γ[φ0] is the effective action that depends only on the boundary values of the field
φ(0, ~x). We will calculate this effective action perturbatively in loop orders of quantum
corrections by using the background field method (see e.g. [133]). This means we write
our field as φ(X) = ϕ(X)+χ(X) where ϕ(X) satisfies the classical equations of motion
and χ accounts for the quantum fluctuations. χ is choosen such that it vanishes on the
boundary.
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If we plug this ansatz into the action we get the result

S[φ] =
∫

d4X
√
g

{
−1

2∂µφ∂
µφ− 1

2m
2φ2 − λ

4!φ
4
}

=S[ϕ] +
∫

d4X
√
gχ

{
�ϕ−m2ϕ− λ

3!ϕ
3
}

+
∫

d4X
√
g

{
−1

2∂µχ∂
µχ− 1

2m
2χ2

}
+ λ

∫
d4X

√
g

{
−1

4ϕ
2χ2 − 1

6ϕχ
3 − 1

4!χ
4
}
.

The first term corresponds to the classical on shell action which we already calculated.
It generates the tree-level Witten diagrams. The second term in the expansion vanishes
as ϕ obeys the classical equations of motion. Therefore only the two remaining parts
depend on χ and we are going to call the first one S0[χ] as it corresponds to the free
part of the action whereas the last term is called Sint as it generates the interaction
terms.

Now we can plug this action into the path integral for the wave function. As
the classical field is completely fixed by the equations of motion and the boundary
conditions the only path integral we have to perform is over the quantum fluctuations χ:

ΨBD[φ0(~x)] = eiΓ[φ0] = eiSon−shell[φ0]
∫

DχeiS0[χ]+iSint[φ0,χ] . (3.65)

In the diagrammatic representation introduced above the quantum fluctuations gener-
ate additional loop corrections in the bulk. We will perform the explicit calculation for
λφ4 theory in chapter 6 as it was done in [71].

As a final note for this part, let us comment on the state operator correspon-
dence. In section 3.3.1 we noticed that the correspondence between the Hilbert space
of eigenstates of the dilatation operator in a CFT and the spectrum of operators can
be generalized in AdS to a correspondence between local bulk operators and boundary
states [129]. This was a consequence of the fact that time evolution in the global patch
is an isometry of AdS which translates to a radial quantization in the Poincaré patch,
meaning that any equal time slice can be contracted to a point by the action of the
dilatation operator.

This construction obviously fails in dS for many reasons the first being that time
evolution, neither in the global nor in the Poincaré patch, is an isometry of the space-
time. Also from a geometrical point of view the situation is much different. An equal
time slice in global patch is not given by a hemisphere in the Poincaré patch, as was
the case in EAdS, but by the hyperboloid

~x2 − η2 = et ,

which never contracts to a point, which was essential for the state operator correspon-
dence in AdS. These points were also raised in [87,88].

The absence of a state operator correspondence is not a problem per se it only makes
the connection between bulk physics and the theory on the boundary more obscure. At
non-perturbative level at least it seems however still be possible to describe the time
late wavefunction by a CFT.

Cosmological correlators

The wave function, however, is not an actual observable, but rather half the way to
calculating a correlation function, which is an observable. The relation between the
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two is given by 〈
m∏
i=1

φ(~xi)
〉

=
∫

Dφ0Ψ∗
BD[φ0]ΨBD[φ0]

m∏
i=1

φ(~xi) .

Going from the wave function to the cosmological correlation function corresponds to
inserting operators at future infinity of two Bunch-Davies wavefunctions, one having
been evolved from the infinite past to the future boundary in the Poincaré patch while
the other is inversely time-evolved in the contracting Poincaré patch, as depicted in
figure 3.9.

∫
Dφ0 φ φ

φ

φ

ΨBD

Ψ∗
BD

Figure 3.9: Schematical depiction of the path-integral over two Bunch-Davies wave-
functions to obtain a cosmological correlator

Even though this picture is conceptually helpful to understand the relation between
the wave function and the correlator, it is practically useless for actual calculations,
since it requires the non-perturbative knowledge of the wave function which we can
only compute perturbatively for an interacting theory.

Instead we go from the Schrödinger to the interaction picture and consider the time
evolution of the expectation value of a set of local operators on an equal time slice

〈φ(~x1, η)...φ(~xn, η)〉BD =

〈
0BD

∣∣∣U†
I (−∞, η)φ(~x1, η)...φ(~xn, η)UI(−∞, η)

∣∣∣ 0BD

〉
〈

0BD

∣∣∣U†
I (η0, η)UI(η0, η)

∣∣∣ 0BD

〉 . (3.66)

Here UI and U †
I are the time-ordered and anti-time ordered evolution operator in

the interaction picture given by

UI(η0, η) := T

{
e−i
∫ η

η0
dη̃HI(η̃)

}
; U †

I (η0, η) := T̄

{
ei
∫ η

η0
dη̃HI(η̃)

}
,

where HI is the interaction Hamiltonian and T and T̄ denote time- and anti-time
ordering, respectively. The Bunch-Davies vacuum condition is imposed at η → −∞.
The denominator in equation (3.66) cancels vacuum bubble contributions, just as in
flat space.

There are two ways to perform this calculation. We can expand the exponentials in
UI and U †

I and use Wick contraction on the left and right of the insertions to calculate
the correlator. Denoting the fields on the time ordered side of the integral by φT (X),
the anti-time order fields by φA(X) and the field insertions on the time slice at future
infinity by φ̄(~x), we find the following different propagators depending on the Wick
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contraction, given in terms of equations (3.57), (3.58) and (3.59):

φT/A(X1)φT/A(X2) → ΛT/A,T/A(K(X1,X2)); φT/A(X1)φ̄(~x2) → Λ̄T/A(X1, ~x2) .

Where the new bulk to boundary propagator Λ̄T/A(X1, ~x2) is given by taking the limit

Λ̄T/A(X1, ~x2) : = lim
η0:=η2→0

ΛT/A,T/A(K(X,Y))

=
Γ
(
∆+ − d

2

)
Γ
(
∆− − d

2

) (
∆+ − d

2

)
2π ×

×
(
N∆−

(2η0η2)∆−

‖ ~x1 −X2‖2∆− ∓ iε
+ N∆+

(2η0η2)∆+

‖ ~x1 −X2‖∆+ ∓ iε
+ · · ·

)
. (3.67)

It does not matter if the boundary limit is taking with time- or anti- time ordered
point since there is no notion of time ordering at future infinity. The iε prescription
implementing (anti-) time ordering properties, can be translated into an analytic con-
tinuation of the time on each side of the integral by denoting times on the time ordered
side by ηT := η(1 − iε) and on the anti time ordered side as ηT := η(1 + iε).

Equation (3.67) contains two terms given by the Neumann and Dirichlet bulk to
boundary propagators from EAdS (3.53), up to the signature of the metric given. This
actually reflects a general relation between the Neumann and Dirichlet propagators and
the Bunch-Davies propagator. By applying the following identities for the hypergeo-
metric function

2F1

(
a, b; a+ b+ 1

2 ; z
)

= (1 − 2z)−aF

(
a

2 ,
a+ 1

2 ; a+ b+ 1
2 ; 4z(z − 1)

(1 − 2z)2

)
and

2F1(a, b; c, z) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b; a+ b+ 1 − c; 1 − z)

+ Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) (1 − z)c−a−b

2F1(c− a, c− b; 1 + c− a− b; 1 − z) ,

we can rewrite the hypergeometric function in (3.56) as

2F1
(
∆+,∆−; d+ 1

2 ; K − 1
2K

)
=

Γ
(
d+1

2

)
Γ
(
∆− − d

2

)
Γ
(

∆−
2

)
Γ
(

∆−+1
2

) K∆+

× 2F1

(∆+
2 ,

∆+ + 1
2 ; ∆+ − d− 2

2 ;K2
)

+ (∆+ ↔ ∆−) .

With this formula we can express the time ordered Bunch-Davies propagator (3.58) in
terms of propagators with fall-off behaviour

ΛTT (K(X,Y)) =
Γ
(
∆+ − d

2

)
Γ
(
∆− − d

2

) (
∆+ − d

2

)
2π (ΛN (K(X,Y)) + ΛD(K(X,Y)))

and similarly for ΛTT and ΛTA with the respective iε term. The Dirichlet and Neumann
Green function are simply related to the EAdS Green functions Λ(K,∆+) and Λ(K,∆−)
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by a Wick rotation. In fact, by carefully doing the rotation we can express all dS
Green functions in the Poincaré patch in terms of Green functions in EAdS with fixed
boundary conditions.

Time ordered points in the bulk are continued as ηT → e−iπ
2 z, while anti-time

ordered points are rotated as ηA → eiπ
2 z, such that we do not cross any branch cuts.

This trick was first emphasized in [84–86].
Doing this rotation, we observe, that the propagators transform as

ΛTT (K) →
Γ
(
∆+ − d

2

)
Γ
(
∆− − d

2

) (
∆+ − d

2

)
2π

(
eiπ∆−Λ(K,∆−) + eiπ∆+Λ(K,∆+)

)
,

ΛAA(K) →
Γ
(
∆+ − d

2

)
Γ
(
∆− − d

2

) (
∆+ − d

2

)
2π

(
e−iπ∆−Λ(K,∆−) + e−iπ∆+Λ(K,∆+)

)
,

ΛTT (K) →
Γ
(
∆+ − d

2

)
Γ
(
∆− − d

2

) (
∆+ − d

2

)
2π (−Λ(K,∆−) + Λ(K,∆+)) ,

while the bulk to boundary propagator becomes

Λ̄T/A(K) →
Γ
(
∆+ − d

2

)
Γ
(
∆− − d

2

) (
∆+ − d

2

)
2π

(
η

∆−
0 e±iπ

2 ∆−Λ̄(K,∆−)

+ η
∆+
0 e±iπ

2 ∆+Λ̄(K,∆+)
)
. (3.68)

To see how this formalism can be applied in practice let us take the four point
function of a scalar field theory with interaction term∫ η0

−∞
Hintdη = λ

4!

∫
H−

d+1

d4X

(aη)d+1φ
4(X).

The four point function evaluated at future infinity is given by

lim
η→η0

φ(η, ~x1)φ(η, ~x2)φ(η, ~x3)φ(η, ~x4) ≡ φ0(~x1)φ0(~x2)φ0(~x3)φ0(~x4) .

The disconnected term is given by the generalized free field contribution

〈φ0(~x1)φ0(~x2)φ0(~x3)φ0(~x4)〉 = 〈φ0(~x1)φ0(~x2)〉 〈φ0(~x3)φ0(~x4)〉
+ 〈φ0(~x1)φ0(~x3)〉 〈φ0(~x2)φ0(~x4)〉 + 〈φ0(~x1)φ0(~x4)〉 〈φ0(~x2)φ0(~x3)〉

where each two point function is just given by the propagator Λ(K) with both legs
taken to future infinity.

The first order term in λ has two contributions from contracting with the time-
ordered and the anti-time-ordered Hamiltonian

W0 = −iλ
∫
H−

d+1

dd+1X

(aηT )d+1 Λ̄T ( ~x1, X)Λ̄T ( ~x2, X)Λ̄T ( ~x3, X)Λ̄T ( ~x4, X)

+ iλ

∫
H−

d+1

dd+1X

(aηA)d+1 Λ̄A( ~x1, X)Λ̄A( ~x2, X)Λ̄A( ~x3, X)Λ̄A( ~x4, X).

We perform this integral by doing the Wick rotation for ηT and ηA individually, such
that we do not cross the branch cut. We set

ηT → e−iπ
2 z; ηA → ei

π
2 z
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With this transformation we can write the cross diagram as

W0 = −λ
∫
H+

d+1

dd+1X

(az)d+1 Λ̄T ( ~x1, X)Λ̄T ( ~x2, X)Λ̄T ( ~x3, X)Λ̄T ( ~x4, X)

− λ

∫
H+

d+1

dd+1X

(az)d+1 Λ̄A( ~x1, X)Λ̄A( ~x2, X)Λ̄A( ~x3, X)Λ̄A( ~x4, X).

Focusing on the conformally coupled massless case (3.36) and using equation (3.68) to
expand to the second subleading order, we obtain

W0 = − λ

8

∫
H+

4

dd+1X

(az)d+1

(
η

4∆−
0 Λ̄(K,∆−)Λ̄(K,∆−)Λ̄(K,∆−)Λ̄(K,∆−)

−η2(∆−+∆+)
0 Λ̄(K,∆+)Λ̄(K,∆+)Λ̄(K,∆−)Λ̄(K,∆−)

+η4∆+
0 Λ̄(K,∆+)Λ̄(K,∆+)Λ̄(K,∆+)Λ̄(K,∆+) + · · ·

)
The evaluation of the tree-level four-point function is therefore reduced to a calcula-
tion in EAdS, with two different boundary conditions contributing, corresponding to
conformal dimensions ∆+ and ∆−.

We could proceed with this calculation diagram by diagram, which is the way this
relation between cosmological correlator and EAdS Witten diagrams was first written
down in [84–86]. However, as shown in [87], there is an elegant way to rewrite the dS ac-
tion with the Schwinger-Keldysh contour directly in terms of an auxiliary EAdS action,
from which the cosmological correlation functions can be extracted by straightforward
functional derivation. In the following, we will review this formulation.

The closed time evolution between two in-states from the infinite past can be ex-
pressed by a path integral with closed time curves. Then a correlation function is given
by taking functional derivatives of the time and anti-time ordered sources jT and jA of
the partition function

Z[jT , jA] =
∫

DφTDφAeiSc+i
∫

(φT jT +φAjA),

with the closed time action given by

iSc = i

0∫
−∞

dηdd~x
ηd+1

{
−1

2(∂φT )2 − 1
2m

2φ2
T − V (φT ) + 1

2(∂φA)2 + 1
2m

2φ2
A + V (φA)

}
.

Performing the Wick rotation η = ze±iπ
2 as described above, the action becomes

iSc = −
∞∫

0

dzdd~x
zd+1

[
eiπ

d−1
2

(1
2(∂φT )2 − 1

2m
2φ2

T − V (φT )
)

+ e−iπ d−1
2

(1
2(∂φA)2 − 1

2m
2φ2

A − V (φA)
)]

.

As discussed above the classical solution of a free scalar field in de Sitter is given by
φ(η, ~x) = φ+(η, ~x) + φ−(η, ~x) with

φ+(η, ~x) :=
∫

d3~y Λ̄∆+(η, ~x− ~y)φ+
0 (~y),
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φ−(η, ~x) :=
∫

d3~y Λ̄∆−(η, ~x− ~y)φ−
0 (~y),

where φ±(η, ~x) → η∆± , for η → 0. Under the Wick rotation we get

φ(ze±iπ
2 , ~x) = e±iπ

2 ∆+φ+(z, ~x) + e±iπ
2 ∆−φ−(z, ~x), (3.69)

which plugged in the action leads to

iSc = −
∞∫

0

dzdd~x
zd+1

[
e−iπ

(
∆+− d−1

2

)
2

(
(∂φ+)2 −m2φ+2)

+ e−iπ
(

∆−− d−1
2

)
2

(
(∂φ−)2 −m2φ−2)

+ e−iπ
2
(
∂φ−∂φ+ −m2φ−φ+

)
+ 1

2e+iπ
(

∆+− d−1
2

) (
(∂φ+)2 −m2φ+2)

+ 1
2eiπ

(
∆−− d−1

2

) (
(∂φ−)2 −m2φ−2)+ ei

π
2
(
∂φ−∂φ+ −m2φ−φ+

)
− eiπ

d−1
2 V

(
e−iπ

2 ∆+φ+ + e−iπ
2 ∆−φ−

)
− e−iπ d−1

2 V
(
ei

π
2 ∆+φ+ + ei

π
2 ∆−φ−

) ]
,

leading to the result, derived in [87],

iSc = −
∞∫

0

dzdd~x
zd+1

[
− sin

(
π

(
∆+ − d

2

))(
(∂φ+)2 −m2φ+2)

− sin
(
π

(
∆− − d

2

))(
(∂φ−)2 −m2φ−2)

−eiπ
d−1

2 V
(
e−iπ

2 ∆+φ+ + e−iπ
2 ∆−φ−

)
− e−iπ d−1

2 V
(
ei

π
2 ∆+φ+ + ei

π
2 ∆−φ−

)]
. (3.70)

We want to study a theory in dS with the potential V (φ) = λ
4!φ

4. In that case the
action (3.70) becomes

iSc = −
∞∫

0

dzdd~x
zd+1

[
− sin

(
π

(
∆+ − d

2

))(
(∂φ+)2 −m2φ+2)+ (φ+,∆+ ↔ φ−,∆−)

+2λ
4!

(
φ+4 sin

(
π

2 (3∆+ − ∆−)
)

+ 6φ+2
φ−2 sin

(
πd

2

)
+ φ−4 sin

(
π

2 (3∆− − ∆+)
)

+4φ+3
φ− sin(π∆+) + 4φ−3

φ+ sin(π∆−)
)]
. (3.71)

In this work we consider the case of the conformally coupled scalar with ∆+ = d+1
2

and ∆− = d−1
2 with odd boundary dimensions d. The action (3.71) then becomes

iSc = −
∞∫

0

dzdd~x
zd+1

[
−
(
(∂φ+)2 −m2φ+2)+

(
(∂φ−)2 −m2φ−2)

−(−1)
d−1

2
2λ
4!
(
φ+4 − 6φ+2

φ−2 + φ−4)]
. (3.72)
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This action can now be used to calculate correlation functions in dS, showing to all
orders in perturbation theory, that cosmological correlators can be expressed in terms of
EAdS Witten diagrams. The leading contributions in the late time expansions are given
by calculating the EAdS correlators of the field φ−. Note however, that this field alone
will not give a consistent CFT at the boundary, since there will be mixing interaction
vertices between φ− and φ+. To be able to describe the CFT on the boundary we have
to take into account the subleading terms in the late time expansion of the cosmological
correlator as well. We also notice that the kinetic term in the action is not necessarily
positive, leading to ghost-like behaviour of one of the fields. This would be a problem if
we wanted to interpret this action as describing a bulk theory in EAdS, however, since
we only us this action as a tool to describe a theory in dS, we should treat these signs
only as a way to keep track of the correct relative prefactors in the expansion.

We have shown, that perturbative calculations in (A)dS can be reduced to evalu-
ating Witten diagrams. In the following we will analyse the mathematical structure of
these diagrams and will show that under certain conditions they can be reduced to flat
space Feynman integrals.



Chapter 4

Mathematical structure of
Witten diagrams

In the previous chapter we concluded with the observation that the perturbative calcu-
lation of correlation functions in both EAdS and dS can be reduced to the evaluation
of Witten diagrams in EAdS. Due to the complicated structure of the bulk to bulk
propagator in terms of hypergeometric functions the evaluation of these diagrams for
general ∆ seems intractable. For certain values of ∆, however, the propagator simpli-
fies drastically. Especially for the conformally coupled massless field we will see that
there is a straightforward map to flat space propagators. This lets us take advantage
of the technical methods that have been developed for the evaluation of Feynman in-
tegrals [95–101,134,135]. For general ∆ ∈ N we also find a form which can be mapped
to flat space-like diagrams, however, with an additional analytic parameter. We will
show a way to potentially calculate diagrams for these values of ∆ as well.

From this chapter onward the space-time dimension will be set to d + 1 = 4,1 and
we will only consider the Poincaré patch as defined in equation (3.16). Section 4.1 is a
partially reproduction of [57].

4.1 Witten diagrams as flat space Feynman integrals
In this work we are mainly concerned with the calculation of four point Witten dia-
grams, as depicted in figure 3.7. A generic four-point Witten diagram ΓW with L + 1
bulk vertices and L loops is associated to the following integral:

W∆
L (~x1, ~x2, ~x3, ~x4) = 24∆ (N∆)2L+4

∫
(H+

4 )L+1

L+1∏
i=1

d4Xi

(azi)4F
∆(X1, . . . , XL+1)

×
∑
ρ∈S4

δ(ΓW )
|ΓW |

f∆(Xρ(1), . . . , Xρ(4); ~x1, . . . , ~x4) , (4.1)

where the normalization N∆ of the propagators in (3.44) has been pulled out of the in-
tegral. The delta-function δ(ΓW ) denotes the identification of the bulk points according
the topology of the graph and |ΓW | is the symmetry factor of the graph.

1We will introduce dimensional regularisation later, by analytically continuing the dimension in the
integration measure. This is, however, just a trick to be able to evaluate integrals and is not really a
change in the space-time dimension, as we will discuss.
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The term F∆(X1, ..., XL+1) involves only bulk-to-bulk propagators. Its explicit form
is determined by the loop order and topology of the concrete graph. Together with the
integration measure it is invariant under AdS isometries. The term f∆(X1, .., X4; ~x1, ..., ~x4)
consists of bulk-to-boundary propagators and, depending on the loop order and the
topology of the graph, some of the bulk points Xi may be identical. The sum is per-
formed over different scattering channels corresponding to permutations of the bulk
points X1, ..., X4. In its most general form this term is given by

f∆(X1, . . . , X4; ~x1, . . . , ~x4) =
4∏
i=1

(
zi

‖Xi − ~xi‖2

)∆

. (4.2)

The integral in (4.1) is divergent in general and thus needs to be regulated before it can
be manipulated. In section 4.1.2 we will consider two regularisations. The first, consid-
ered in [55,56], preserves the AdS symmetry. The dimensional regularisation discussed
next, while being natural from the flat space perspective, breaks AdS invariance.

From now on, unless explicitly stated otherwise, we will consider only the confor-
mally coupled scalar field. In d = 3 boundary dimensions we find from equation (3.36)
that the possible values for the scaling dimension on the boundary are ∆ ∈ {1, 2}.
Plugging this into the general equation for the EAdS propagator (3.43), we get the
simplified expression

Λ(K,∆) =
(
a

2π

)2 K∆

1 −K2 with ∆ ∈ {1, 2} . (4.3)

In what follows we will establish how to map these bulk to bulk propagators to a form
resembling flat space propagators in momentum space.

4.1.1 Mapping propagators to flat space

Using the euclidean norm, defined in equation (3.17) we can write equation (4.3) as

Λ(X,Y; 1) =
(
a

2π

)2
(G(X,Y ) −G(X,σ(Y ))) ,

Λ(X,Y; 2) =
(
a

2π

)2
(G(X,Y ) +G(X,σ(Y )) . (4.4)

where in (4.4) we introduced the conformal flat space propagator G(X,Y ), given by

G(X,Y ) := zw

‖X − Y ‖2 = −1
42F1

(
1, 2; 2; K − 1

2K

)
. (4.5)

It has the following properties:

• Invariance under translation of boundary points, X0 = (~x, 0):

G(X +X0, Y +X0) = G(X,Y ); G(X +X0, Y ) = G(X,Y −X0).

• Scale invariance:

G(λX, λY ) = G(X,Y ) , λ ∈ R \ {0} .
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• Invariance under the inversion:

G

(
X ′

‖X ′‖2 ,
Y ′

‖Y ′‖2

)
= G(X,Y ).

• The antipodal map in (3.12) acts as

G(σ(X), Y ) = G(X,σ(Y )) = − zw

‖X − σ(Y )‖2 = 1
4 2F1

(
1, 2; 2; K(X,Y) + 1

2K(X,Y)

)
.

• An identity, which will be useful when simplifying the expressions for the multi-
loop Witten diagrams

G(X,Y )G(X,σ(Y )) = 1
4 (G(X,Y ) +G(X,σ(Y ))) . (4.6)

To continue we note that the inverse geodesic distance in (3.8) can be expressed in
terms of the conformal flat space propagator

1
K(X,Y) = 1

4

( 1
G(X,Y ) − 1

G(X,σ(Y ))

)
. (4.7)

Moreover, by sending X = (~x, z) to the boundary point (~x, 0) we have

K̄(~x, Y ) := lim
z→0

K(X,Y)
z

= 2w
‖~x− Y ‖2 = lim

z→0

2G(X,Y )
z

,

in terms of the conformal flat space propagator which is again odd under the action of
the antipodal map σ.

4.1.2 Regularisation

The integrals appearing in the loop calculations are generally divergent and have to
be regularised. In this section we will present two different regularisation schemes.
We first review the AdS invariant scheme, introduced in [55, 56] which will serve as a
double check for the calculation in the dimensional regularisation we will introduce in
the second part.

AdS invariant regularisation

An AdS invariant regularisation method, given by the deformation

Kδ(X,Y) := K(X,Y)
1 + δ

, with δ > 0,

where δ is a dimensionless quantity was developed and used for regulating loops in AdS
space in [55,56] and applied to loops in de Sitter space in [71].

It corresponds to a cut-off in the bulk at coinciding points. This can be seen by
expressing K in terms of the radial coordinate r, as was done in equation (3.41), and
taking the flat limit

K

1 + δ
= 1

1 + δ

1√
1 + a2r2

→ 1 − 1
2a

2r2 − δ + O(a4r4, δ2),



56 4. Mathematical structure of Witten diagrams

If we write δ as δ = 1
2a

2R2 we see that this regularisation procedure corresponds to
cutting out a ball of radius R around the coinciding points.

This regularisation scheme preserves the AdS symmetry and we will use it in sec-
tion 5.2.2.

For ∆ = 1 the regularised propagator reads

Λ(X,Y; 1, δ) =
(
a

2π

)2 1
2

(
K(X,Y)

1 + δ −K(X,Y) + K(X,Y)
1 + δ +K(X,Y)

)
,

and for ∆ = 2

Λ(X,Y; 2, δ) =
(
a

2π

)2 1
2

(
K(X,Y)

1 + δ −K(X,Y) − K(X,Y)
1 + δ +K(X,Y)

)
,

We will denote the regularised Witten diagrams (4.1) by

W∆,δ
L (~x1, ~x2, ~x3, ~x4) = 24∆ (N∆)2L+4

a4L+4

∫
(H+

4 )L+1

L+1∏
i=1

d4Xi

z4
i

F∆,δ(X1, . . . , XL+1)

×
∑
ρ∈S4

δ(ΓW )
|ΓW |

f∆(Xρ(1), . . . , Xρ(4); ~x1, ~x2, ~x3, ~x4) , (4.8)

with normalization N∆ given in (3.44).

Dimensional regularisation

For ∆ = 1 and ∆ = 2 we have shown in section 4.1.1, that the propagators in (4.4) can
be expressed as a sum of two euclidean propagators. Therefore the bulk-to-bulk part
F∆(X1, . . . , XL+1) (4.1) can always be expressed as a sum over products of flat space
propagators.

Let us now discuss the domain of integration, which for (4.1) is the upper-half
space H+

4 . In flat momentum space on the other hand, one integrates over the entire
space R4. It is clear from the previous discussion in section 3.3.1 that the propagator is
in general not invariant under the antipodal map due to the z∆ term in the numerator
which changes the sign for odd ∆. However, since we focus on the λφ4 theory, each
vertex joins four propagators, meaning that each radial coordinate in the numerator
only appears as z4∆−4, where the −4 is due to the integration measure. For ∆ ∈ N
this is always an even number and therefore invariant under the antipodal map. We
thus conclude that the entire Witten diagram (4.1) is invariant under mapping every
bulk point to its antipodal point and the domain of integration can be extended to
R4. Note that this can also be done for the AdS-invariant regularisation method in
equation (4.8).

To continue we note that in (4.1) powers of the radial coordinates, zi appear in the
denominator, originating from the AdS-invariant measure as well as in the numerator of
the propagators. It is convenient to “covariantize” these contributions by writing them
as linear propagators z = u · Xi with the help of the auxiliary unit vector u = (~0, 1),
where the dot product is understood with respect to the euclidean metric. This auxiliary
vector is orthogonal to the boundary and is therefore perpendicular to any vector
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Xi = (~xi, 0) parametrizing points on the boundary. In particular, for ∆ = 1, 2 the
propagators in (4.4) take a tensorial from

Λ(X,Y; 1) =
(
a

2π

)2
(
u ·X u · Y
‖X − Y ‖2 + u ·X u · σ(Y )

‖X − σ(Y )‖2

)
,

Λ(X,Y; 2) =
(
a

2π

)2
(
u ·X u · Y
‖X − Y ‖2 − u ·X u · σ(Y )

‖X − σ(Y )‖2

)
. (4.9)

We then define the dimensionally regulated Witten diagrams (4.1) by evaluating
the integration measure in D dimensions,

W∆,D
L (~x1, ~x2, ~x3, ~x4) = 24∆ (N∆)2L+4

(2aD)L+1

∫
(RD)L+1

L+1∏
i=1

dDXi

(u ·Xi)4F
∆(X1, . . . , XL+1)

×
∑
ρ∈S4

δ(ΓW )
|ΓW |

f∆(Xρ(1), . . . , Xρ(4); ~x1, ~x2, ~x3, ~x4), (4.10)

where we have pulled out a factor of (a−D)L+1 and rescaled every point with a such
that the only dimensional dependence is in the prefactor. Upon substitution of (4.2)
and (4.9) the Witten diagram (4.10) takes the form of standard flat space tensorial
integrals with linear propagators.

Let us conclude the discussion of dimensional regularisation with two remarks,
considering the choice of the integration measure and the concrete analytic continuation
of the dimension.

First of all, note that we have used a dimensional regularisation scheme by chang-
ing the dimension of integration without changing the Jacobian from the AdS metric,
which breaks the AdS invariance. An AdS preserving integration measure ∏L+1

i=1
dDXi

(u·Xi)D

in (4.10) will not regulate the integral as a consequence of conformal symmetry.
Secondly let us comment on the concrete analytic continuation. WhenD approaches

4 the Witten diagrams develop divergences with leading behavior 1
(D−4)L at L-loop or-

der. In order to preserve the conformal symmetry, which is broken by the dimensional
regularisation, we need to parametrize D = 4− 4ε

L+1 at each loop order. This can be un-
derstood from the following scaling argument. Consider a four point function resulting
from a bulk calculation up to one loop in the above dimensional regularisation scheme.
It will consist of a term of order λ produced by a tree level graph with integration over
one bulk point and an order λ2 contribution which is given by integrating over two bulk
points. If we rescale both terms with α the first term will scale with α4∆+(D−4) while
the second with α4∆+2(D−4) due to the second bulk integral. In order for the sum to
scale homogeneously and therefore describing a conformal correlation function we have
to introduce a loop dependent regularisation scheme as described above.

4.1.3 Conformal mapping of the regularised integrals

We will now use invariance of the diagram under translation of the boundary points
and inversion to write the four-point diagram in terms of three-dimensional conformal
cross-ratios. First we apply these transformations to the integrand. The non-invariance
of the regularised measure will be taken into account in a second step.
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To begin with, we shift every boundary point by ~x3 and then invert every point.
The latter leaves the bulk-to-bulk propagators invariant while the bulk-to-boundary
propagators transform as

z

‖X − ~x‖2 = 1
x2

z′

‖X ′ − ~y‖2 with X ′ = X

‖X‖2 and ~y = ~x

x2 , (4.11)

where we have set ‖~x‖2 ≡ x2. After these transformations (4.2) becomes

f∆(X1, . . . , X4; ~x1, . . . , ~x4) = z∆
3

(x2
13x

2
23x

2
34)∆

(
z1

‖X1 − y13‖2
z2

‖X2 − y23‖2
z4

‖X4 − y43‖2

)∆

,

where we have set xij := ~xi − ~xj and yij := xij/x
2
ij . To continue we shift every

bulk point as Xi → Xi + y13 and use scale invariance to rescale every bulk point by
Xi → ‖y43 − y13‖Xi. This gives

f∆(X1, . . . , X4; ~x1, . . . , ~x4) = 1
(x2

14x
2
23)∆

 z1z2z3z4

‖X1‖2
∥∥∥X2 − y23−y13

‖y43−y13‖

∥∥∥2 ∥∥∥X4 − y43−y13
‖y43−y13‖

∥∥∥2


∆

.

Finally, we may use the fact that the AdS group acts on points of the conformal
boundary as the conformal group to implement the familiar conformal operations on
the boundary points that map ~x4 to infinity, ~x3 to the origin (0, 0, 0, 0) and ~x1 →
(−1, 0, 0, 0). The remaining point ~x2 can be chosen to lie in the 1-4 plane, parametrized
by the complex coordinate ζ, that is

~x2 =
(

ζ + ζ̄ − 2
2(1 − ζ)(1 − ζ̄)

,
ζ − ζ̄

2i(1 − ζ)(1 − ζ̄)
, 0, 0

)
.

This takes equation (4.2) to the final form

f∆(X1, . . . , X4; ~x1, . . . , ~x4) = v∆

(x2
12x

2
34)∆

(
z1z2z3z4

‖X1‖2 ‖X2 − uζ‖2 ‖X4 − u1‖2

)∆

, (4.12)

with

u1 = (1, 0, 0, 0), uζ =
(
ζ + ζ̄

2 ,
ζ − ζ̄

2i , 0, 0
)
, v = ζζ̄ = x2

12x
2
34

x2
14x

2
23
.

Let us now turn to the measure. The dimensional regularisation implemented
in (4.10) breaks the AdS invariance of the integration measure. We therefore have
to take into account the Jacobian of the transformations implemented above. Since the
regularised measure is still invariant under shifts in the z = const hyperplane, the first
transformation leaves the latter invariant. The second transformation in (4.11) is an
inversion (Xi → Xi

‖Xi‖2 ) which induces a Jacobian

L+1∏
i=1

dDXi

(u ·Xi)4 →
L+1∏
i=1

dDXi

(u ·Xi)4
1

‖Xi‖2(D−4) .
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This is followed by a shift of all bulk points by y13, under which

L+1∏
i=1

dDXi

(u ·Xi)4
1

‖Xi‖2(D−4) →
L+1∏
i=1

dDXi

(u ·Xi)4
1

‖Xi + y13‖2(D−4) .

Finally, the rescaling by ‖y43 − y13‖ gives

L+1∏
i=1

dDXi

(u ·Xi)4
1

‖Xi + y13‖2(D−4) →
L+1∏
i=1

dDXi

(u ·Xi)4
‖y43 − y13‖4−D∥∥∥Xi + y13

‖y43−y13‖

∥∥∥2(D−4) .

Rewriting the inverted boundary points in terms of the original coordinates and choos-
ing ~x1, ~x2, ~x3 and ~x4 as described above we get

‖y43 − y13‖ = ‖x41‖
‖x43‖ ‖x13‖

→ 1 and y13
‖y43 − y13‖

→ x13

‖x13‖2 = −u1 ,

and therefore the complete Jacobian is given by

L+1∏
i=1

dDXi

(u ·Xi)4
1

‖Xi − u1‖2(D−4) . (4.13)

From (4.12) and (4.13) it is then clear that the Witten diagrams will depend only on ζ
and ζ̄ or, equivalently, the conformal cross-ratios introduced in [55,56]

v = x2
12x

2
34

x2
14x

2
23

= ζζ̄; 1 − Y = x2
13x

2
24

x2
14x

2
23

= (1 − ζ)(1 − ζ̄) . (4.14)

To summarize we have the δ-regularised Witten diagram (removing the prefactor
24∆ (N∆)2L+4 /(a4)L+1)

W
∆,δ
L (ζ, ζ̄) := 1

2L+1
v∆

(x2
12x

2
34)∆

∫
(R4)L+1

L+1∏
i=1

d4Xi

z4
i

F∆,δ(X1, . . . , XL+1)

×
∑
ρ∈S4

δ(ΓW )
|ΓW |

 zρ(1)∥∥∥Xρ(1)

∥∥∥2


∆ zρ(2)∥∥∥Xρ(2) − uζ

∥∥∥2


∆

z∆
ρ(3)

 zρ(4)∥∥∥Xρ(4) − u1
∥∥∥2


∆

, (4.15)

while in dimensional regularisation, taking into account the Jacobian just derived, we
have instead

W
∆,D
L (ζ, ζ̄) := 1

2L+1
v∆

(x2
12x

2
34)∆

∫
(RD)L+1

L+1∏
i=1

dDXi

(u ·Xi)4
F∆(X1, . . . , XL+1)
‖Xi − u1‖2(D−4)

×
∑
ρ∈S4

δ(ΓW )
|ΓW |

 zρ(1)∥∥∥Xρ(1)

∥∥∥2


∆ zρ(2)∥∥∥Xρ(2) − uζ

∥∥∥2


∆

z∆
ρ(3)

 zρ(4)∥∥∥Xρ(4) − u1
∥∥∥2


∆

. (4.16)
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4.1.4 Differential operator relations

It is possible to obtain the amplitude for the Witten diagrams with external dimension
∆ = 2 from those with ∆ = 1 by acting with a suitable differential operator on the
external points. This turns out to be rather useful when working with the dimensional
regularisation scheme.

We use the unit vector u = (0, 0, 0, 1) perpendicular to the boundary introduced in
section 4.1.2 and define the X̃i = (~xi, wi) associated to the external legs which, in this
section, we take to lie in the bulk. We introduce the operators

Hi := uµ
∂

∂X̃µ
i

∣∣∣∣∣
wi=0

, Hij := uµuν
∂

∂X̃µ
i

∂

∂X̃ν
j

∣∣∣∣∣
wi=wj=0

,

Hijkl := uµ1uµ2uµ3uµ4 ∂

∂X̃µ1
i

∂

∂X̃µ2
j

∂

∂X̃µ3
k

∂

∂X̃µ4
l

∣∣∣∣∣
wi=wj=wk=wl=0

. (4.17)

In order to define the action of these operators on Witten diagrams we move the
external legs into the bulk, while keeping the form of the bulk-to-boundary propagator.
We consider the generalisation of (4.2)

f∆(X1, . . . , X4; X̃1, . . . , X̃4) =
4∏
i=1

 u ·Xi∥∥∥Xi − X̃i

∥∥∥2


∆

, (4.18)

which is not a proper product of bulk-to-bulk propagators, but should rather be un-
derstood as some generating function for bulk-to-boundary propagators obtained by
moving the boundary points to a finite value of the radial coordinate. It is straight-
forward to check that the action of the differential operators (4.17) on the redefined
bulk-to-boundary propagator (4.18) gives

H1234f
∆(X1, . . . , X4; X̃1, . . . , X̃4) =

4∏
i=1

Hi

 u ·Xi∥∥∥Xi − X̃i

∥∥∥2


∆

,

so that

H1234f
∆(X1, . . . , X4; X̃1, . . . , X̃4) = (2∆)4

4∏
i=1

(
u ·Xi

‖Xi − ~xi‖2

)∆+1

,

= (2∆)4f∆+1(X1, . . . , X4; ~x1, . . . , ~x4) .

In the preceding section we have shown that the four-point Witten diagrams with ex-
ternal points on the conformal boundary depend only on the cross-ratios (4.14). If the
external points are moved into the bulk, as above, we have to reconsider the transfor-
mations leading to this, more precisely, (4.12) and (4.13). Repeating the arguments
in section 4.1.3 one can show that the integrals with external points in the bulk again
depend only on the cross-ratios v and Y now expressed as

v =

∥∥∥X̃12
∥∥∥2 ∥∥∥X̃34

∥∥∥2

∥∥∥X̃14
∥∥∥2 ∥∥∥X̃23

∥∥∥2 ; 1 − Y =

∥∥∥X̃13
∥∥∥2 ∥∥∥X̃24

∥∥∥2

∥∥∥X̃14
∥∥∥2 ∥∥∥X̃23

∥∥∥2 .
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Some of the operators in (4.17) have simple expressions in terms of the conformal
cross-ratios. In particular,

x2
12H12 =x2

34H34 = −2v ∂
∂v

,

x2
13H13 =x2

24H24 = 2 (1 − Y ) ∂Y ,
x2

14H14 =x2
23H23 = 2v∂v − 2(1 − Y )∂Y ,

and

(x12x34)2H1234 =4v
(
v(1 + v) ∂

2

∂v2 + (1 − Y )(2 − Y ) ∂2

∂Y 2 − 2v(1 − Y ) ∂2

∂v∂Y

+(1 + v) ∂
∂v

− (2 − Y ) ∂

∂Y

)
. (4.19)

We will use the differential operators H14 and H12 to obtain the finite part for ∆ = 2
at one-loop in (5.14) from the simpler auxiliary integral (5.12).

Acting with H1234 as in (4.17) on f∆ gives

H1234f
∆(X1, . . . , X4; X̃1, . . . , X̃4) = 1

(x2
12x

2
34)∆+1

×
[
4∆2 + 2∆x2

12H12 + 2∆x2
34H34 + (x2

12x
2
34)H1234

]( v u ·X1 · · ·u ·X4

‖X1‖2 ‖X2 − uζ‖2 ‖X4 − u1‖2

)∆

,

Plugging in equations (4.19) we obtain

H1234f
∆ = 4

(x2
12x

2
34)∆+1

[
v
(
v(1 + v)∂2

v + (1 − Y )(2 − Y )∂2
Y − 2v(1 − Y )∂v∂Y

+(1 + v − 2∆)∂v − (2 − Y )∂Y ) + ∆2
]( v u ·X1 · · ·u ·X4

‖X1‖2 ‖X2 − uζ‖2 ‖X4 − u1‖2

)∆

.

We will apply this differential operator for evaluating the diverging part for ∆ = 2 at
one-loop in (5.15) from the ∆ = 1 result as we will describe in section 5.2.1.

4.1.5 Feynman integral form of Witten diagrams

Let us summarize the results from the previous sections and write the boundary four
point function in EAdS as a superposition of flat space Feynman integrals. In section
4.1.1 we found that the propagator of a conformally coupled scalar field can always
be expressed in terms of a conformal flat space propagator, which has the form of a
momentum space Feynman propagator with an additional linear propagator term in the
numerator. In sections 4.1.2 and 4.1.3 we used conformal symmetry and dimensional
regularisation to rewrite the bulk to boundary part as the external legs of flat space
three point functions. Since the domain of integration can be extended from the upper
half plane to RD and the Jacobian can be expressed as the linear propagator u ·X, we
found that the four point function of a conformally coupled scalar field at loop order
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L is a sum of terms of the form

I(n,m,D) =
∫ L+1∏

i=1

dDXi

(u ·Xi)ni

∏
1≤k<j≤L+1

1
‖Xk −Xj‖2nkj

× 1
(‖Xa1‖2)m1(‖Xa2 − u1‖2)m2+2(D−4)(‖Xa3 − uζ‖2)m3

(4.20)

where nkj ∈ Z are integers, ni, m1, m2 and m3 are powers depending on the conformal
dimensions ∆.

These kinds of integrals have been studied for a long time and there are plenty of
methods in attempting to solve them (see [101] for a recent review). The method we
will apply in this work is the Feynman parametrisation (see e.g. [136]). Using the fact
that for A > 0

1
An

= 1
Γ(n)

∫ ∞

0
dα e−αAαn−1 ,

and Gaussian integration we can write an integral of the form of equation (4.20) in the
form

I =
Γ
(
ν − (L+1)D

2

)
∏N
j=1 Γ(νj)

∫
(RP+)N−1

dNα
N∏
i=1

ανi
i

(U(α))ν− (L+2)D
2

(F (α))ν− (L+1)D
2

,

where ν is the sum of the exponents of all propagators νj , αi are the Feynman param-
eters and U(α) and F (α) are the Symanzik polynomials. This is a projective integral
over the non-negative real projective space

(RP+)N :=
{

[α1 : ... : αN+1] ∈ RPN : αi ≥ 0
}
.

The Symanzik polynomials are homogeneous polynomials in the Feynman parameters
and contain the information about the kinematics and topology of the diagram. U(α)
is of degree L+ 1, while F (α) is of degree L+ 2.

Solving these integrals in general is very complicated and there have been many
methods developed to tackle them [101, 134]. We will use direct integration in the
Feynman parameters. To regularise the integrals in parameter space we use an analytic
regularisation procedure described in [102] and implemented in HyperInt [137]. We
will discover that most of the regularised integrals we encounter fall in the class of
linearly reducible integrals [102] and can therefore be expressed in terms of multiple
polylogarithms which we will discuss in section 4.3.

Different values of ∆

So far we have only considered conformally coupled, massless fields where the prop-
agator simplifies to equation (4.3). For general ∆ the method of direct integration
of Feynman parameters is not very straightforward due to the complicated structure
of the hypergeometric function, appearing in the propagator in equation (3.43). For
integer values of ∆ there is, however, hope. We have for ∆ = 2n+ 1 ≥ 3

Λ(X,Y; 2n+ 1) = Λ(X,Y; 1) +
(
a

2π

)2 1
K(X,Y)P

(n−2)
1

( 1
K(X,Y)2

)
+
(
a

2π

)2
Q

(n−1)
1

( 1
K(X,Y)2

)
log

(−G(X,σ(Y ))
G(X,Y )

)
,
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and for ∆ = 2n ≥ 4

Λ(X,Y; 2n) = Λ(X,Y; 2) +
(
a

2π

)2
P

(n−2)
2

( 1
K(X,Y)2

)
+

+
(
a

2π

)2 1
K(X,Y)Q

(n−2)
2

( 1
K(X,Y)2

)
log

(−G(X,σ(Y ))
G(X,Y )

)
,

where P (r)
i (x) and Q

(r)
i (x) are polynomial of degree r in x. Using the relation in (4.7)

these propagators can be written as a combination of the conformal flat space propa-
gators G(X,Y ) and G(X,σ(Y )).

The short distance singularities for coincident bulk points or antipodal points is the
same as for ∆ = 1, 2 but the general structure differs due to the presence of logarithms
of the conformal flat space propagator. Using that xη = 1 + η log(x) + O(η2) we can
consider the η-deformed propagators by making the replacement

log
(−G(X,σ(Y ))

G(X,Y )

)
→
(−G(X,σ(Y ))

G(X,Y )

)η
,

in the above expressions for Λ(X,Y; 2n+ 1) and Λ(X,Y; 2n).
In this representation we end up with expressions for the Witten diagrams in terms

of flat space like QFT Feynman integrals with generalized powers of the propagators

G(X,Y )η =
(

zw

‖X − Y ‖2

)η
, G(X,σ(Y ))η =

(
−zw

‖X − σ(Y )‖2

)η
,

which can be treated, using familiar analytic regularisation methods [134]. The pa-
rameter η will introduce some generalized powers of the propagators in addition to
the one generated by the breaking of the conformal invariance due to the dimensional
regularisation, as shown in section 4.1.3. We could therefore in principle treat those
cases as well by generalizing equation (4.20) to

I(n,m, η,D) =
∫ L∏

i=1

dDXi

(u ·Xi)ni

∏
1≤k<j≤L

1
‖Xk −Xj‖2nkj+ηk,j

× 1
(‖Xa1‖2)m1(‖Xa2 − u1‖2)m2+2(D−4)(‖Xa3 − uζ‖2)m3

where ηkj are analytic parameters. The value of the Witten diagram is the multi-linear
contribution ∏k,j ∂ηk,j

I(n,m, η,D)|ηk,j=0 in the analytic parameters ηk,j . These inte-
grals can in principle be reduced to master integrals using well established methods from
flat space calculations, like tensor reduction and integration by parts relations [138–141].
Due to technical limitations we will leave the actual evaluation of these integrals for
future work.

4.2 Unitarity methods

4.2.1 Cutting rules for flat space Feynman integrals

In this section we would like to take a closer look at the Witten diagrams in the form of
a flat space Feynman integral, as written in equation (4.20). It is tempting to interpret
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this integral as a flat space three point function with external “momenta” k1 = u1 −uζ ,
k2 = uζ , k3 = −u1. Integrating over a bulk vertex would correspond to integrating over
a loop momentum. The calculation of an L loop Witten diagram in EAdS therefore is
of the same complexity as an L + 1 loop diagram in flat momentum space (see figure
4.1). We will therefore use this interpretation to apply various flat space methods to

L + 1

loop momenta

k1

k2

k3

Figure 4.1: L loop Witten four point diagram represented as an L + 1 loop three
point Feynman diagram with external momenta k1 = u1 − uζ , k2 = uζ and k3 = −u1.

solve these integrals. Let us first review aspects of the analytic structure of Feynman
integrals, which allows us to calculate discontinuities of the diagram as we describe
in 5.4. See [142] for very good historical review and [101,143] for modern references.

Consider a function f(z) in the complex plane. The discontinuity of the function is
defined as

Discf(z ± i0) := lim
ε→0

f(z + iε) − f(z − iε) (4.21)

If the discontinuity is non-vanishing it means that z is on a branch cut of the
function, starting at some branch point z0. If f(z) can be expressed as an integral

f(z) :=
∫

γ[a,b]

h(z, w)dw (4.22)

of some analytic function h(z, w) along a path γ[a, b] from points a to b, the branch
point z0 is usually associated to a singularity of the integral. As a simple example, let
us consider the logarithm log(z). On the principal sheet, it has a discontinuity across
the branch cut going from z ∈ (−∞, 0] given by

Disc log(z ± i0) = 2πiθ(−z)

The logarithm can be defined as an integral along some path γ[1, z]

log(z) =
∫

γ[1,z]

dw
w

The integral is clearly singular for z = 0, due to the singularity at w = 0 in the
integrand. This is an example for an endpoint singularity. If z < 0 we have two
possibilities of deforming the integration contour to avoid the singularity. One is going
above and the other going below, which we denote by γ+ and γ− respectively. The
discontinuity can now be defined as the difference between these two paths∫

γ+[1,z]

dw
w

−
∫
γ−[1,z]

dw
w

=
∮
0

dw
w

= 2πi . (4.23)
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An integral like (4.23) is called the monodromy of the logarithm around the origin.
The two definitions for the discontinuity (4.21) and (4.23) are equivalent if we identify

log(z + iε) =
∫
γ+[1,z]

dw
w
, log(z − iε) =

∫
γ−[1,z]

dw
w

In general a function like (4.22) will have singularities if the singularities ws(z)
of the integrand h(z, w) cannot be avoided by continuously deforming the integration
contour. This happens in two cases [142]:

(i) Endpoint singularities occur if for some point z0 the singularity of the integrand
ws(z0) coincides with one of the endpoints. Obviously there is no deformation
of the contour that would avoid that. This is what happens in the case of the
logarithm above.

(ii) Pinch singularities appear if at least two singularities approach the integration
contour from opposite sides, therefore “trapping” the contour in the middle such
that it cannot be deformed anymore. See figure 4.2

a

b

w1(z)

w2(z)

Figure 4.2: Integration contour from a to b pinched between two singularities w1(z)
and w2(z) such that the singularities cannot be avoided by a deformation of the contour.

This analysis can be generalized to functions that involve several variables of inte-
gration

F (z) =
∫
Γ

n∏
i=1

dwiH(z, wi) ,

where the integration is now performed over a multi-dimensional hyperplane Γ. The
singularities in the integrand are given by equations

Ws(z, wi) = 0,

defining a (2n− 2)-dimensional hypersurface. To find the singularities of the function
F (z) we follow the same reasoning as for the one dimensional case. A singularity in
F (z) occurs if the integration region Γ intersects with at least one singularity surface
Ws(z, wi) and this intersection cannot be avoided by a continuous deformation of Γ. In
principle this can happen for the same reasons as in the one-dimensional case. Either
the integration region is trapped between one or more singularity surfaces or the sin-
gularity coincides with the “end point”, now also described by a set analytic equations
W̃r(z, w) = 0. The condition for a singularity of F (z) can then be summarized by the
following equations first found by Landau [144]:

αiWi = 0 ∀i, α̃rW̃r = 0 ∀r, ∂

∂wj

(∑
i

αiWi +
∑
r

α̃rW̃r

)
= 0 ∀j. (4.24)
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The proof of these equations goes beyond the scope of this thesis but can be found
in [142,144]. To give an intuitive explanation of (4.24) consider the following.

If a singularity surface W1 approaches Γ we can deform Γ away in the normal
direction of W1 unless a second singularity surface W2 approaches from the other side
with the same normal direction. Γ is therefore trapped between the surfaces and the
conditions for this situation are

W1 = W2 = 0, α1
∂W1
∂wi

+ α
∂W2
∂wi

= 0 .

Obviously this argument holds with more singularity surfaces approaching as long as
there is a linear relation between the directions of their normals. Finally, since W̃r are
the boundary surfaces, their normal vectors indicate the directions in which Γ cannot
be deformed and therefore play a similar role in trapping Γ as the singularity surfaces
Ws.

Let us now consider a general Feynman integral where for simplicity we consider
the exponents of the propagators to be 1

A =
∫ ∏L

n=1 dDpn∏m
i=1(q2

i −m2
i )
,

where qi are linear combinations of external momenta kj and internal momenta pn and
the masses mi can be vanishing.

Since the boundaries of the integration lie at infinity we do not have a boundary
surface W̃r. Then the singularities in the integrand occur when Wi = q2

i − m2
i = 0.

Plugging this into the Landau equations (4.24) we find the conditions

αi(q2
i −m2

i ) = 0, ∂

∂pj

∑
i

αi(q2
i −m2

i ) = 0

It was shown by Cutkosky in [145] that the discontinuity of the Feynman inte-
gral, given by a branch cut starting on a singularity surface WJ associated with the
propagators (q2

j −m2
j ) with j ∈ J going on shell, is given by

DiscWJ
I =

∫ L∏
n=1

dDpn

∏
j∈J

(−2πi)δ(q2
j −m2

j )θ(q0
j )

∏
i/∈J

1
q2
i −m2

i

. (4.25)

In flat momentum space these singularity surfaces usually correspond to a threshold
in some Mandelstam invariant, reach some value such that some real particles can be
produced and the scattering amplitude develops an imaginary part.

A purely algebraic derivation based on Feynman graphs and the largest time equa-
tion was done by t’Hooft and Veltmann in [146]. They introduce the concept of a cut
denoted by CutiA which means drawing lines through a diagram such that it is sepa-
rated into two diagrams, where not all vertices are allowed to lie on either side of the
line. The propagators which are crossed by the line are then put on-shell, by replacing
them by −2πiδ(q2

i −m2
i ), while the other propagators switch the sign of the iε → −iε

from one side of the cut to the other. In [146] it was shown that the imaginary part of
the diagram A is then given by

A−A∗ = −
∑

all cuts
CutiA . (4.26)
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The connection to the method of calculating a discontinuity by Landau and Cutkosky
can drawn in the following way. If we single out a specific momentum channel P 2 of the
Feynman diagram to lie on its branch cut P 2 > 0 and all other Mandelstam invariants
are negative, the left hand side of (4.26) collapses to a single term and we get the
equation for the discontinuity in across the branch cut in P 2 as

DiscP 2A = −CutP 2A . (4.27)

This means that the discontinuity is given by the cut that interrupts the flow of P 2

across the diagram. This region can be identified with a singularity surface in the
notion of the Landau equations, making the connection between (4.25) and (4.27).

For later use let us also introduce the concepts of sequential discontinuities and cuts.
A sequential discontinuity is defined as the discontinuity of a discontinuity, meaning
we interpret Disczf as a an analytic function defined by the monodromy around a
branch point and take the discontinuity. This concept generalizes straightforwardly to
functions with multiple variables and, following the convention in [147], we define the
sequential discontinuity operator recursively as

Discz1,...,zk
f = Disczk

(
Discz1,...,zk−1f

)
. (4.28)

In the same way we can perform sequential cuts of a diagram, by moving another
Mandelstam variable on the branch cut of the already cut diagram. The sequential
cut operator can be defined recursively equivalently to (4.28).The generalized relation
between sequential cuts and discontinuities is then given by

Cutz1,...,zk
A = (−1)kDiscz1,...,zk

A

So far we only considered simple poles in the integrand of the Feynman integral, by
setting the exponent of the propagators to 1. In general this is not the case and therefore
to cut a propagator with a different exponent we have to generalize our definition of a
cut. The derivation of (4.25) is based on the residue theorem so the cut of a propagator
with higher power should be given by the residue of a higher order pole, meaning the
we replace the δ function in (4.25) by ∂n−1

m2
i
δ(q2

i −m2
i ), where n is the exponent of the

propagator.
As a final note, let us return to the actual Witten diagrams. For flat space Feynman

integrals the physical interpretation of the branch cuts is that certain particles are able
to become real so that their virtual propagators go on-shell. For the Witten diagrams
this interpretation is not so straightforward. We merely use the structure of the integral
and its similarity to Feynman integrals. The cutting rules were merely a technical tool.
We will further discuss this in section 5.4.

4.2.2 Cutting Witten diagrams directly

A different approach at using analytic properties of the conformal four point functions
has been developed in [148] and related to cutting rules of a Witten diagram in [48,49].
The advantage of this method is, that the results are presented in terms of conformal
blocks right away. However, the cutting rules only allow one to calculate the double
discontinuity of the Witten diagram, which for our purpose only gives us access to
a consistency check between tree-level and one-loop calculations as we will discuss in
section 5.5. Nevertheless we would like to briefly review that method and compare the
results obtained that way to our method in chapter 5.
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Recalling the general formula (2.5) for the four point function of a CFT, expressed
in terms of ζ and ζ̄, we can write down the double discontinuity in the s-channel,
introduced in [148], of G(ζ, ζ̄) as

dDiscsG(ζ, ζ̄) = cos(α)G(ζ, ζ̄) − 1
2
(
eiαG(ζ + iε, ζ̄) + e−iαG(ζ − iε, ζ̄)

)
with α = π

2 (∆3 + ∆4 − ∆1 − ∆2). Plugged into the conformal block expansion of
equation (2.7) we obtain the following formula

dDiscsG(ζ, ζ̄) = 2
∑
∆,`

sin
(
π

2 (∆ − ∆1 − ∆2)
)

sin
(
π

2 (∆ − ∆3 − ∆4)
)
a12
O∆

a34
O∆

G∆,`(v, Y ) ,

where dDiscf is given in terms of the sequential discontinuities defined in the previous
section as (2πi)−2Disc(Discf) in the same variable.

This immediately tells us that if only double trace operators of a generalized free
field with dimension ∆i + ∆j + 2n+ ` are exchanged, there is no double discontinuity.
It only exists if these operators have anomalous dimensions.

The double discontinuity of the four point function can now be directly related to
the calculation in the bulk by introducing the concept of a “cut” of the Witten diagrams.
This is possible due to the split representation of the bulk to bulk propagator (3.43),
given by the following integral [149]

Λ(X1, X2,∆) =
+∞∫

−∞

dνP (ν,∆)
∫
∂AdS

dd~xΛ̄
(
~x,X1,

d

2 + ν

)
Λ̄
(
~x,X2,

d

2 − ν

)
, (4.29)

where the spectral function P (ν,∆) is given by

P (ν,∆) = i

ν2 − (∆ − d
2)
ν2

π
,

which has poles at ν± = ±(∆ − d
2). In any loop integral we can now replace the bulk

to bulk propagators by the split representation of equation (4.29) as depicted in figure
4.3 for the one-loop diagram.

∆2

∆1

∆3

∆4

∆5

∆6

=
+∞∫

−∞

dν̄5dν̄6P (ν̄5,∆5)P (ν̄6,∆6)
∆2

∆1

∆3

∆4

∆5 d− ∆5

∆6 d− ∆6

Figure 4.3: One-loop Witten diagram as an integral over the cut diagram

A cut is then defined in the same spirit as for the flat space Feynman integrals by
dropping the integral over ν and replacing the spectral function P (ν,∆) by the residue
times 2πi at the pole ν = −(∆ − d

2), given by

2πiResν=−(∆− d
2 )2P (ν,∆) = 2∆ − d .
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As depicted in figure 4.3 this corresponds to replacing a bulk to bulk propagator
by two bulk to boundary propagators with external dimensions ∆ and d − ∆. This
method has been applied in [49] in the spectral representation of Witten diagrams [48]
given by

〈O∆1(~x1)O∆2(~x2)O∆3(~x3)O∆4(~x4)〉 =
∞∑
`=0

d
2 +i∞∫

d
2 −i∞

d∆
2πiρ∆1∆2∆3∆4(∆, `)G∆,`(~xi) , (4.30)

where ρ∆1∆2∆3∆4(∆, `) is the spectral function which has poles in ∆ and ` at the
positions of operators appearing in the OPE, such that the integral collapses to the sum
of equation (2.7). The spectral function can be calculated from the split representation
for the propagator and the coefficients of the three point functions

〈
O∆1O∆2O∆,`

〉
by

integrating over bulk to boundary propagators. By performing a cut as depicted in
figure 4.3 the Witten diagram is reduced to the product of two tree-level four point
functions. This is especially obvious in the spectral representation where the one-loop
spectral function is given by

ρ1−loop
∆1∆2∆3∆4

∼
∫

dν5ν6P (ν̄5,∆5)P (ν̄6,∆6)ρtree
∆1,∆2,∆̄5,∆̄6

ρtree
d−∆̄5,d−∆̄6,∆3,∆4

, (4.31)

where ∆̄5/6 = d
2 + ν̄5/6 denotes the “off-shell” scaling dimension. Cutting a one-loop

diagram means in practice that we evaluate the integrand of equation (4.31) at the
on-shell dimension ∆5 and ∆6 and equation (4.30) then tells us that the location of
the poles of the cut four point function will be the same as for the tree level diagram.
This is just a different formulation of the consistency relation between the tree-level
and one-loop calculation discussed in section 5.5.

If we denote the cut by Cut56, it was shown in [49] that the cut of the diagram is
related to the double discontinuity by

dDiscs(W∆1,∆2,∆3,∆4,D
1 ) = 2 sin

(
π

2 (∆5 + ∆6 − ∆1 − ∆2)
)

sin
(
π

2 (∆5 + ∆6 − ∆3 − ∆4)
)

Cut56(W∆1,∆2,∆3,∆4,D
1 ) ,

therefore making a connection between the analytic structure and unitarity similarly
to the cutting rules in flat space.

The advantage of this formulation is that the four point functions are expressed
in terms of conformal blocks right away and the theory is naturally formulated for
arbitrary ∆. However, as we saw, we only have access to the double discontinuity,
which can only provide us with a consistency check between first and second order
calculations, while for new data from the second order contribution we would need the
single discontinuity. We will therefore not use the above described method in this work
any further and merely leave this brief discussion for completeness.

4.3 Multiple Polylogarithms
In this section we will briefly review the method of expressing certain classes of Feynman
integrals in terms of multiple polylogarithms as it was developed and implemented in
the HyperInt package (see [137]). For further information we refer to [103,150–152].
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A multiple polylogarithm is defined recursively as the iterated integral

G(σ1, ..., σn; z) :=
z∫

0

dz1
z1 − σ1

G(σ2, ..., σn; z1) . (4.32)

If σn 6= 0 this is equivalent to the definition

G(σ1, ..., σn; z) :=
z∫

0

dz1
z1 − σ1

z1∫
0

dz2
z2 − σ2

...

zn−1∫
0

dzn
zn − σn

, (4.33)

where the number n is called the weight of the multiple polylogarithm. In this case we
have the additional useful property

G(σ1, ..., σn; z) = G(λσ1, ..., λσn;λz) ∀λ ∈ C \ {0} . (4.34)

Upon total differentiation with respect to all arguments they obey the relation

dG(σ1, ..., σn; z) =
n∑
i=1

G(σ1, ..., σ̂i, ..., σn)(d log(σi−1 − σi) − d log(σi+1 − σi)) , (4.35)

which can by straightforwardly derived from equation (4.33) through integration by
parts. The hat means that the corresponding variable is omitted and we set σ0 = z
and σn+1 = 0.

Multiple polylogarithms have an equivalent representation as a nested sum given
by

Lis1,...,sk
(x1, . . . , xk) :=

∞∑
0<p1<···<pk

xp1
1
ps1

1
· · ·

xpk
k

psk
k

for |x1 · · ·xi| < 1, ∀i ∈ {1, .., k} .

(4.36)
where Lis1,...,sn(x1, . . . , xn) and G(σ1, ..., σn; z) are related by the following formula

(−1)nLis1,...,sn(x1, . . . , xn) = G( 0, ..., 0︸ ︷︷ ︸
sn−1 times

, σn, ..., σ2, 0, ..., 0︸ ︷︷ ︸
s1−1 times

, σ1)(z) ,

with xi = σi+1
σi

, with xn = z
σn

. The multiple polylogarithm Lis1,...,sn(x1, . . . , xn) there-
fore has weight s1 + ...+ sn.

Some familiar expressions can be directly expressed as special cases of multiple
polylogarithms. The ordinary logarithm and classical polylogarithm are for example
given by

log(x) = G(0;x); Lin(x) = −G( 0, ..., 0︸ ︷︷ ︸
n−1 times

, 1;x) .

They obey a shuffle algebra, which allows us to express two multiple polylogarithms
of weight n and m as the superposition of multiple polylogarithms of weight n + m.
This works the following. Consider two multiple polylogarithms G(σ1, ..., σn, z) and
G(σn+1, ..., σn+m, z). Their product is then given by

G(σ1, ..., σn; z) ·G(σn+1, ..., σn+m; z) =
∑

π∈Ω(n,m)
G(σπ(1), ..., σπ(n+m); z) ,



4.3 Multiple Polylogarithms 71

where Ω(N,M) is the set of all permutations of the elements of the index sets N and
M , that leaves the relative order in N and M invariant.

The representation of equation (4.36) is especially useful for us to expand the results
of our Witten diagrams. The strategy is now to bring a Witten diagram in its Feynman
parametric representation into the form of a nested integral as given in equation (4.32).
The integrand of the next integration is always given by a multiple polylogarithm times
a rational function where the denominator is linear in the next integration variable, i.e.
of the form (4.32). An integral obeying these conditions is called linearly reducible
and we refer the interested reader to [96, 102] and references therein for a thorough
discussion of these integrals.

To see how this works in practice we go through the evaluation of the tree level
four point function depicted in figure 5.1 with the parametric representation given by
equation (5.2). For simplicity we only consider the case with external dimension ∆ = 1.
Setting α3 = 1 due to the projectivity of the integral, equation (5.2) becomes

I(ζ, ζ̄) =
∫ ∞

0
dα1dα2

1
(1 + α1 + α2)(α1α2 + α1ζζ̄ + α2(1 − ζ)(1 − ζ̄))

.

Since the Symanzik polynomials are linear in both Feynman parameters, we can inte-
grate α1 straight away and obtain

I =
∫ ∞

0
dα2

1
(α2 + ζ)(α2 + ζ̄)

log
(

(α2 + ζζ̄)(1 + α2)
α2(1 − ζ)(1 − ζ̄)

)

= 1
ζ − ζ̄

∫ ∞

0
dα2

( 1
α2 + ζ

− 1
α2 + ζ̄

)
log

(
(α2 + ζζ̄)(1 + α2)
α2(1 − ζ)(1 − ζ̄)

)
,

where in the second step we used partial fraction decomposition to express the integrand
in a form that is suitable for equation (4.32). Let us focus on the first summand in the
integrand. We express the logarithm in terms of polylogarithms as

dα2

α2 + ζ
log
(

(α2 + ζζ̄)(1 + α2)
α2(1 − ζ)(1 − ζ̄)

)
=

= d log(α2+ζ)
(

Li1
(

ζ

α2 + ζ

)
− Li1

(
ζ − 1

α2 + ζ

)
− Li1

(
ζ(1 − ζ̄)
α2 + ζ

)
+ log(α2 + ζ) − log((1 − ζ)(1 − ζ̄))

)
= d log(α2 + ζ)

(
−G(α2 + ζ, ζ) + G(α2 + ζ, ζ − 1) + G(α2 + ζ, ζ(1 − ζ̄))

+ log(α2 + ζ) − log((1 − ζ)(1 − ζ̄))
)

,

where we used (4.34). Comparing to equation (4.35) we can immediately write down
the primitive for this part of the integral

Pζ(α2) = −G(0, α2 + ζ, ζ) +G(0, α2 + ζ, ζ − 1) +G(0, α2 + ζ, ζ(1 − ζ̄))

+ 1
2 log2(α2 + ζ) − log(α2 + ζ) log((1 − ζ)(1 − ζ̄))

= Li2
(

ζ

ζ + α2

)
− Li2

(
ζ − 1
α2 + ζ

)
− Li2

(
ζ(1 − ζ̄)
α2 + ζ

)

+ 1
2 log2(α2 + ζ) − log(α2 + ζ) log((1 − ζ)(1 − ζ̄)) .

The second term is given by replacing ζ ↔ ζ̄ and we denote the resulting primitive as
Pζ̄(α2). Therefore the result of the integral is given by

I = 1
ζ − ζ̄

(Pζ(α2) − Pζ̄(α2))
∣∣∣∞
0
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Using the fact that the polylogarithm vanishes at vanishing argument, the diverging
terms log2(α2+ζ) and log(α+ζ) cancel with the contribution from Pζ̄(α2) and applying
identities (A.1) the final result is given by

I = 1
ζ − ζ̄

(
2Li2 (ζ) − 2Li2

(
ζ̄
)

+ log ζζ̄
(
log(1 − ζ) − log(1 − ζ̄)

))
= 4iD(ζ, ζ̄)

ζ − ζ̄
,

where D(ζ, ζ̄) is the Bloch-Wigner dilogarithm [150] given in equation (A.2). This is
actually the well known result for the one-loop three point function for a flat space
diagram in momentum space.

The cross diagram is arguably the simplest diagram we evaluate, where we can do
the calculation by hand. For more complicated diagrams we use the program HyperInt
[137], which automatically expresses linearly reducible Feynman integrals in terms of
multiple polylogarithms.

Interestingly most of the diagrams we encounter in EAdS and all diagrams in dS
up to one loop order happen to be linearly reducible and therefore can be expressed in
terms of multiple polylogarithms.



Chapter 5

Loop corrections to scalar field
theory in Anti de Sitter
space-time

We are now ready to calculate loop corrections to Witten diagrams for a λφ4 theory
and make their dependence on conformal cross ratios explicit. Below we will use two
different regularisation schemes to establish scheme independence of our results. This
chapter is a partial reproduction of [57].

5.1 The tree-level cross diagram

We start with the evaluation of the cross diagram for general integer dimensions ∆ ≥ 1.1
This is the first order perturbation in λφ4 theory and depicted in figure 5.1.

x2

x1

x3

x4

Figure 5.1: Cross diagram

5.1.1 General dimensions

The integral corresponding to this Witten diagram as defined in (4.16) is finite and
therefore does not have to be regulated. Since this diagram only involves bulk-to-
boundary propagators it takes a simple form in any dimension D and for general ∆,

W
∆,D
0 (ζ, ζ̄) = 1

2
v∆

(x2
12x

2
34)∆

∫
RD

dDX
(u ·X)D

(
(u ·X)4

‖X‖2 ‖X − uζ‖2 ‖X − u1‖2

)∆

. (5.1)

1The cross diagram is referred to as the D-function in [109]. We will not use this notation, reserving
the name of D(ζ, ζ̄) for the Bloch-Wigner single-valued dilogarithm function defined in (A.2).
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We can evaluate this integral by using the parametric representation which is based on
the fact that for A > 0

1
An

= 1
Γ(n)

∫ ∞

0
dα e−αAαn−1 .

In this representation (5.1) becomes

W
∆,D
0 = 1

2
i4∆−Dπ

D+1
2

Γ
(
D+1

2 − 2∆
)

Γ(∆)2

v∆

(x2
12x

2
34)∆ I

∆
× (ζ, ζ̄) , (5.2)

with

I∆
× (ζ, ζ̄) =

∫
(RP+)2

3∏
i=1

dαiα∆−1
i

(α1 + α2 + α3)∆(α1α2 + α1α3ζζ̄ + α2α3(1 − ζ)(1 − ζ̄))∆ , (5.3)

where (RP+)2 indicates that the integral is taken over the positive real projective space
defined as

(RP+)n−1 := {[α1, . . . , αn] ∈ RPn−1 : α1, . . . , αn ≥ 0} .

Note that the only dependence on the spacetime dimension is contained in the pre-
factor.

We show in the appendix B.1 that for ∆ ≥ 1 the cross integral takes the form

I∆
× (ζ, ζ̄) = c∆

1 (ζ, ζ̄)
(ζ − ζ̄)4(∆−1)

4iD(ζ, ζ̄)
ζ − ζ̄

+ c∆
2 (ζ, ζ̄)

(ζ − ζ̄)4(∆−1) log(ζζ̄)

+ c∆
3 (ζ, ζ̄)

(ζ − ζ̄)4(∆−1) log((1 − ζ)(1 − ζ̄)) + c∆
4 (ζ, ζ̄)

(ζ − ζ̄)4(∆−1) .

where c∆
r (ζ, ζ̄) are polynomial in ζ and ζ̄, and with D(ζ, ζ̄) is the Bloch-Wigner dilog-

arithm defined in equation (A.2). Despite the apparent singularity for ζ̄ = ζ the
expression is regular on the real slice. As expected I∆

× (ζ, ζ ·), with ζ̄ = ζ · being complex
conjugate of ζ, is a single-valued function on C \ {0, 1}.

In the rest of the paper we will make use of the result for ∆ = 1 which reads

W
1,4
0 (ζ, ζ̄) = π2

x2
12x

2
34
ζζ̄

2iD(ζ, ζ̄)
ζ − ζ̄

, (5.4)

and for ∆ = 2, given by

W
2,4
0 (ζ, ζ̄) = 3π2(ζζ̄)2

4x4
12x4

34

×
(4ζ2ζ̄2 − (ζ + ζ̄)3 + 2ζζ̄(ζ + ζ̄)2 + 2(ζ + ζ̄)2 − 8ζζ̄(ζ + ζ̄) + 4ζζ̄

(ζ − ζ̄)4

2iD(ζ, ζ̄)
ζ − ζ̄

+ (ζ + ζ̄)2 − 3ζζ̄(ζ + ζ̄) + 2ζζ̄

(ζ − ζ̄)4
log(ζζ̄)

+ 3ζζ̄(ζ + ζ̄) − 2(ζ + ζ̄)2 + 3(ζ + ζ̄) − 4ζζ̄

(ζ − ζ̄)4
log((1 − ζ)(1 − ζ̄)) + 1

(ζ − ζ̄)2

)
. (5.5)

W
2,4
0 (ζ, ζ̄) can equivalently be obtained by acting on W

1,4
0 (ζ, ζ̄) with the differential

operator H1234 in (4.17). This is a simple application of the method described in
section 4.1.4.
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5.1.2 Dimensional regularisation

Even though the Witten cross diagram is finite and does not need to be regularised,
we will need the higher terms in the D − 4 expansion, for the renormalisation of the
one-loop diagrams. In order to restore AdS-invariance after regularisation, we need to
evaluate the cross diagram in D = 4 − 4ε dimensions.2 For ∆ = 1 the integral is

W
1,4−4ε
0 (ζ, ζ̄) = 1

2
ζζ̄

(x12x34)2

∫
R4

d4−4εX

‖X‖2 ‖X − u1‖2(1−4ε) ‖X − uζ‖2 . (5.6)

Making use of the parametric representation (B.2) we can expand in ε. Again the
resulting integrand is linearly reducible and we can evaluate the integral by using
HyperInt [137], resulting in

W 1,4−4ε
0 (ζ, ζ̄) = 24a4+4ε

(2π)8 W
1,4−4ε
0 (ζ, ζ̄) = 24a4+4ε

(2π)8

(
W

1,4
0 (ζ, ζ̄) + εW1,4

0,ε (ζ, ζ̄) +O(ε2)
)
,

with W 1,4
0 (ζ, ζ̄) given in (5.4) and

W
1,4
0,ε (ζ, ζ̄) = ζζ̄π2

x2
12x

2
34

(
f1(ζ, ζ̄)
ζ − ζ̄

− 2iD(ζ, ζ̄)
ζ − ζ̄

log(ζζ̄) + 2iD(ζ, ζ̄)
ζ − ζ̄

log((1 − ζ)(1 − ζ̄))
)
,

where the function f1(ζ, ζ̄) can be found in equation (A.3). The corresponding result
for ∆ = 2 can then be obtained by acting on the parametric representation for ∆ = 1
with H1234 before expanding in ε. After integration over the Feynman parameters (see
(B.3)) we find

W 2,4−4ε
0 (ζ, ζ̄) = 28a4+4ε

(2π)8 W
2,4−4ε
0 (ζ, ζ̄) = 28a4+4ε

(2π)8

(
W

2,4
0 (ζ, ζ̄) + εW2,4

0,ε (ζ, ζ̄) +O(ε2)
)
,

(5.7)
with W

2,4
0 (ζ, ζ̄) given in (5.5) and W

2,4
0,ε (ζ, ζ̄) given by equation (B.4).

5.2 The one-loop diagram

x2

x1

x3

x4

+

x3

x1

x2

x4

+

x1

x4

x2

x3

Figure 5.2: One-loop Witten diagrams

At one-loop level there are numerous diagrams to be evaluated but, as was found
out in [55, 56], tadpoles and self-energy corrections only contribute to the mass shift
at this level so we can reabsorb them into the conformal dimension of the boundary
operator. In this section we fix this dimension to ∆ = 1 and ∆ = 2 and the only
remaining connected one-loop diagrams in λφ4 theory are the three channels of the
one-loop bubble diagram depicted in figure 5.2.

2See Remark 2 at the end of section 4.1.2.
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5.2.1 Dimensional regularisation

In order to restore conformal invariance after regularisation, we calculate these diagrams
in dimensional regularisation with D = 4 − 2ε using the general formula (4.16) with
δ(ΓW ) = δ(Xσ(1) = Xσ(2))δ(Xσ(3) = Xσ(4)) to obtain

W∆,4−2ε
1 (ζ, ζ̄) = a4+4ε24∆(ζζ̄)∆

4(x2
12x

2
34)∆(2π)8

∫
(RD)2

d4−2εX1d4−2εX2 ·

· (u ·X1)2∆−4(u ·X2)2∆−4Λ̃(X1,X2; ∆)2

‖X1 − u1‖−4ε ‖X2 − u1‖−4ε

(
1

‖X1‖2∆ ‖X2 − u1‖2∆ ‖X2 − uζ‖2∆

+ 1
‖X2‖2∆ ‖X2 − u1‖2∆ ‖X1 − uζ‖2∆ + 1

‖X2‖2∆ ‖X1 − u1‖2∆ ‖X2 − uζ‖2∆

)
,

where Λ̃ is the propagator (4.9) without the normalization factor a2/4π2 which has
been pulled out of the integral. Expanding the square with the help of the identity
in (4.6) one finds

Λ̃(X1,X2; ∆)2 = (u ·X1)2 (u ·X2)2

‖X1 −X2‖4 + (u ·X1)2 (u · σ(X2))2

‖X1 − σ(X2)‖4

− (−1)∆

2

(
u ·X1 u ·X2

‖X1 −X2‖2 + u ·X1 u · σ(X2)
‖X1 − σ(X2)‖2

)
.

Upon substitution into (5.2.1) we arrive at

W∆,4−2ε
1 (ζ, ζ̄) = 24∆a4+4ε

(2π)12

∑
i∈{s,t,u}

(
W

∆,4−2ε,i
1,div (ζ, ζ̄) − (−1)∆

2 W
∆,4,i
1,fin (ζ, ζ̄)

)
, (5.8)

where the integral in W∆,4−2ε,i
1,div (ζ, ζ̄) requires regularisation while W∆,4,i

1,fin (ζ, ζ̄) does not.
For instance, in the s-channel

W
∆,4−2ε,s
1,div (ζ, ζ̄) = 1

2
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R2D

d4−2εX1d4−2εX2(u ·X1)2∆−2(u ·X2)2∆−2 ‖X1 − u1‖4ε

‖X1‖2∆ ‖X1 − uζ‖2∆ ‖X2 − u1‖2∆−4ε ‖X1 −X2‖4 ,

and

W
∆,4,s
1,fin (ζ, ζ̄) = 1

2
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R8

d4X1d4X2(u ·X1)2∆−3(u ·X2)2∆−3

‖X1‖2∆ ‖X1 − uζ‖2∆ ‖X2 − u1‖2∆ ‖X1 −X2‖2 , (5.9)

with similar expression for the other channels listed in equation (C.1).

For ∆=1 the evaluation of the divergent part is straightforward. In the parametric
representation (see (C.4)) we can integrate using HyperInt [137] giving

W
∆,4−2ε,s
1,div (ζ, ζ̄) = −π4−2εe−2γεζζ̄

2x2
12x

2
34

(1
ε

4iD(ζ, ζ̄)
ζ − ζ̄

+ f1(ζ, ζ̄)
ζ − ζ̄

− 2iD(ζ, ζ̄)
ζ − ζ̄

log(ζζ̄)

+ 4iD(ζ, ζ̄)
ζ − ζ̄

log((1 − ζ)(1 − ζ̄))
)
. (5.10)
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Adding the corresponding contributions form the t- and u-channel from appendix C.1.1
we end up with

W 1,4−2ε
1,div (ζ, ζ̄) = 24a4+4ε

(2π)12

∑
i∈{s,t,u}

W
1,4−2ε,i
1,div (ζ, ζ̄)

= 24a4+4ε

(2π)12

−3π2

ε
W

1,4−4ε
0 (ζ, ζ̄) + π4v

2x2
12x

2
34

∑
i∈{s,t,u}

L1,i
0 (ζ, ζ̄)

 ,

where the L∆,i
0 (ζ, ζ̄) terms are regular for ε → 0. Their expressions are given in ap-

pendix C.1.3.
The finite piece W

1,4,i
1,fin is harder to solve exactly. In the parametric representation

it can be rewritten as (see appendix C.1.4 for details)

W
1,4,i
1,fin (v, Y ) = 2π4v∆

(x12x34)∆


L′

0(v, 1 − Y, 1) i = s

L′
0(1 − Y, 1, v) i = t

L′
0(1, v, 1 − Y ) i = u

,

with

L′
0(x, y, z) =

∫ ∞

1
dλ

∫ ∞

0
ds

∫ 1

0
dr

log(1 + λs)
4λ
√

(1 + s)(1 + λs)(sr(1 − r)x+ ry + (1 − r)z)
,

and v = ζζ̄ and ζ + ζ̄ = v + Y .
The integral is an elliptic polylogarithm obtained by integrating the dilogarithm

in (C.15) over the elliptic curve (C.17). Since we want to calculate anomalous dimen-
sions, which are related to the coeffcients of the terms proportional to log(v), we are
not actually interested in the complete result of the integral. In appendix C.1.4 we
provide an efficient way to extract the coefficients of the log(v)2 and log(v) terms and
do an expansion in v and Y .

Altogether, the total one-loop Witten diagram for ∆ = 1 is given by

W 1,4−2ε
1 (v, Y ) = 24a4+4ε

(2π)12

(
− 3π2

ε
W

1,4−4ε
0 (v, Y ) + π4v

2x2
12x

2
34

∑
i∈{s,t,u}

L1,i
0 (v, Y )+

π4v

x2
12x

2
34

∑
i∈{s,t,u}

L′
0
i(v, Y ) + O(ε)

)
. (5.11)

For ∆ = 2 we start with the calculation of the finite part. There are no elliptic
integrals to compute and we can find closed form expressions in terms of single-valued
polylogarithms of weight up to three.

To obtain the parametric representation of the finite part (5.9) we introduce the
auxiliary integrals W̃

2,4,i
1,fin for each channel, with the s-channel given by

W̃
2,4,s
1,fin = 1

8

∫
R8

d4X1d4X2

‖X1 − ~x1‖2 ‖X1 − ~x2‖4 ‖X2 − ~x3‖4 ‖X2 − ~x4‖2 ‖X1 −X2‖2

= 1
8

x2
14

x4
12x

4
34

(ζζ̄)2
∫
R8

d4X1d4X2

‖X1‖2 ‖X1 − uζ‖4 ‖X2 − u1‖2 ‖X1 −X2‖2 , (5.12)
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and the other channels displayed in (C.2). The second line in equation (5.12) is obtained
by performing the conformal mappings as described in section 4.1.3. Considering the
discussion in section 4.1.4 it is straightforward to see, that the finite part of the one-
loop integral in each channel is given by the action of the differential operator Hij on
the corresponding auxiliary integral by

W
2,4,s
1,fin = H14W̃

2,4,s
1,fin ; W

2,4,t
1,fin = H12W̃

2,4,t
1,fin ; W

2,4,u
1,fin = H12W̃

2,4,u
1,fin . (5.13)

In equation (C.9) we give the result of (5.13) in the parametric representation. Inte-
grating over the Feynman parameters we obtain

W
2,4,s
1,fin (ζ, ζ̄) = π4

8
(ζζ̄)2

(x2
12x

2
34)2

(
(ζ + ζ̄ − 2)8iD(ζ, ζ̄)

(ζ − ζ̄)3

+2(2ζζ̄ − ζ − ζ̄)
ζζ̄(ζ − ζ̄)2 log((1 − ζ)(1 − ζ̄)) − 4 log(ζζ̄)

(ζ − ζ̄)2

)
, (5.14)

for the s channel. The results for the other channels are given in appendix C.1.2.
The divergent integrals in (5.8) can be calculated by acting with H1234 on the

corresponding expressions for ∆ = 1. Some care has to be taken since the action
of H1234 and the ε expansion do not commute: We have to act on the parametric
representation of the ∆ = 1 expressions which gives us the parametric representation
of the ∆ = 2 expressions. These can then be expanded in ε. The explicit expressions
are given in equation (C.11). Integrating over the Feynman parameters and summing
over the three channels we end up with

W 2,4−2ε
1,div (ζ, ζ̄) = 28a4+4ε

(2π)12

(
− 3π2

ε
W

2,4−4ε
0 + 3π2W2,4

0

+ 1
2

∑
j∈{s,t,u}

W
2,4,j
1,fin + 3π4v2

8(x2
12x

2
34)2

∑
i∈{s,t,u}

L2,i
0 + O(ε)

)
. (5.15)

In sum, the total one-loop Witten diagram for ∆ = 2 is given by

W 2,4−2ε
1 (ζ, ζ̄) = 28a4+4ε

(2π)12

−3π2

ε
W

2,4−4ε
0 + 3π2W2,4

0 + 3π4v2

8(x2
12x

2
34)2

∑
i∈{s,t,u}

L2,i
0 + O(ε)

 ,

(5.16)
with the expressions for L∆,i

0 given in appendix C.1.3.

Renormalisation: In order to subtract the UV-divergences in our dimensional re-
gularisation we define the bare coupling constant λ as usual through λ = λR (aµ)µ2ε +
δλ. The bare coupling is divergent but gives finite four-point functions by choosing
the divergent counter-term δλ accordingly. The renormalised coupling λR is finite
and dimensionless in any dimension due to the factor µ2ε where µ has the dimension
of length, which accounts for the scaling correction due to dimensional regularisa-
tion. Summing the tree-level (cross) and the one-loop (bubble) diagram contributions
from (5.7) and (5.16) above, we have, for the connected part of the four-point function,
up to finite terms,

λRµ
4εW∆,4−4ε

0 − λ2
Rµ

4ε

2 W∆,4−2ε
1 = 24∆a4

(2π)8 λR · (aµ)4ε
(

1 + 3λR
32π2

1
ε

)
W

∆,4−4ε
0

≡ µ2ελW∆,4−4ε
0 .
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The extra factor µ2ε in front of λ arises since we have chosen the measure d4−4εX,
rather than d4−2εX for the cross diagram in (5.6). Focusing on the 1/ε pole then fixes
the value of the counter-term

δλ = −3λ2
Rµ

2ε

32π2
1
ε
.

On the other hand the logµ contribution to the finite part in δλ gives rise to the
Callan-Symanzik equation

0 = µ
d

dµλ = 2εµ2ε
(
λR − 3λ2

R

32π2
1
ε

)
+ µ2εµ

∂λR
∂µ

∂

∂λR

(
λR − 3λ2

R

32π2
1
ε

)
,

from which we read of the beta function

β = 3λ2
R

16π2 + O(λ3) .

This coincides with the β function of λφ4 theory in flat space.

5.2.2 AdS invariant regularisation

Let us compare the results obtained so far to the AdS-invariant regularisation method
described in section 4.1.2, which was used in [55,56,71]. The one-loop Witten diagram
associated to the graphs in figure 5.2, with the regularisation given by (4.15), again
consists of the sum over the contributions from the three channels

W∆,δ
1 (ζ, ζ̄) = 24∆a4

(2π)12

∑
i∈{s,t,u}

W
∆,δ,i
1 (ζ, ζ̄) ,

with the contribution to the s-channel given by

W
∆,δ,s
1 =1

4
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R8

d4X1d4X2z
2∆−4
1 z2∆−4

2

‖X1‖2∆ ‖X1 − uζ‖2∆ ‖X2 − u1‖2∆

(
Kδ(X1,X2)∆

1 −Kδ(X1,X2)2

)2

,

(5.17)

and the integrals for the other channels given in (C.3).
In order to simplify the calculation we will separate these double integrals into an

integral with the two external legs connected to X1 and perform the integration over
X2 later as

W
∆,δ,i
1 =1

2

∫
R4

d4X2Ŵ
∆,δ,i
1 (~w1, ~w2, X2) z2∆−4

2

‖~w3 −X2‖2∆ , (5.18)

with the intermediate integral

Ŵ
∆,δ,i
1 (~w1, ~w2, X2) = 1

2
v∆

(x2
12x

2
34)∆

∫
R4

d4X1 z2∆−4
1

‖~w1 −X1‖2∆ ‖~w2 −X1‖2∆

(
Kδ(X1,X2)∆

1 −Kδ(X1,X2)2

)2

,

associated to the fish diagram in figure 5.3.
Comparing to the expressions in equation (5.17) it is straightforward to identify the

three channels as:
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~w1

~w2

X1 X2

Figure 5.3: Fish diagram

• s-channel: ~w1 → 0, ~w2 → uζ and ~w3 → u1

• t-channel: ~w1 → uζ , ~w2 → u1 and ~w3 → 0

• u-channel: ~w1 → 0, ~w2 → u1 and ~w3 → uζ

For ∆ = 1 and ∆ = 2, this integral can be further simplified by rewriting the square
of the bulk-to-bulk propagator in (5.17) in terms of euclidean propagators as described
in 4.1. The fish diagram is then given by

Ŵ
∆,δ,i
1 (~w1, ~w2, X2) = v∆

(x2
12x

2
34)∆

1
4

∫
R4

d4X1
z4

1

2∏
i=1

z∆
1

‖~wi −X1‖2∆

×
(

Kδ(X1,X2)2

(1 −Kδ(X1,X2))2 − (−1)∆ Kδ(X1,X2)
1 −Kδ(X1,X2)

)
. (5.19)

For ∆ = 2: We split the integral into a first piece that diverges when δ → 0

Ŵ
∆,δ,i
1 (~w1, ~w2, X2)|1 := v2

(x2
12x

2
34)2

1
4

∫
R4

d4X1

2∏
i=1

1
‖~wi −X1‖4

K(X1,X2)2

(1 −K(X1,X2) + δ)2

= π2v2

(x2
12x

2
34)2

[
1
8

2∏
i=1

z2

‖~wi −X2‖2 −
2∏
i=1

z2
2

‖~wi −X2‖4 ·

(
log

(
z2

2 |~w1 − ~w2|2

‖~w1 −X2‖2 ‖~w2 −X2‖2

)
+ log 2δ + 2

)]

and a second piece that is finite when δ → 0:

Ŵ
∆,δ,i
1 (~w1, ~w2, X2)|2 := lim

δ→0

v2

(x2
12x

2
34)2

1
4

∫
R4

d4X1

2∏
i=1

1
‖~wi −X1‖4

K(X1,X2)
1 −K(X1,X2) + δ

= π2v2

(x2
12x

2
34)2

1
8

2∏
i=1

z2

‖~wi −X2‖2 ,

so that the complete result for the fish diagram becomes

Ŵ
∆,δ,i
1 (~w1, ~w2, X2) = Ŵ

∆,δ,i
1 (~w1, ~w2, X2)|1 − Ŵ

∆,δ,i
1 (~w1, ~w2, X2)|2

= − π2v2

(x2
12x

2
34)2

2∏
i=1

z2
2

‖~wi −X2‖4

(
log

(
z2

2 |~w1 − ~w2|2

‖~w1 −X2‖2 ‖~w2 −X2‖2

)
+ log 2δ + 2

)
.
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Finally, using (5.18) we attach the remaining bulk-to-boundary propagator to obtain
the integral for the one-loop diagram for ∆ = 2

W
∆,δ,i
1 = − v2

(x2
12x

2
34)2

π2

2

∫
R4

d4Xz4
3∏
i=1

1
‖X − ~wi‖4 ·

(
log

(
z2

2 |~w1 − ~w2|2

‖~w1 −X‖2 ‖~w2 −X‖2

)
+ log 2δ + 2

)
,

which evaluates to

W
∆,δ,i
1 = −π2

(
log

(
δ

2

)
+ 11

3
)
W

2,δ
0 + 3π4v2

8(x2
12x

2
34)2L

2,i
0 .

Restoring the prefactors, the complete one-loop diagram is thus

W 2,δ
1 = 28a4π2

(2π)12

−3 log
(
δ

2

)
W

2,δ
0 − 11W2,δ

0 + 3π4v2

8(x2
12x

2
34)2

∑
i∈{s,t,u}

L2,i
0

 , (5.20)

where the L∆,i
0 terms are given in C.1.3 and W

∆,δ
0 is the cross diagram evaluated in

section 5.1.1.

For ∆ = 1: We split the integral in a first piece that diverges when δ → 0

Ŵ
1,δ,i
1 (~w1, ~w2, X2)|1 := v

(x2
12x

2
34)

1
4

∫
R4

d4X1

2∏
i=1

1
‖~wi −X1‖2

K(X1,X2)2

(1 −K(X1,X2) + δ)2

= − π2v

(x2
12x

2
34)

2∏
i=1

z2

‖~wi −X2‖2

(
log

(
z2

2 |~w1 − ~w2|2

‖~w1 −X2‖2 ‖~w2 −X2‖2

)
+ log 2δ

)
,

and the finite piece when δ → 0:

Ŵ
1,δ,i
1 (~w1, ~w2, X2)|2 := lim

δ→0

v

(x2
12x

2
34)

1
4

∫
R4

d4X1
z2

1

2∏
i=1

1
‖~wi −X1‖2

K(X1,X2)
1 −K(X1,X2) + δ

= 2π2v2

(x2
12x

2
34)2

2∏
i=1

z2

‖~wi −X2‖2

∫ 1

0
du arctanh(u)

4u2 + (1 − u2) |~w1−~w2|24z2
2

‖~w1−X2‖2‖~w2−X2‖2

.

Thus the complete integral for the fish diagram is

Ŵ
∆,δ,i
1 (~w1, ~w2, X2) = Ŵ

1,δ,i
1 (~w1, ~w2, X2)|1 − Ŵ

1,δ,i
1 (~w1, ~w2, X2)|2

= − π2v

(x2
12x

2
34)

2∏
i=1

z2

‖~wi −X2‖2

[(
log

(
z2

2 |~w1 − ~w2|2

‖~w1 −X2‖2 ‖~w2 −X2‖2

)
+ log 2δ

)

− 2
∫ 1

0
du arctanh(u)

4u2 + (1 − u2) |~w1−~w2|24z2
2

‖~w1−X2‖2‖~w2−X2‖2

]
.
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Finally we attach the remaining bulk-to-boundary propagator to obtain the full one-
loop diagram for ∆ = 1

W
1,δ,i
1 = 1

2
π2v

(x2
12x

2
34)

∫
R4

d4X2

3∏
i=1

1
‖~wi −X2‖2

[
2
∫ 1

0
du arctanh(u)

4u2 + (1 − u2) |~w1−~w2|24z2
2

‖~w1−X2‖2‖~w2−X2‖2

−
(

log
(

z2
2 |~w1 − ~w2|2

‖~w1 −X2‖2 ‖~w2 −X2‖2

)
+ log 2δ

)]
,

with the result

W
1,δ,i
1 = −π2 log

(
δ

2

)
W

1,δ
0 + π4v

2x2
12x

2
34
L1,i

0 + π4v

x2
12x

2
34
L′

0
i
.

Restoring the prefactors, the complete one-loop diagram is then

W 1,δ
1 = 24a4π2

(2π)12

−3 log
(
δ

2

)
W

1,δ
0 + π2v

2x2
12x

2
34

∑
i∈{s,t,u}

L1,i
0 + π2v

x2
12x

2
34

∑
i∈{s,t,u}

L′
0
i + O(δ)

 ,

(5.21)
where L∆,i

0 and L′
0
i are given in C.1.3 and C.1.4 respectively and W

∆,δ
0 is the cross

diagram evaluated in section 5.1.1.
Note that since the finite terms in both regulariation schemes corresponding to

W∆,4,i
1,fin and the second term in (5.19) are the same, we can conclude immediately that

L′
0 is the same in both regularisation schemes.

Renormalisation: As expected the UV divergent part is proportional to the cross
diagram and can therefore be absorbed in the coupling constant λ, which makes the
coupling constant scale dependent.

To understand how this works in the AdS-invariant regularisation we expand the
regularised inverse geodesic distance around the coincidence points

K

1 + δ
= 1

1 + δ

1√
1 + a2R2

→ 1 − 1
2a

2R2 − δ + O(a4R4, δ2),

where δ is a dimensionless quantity and R =
√

(X0 − Y0)2 + · · · + (X3 − Y3)2. If we
write it as δ = 1

2a
2r2 we see that this regularisation procedure corresponds to cutting

out a ball of radius r around the coinciding points. The quantity a would be the
renormalisation scale in usual flat space renormalisation theory, corresponding to the
energy at which the physical scattering experiment is performed. In our case, where we
are merely interested in boundary to boundary correlation functions, the only physically
relevant length scale is the AdS radius and we can therefore identify a with the inverse
AdS radius.

To perform the renormalisation we write the connected part of the four-point cor-
relator up to order λ2:

λW∆,δ
0 − λ2

2 W
∆,δ
1 = 24∆a4

(2π)8

[
λR ·

(
1 + 3λR

32π2 log
(
δ

2

))
W

∆,δ
0 + finite terms

]
. (5.22)

To absorb the divergent part, it is straightforward to see that we can choose a coun-
terterm of the form

δλW∆,δ
0 = − 3λ2

R

32π2 log δW∆,4
0 .
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The renormalised coupling is then related to the bare coupling λ through

λ = λR − 3λ2
R

2(4π)2 log δ + O(λ3
R) .

This regularises the expression (5.22) up to order λ2
R. The beta function can now be

calculated as

β(λ) = − dλ
d log r = 3λ2

16π2 + O(λ3) ,

which is again consistent with the flat space λφ4 theory. In this equation we used the
fact that δ is defined as δ = 1

2r
2a2 as described above.

Comparing (5.21) and (5.20) with (5.16) and (5.11) makes it clear that both reg-
ularisation schemes are equivalent up to addition of a cross diagram W∆

0 . Since these
are the tree-level contributions they can always be absorbed into the coupling constant
by choosing a non-minimal subtraction scheme.

In the following we will choose our counter-term such that the finite piece only
contains the L∆

0 and L′
0

∆ terms. Therefore the renormalised one-loop contributions are
given by:

W 1,ren
1 = 24a4π4

(2π)12
v

x2
12x

2
34

1
2

∑
i∈{s,t,u}

L1,i
0 +

∑
i∈{s,t,u}

L′
0
i


W 2,ren

1 = 28a4π4

(2π)12
3v2

8(x2
12x

2
34)2

∑
i∈{s,t,u}

L2,i
0 .

Note that this differs from the scheme used in [55,56,71] where contributions from the
cross diagram have been integrated into the finite piece. For the anomalous dimensions
the effect of different renormalisation schemes can always be absorbed into a redefinition
of the coupling constant, that is, a change in parametrization, as we will discuss in
section 5.5.

5.3 Two loop diagrams

To give an outlook on how to proceed to higher-loop integrals, we present the integral
expressions of the two-loop contributions to the four-point function in terms of the
euclidean propagators from section 4.1.1 but leave the evaluations of the integrals for
future work.

There are two topologies contributing, which we will refer to as the necklace and
the ice cream diagram.

x2

x1

x3

x4

x2

x1

x3

x4

Figure 5.4: One channel of the two-loop Necklace (left) and Ice cream (right) diagram.
The other channels can be obtained by permutations of the boundary points.
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The necklace diagram is depicted in figure 5.4 on the left. In dimensional regulari-
sation it leads to the integral

W
∆,D
2,◦◦ (ζ, ζ̄) = v∆

8(x2
12x

2
34)∆

∫
(RD)3

3∏
i=1

dDXi

(u ·Xi)4 ‖Xi − u1‖2(D−4) f
∆
◦◦(X1, X3; ζ, ζ̄)

(
(u ·X1)2(u ·X2)2

‖X1 −X2‖4 + (−1)∆

2
(u ·X1)(u ·X2)

‖X1 −X2‖2

)(
(u ·X2)2(u ·X3)2

‖X2 −X3‖4 + (−1)∆

2
(u ·X2)(u ·X3)

‖X2 −X3‖2

)
,

where the bulk-to-boundary part

f∆
◦◦(X1, X3; ζ, ζ̄) = (u ·X1)2∆(u ·X3)2∆

‖X1‖2∆ ‖X3 − u1‖2∆ ‖X3 − uζ‖2∆

(u ·X1)2∆(u ·X3)2∆

‖X3‖2∆ ‖X3 − u1‖2∆ ‖X1 − uζ‖2∆ + (u ·X1)2∆(u ·X3)2∆

‖X3‖2∆ ‖X1 − u1‖2∆ ‖X3 − uζ‖2∆ ,

is the same as for the one loop diagram in equation (5.2.1).
The ice-cream diagram is depicted in figure 5.4 on the right. In dimensional regu-

larisation it corresponds to the integral

W
∆,D
2,/◦ (ζ, ζ̄) = v∆

8(x2
12x

2
34)∆

∫
(RD)3

3∏
i=1

dDXi

(u ·Xi)4 ‖Xi − u1‖2(D−4) f
∆
/◦(X1, X2, X3; ζ, ζ̄)

× (u ·X1)4(u ·X2)2(u ·X3)2

‖X1 −X2‖4 ‖X1 −X3‖4

(
(u ·X2)2(u ·X3)2

‖X2 −X3‖4 + (−1)∆

2
(u ·X2)(u ·X3)

‖X2 −X3‖2

)
,

where the bulk-to-boundary part can easily be read-off from the general formula (4.12).
It is easy to see, that when D approaches 4, these diagrams diverge like (D− 4)−2,

with coefficients proportional to the cross diagram, and a sub-leading divergence of
order (D − 4)−1 proportional to the one-loop Witten diagram. In order to restore the
AdS invariance of the renormalised four-point function, we will need to evaluate these
divergences in D = 4 − 4ε/3 dimensions.

In principle, solving these integrals can be done by following the same steps as for
the one-loop case, the main difference being that the integrals are more complicated and
that we will have elliptic polylogarithms appearing for the ∆ = 2 case in the necklace
diagram integrals. For ∆ = 1 we meet integrals beyond elliptic integrals whose analysis
is beyond the scope of the present work.

5.4 Discontinuities and unitarity of Witten diagrams
In this section we discuss how unitarity can be used to extract the prefactors of the
log(v)n terms in Witten diagrams, by calculating the discontinuity in v using the flat
space Cutkosky rules [145] as reviewed in section 4.2.

5.4.1 Discontinuities

On general grounds, to any loop order the Witten diagrams have a small v expansion
of the form

W∆
L (v, Y ) = 1

2L+1
v∆

(x2
12x

2
34)∆

L+1∑
n=0

logn(v)p(n)
L (v, Y ; ∆) +O(v) ,
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where p(n)
L (v, Y ; ∆) is an analytic function in v and Y for v and Y small. The (se-

quential) discontinuity in v of the Witten diagram is therefore contained in the logn(v)
terms. More precisely,

DiscvW∆
L (v, Y ) = 1

2L+1
v∆

(x2
12x

2
34)∆

L+1∑
n=1

Discv (logn(v)) p(n)
L (v, Y ; ∆) . (5.23)

Recalling the definition of the discontinuity of a function f(v) from equation (4.21)

Discvf(v ± i0) := lim
ε→0

(f(v + iε) − f(v − iε)) .

We use the principal branch for the logarithm which is a continuous function on the
complex plane except for the negative real axis. Thus, the discontinuities of log(v) and
log2(v) are

Discv log(v) = lim
ε→0

(log(v + iε) − log(v − iε)) = 2πiΘ(−v) ,

Discv log2(v) = 4πiΘ(−v) log(|v|) ,

while the sequential double discontinuity is given by

DiscvDiscv log(v) = 0 ,
DiscvDiscv log2(v) = 2(2πi)2Θ(−v) .

Here we are only concerned with Witten diagrams up to loop order L = 1, therefore only
terms which are maximally quadratic in log(v) can appear. In this case the (sequential)
discontinuities with respect to v, applied to the one-loop Witten diagrams in (5.23),
lead to

DiscvW∆
0 (v, Y ) = 1

2
v∆

(x2
12x

2
34)∆ 2πiΘ(−v)p(1)

0 (v, Y ; ∆),

DiscvW∆
1 (v, Y ) = 1

4
v∆

(x2
12x

2
34)∆ 2πiΘ(−v)

(
2 log(|v|)p(2)

1 (v, Y ; ∆) + p
(1)
1 (v, Y ; ∆)

)
,

DiscvDiscvW∆
1 (v, Y ) = 1

2
v∆

(x2
12x

2
34)∆ (2πi)2Θ(−v)p(2)

1 (v, Y ; ∆). (5.24)

From these expressions we can read-off the coefficients of log(v)2 and log(v) which, in
turn, provide us with the information about the second order anomalous dimensions of
the double-trace operators of the boundary theory.

As we will discuss in section 5.5 a direct consequence of the conformal symmetry
at the boundary is the fact, that the sequential discontinuities of the Witten diagrams
can be expanded in terms of conformal blocks of a generalized free field

1
2πiDiscvW∆

0 =
∑
n,l≥0

c∆
0,n,lG∆n,l

; 1
2(2πi)2 DiscvDiscvW∆

1 =
∑
n,l≥0

c∆
1,n,lG∆n,l

.

and furthermore, that the expansion coefficients of the renormalised Witten diagrams
are related by the simple relation

c∆
1,n,l = −1

4
(
c∆

0,n,l

)2
, (5.25)
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This relation (and its generalisation to higher-loop order) follows directly from the way
the perturbative bulk interactions generate the anomalous dimensions in (5.29). For
example in the ∆ = 2 case, since c2

1,n,l = c2
0,n,l = 1, we have the following relation

between the discontinuities of the tree-level and one-loop Witten diagram

1
2πiDiscvW∆

0 (v, Y ) = −1
4

1
2(2πi)2 DiscvDiscvW∆

1 (v, Y ) .

In the following we will show how to use the relation between the sequential discon-
tinuities and multiple unitarity cuts developed in [143,145,147] for flat space Feynman
integrals in momentum space to extract the coefficient of the log(v). We will demon-
strate the success of the method with two examples and compare them to our exact
results from sections 5.1 and 5.2. Note that we did not have to use this method, since
we were able to solve the integrals for the Witten diagrams exactly. However, for higher
loops and different conformal weights ∆, where solving the integrals exactly might be
more challenging, this method could turn out to be useful.

5.4.2 Unitarity cuts

We notice that we can interpret the dimensionally regulated L-loop Witten diagrams
in (4.10) as three-point momentum Feynman integrals in flat space, with external “mo-
menta” k1 = u1 − uζ , k2 = uζ and k3 = −u1 where we integrate over L + 1 loop
momenta.

Because of this interpretation, we want to apply the relation between the dis-
continuity of the Witten diagrams with respect to the variable v and unitarity cuts
DiscvW∆

L (v, Y ) = CutW∆
L (v, Y ) along the lines of [145, 147]. For being able to apply

the standard methods of calculating the Cutkosky discontinuities to the Witten dia-
grams, we need to perform a Wick rotation to go to Lorentzian AdS, meaning, that in
this section the conformal flat propagator in (4.5) is given by

G(X,Y ) := zw

‖X − Y ‖2 − iε
, ‖X − Y ‖2 = (X1 − Y1)2 −

4∑
i=2

(Xi − Yi)2,

and uζ = 1
2(ζ + ζ̄, ζ − ζ̄, 0, 0). We have introduced a Feynman −iε prescription follow-

ing [18], which provides the correct flat limit.
We only consider the case ∆ = 1 because the ∆ = 2 case is obtained by acting with

H1234 introduced in section 4.1.4.

Unitarity cuts of the cross Witten diagram

As an example, consider the tree-level cross diagram in AdS from equation (5.6). Iden-
tifying the bulk point X with the loop momentum l, this is equivalent to the flat space
diagram depicted in figure 5.5. We are interested in the unitarity cut with respect to
k2

2 = u2
ζ = ζζ̄ = v. The corresponding cut we have to perform is indicated in figure 5.5.

The cut diagram is now given by [147]

Cutuζ
W

1,4−4ε
0 = 1

2
v

x2
12x

2
34

(2πi)2
∫

d4−4εX
δ+(‖X‖2)δ+(‖X − uζ‖2)(

‖X − u1‖2 − iε
)1−4ε ,
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k1

k2

k3

k2 − l

l

k3 + l

Figure 5.5: Cross diagram as a flat space three point function with k1 = u1 − uζ ,
k2 = uζ , k3 = −u1 and l = X. The red line corresponds to the unitarity cut in the
k2

2 = ζζ̄-channel.

where δ+(‖X‖2) = δ(‖X‖2)Θ(X1).
We parametrize the loop momentum X by X = (x0, r cos θ, 0, r sin θ). The integration
measure is then given by

∫
R4

d4Xδ+(‖X‖2) = 2π1−2εe−2γε
∞∫

0

dx0

∞∫
0

drr2−4ε
+1∫

−1

d cos θδ(x2
0 − r2) .

With this, the cut diagram becomes

Cutuζ
W

1,4−4ε
0 = (2π)3

4
(πeγ)−2εv

x2
12x

2
34

∞∫
0

dx0

+1∫
−1

d cos θx1−4ε
0 (sin θ)4ε δ

(
ζζ̄ − x0

(
ζ + ζ̄ − cos θ(ζ − ζ̄)

))
(1 − 2x0)1−4ε

= (2π)3

4
(πeγ)−2εv

x2
12x

2
34

+1∫
−1

dx (1 − x2)−2ε(ζζ̄)1−4ε

(ζ + ζ̄ − x(ζ − ζ̄))(ζ + ζ̄ − 2ζζ̄ − x(ζ − ζ̄))1−4ε
,

(5.26)

which evaluates to

Cutuζ
W

1,4−4ε
0 = − vπ3

x2
12x

2
34

1
(ζ − ζ̄)

log
(1 − ζ

1 − ζ̄

)
+ O(ε) ,

where the O(ε) term is given in the appendix by equation (C.20). Comparing the O(ε0)
expression to (5.23) we see that the coefficient of log(v) is given by

p
(1)
0 (v, Y ) = x2

12x
2
34

v

1
2πiCutuζ

W
1,4
0 = iπ2

2
1

ζ − ζ̄
log

(1 − ζ

1 − ζ̄

)
,

which coincides with the exact calculation in (5.4) up to the additional factor of i which
is due to the Lorentzian signature. This is a direct verification of the relation between
the v discontinuities and the unitarity cuts.

The result for ∆ = 2 can easily be obtained by acting with H1234 on the ∆ = 1
result, since there are no terms in the Witten diagram that would produce extra log(v)
terms due to differentiation.

Unitarity cuts of the one-loop Witten diagram

The same method can be applied at one loop, given by the integrals (C.1). As an
example we consider the divergent part of the s-channel diagram given by W

1,4−2ε,s
1,div .
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k1

k2

k3

k2 − l1

l1

l2 + k3 l1 − l2

Figure 5.6: One-loop s-channel diagram as a two-loop flat space three point function
with k1 = u1 − uζ , k2 = uζ , k3 = −u1, l2 = X2 and l1 = X1. The red line corresponds
to the unitarity cut in the k2

2 = ζζ̄ channel.

The corresponding flat space diagram is now given by a two-loop momentum space
integral depicted in figure 5.6.

The discontinuity in v can then be calculated by performing the cut as shown in
figure 5.6 and we get

Cutuζ
W

1,4−2ε,s
1,div =1

4
(2πi)2v

x2
12x

2
34

∫
d4−2εX1d4−2εX2

δ+(‖X1‖2)δ+(‖X1 − uζ‖2) ‖X1 − u1‖4ε

(‖X2 − u1‖2)1−2ε(‖X1 −X2‖2)2

= − π2−εΓ(ε)
Γ(1 − 2ε)

1
4

(2πi)2v

x2
12x

2
34

∫
d4−2εX1

δ+(‖X1‖2)δ+(‖X1 − uζ‖2)
(‖X1 − u1‖2)1−3ε

,

evaluating the delta-function constraints we have

Cutuζ
W

1,4−2ε,s
1,div = − π4−2εΓ(ε)

Γ(1 − 2ε)Γ(1 − ε)
1
4

(2πi)2v

x2
12x

2
34

×
+1∫

−1

dx (1 − x2)−ε(ζζ̄)1−2ε

(ζ + ζ̄ − x(ζ − ζ̄))1+ε(ζ + ζ̄ − 2ζζ̄ − x(ζ − ζ̄))1−3ε

= − π4−2εe−4γε 1
4

(2πi)2v

x2
12x

2
34

[1
ε
I1

1,div + I1,ε
1,div + O(ε)

]
.

By comparing the integrand with equation (5.26) it is obvious, that I1
1,div is given by

the ε0 term of the cut of the cross diagram in that equation. The expression for I1,ε
1,div

is given in the appendix by equation (C.21).
The coefficient of the log(v) term of the uncut diagram can be extracted from this

by comparing I1,ε
1,div to equation (5.24).

p
(1)
1 (v, Y ) = 2

iπ
I1,ε

1,div

∣∣∣
log(v=ζζ̄)=0

.

Comparing to the exact result in equation (5.10) we see that the log(v) coefficients
coincide, which is direct verification of the relation between the v discontinuities and
the unitarity cuts.

This method can be applied to all other integrals to extract the log(v) coefficients.
As mentioned above we will not proceed here since we were able to calculate the exact
expressions. We merely want to propose this technique, since it might be useful in
future work to go to higher-loop orders, where calculating the exact expressions is
much harder.
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We note, in passing, that this approach differs from the AdS unitarity methods
developed in [48–50, 52] where the double discontinuity of a Witten diagram is cal-
culated using the split representation of the propagator and the Lorentzian inversion
formula [148]. While that method generalizes straightforwardly to general ∆ and gives
the result in terms of conformal blocks right away, it is much harder to compute anoma-
lous dimensions beyond tree-level since they would involve cuts in the external bulk to
boundary propagators.

In the language of [49] we are performing external cuts and therefore calculate the
single discontinuity, which lets us extract the information about loop corrections to the
anomalous dimensions.

5.5 Conformal block expansion

In order to extract the conformal dimensions of the “double-trace” operators in the
conformal field dual to φ4-theory in AdS we now compare the bulk calculation of the
latter to the conformal block expansion of the former. First, let us note that the free
part of the four-point correlation function, i.e. the disconnected part has the form
of a generalized free field, meaning that it consists of the sum over all permutations
of products of two point functions, but no classical CFT action exists which would
generate these two-point correlation functions

〈O∆(~x1)O∆(~x2)〉 = lim
z1,z2→0

(z1z2)−∆Λ(X1,X2,∆) = 2∆N∆
1

(x2
12)∆ .

Summing over the three permutations of external points, the disconnected part of the
four-point correlation function becomes

〈O∆(~x1)O∆(~x2)O∆(~x3)O∆(~x4)〉disc = 22∆N2
∆

(x2
12x

2
34)∆

(
1 + v∆ +

(
v

1 − Y

)∆
)

(5.27)

= 22∆N2
∆

(x2
12x

2
34)∆

(
1 + v∆

(
2 +

∞∑
n=1

Γ(∆ + n)
Γ(∆)Γ(n+ 1)Y

n

))
.

In the last step we expand in ~x1 → ~x2 and ~x3 → ~x4, which translates into a small v
and Y expansion

v = x2
12x

2
34

x2
14x

2
23
, Y = 1 − x2

13x
2
24

x2
14x

2
23
.

From the perspective of the CFT this corresponds to the double operator product
expansion (OPE)

O∆(~x1)O∆(~x2) =
∑
Õ

a∆Õ
DÕ(x12, ∂2)Õ(~x2) ,

O∆(~x3)O∆(~x4) =
∑
Õ

a∆Õ
DÕ(x34, ∂4)Õ(~x4) ,

where DÕ(xij , ∂i) is a differential operator given by a power series in ∂i of the form

DÕ(xij , ∂j) = (x2
ij)−∆+ 1

2 ∆Õ

(
1 + a xij · ∂j + b x2

ij∂
2
j + · · ·

)
,
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where the expansion coefficients a, b, . . . are completely fixed by conformal symmetry.
The four-point function then becomes

〈O∆(~x1)O∆(~x2)O∆(~x3)O∆(~x4)〉 =
∑
Õ, ˜̃O

a∆Õ
a∆ ˜̃

O
D(x12, ∂2)D(x34, ∂4)〈Õ(~x2) ˜̃

O(~x4)〉

= 22∆N2
∆

(x2
12x

2
34)∆

1 +
∑
Õ

A∆Õ
G∆Õ,l

(v, Y )

 ,
where we used that 〈Õ(~x2) ˜̃

O(~x4)〉 vanishes for Õ 6= ˜̃
O. Here G∆Õ,l

(v, Y ) are conformal
blocks, see e.g. [109], that contain the information about the entire multiplet of a
primary operator Õ and its descendants appearing in the OPE. They are eigenfunctions
of the quadratic Casimir of the conformal group and depend on the conformal dimension
∆Õ and the spin l of Õ. In three dimensions the conformal blocks can be obtained
from the formula for general dimensions, which has been calculated in [111]. We list
the relevant formula from this calculation in appendix D. In the following we will refer
to A∆O

≡ a2
∆O

as the OPE coefficients. The normalization of the expansion is fixed by
our bulk theory.

For a generalized free field the conformal block expansion can be determined ex-
actly: The spectrum of primary “double-trace” operators is given by :O∆�n∂lO∆:, with
conformal dimension ∆(n,l) = 2∆ + 2n+ l, where n, l/2 ∈ N. The OPE coefficients An,l
for these operators are known as well [94] and given in appendix D. We can therefore
immediately write down the conformal block expansion for the generalized free field

〈O∆(~x1)O∆(~x2)O∆(~x3)O∆(~x4)〉 = 22∆N2
∆

(x2
12x

2
34)∆

1 +
∑
n,l

An,lG∆(n,l),l(v, Y )

 .

By adding the interaction term λφ4 in the bulk we deform the four-point function,
such that the deformation is parametrized by an expansion in the renormalized bulk
coupling constant λR. From the calculation in sections 5.1 and 5.2 we obtained the
following four-point function up to O(λ2

R):

〈O∆(~x1)O∆(~x2)O∆(~x3)O∆(~x4)〉 = 22∆N2
∆

(x2
12x

2
34)∆

[
1 + v∆

(
2 +

∞∑
n=1

Γ(∆ + n)
Γ(∆)Γ(n+ 1)Y

n

− λR
(4π)2

22∆√
π

2Γ(5
2 − 2∆)Γ(∆)2 I

∆
× (v, Y ) + λ2

R

(4π)4

∑
i∈{s,t,u}

{
L1,i

0 + 2L′
0
i for ∆ = 1

3L2,i
0 for ∆ = 2

 ,
(5.28)

From the CFT side the deformation generated by the bulk interaction term gener-
ates anomalous dimensions for the double-trace operators

∆(n,l) → ∆(n,l) +
∞∑
p=0

γ
(p)
n,l (∆) , (5.29)

where γ(p)
n,l (∆) is of order λpR in the renormalized bulk coupling constant λR. In order to

match the conformal block expansion to the deformed four-point correlation function in
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equation (5.28), we expand both, the OPE coefficients and conformal blocks in powers
of the anomalous dimensions up to O(λ2

R)

An,l(∆) =An,l(∆) + (γ(1)
n,l (∆) + γ

(2)
n,l (∆))A(1)

n,l + 1
2(γ(1)

n,l (∆))2A
(2)
n,l + · · ·

G∆(n,l),l =G∆(n,l),l + (γ(1)
n,l (∆) + γ

(2)
n,l (∆)) ∂G∆,l

∂∆

∣∣∣∣
∆(n,l)︸ ︷︷ ︸

G′
∆(n,l),l

+1
2(γ(1)

n,l (∆))2 ∂
2G∆,l
∂∆2

∣∣∣∣∣
∆(n,l)︸ ︷︷ ︸

G′′
∆(n,l),l

+ · · · ,

so that

An,lG∆(n,l),l =An,lG∆(n,l),l + γ
(1)
n,l (∆)

(
An,lG

′
∆(n,l),l +A

(1)
n,lG∆(n,l),l

)
+ 1

2(γ(1)
n,l (∆))2

(
An,lG

′′
∆(n,l),l +A

(2)
n,lG∆(n,l),l + 2A(1)

n,lG
′
∆(n,l),l

)
+ γ

(2)
n,l (∆)

(
An,lG

′
∆(n,l),l +A

(1)
n,lG∆(n,l),l

)
+ O(λ3) . (5.30)

The conformal blocks are of the form G∆,l(v, Y ) = v∆/2f(v, Y ) so that the derivatives
contain terms like

G′
∆,l(v, Y ) = v∆/2 log(v)f(v, Y ) + · · · ; G′′

∆,l(v, Y ) = v∆/2 log2(v)f(v, Y ) + · · ·

Comparing this to equation (5.30) we realize that the terms proportional to log(v)
in (5.30) give us access to the anomalous dimensions at a given order in λR, while the
log2(v) term provides a consistency check that the boundary Witten diagrams corre-
spond to a consistent CFT. Consistency between the first and second order calculation
in λR require that the log2(v) term has to be proportional (γ(1)

n,l )2. This is the basis
for equation (5.25) as well. The contributions without log’s then provide information
about the OPE coefficients. Thus we can expand the exact expressions for the Wit-
ten diagrams we calculated in sections 5.1 and 5.2 in v, Y and compare them to the
conformal block expansion to extract the anomalous dimensions and OPE coefficients.

By extracting the coefficient of log(v) = log(ζζ̄) in the analytic expressions for
Witten diagrams up to one-loop order, and comparing with the expansion of the four-
point correlation function, we can extract the L-loop contributions to the anomalous
dimensions γ(L)

n,l (∆). These contributions to the anomalous dimensions depend on the
renormalised coupling

γ := λR
16π2 ,

such that at loop order L the ratio γ
(L)
n,l (∆)/γL is independent of the renormalised

coupling. We will comment more about the renormalisation scheme dependence below.

Anomalous dimensions for ∆ = 1 The anomalous dimensions for ∆ = 1 are given
by

γ
(1)
n,l (1) = γ (1 + δn,0)δl,0;

γ
(2)
n,l>0(1) = γ2


−2

l(l+1) + 4
2l+1

(
H

(2)
l − ζ(2)

)
for n = 0

T 1
n,l for n > 0
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γ
(2)
n,0(1) = γ2

−4 + 4
2l+1

(
H

(2)
l − ζ(2)

)
for n = 0

(6n2−3n−2)
n(2n+1) H

(1)
2n − 1 for n > 0

,

where the generalized harmonic numbers are given by H(k)
i = ∑i

n=1 n
−k and the ratio-

nal piece T∆
n,l is given by

T ∆
n,l = − 2(l2 + (2∆ + 2n − 1)(∆ + n + l − 1))

l(l + 1)(2∆ + 2n + l − 1)(2∆ + 2n + l − 2) −
2(−1)∆(H(1)

l − H
(1)
2∆+2n+l−2)

(2∆ + 2n + 2l − 1)(∆ + n − 1) . (5.31)

The tree level results agree with [93]. The OPE coefficients at order λ for l = 0 are
given by the known formula [93,94]

A
(1)
n,0(∆) = 1

2
∂An,0(∆)

∂n
,

For the second order OPE coefficients and the first order OPE coefficients at l > 0 one
needs to expand the finite piece of the L′

0 integral, which we leave to a further study.

Anomalous dimensions for ∆ = 2 Similarly we have the following results for the
anomalous dimensions

γ
(1)
n,l (2) = γ δl,0 for n ≥ 0;

γ
(2)
n,l (2) = γ2

T
2
n,l for l > 0

2
(

6n2+15n+11
)
H

(1)
2n+2−

(
26n2+65n+41

)
2(n+1)(2n+3) for l = 0

where T 2
n,l is given by equation (5.31).We thus obtained closed expressions for the

anomalous dimensions of all double trace operators appearing in the OPE expansion
of the single trace operator O∆ for ∆ = 1, 2. To our knowledge, these have not been
obtained before.

Renormalisation scheme dependence Note, that the first order anomalous di-
mension, which is generated by the cross Witten diagram, has only a non-zero constant
contribution for l = 0. Changing the renormalisation scheme, i.e. adding a cross term
to the finite piece of the one loop contribution therefore only shifts the γ(2)

n,0(∆) part of
the second order anomalous dimensions by a constant, which can always be absorbed by
redefining the coupling constant. The anomalous dimensions for l > 0 are completely
scheme independent.

In the ∆ = 1 case we find an anomalous piece in the n = 0 trajectory given by

4γ2

2l + 1
(
H

(2)
l − ζ(2)

)
= −4γ2ψ(1)(l + 1)

2l + 1 ,

where ψ(1)(l + 1) is the digamma function, which is absent in the ∆ = 2 case. This is
consistent with the result obtained in [56].

In both cases the anomalous dimensions of the scalar operators :O�nO: are positive
and have different behaviour compared to the operators with non-vanishing spin. The
behaviour for the latter can be summarized into equation (5.31), applicable to both
cases. It is consistent with previous results for the n = 0 trajectory in [55, 56] and for
the subleading trajectories obtained in [71].
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Regge trajectories We can use equation (5.31) to compare our result to previous
results for large l obtained by bootstrap methods [29, 153, 154]. Expanding around
l → ∞ we obtain

γ
(2)
n,l (∆) = γ2

∞∑
k=0

q∆
k (n)
l2∆+k ,

where the q∆
k (n) are polynomials in n of order 2∆+k−2, which can easily be extracted

from the exact expressions.
It is also straightforward to express the anomalous dimensions in terms of the

conformal spin
J2 = (l + ∆ + n)(l + ∆ + n− 1).

Expanding the anomalous dimensions in large J we obtain

γ
(2)
n,J(∆) = γ2

∞∑
k=0

Q∆
k (n)

J2∆+2k ,

where the Q∆
k (n) are polynomials in n of order 2∆+2k−2. For ∆ = 1 these polynomials

only contain even powers of n. These behaviours are in agreement with the results
from [153–155].

Another interesting limit to explore would be the behaviour at n → ∞. Taking the
limit n → ∞ in equation (5.31) we obtain

lim
n→∞

γ
(2)
n,l>0(∆) = −γ2 1

l(1 + l) .

For ∆ = 1 the limit is approached from below, while for ∆ = 2 it is reached from
above, as can be understood from the (−1)∆ factor in (5.31) in agreement with general
observations made in [93,156]. It would be interesting to test this observation for other
values of ∆.





Chapter 6

Loop corrections to scalar field
theory in de Sitter space-time

In this chapter we calculate perturbative observables of a λφ4 theory in dS. We start
with Bunch-Davies wave function and continue with the cosmological correlator, build-
ing on the formalism described in chapter 3. As it turns out we will be able to use
many of the results, already obtained in chapter 5.

6.1 Bunch-Davies wave function and dS/CFT

In this section we perform the semi classical expansion of the Bunch-Davies wave func-
tion. This section is partially a reproduction of parts of [71] and we partially stick to
the notational conventions introduced there.

To make a semiclassical expansion up to second loop order, we expand eiSint[ϕ,χ] in
(3.65) up to second order in the coupling constant λ. For better readability we write
ϕ(X) = ϕX :

eiSint[ϕ,χ] =1 − iλ

∫
d4X

√
g(X)

{1
4ϕ

2
Xχ

2
X + 1

6ϕXχ
3
X + 1

4!χ
4
X

}
− λ2

2

∫∫
d4Xd4Y

√
g(X)g(Y )

{ 1
16ϕ

2
Xϕ

2
Y χ

2
Xχ

2
Y + 1

4!2ϕ
2
Xχ

2
Xχ

4
Y

+ 1
36ϕXϕY χ

3
Xχ

3
Y + 1

4!3ϕXχ
3
Xχ

4
Y + 1

12ϕ
2
XϕY χ

2
Xχ

3
Y + 1

(4!)2χ
4
Xχ

4
Y

}
+ O(λ3)

The second last two terms in the λ2 integral have an odd number of χ insertions
and therefore vanish when performing the path integral. The last term just gives a
contribution in the bulk and is independent of the classical part of the field ϕ. Therefore
the functional derivatives with respect to the fields on the boundary vanish and the
term does not contribute to the conformal correlation functions (3.64). The same is
true for the last two terms in the iλ contribution. Now we can calculate the effective
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action perturbatively by using Wick’s theorem to calculate the path integral over χ:

Ψ[φ0(~x)] =eiSon−shell[ϕ]
(

1 − iλ

4

∫
d4X

√
g(X)ϕ2

XiΛD(X,X)

− λ2

2

∫∫
d4Xd4Y

√
g(X)g(Y )

{ 1
16ϕ

2
Xϕ

2
Y iΛD(X,X)iΛD(Y, Y )

+1
8ϕ

2
Xϕ

2
Y i

2Λ2
D(X,Y ) + +1

4ϕ
2
Xi

2Λ2
D(X,Y )iΛD(Y, Y ) + 1

6ϕXϕY i
3Λ3

D(X,Y )

+1
4ϕXϕY iΛD(X,X)iΛD(X,Y )iΛD(Y, Y )

})
Plugging in the tree-level solution for ϕ we can regroup the terms in the effective action
to give the contributions to the 2 and 4 point functions. To simplify the notation we
write in this section

∫
d4X

√
g(X) =

∫
d4X̃ and ΛD(X,Y ) = Λxy:

Ψ[φ0(~x)] =eiΓ[φ0] = eiSon-shell

(
1 −

∫∫
d3~x1d3~x2φ0(~x1)φ0(~x2)

[
iλ

4

∫
d4X̃iΛXXΛ̄X~x1Λ̄X~x2

+ λ2
∫∫

d4X̃d4Ỹ

{1
8 i

2Λ2
XY iΛY Y Λ̄X~x1Λ̄X~x2 + 1

12 i
3Λ3

XY Λ̄X~x1Λ̄Y ~x2

+1
8 iΛXXiΛXY iΛY Y Λ̄X~x1Λ̄X~x2

}]
− λ2

∫∫∫∫ 4∏
i=1

d3~xiφ0(~xi)
[∫∫

d4X̃d4Ỹ

{ 1
3!2 iΛXXiΛXY Λ̄X~x1Λ̄X~x2Λ̄Y ~x3Λ̄Y ~x4

+ 1
32 iΛXXiΛY Y Λ̄X~x1Λ̄X~x2Λ̄Y ~x3Λ̄Y ~x4 + 1

16 i
2Λ2

XY Λ̄X~x1Λ̄X~x2Λ̄Y ~x3Λ̄Y ~x4

}]
+ O(λ3)

)
By functional differentiating we can now calculate the two point and and four point
function of the dual CFT up to second order in λ. In what follows we focus on these
correlators rather than the wave function since they contain the relevant information
about the CFT. We will write them in terms of the corresponding Witten diagrams:

〈O(~x1)O(~x2)〉 = δ2Ψ[φ0]
δφ0(~x1)δφ0(~x2) =

x1 x2
− iλ

2

x1 x2
− λ2

4

x1 x2

− λ2

4

x1 x2
− λ2

6

x1 x2

〈O(~x1)O(~x2)O(~x3)O(~x4)〉 = δ4Ψ[φ0]
δφ0(~x1)δφ0(~x2)δφ0(~x3)δφ0(~x4)

=3 ×
x1 x2x3 x4

− iλ

3 ×
x1 x2x3 x4

+
x1 x2 x3 x4


− 3 × λ2

1
2

x1 x2x3 x4
+ 1

2

x1 x2x3 x4
+ 1

3

x1 x2x3 x4

+1
4
x1 x2x3 x4

+ 4 × 1
2

x1 x2 x3 x4
+ 3 × 1

2

x1x2 x3x4
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6.1.1 Two point function

Now we have all the parts in place to calculate the two point function of the dual
conformal field theory by explicitly integrating over the vertices in the diagrams. We
will perform all the calculations directly in de Sitter space however we will find out
that all the results are exactly what you would get from taking the results from [55,56]
and do the analytic continuation.

Tadpole The second diagram in the two point function is the tadpole and is given
by the following integral:

x1 x2
=
∫

d4X
√
g(X)Λ̄D(~x1, X)iΛD(X,X)Λ̄D(X,~x2) = iΛD(X,X)M(~x1, ~x2)

(6.1)

First we calculate the mass shift M(~x1, ~x2) which is given by the integral:

M(~x1, ~x2) = − 1
a4π4

∫ 0

−∞

dη
η4

∫
d3~x

η4

(η2 − (~x1 − ~x)2 − iε)2(η2 − (~x2 − ~x)2 − iε)2

To simplify the calculation we use translation invariance to shift ~x1 and ~x2 by ~x2 and
we get ~x′

1 = ~x1 − ~x2 and ~x′
2 = 0. Now we can go to spherical coordinates with r = |~x|

and the determinant becomes
√
g(x) = 1

a4η4 r
2 sin θ:

M(~x1, ~x2) = − 1
a4π4

∫ 0

−∞
dη
∫ π

0
dθ
∫ ∞

0
dr 2πr2 sin θ

(η2 − |~x′
1|2 + 2 |~x′

1| r cos θ − r2 − iε)2(η2 − r2 − iε)2

= − 2
a4π3

∫ 0

−∞
dη
∫ +1

−1
du
∫ ∞

0
dr 2πr2

(η2 − |~x′
1|2 + 2 |~x′

1| ru− r2 − iε)2(η2 − r2 − iε)2

= − 4
a4π3

0∫
−∞

dη
∞∫

0

dr r2

(η2 − (|~x′
1| + r)2 − iε)(η2 − (|~x′

1| − r)2 − iε)(η2 − r2 − iε)2

It is clear that the argument of the integral is invariant under r → −r so the integration
can be done over the whole real axis. By continuing the domain of r to the complex
plane we see that the integrand of M has the following poles in r:

M(~x1, ~x2) = − 4
a4π3

0∫
−∞

dη
∞∫

−∞

drr2 1
2

(η − iε− |~x′
1| − r)−1(η − iε+ |~x′

1| − r)−1(η − iε− r)−2

(η − iε+ |~x′
1| + r)(η − iε− |~x′

1| + r)(η − iε+ r)2

r1 = − η − x1 + iε r2 = −η + x1 + iε

r3 = − η + iε r4 = η − x1 − iε

r5 =η + x1 − iε r6 = η − iε

By either closing the integration contour in the upper or lower half we see that we
include either the poles r1, r2, r3 or r4, r5, r6 as the sign of iε is fixed by the sign
convention of the metric. The choice does not matter so we pick the last three poles
and integrate along the following contour:
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x

y

⊗ ⊗ ⊗ ⊗ ⊗ ⊗
r1 r2 r3 r4 r5 r6

We use the Residue theorem to solve the r integral:

M(~x1, ~x2) = − 4
a4π3

ε∫
−∞

dη(−2πi)
(

(|~x′
1| − η)

16η |~x′
1|3 (|~x′

1| − 2η)2
+ (η + |~x′

1|)
16η |~x′

1|3 (2η + |~x′
1|)2

+ 1
8η(|~x′

1| − 2η)2(2η + |~x′
1|)2

)
= 2i
a4π2

∫ ε

−∞
dη 1

η
(
|~x′

1|2 − 4η2
)2 = i

a4π2 |~x′
1|4

(
1 + ln

(
− 4ε2

|~x′
1|2

))
+ O(ε)

= i

a4π2 |~x1 − ~x2|4

(
1 + ln

(
− 4ε2

|~x1 − ~x2|2

))
+ O(ε)

where ε in this case is the cutoff before η → 0 and the expansion is done around ε = 0.
Now that we calculated the mass shift we can take a closer look at the first part

of (6.1) which is the propagator on the lightcone. In case of null separated points the
geodesic distance (3.21) goes to 1. Therefore the propagator diverges at coinciding
points. To regularize this divergence we do impose the dS invariant δ regularisation
scheme described in section 4.1.2 (as it was done in [55,56]):

K → Kδ = K

1 + δ

⇒ iΛD(X,Y ) → − a2

4π2
K2

(1 + δ +K)(1 + δ −K)
K→1−→ − a2

4π2δ(2 + δ)

As described in section 4.1.2 this regularization corresponds to carving out a ball of
radius δ around the coinciding point and rescaling everything by (1+δ)−1. The complete
one-loop tadpole diagram is then given by:

T1(~x, ~y) =
~x ~y

=iΛD(X,X)M(~x, ~y)
(1 + δ)4 = − i

4a2π4(1 + δ)4δ(2 + δ)
1

|~x− ~y|4

(
1 + ln

(
− 4ε2

|~x− ~y|2

))
δ→0−→i

(
1
δ

− 9
2

)
1

8a2π4
1

|~x− ~y|4

(
1 + ln

(
− 4ε2

|~x− ~y|2

))
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Double tadpole The next term in the expansion of the two point function is the
double tadpole which is given by:

T2(~x1, ~x2) =
~x1 ~x2

=
∫

d4X
√
g(X)

∫
d4Y

√
g(Y )Λ̄D(~x1, X)i2Λ2

D(X,Y )iΛD(Y, Y )Λ̄D(X,~x2)

Again we use the regularization K → K/(1 + δ). Then the different parts in the
integral become:

iΛD(Y, Y ) → − a2

4π2δ(2 + δ)

i2Λ2
D(X,Y ) → a4

(4π2)2
K4
xy

((1 + δ)2 −K2
xy)2

Λ̄D(~x1, X)Λ̄D(X,~x2) → 1
(1 + δ)4 Λ̄D(~x1, X)Λ̄D(X,~x2)

The whole integral becomes:

T2(~x1, ~x2) = − a6

(4π2)3
1

δ(2 + δ)(1 + δ)4

∫
d4X

√
g(X)Λ̄D(~x1, X)Λ̄D(X,~x2)

×
∫

d4Y
√
g(Y )

K4
xy

(1 + δ −Kxy)2(1 + δ +Kxy)2︸ ︷︷ ︸
:=K

We concentrate now on the last part of the integral. In local coordinates this is given
by:

K = a−4
∫

d4Y
√
g(Y )

K4
xy

(1 + δ −Kxy)2(1 + δ +Kxy)2

=
∫

d4Y
16η4

x(
(1 + δ)2(η2

x + η2
y − (x− y)2)2 − 4η2

xη
2
y

)2

To show that this part is independent of (ηx, x) we use translation invariance to shift
the spatial part of the integral to (ηy, y′) = (ηy, y + x). Then K becomes:

K = a−4
∫

d4Y ′ 16η4
x(

(1 + δ)2(η2
x + η2

y − y′2)2 − 4η2
xη

2
y

)2

= a−4
∫

d4Y
16η4

x[
((1 + δ)(η2

x + η2
y − y′2) + 2ηxηy)((1 + δ)(η2

x + η2
y − y′2) − 2ηxηy)

]
To see that this is also independent of ηx we use scale invariance. It is easy to see that
any rescaling of ηx → ληx can be undone be rescaling (ηy, y′) → (ληy, λy′). Therefore
we can fix ηx to any random value so we choose ηx = −1. Therefore we get:

K = a−4
∫

d4Y
16[

((1 + δ)(1 + η2
y − y′2) + 2ηy)((1 + δ)(1 + η2

y − y′2) − 2ηy)
]
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So T2 factorizes into:

T2(~x1, ~x2) = a6

(4π2)3
1

δ(2 + δ)(1 + δ)4 ×M(~x1, ~x2) × K

As the integral K is symmetric under ηy → −ηy we can write it as an integral over
ηy ∈] − ∞,∞[. We can do the spatial part of the integral in spherical coordinates.
After integrating over the angular part we get:

K = 32π
a4

∫ ∞

−∞
dη
∫ ∞

0
dr r2

[((1 + δ)(η2 + 1 − r2) + 2η)((1 + δ)(η2 + 1 − r2) − 2η)]2

To execute the r integral we use again the residue theorem. After that the η integral
can be calculated straightforwardly:

K = 32π
a4 i

∫ ∞

−∞
dη 1

64(1 + δ)3/2η3

(
(1 + δ)(1 + η2) − η√
(η − 1)2 + δ(1 + η2)

− (1 + δ)(1 + η2) + η√
(η + 1)2 + δ(1 + η2)

)

= iπ2

2a4(1 + δ)3/2

∫ ∞

−∞
dη 1
η3

(
(1 + δ)(1 + η2) − η√
(η − 1)2 + δ(1 + η2)

− (1 + δ)(1 + η2) + η√
(η + 1)2 + δ(1 + η2)

)

= −iπ2

a4

2(1 + δ) + (2 + δ(2 + δ)) ln
(

δ
2+δ

)
2(1 + δ)3

Therefore the complete double tadpole integral becomes:

T2(~x1, ~x2) = − iπ2a2

(4π2)3

2(1 + δ) + (2 + δ(2 + δ)) ln
(

δ
2+δ

)
2δ(2 + δ)(1 + δ)7 ×M(~x1, ~x2)

For small δ this becomes:

T2(~x1, ~x2) = iπ2a2

2(4π2)3

(
14 + 13 ln δ

2
2 −

1 + ln δ
2

δ

)
×M(~x1, ~x2) + O(δ)

= − 1
2a2(4π2)3

(
14 + 13 ln δ

2
2 −

1 + ln δ
2

δ

)
1∣∣∣x− y
∣∣∣4
1 + ln

− 4ε2∣∣∣x− y
∣∣∣2



Sunrise diagram The next second order diagram is the so called sunrise diagram.
It is given by the following integral:

S(~x1, ~x2) =
~x1 ~x2

=
∫

d4X

∫
d4Y

√
g(X)g(Y )Λ̄D(~x1, X)i3Λ3

D(X,Y )Λ̄D(Y, ~x2)

Again using the same regularization as above this integral becomes:

S(~x1, ~x2) = a6

(4π2)3(1 + δ)4
1
π4

∫
d4X

√
g(X)K̄2

~x1Y

∫
d4Y

√
g(Y )

K6
xy

(1 + δ +Kxy)3(1 + δ −Kxy)3 K̄
2
~x2x︸ ︷︷ ︸

:=J
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We can split off one leg from the integral and calculate J first and then attaching the
missing leg in the final step:

J(Y, ~x2) = a6

(4π2)3(1 + δ)4
1
π4

∫
d4Y

√
g(Y )

K6
xy

(1 + δ +Kxy)3(1 + δ −Kxy)3 K̄
2
y,~x′

2

We shift ~x2 and ~x by −~x2 to ~x′
2 = ~x2 − ~x2 = 0 and ~x′ = ~x − ~x2. The integral then

becomes:

J = a6

(4π2)3(1 + δ)4
1
π4

∫
d4Y

√
g(Y )

K6
x′y

(1 + δ +Kx′y)3(1 + δ −Kx′y)3 K̄
2
y~x′

2

Using inversion invariance to simplify the integral even further. Inversion in de Sitter
space is given by (similarly to the transformations on the four point function in 4.1):

η → η′

η′2 − ~x′2 ; xi → x′
i

η′2 − ~x′2

⇒ Kxy = 2ηxηy
η2
x + η2

y − (~x− ~y)2 →
2η′
xη

′
y

η′
x

2 + η′
y

2 − (~x′ − ~y′)2 = Kx′y′

⇒ K̄y~x2 = ηy
η2
y − (~y − ~x2)2 → η′

η′
y

2 − ~y′2 =
∣∣~x′

2
∣∣2 K̄y′~x′

2

As the propagator in de Sitter space time is invariant under inversion we can use these
identities to further simplify our integral for J . By shifting ~x and ~x2 by −~x2 we set
~x′

2 = 0. Now applying inversion of every point we send ~x′
2 → ~x′′

2 = ~x′
2∣∣~x′

2

∣∣2 = ∞. Then

the bulk-to-boundary propagator becomes:

K̄y~x′
2

→
∣∣~x′′

2
∣∣2 K̄y′~x′′

2

∣∣~x′′
2

∣∣→∞
−→ η′

y

After shifting ~y′′ = ~y′ + ~x′′ we can write J as:

J = 26a2η′′
x

6

(4π2)3(1 + δ)4
1
π4

∫ d4y′

η′
y

4

η′
y

8((1 + δ)(η′′
x

2 + η′
y

2 −
∣∣∣y′
∣∣∣2) + 2η′′

xη
′
y)−3

((1 + δ)(η′′
x

2 + η′
y

2 −
∣∣∣y′
∣∣∣2) − 2η′′

xη
′
y)3

= 4a2η′′
x

6

π5(1 + δ)4
1
π4

0∫
−∞

dη′
y

∞∫
0

dr
r2η′

y
4((1 + δ)(η′′

x
2 + η′

y
2 − r2) + 2η′′

xη
′
y)−3

((1 + δ)(η′′
x

2 + η′
y

2 − r2) − 2η′′
xη

′
y)3

= 2a2η′′
x

6

π5(1 + δ)4
1
π4

+∞∫
−∞

dη′
y

∞∫
0

dr
r2η′

y
4((1 + δ)(η′′

x
2 + η′

y
2 − r2) + 2η′′

xη
′
y)−3

((1 + δ)(η′′
x

2 + η′
y

2 − r2) − 2η′′
xη

′
y)3

In the last step the fact was used that the integral is symmetric under ηy → −ηy to
extend the limits of the integral.

The integrand has four poles of third order:

r±1 = ±

√
(1 + δ)(η′′

x
2 + η2

y) + 2η′′
xηy

1 + δ
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r±2 = ±

√
(1 + δ)(η′′

x
2 + η2

y) − 2η′′
xηy

1 + δ

We extend the integral to the complex plane and choose an integral contour such that
the two poles with positive sign are included. Then performing the η′

y integral gives:

J = 4ia2η′′
x

6

π8(1 + δ)4
6δ(δ + 2) + 3δ(δ + 1)(δ + 2)(log(δ) − log(δ + 2)) + 2

512η′′
x

4δ(δ + 1)2(δ + 2)

=4ia2η′′
x

2

π8
6δ(δ + 2) + 3δ(δ + 1)(δ + 2) ln δ

δ+2 + 2
512δ(δ + 1)6(δ + 2)

For the first order in δ this is:

J = 4ia2η′′
x

2

π8
1

2 · 44

(
1
δ

+
6 ln δ

2 − 1
2

)
= 2ia2η′′

x
2

(4π2)4

(
1
δ

+
6 ln δ

2 − 1
2

)
Now we can revert the inversion we did before the integration and take back the shift
by −~x2:

η′′
x → ηx

η2
x − ~x′2 = ηx

η2
x − (~x− ~x2)2 = K̄x~x2

⇒ J = 2ia2

(4π2)4

(
1
δ

+
6 ln δ

2 − 1
2

)
K̄2
x~x2

So finally by attaching the missing leg to J we get the complete sunrise diagram:

S(~x1, ~x2) =
∫

d4X
√
g(X)K̄2

~x1xJ(x, ~x2) = 2ia2

(4π2)4

(
1
δ

+
6 ln δ

2 − 1
2

)∫
d4x

√
g(x)K̄2

~x1xK̄
2
x~x2

= ia2π2

2(4π2)3

(
1
δ

+
6 ln δ

2 − 1
2

)
M(~x1, ~x2)

= 1
4(4π2)3a2

(
1
δ

+
6 ln δ

2 − 1
2

)
1

|~x− ~y|4

(
1 + ln

(
4ε2

|~x− ~y|2

))
We see that all the quantum corrections to the two point function can be absorbed
into a mass shift counterterm. In quantum field theory in flat space time the common
renormalization scheme requires then, that the on shell mass is fixed to be the physical
mass. In this case the relevant on-shell quantity is the conformal dimension of the dual
operator which is fixed to be ∆ = 2.

6.1.2 Four point function

The tree level contributions to the four point function is given by the second term in
(3.63) with n = 4. It is obvious that doing the analytic continuation η → −iz this will
correspond to the cross diagram from EAdS given in 5.1.

A similar argument holds for the one loop contribution to the second order four
point function which is given by the diagram

W1(~x1, ~x2, ~x3, ~x4) =
~x1 ~x2 ~x3 ~x4

=
∫

d4Xd4Y
√
g(X)g(Y )Λ̄D(~x1, X)Λ̄D(~x3, X)i2Λ2

D(X,Y )Λ̄D(Y, ~x2)Λ̄D(Y, ~x4)
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We have done the explicit computation in de Sitter space for all the previous diagrams
and we figured out that they give the same results as the ones obtained for Euclidean
Anti-de-Sitter with an additional prefactor of −i for each vertex. This makes sense
from the point of view that de Sitter in Poincaré coordinates is just the double analytic
continuation z → −iη and a → −ia. Therefore we can simply use the results from
EAdS chapter 5 and use this continuation to get the result. After renormalisation the
one loop contribution to the four point function will therefore be just given by equation
(5.28).

Consequently the dual CFT and the anomalous dimensions and OPE coefficients
will be exactly the same as for the EAdS case. Note that we only did the explicit
calculation for the two point function for the ∆ = 2 case, but the result for ∆ = 1
is just the same as can easily be checked by just replacing the propagators from the
Dirichlet to Neumann boundary conditions in the above calculation.

Just as in EAdS we therefore have two deformed generalized free fields as the con-
formal duals to the wave function with different boundary conditions. Since there is
now interaction between them, the two CFTs can be considered as direct product even
after the deformation. As we will see in the following section this is not going to the
case anymore for the cosmological correlator.

6.2 Cosmological correlator CFT

Finally we are going to calculate loop corrections to the cosmological correlators, by ap-
plying all the methods developed up to this point. This section is a partial reproduction
of [90].

In this section we again focus entirely on the conformally coupled scalar field. As
we noticed in section 3.3.2, perturbatively, this can be treated like a theory of two
interacting scalar fields with boundary dimensions ∆+ and ∆− in EAdS, governed
by the action (3.70). For the conformally coupled scalar field with ∆+ = d+1

2 and
∆− = d−1

2 with odd boundary dimensions d the action (3.71) then becomes

iSc = −
∞∫

0

dzdd~x
zd+1

[
−
(
(∂φ+)2 −m2φ+2)+

(
(∂φ−)2 −m2φ−2)

−(−1)
d−1

2
2λ
4!
(
φ+4 − 6φ+2

φ−2 + φ−4)]
. (6.2)

We will then be able to use the formalism from chapter 4 for evaluating the Witten
diagrams.

The L-loop Witten diagrams between sets of fields of dimensions ∆1 and ∆2 are
denoted by

W∆1∆2∆3∆4,D
L,dS (~x1, ~x2, ~x2, ~x4).

The case (∆1,∆2,∆3,∆4) = (1, 1, 1, 1) is evaluated in section 6.2.2, (∆1,∆2,∆3,∆4) =
(2, 2, 2, 2) is evaluated in section 6.2.2, and the mixed correlators with (∆1,∆2,∆3,∆4) =
(2, 2, 1, 1) and permutations are evaluated in section 6.2.2.

Using the normalization of the fields and the coupling constant introduced in (6.2)
and the conformal mappings as described in section 4.1, we can write a generic EAdS
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four-point Witten diagram with equal external dimensions ∆ as

W∆∆∆∆,D
L,dS (~x1, . . . , ~x4) = a4

(4π2)2L+4W
∆∆∆∆,D
L (~x1, . . . , ~x4),

where W
∆∆∆∆,D
L is the corresponding Witten diagram in EAdS with standard normal-

ization of the propagator as defined in section 3.3. The four-point function with mixed
boundary conditions will be given by acting with the differential operator, defined in
section 4.1.4, onto the corresponding legs of the ∆ = 1 Witten diagrams. All calcula-
tions will be done in the loop dependent dimensional regularisation scheme introduced
and described in section 4.1.2.

6.2.1 Two-point functions

If we represent the propagators as

Λ(X,Y ; 1) = X Y , Λ(X,Y ; 2) = X Y

then the loop corrections to the boundary two-point function up to order λ2 for ∆ = 1
correspond to the diagrams

x1 x2 x1 x2 x1 x2 x1 x2

x1 x2 x1 x2 x1 x2 x1 x2

x1 x2 x1 x2 x1 x2 . (6.3)

For ∆ = 2 the diagrams are the same up to replacing the external lines by the ∆ = 2
bulk to boundary propagator.

Using the results from [55], it can be checked that the integrals appearing in (6.3)
all reduce to a divergent piece times a mass-shift term. We can therefore use the same
argument that the renormalized mass should be fixed at the value “measured” at the
boundary, which in our case fixes the leading order fall off behaviour at future infinity
to ∆ = 1. As a result, we can ignore the loop corrections to the two point function in
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the following calculation of the four-point function, and we will draw the renormalised
propagators as

Λ(X,Y ; 1) = X Y , Λ(X,Y ; 2) = X Y .

6.2.2 Four-point functions

Recalling (3.69), the dominant term contribution to the bulk scalar field φ is contained
in φ−. From this one may conclude that the four-point correlation function at future
infinity is given by calculating the correlation functions of the auxiliary field φ− at the
boundary of EAdS, with action (6.2). However considering only φ− as a boundary field
one will not be able retrieve all the information of the dual CFT. This can also be seen
form the bulk action (6.2) in which φ− and φ+ are coupled. To access the full CFT
information we rather have to expand the four-point function to second subleading
order in η0, that is

〈φ0( ~x1)φ0( ~x2)φ0( ~x3)φ0( ~x4)〉 = η
4∆−
0

〈
φ−( ~x1)φ−( ~x2)φ−( ~x3)φ−( ~x4)

〉
+ η

2(∆−+∆+)
0

(〈
φ+( ~x1)φ+( ~x2)φ−( ~x3)φ−( ~x4)

〉
+
〈
φ+( ~x1)φ−( ~x2)φ+( ~x3)φ−( ~x4)

〉
+
〈
φ+( ~x1)φ−( ~x2)φ−( ~x3)φ+( ~x4)

〉)
+ η

4∆+
0

〈
φ+( ~x1)φ+( ~x2)φ+( ~x3)φ+( ~x4)

〉
. (6.4)

〈φ−φ−φ−φ−〉

The contributions to the leading term of the late time expansion of the four-point
correlation function in equation (6.4) is given by

〈
φ−(x1)φ−(x2)φ−(x3)φ−(x4)

〉
=


x1

x2

x3

x4

+ 2 perm.

− λ

x1

x2

x3

x4

+ λ2

2


x1

x2

x3

x4

+ 2 perm.

+ λ2

2


x1

x2

x3

x4

+ 2 perm.

+ O(λ3).

(6.5)

• The disconnected part is given by the product of two-point functions〈
φ−(x1)φ−(x2)

〉 〈
φ−(x3)φ−(x4)

〉
+
〈
φ−(x1)φ−(x3)

〉 〈
φ−(x2)φ−(x4)

〉
+
〈
φ−(x1)φ−(x4)

〉 〈
φ−(x2)φ−(x3)

〉
= 22a4

(4π2)2
1

x2
12x

2
34

(
1 + v + v

(1 − Y )

)
.

Here we follow the notation and conventions of [57] for the cross-ratio

v = x2
12x

2
34

x2
14x

2
23

= ζζ̄; 1 − Y = x2
13x

2
24

x2
14x

2
23

= (1 − ζ)(1 − ζ̄) .
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where x2
ij = |~xi − ~xj |2.

• The cross terms is given by the ∆ = 1 term in EAdS

W
1111,D
0 (ζ, ζ̄) = 1

2
v∆

x2
12x

2
34

∫
RD

dDX
‖X − u1‖2(D−4)

1
‖X‖2 ‖X − uζ‖2 ‖X − u1‖2 , (6.6)

where the norm is defined with a euclidean signature

‖X‖2 = z2 + ~x2

and the radial coordinate z is expressed with the help of the normal vector to the
boundary u = (0, 0, 0, 1) such that

u ·X = z.

• For the one-loop contributions we use the following expression for the square of the
propagator:

Λ̃(X1, X2; ∆)2 = (u ·X1)2 (u ·X2)2

‖X1 −X2‖4 + (u ·X1)2 (u · σ(X2))2

‖X1 − σ(X2)‖4

− (−1)∆

2

(
u ·X1 u ·X2

‖X1 −X2‖2 + u ·X1 u · σ(X2)
‖X1 − σ(X2)‖2

)
,

where σ(X) is the antipodal map after Wick rotation

σ(~x, z) = (~x,−z).

Then, by regrouping contributions from the ∆ = 1 and ∆ = 2 fields propagating in the
loops in (6.5), one can see that for the sum, over ∆, of the propagators squared the
cross-terms cancel so that

Λ̃(X1, X2; 1)2 + Λ̃(X1, X2; 2)2 = 2(u ·X1)2 (u ·X2)2

‖X1 −X2‖4 + 2(u ·X1)2 (u · σ(X2))2

‖X1 − σ(X2)‖4 . (6.7)

After unfolding the integral to the whole space R4 the one-loop contribution, in the
s-channel, for four external scalars of the same dimension ∆ adds up to

x1

x2

x3

x4

+

x1

x2

x3

x4

(6.8)

= 24∆a4

(4π2)6

∫
(RD)2

dDXdDY (u ·X)2∆−2(u · Y )2∆−2

‖X − Y ‖4 ‖X − x1‖2 ‖X − x2‖2 ‖Y − x3‖2 ‖Y − x4‖2 ,

with similar expressions for the other channels. Finally, performing the conformal
mappings as described in [57] the integrand of equation (6.8) takes the form

W
∆,4−2ε,s
1,div = (ζζ̄)∆

(x2
12x

2
34)∆

∫
R2D

d4−2εX1d4−2εX2(u ·X1)2∆−2(u ·X2)2∆−2

‖X1‖2∆ ‖X1 − uζ‖2∆ ‖X2 − u1‖2∆−4ε ‖X1 − u1‖−4ε ‖X1 −X2‖4 ,
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where the subscript “div” indicates that the integral is divergent and ε = 4−D
2 is

a regulator. The contributions to the other channels are given in the appendix in
equation (C.1).

These integrals were already calculated in chapter 5 and the results are given in
appendix C.1. Note that, because of (6.7), the elliptic sector, which was present in
the one-loop EAdS computation for ∆ = 1, cancels out. By consequence, the loop
integrals are linearly reducible [102] and thus can be expressed in terms of multiple
polylogarithms using the program HyperInt [137]. The entire four-point function then
becomes

〈
φ−(x1)φ−(x2)φ−(x3)φ−(x4)

〉
= 22a4

(4π2)2

[
1

x2
12x

2
34

(
1 + v + v

1 − Y

)
− 22λ

(4π2)2W
1111,4−4ε
0 (v, Y )

+ 22λ2

(4π2)4

−3π2

ε
W

1111,4−4ε
0 (v, Y ) + π4v

2x2
12x

2
34

∑
i∈{s,t,u}

L1,i
0 (v, Y )

+ O(λ3)
]
.

The integrals W
1111,4−4ε
0 (v, Y ) and L1,i

0 have been evaluated in chapter 5. We have
recalled their expressions in (C.13) for L1,i

0 .

〈
φ+φ+φ+φ+〉

The contributions to the φ+φ+φ+φ+ term of the late time expansion of the four point
correlation function in equation (6.4) are given by

〈
φ+(x1)φ+(x2)φ+(x3)φ+(x4)

〉
=


x1

x2

x3

x4

+ 2 perm.

− λ

x1

x2

x3

x4

+ λ2

2


x1

x2

x3

x4

+ 2 perm.

+ λ2

2


x1

x2

x3

x4

+ 2 perm.

+ O(λ3).

• The cross term is again just given by the same expression as the ∆ = 2 cross in EAdS,
given in appendix B.
• Since the squares of the bulk-to-bulk propagators are the same, similar arguments
as for the ∆ = 1 case hold, i.e. the result can be written as a sum of the divergent
and finite parts of the one-loop Witten diagrams with ∆ = 2. The details are given in
appendix C.1.

The entire four-point function at this order is therefore given by

〈
φ+(x1)φ+(x2)φ+(x3)φ+(x4)

〉
= 24a4

(4π2)2

[
1

x4
12x

4
34

(
1 + v2 + v2

(1 − Y )2

)

− 24λ

(4π2)2W
2,4−4ε
0 − 24λ2

(4π2)4

(
− 3π2

ε
W

2222,4−4ε
0 (v, Y )

+ 3π2W2222,4
0 (v, Y ) + 1

2
∑

j∈{s,t,u}
W

2222,j
1,fin (v, Y ) + π4v

2x2
12x

2
34

∑
i∈{s,t,u}

L2,i
0 (v, Y )

)
+O(λ3)

]
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where W2222,j
1,fin and L2,i

0 have been calculated in chapter 5 and recalled in (C.10) and (C.14)
respectively. In fact, as described in chapter 4 there is a differential relation between
the correlators with φ+ and φ− external legs. We will make use of this in the next
subsection.

Mixed correlators

Additionally, we have the correlation functions of φ+ with φ−, which are sub-leading
in the late-time expansion. They are equivalent up to permutation of the operators
φ−(xi), φ+(xj) so we will only calculate

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
and discuss the

other combinations at the end of section 6.2.3.
The diagrams we calculate are given by

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
=

x1

x2

x3

x4

+ λ

x1

x2

x3

x4

−λ2


1
2

x1

x2

x3

x4

+ 1
2

x1

x2

x3

x4

+

x1

x2

x3

x4

+

x1

x2

x4

x3

 .

• The disconnected part only contains the product of two propagators and is therefore
given by

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
= 23a4

22(4π2)2
1

x4
12x

2
34

• The tree-level contribution can be inferred from (6.6) by acting on the latter with

H12 = 1
x2

12

(
2∆ − 2v ∂

∂v

)
.

Thus,

W 2211,4−4ε
0,dS (~x1, . . . , ~x4) = 26a4

(4π2)4
1
4H12W

1111,4−4ε
0 (~x1, . . . , ~x4). (6.9)

To compute the right-hand-side we express W
1111,4−4ε
0 (~x1, . . . , ~x4) in parametric rep-

resentation and act with H12 before expanding the result in ε. See section 4.1.4 and
appendix B for more details with W

2211,4−4ε
0 (~x1, . . . , ~x4) there, related to (6.9) as

W 2211,4−4ε
0,dS (~x1, . . . , ~x4) = 26a4

(4π2)4W
2211,4−4ε
0 (~x1, . . . , ~x4) .

The one-loop contributions can be obtained in the same way. We observe that the sum
of the first two terms contains a term like equation (6.7). The same arguments apply
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therefore for the cancellation of the mixed terms and, we get

1
2

x1

x2

x3

x4

+ 1
2

x1

x2

x3

x4

= 1
2

26a4

(4π2)6

∫
(RD)2

dDXdDY (u ·X)2

‖X − Y ‖4 ‖X − x1‖4 ‖X − x2‖4 ‖Y − x3‖2 ‖Y − x4‖2 .

It is not hard to see that this integral is given by acting with H12 on W
1,4−2ε,s
1,div giving

W 2211,4−2ε,s
1,dS (~x1, . . . , ~x4) = 1

2
26a4

(4π2)6
1
4H12W

1,4−2ε,s
1,div (~x1, . . . , ~x4),

=: 26a4

(4π2)6W
2211,4−2ε,s
1 (~x1, . . . , ~x4)

where W
2211,4−2ε,s
1 is given in appendix C.2.

For the last two terms we use the fact that the propagators can be expressed as (see
section 4.1 for details):

Λ(X,Y ; 1) = −
(
a

2π

)2
(

zw

‖X − Y ‖2 + zw

‖X − σ(Y )‖2

)
,

Λ(X,Y ; 2) = −
(
a

2π

)2
(

zw

‖X − Y ‖2 − zw

‖X − σ(Y )‖2

)
.

Therefore the product appearing in the Witten diagrams is given by:

Λ(X,Y ; 1)Λ(X,Y ; 2) =
(
a

2π

)4
[

(zw)2

‖X − Y ‖4 − (zw)2

‖X − σ(Y )‖4

]
(6.10)

We can unfold the region of integration of the last two diagrams from (H+
D)2 to R2D

by using that the measure of integration is odd under the action of the antipodal map,
like the product of propagators in (6.10). We then have

x1

x2

x3

x4

∝
∫

(H+
D)2

dDXdDY
z4w4

(
(zw)2

‖X − Y ‖4 − (zw)2

‖X − σ(Y )‖4

)

× (zw)3

‖X − x1‖4 ‖Y − x2‖4 ‖X − x3‖2 ‖Y − x4‖2 (6.11)

since ‖X − σ(Y )‖2 = (~x− ~y)2 + (z+w)2 we unfold the Y integral to the full space RD
to get

(6.11) =
∫
H+

D

dDX
z4

∫
RD

dDY
w4

(zw)2

(‖X − Y ‖2)2
(zw)3

(‖X − x1‖2 ‖Y − x2‖2)2 ‖X − x3‖2 ‖Y − x4‖2 .
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We then unfold the z integration to the full space RD to get

(6.11) = 1
2

∫
RD

dDX
z4

∫
RD

dDY
w4

(zw)2

(‖X − Y ‖2)2
(zw)3

(‖X − x1‖2 ‖Y − x2‖2)2 ‖X − x3‖2 ‖Y − x4‖2 .

Including the correct normalization we end up with

x1

x2

x3

x4

=1
2

26a4

(4π2)6

∫
(RD)2

dDXdDY

× (u ·X)(u · Y )
‖X − Y ‖4 ‖X − x1‖4 ‖Y − x2‖4 ‖X − x3‖2 ‖Y − x4‖2 .

Again, this integral is given by acting with H12 on W
1,4−2ε,t
1,div in equation (C.1). The

same applies to the last diagram with respect to W
1,4−2ε,u
1,div and we obtain for these two

contributions

W 2211,4−2ε,i
1,dS (~x1, . . . , ~x4) = 1

2
26a4

(4π2)6
1
4H12W

1,4−2ε,i
1,div (~x1, . . . , ~x4),

=: 26a4

(4π2)6W
2211,4−2ε,i
1 (~x1, . . . , ~x4)

where W
2211,4−2ε,i
1 with i ∈ {s, t, u} is given in appendix C.2. The complete four-point

function is therefore given by

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
= 23a4

(4π2)2

[
1

x4
12x

2
34

+ 23λ

(4π2)2W
2211,4−4ε
0

− 23λ2

(4π2)4

−3π2

ε
W

2211,4−4ε
0 +

∑
i∈{s,t,u}

W
2211,4,i
1,finite

] .
with W

2211,4,i
1,finite given in equations (C.19).

The correlation functions
〈
φ+(x1)φ−(x2)φ+(x3)φ−(x4)

〉
and

〈
φ+(x1)φ−(x2)φ−(x3)φ+(x4)

〉
can be obtained from this result by exchanging external points accordingly. This, how-
ever, only works after regularisation as we will discuss in the next section.

6.2.3 Renormalization and finite result

To simplify the calculation in EAdS we changed the normalisation of the fields φ± and
the coupling constant λ in the auxiliary action (6.2). However if we want to interpret our
result in terms of a de Sitter calculation we have to reverse that procedure, especially
if we want to compare the β function with the well-known flat-space result. At leading
order they should coincide, since the leading short distance divergence does not depend
on the global geometry.

Following the same arguments as in section 5.2.1, we introduce the renormalized
coupling constant λR through the divergent bare coupling as λ = λR(aµ)µ2ε + δλ.
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Then, up to finite terms, the connected part of the four-point functions is given by

2
∑

i
∆ia4

(8π2)4 (µa)4ε
(
2λRW∆1∆2∆3∆4,4−4ε

0 + λ2
R

16π4
3π2

ε
W

∆1∆2∆3∆4,4−4ε
0

)
= 2∆1+···+∆4a42

(8π2)4 (µa)4ε
(
λR + 3λ2

R

32π2ε

)
W

∆1∆2∆3∆4,4−4ε
0

=: 2∆1+···+∆4a42
(8π2)4 µ2ελW∆1∆2∆3∆4,4−4ε

0 . (6.12)

This determines the counter-term

δλ = −3λ2
Rµ

2ε

32π2ε

while the finite logµ contribution to λ gives rise to the Callan-Symanzik equation

0 = d
d logµλ,

which leads to the leading order contribution to the beta function

β = 3λ2
R

16π2 + O(λ3
R)

coinciding with the flat space result.
After renormalisation with a minimal subtraction scheme and restoring the canoni-

cal normalisation of the fields and coupling constant, from a dS point of view, we obtain
the following finite results for the four-point functions with equal external dimensions
∆− = 1 or ∆+ = 2

〈
φ±(x1)φ±(x2)φ±(x3)φ±(x4)

〉
= 22∆±a4

(8π2)2

[
1

x
2∆±
12 x

2∆±
34

(
1 + v∆± + v∆±

(1 − Y )∆±

)

− 22∆±2λR
(8π2)2 W

∆±∆±∆±∆±,4
0 + 22∆±4λ2

R

(8π2)4

∑
i∈{s,t,u}

W
∆±∆±∆±∆±,i
1,finite

]
,

where W
1111,4
0 is given in (5.4), W2222,4

0 is given in (5.5), W1111,i
1,finite are given in (C.8) and

W
2222,i
1,finite are given in (C.12). The mixed correlator is given by

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
= a4

8π4

[
1

x4
12x

2
34

+ λR
4π4W

2211,4
0 + λ2

R

128π8

∑
i∈{s,t,u}

W
2211,i
1,finite

]
,

(6.13)
where the term W

2211,4
0 is given in (B.1) and W

2211,i
1,finite are given in (C.19).

Note, that we considered the tree-level four-point function in D = 4 − 4ε dimen-
sions in equation (6.12), meaning that the counter term contains a finite piece, given
by the coefficient of the O(ε) contribution to W

∆1∆2∆3∆4,4−4ε
0 . As discussed in sec-

tion 5.2.1 this is done to restore the global AdS symmetry in the bulk, guaranteeing
that the renormalized four-point function transforms homogeneously under dilatations
on the boundary. As a consequence one should be able to obtain the four-point func-
tions

〈
φ+(x1)φ−(x2)φ+(x3)φ−(x4)

〉
and

〈
φ+(x1)φ−(x2)φ−(x3)φ+(x4)

〉
by simple per-

mutation of the external points in equation (6.13), resulting in transformations on the
conformal cross-ratios.
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Concretely, the correlation function
〈
φ+(x1)φ−(x2)φ+(x3)φ−(x4)

〉
is obtained from (6.13)

by making the replacements x2 ↔ x3 which corresponds to ζ → 1 − ζ, ζ̄ → 1 − ζ̄ or
(v, 1−Y ) → (1−Y, v). Similarly,

〈
φ+(x1)φ−(x2)φ−(x3)φ+(x4)

〉
is obtained from (6.13)

by making the replacements x2 ↔ x4 which corresponds to ζ → 1
ζ , ζ̄ → 1

ζ̄
or (v, 1−Y ) →

(1/v, (1 −Y )/v). We checked explicitly, that this holds for our result, providing an ad-
ditional test for the loop dependent regularisation scheme introduced in section 5.2.1
to restore the conformal symmetry on the boundary, which is a priori broken by naive
dimensional regularisation.

6.3 Conformal block expansion

We have seen in the last section that we can interpret the leading- and subleading
expansion coefficients of the field at late times as operators, O1 and O2, of dimension
∆ = 1 and ∆ = 2 respectively, living on the euclidean R3 hypersurface at future infinity.
Furthermore, since we have an auxiliary EAdS action for the correlation functions of
the latter, we conclude that the theory on the boundary should, at least perturbatively,
be described by a dual CFT.

In total there are five different four-point functions to be considered for describing
this CFT. We write the possible OPEs between the operators O1 and O2 schematically
as

O1(x1) × O1(x2) ∼
∑
Õ

a11
Õ
Õ(x2),

O2(x1) × O2(x2) ∼
∑
Õ

a22
Õ
Õ(x2), (6.14)

O1(x1) × O2(x2) ∼
∑
Õ

a12
Õ
Õ(x2) ,

where aij
Õ

are OPE coefficients and “∼” means that the contributions of descendant
operators are implicit.

In terms of conformal blocks [109], the general form of the five four-point functions
we have to consider is

〈O1(x1)O1(x2)O1(x3)O1(x4)〉 = 1
x2

12x
2
34

∑
Õ,l

(a11
Õ

)2GÕ,l, (6.15a)

〈O2(x1)O2(x2)O1(x3)O1(x4)〉 = 1
x4

12x
2
34

∑
Õ,l

a22
Õ
a11
Õ
GÕ,l, (6.15b)

〈O2(x1)O1(x2)O2(x3)O1(x4)〉 = 1
(x2

12x
2
34) 3

2

(
x2

24
x2

13

) 1
2 ∑

Õ,l

(a12
Õ

)2GÕ,l,

〈O2(x1)O1(x2)O1(x3)O2(x4)〉 = 1
(x2

12x
2
34) 3

2

(x2
24x

2
13) 1

2

x2
14

∑
Õ,l

(a12
Õ

)2GÕ,l,

〈O2(x1)O2(x2)O2(x3)O2(x4)〉 = 1
x4

12x
4
34

∑
Õ,l

(a22
Õ

)2GÕ,l. (6.15c)

where GÕ,l is the conformal block for the primary field Õ. In the following we will
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denote the square of the OPE coefficients by capital letters, that is

A∆1∆2
O :=

(
a∆1∆2
O

)2
.

Since we have no three-point functions due to the quartic vertex none of the “single
trace” operators O1 and O2 will appear in the OPE.

The spectrum of “double trace” operators for the disconnected part can be read
off from the corresponding four-point functions by conglomeration as described in [94].
The possible primary operators are given by

:O1�
n∂lO1:, :O2�

n∂lO2:, :O2�
n∂lO1: (6.16)

which we will denote by

[O1O1]n,l , [O2O2]n,l , [O2O1]n,l

respectively. They have the corresponding scaling dimension 2 + 2n + l, 4 + 2n + l
and 3 + 2n+ l with n, l ∈ N. Recall that in the scalar four-point function we can only
distinguish operators by their scaling dimension, which may be the same for different
values of n and l. Furthermore, while the dimensions of O1 and O2 are determined by
the (renormalized) mass m, which is fixed for a conformally coupled bulk scalar, we
may expect that the “double trace” operators pick up anomalous dimensions due to
the bulk interaction term.

6.3.1 Correlation functions with degenerate conformal block expan-
sion

Let us first consider the four-point functions (6.15a), (6.15b) and (6.15c). By examining
the bulk diagrams we notice, that we will have mixing between the double trace oper-
ators in the double OPE. If the two-point function between the operators [O1O1]n+1,l
and [O2O2]n,l does not vanish they are not a good basis for the conformal block expan-
sion. Instead, we choose a basis of operators OS

n,l and OA
n,l both with scaling dimension

∆S/A
n,l = 2 + 2n+ l+ O(λ) and spin l such that they are orthogonal, i.e. at O(λ0) they

have the two point functions〈
OS
n,l(x1)OA

n,l(x2)
〉

= 0;〈
OS
n,l(x1)OS

n,l(x2)
〉

=
〈
OA
n,l(x1)OA

n,l(x2)
〉

= 1
2 〈[O1O1]n,l(x1)[O1O1]n,l(x2)〉 , (6.17)

where the additional factor of 1/2 guarantees canonical normalization of the final result.
Combining (6.14), (6.16) and (6.17) we then write

O1 × O1 ∼ 1 +
∑
n, l

2 ∈N

a1,1
[O1O1]n,l

[O1O1]n,l ≡ 1 +
∑
n, l

2 ∈N

(a1,1
OS

n,l

OS
n,l + a1,1

OA
n,l

OA
n,l)

O2 × O2 ∼ 1 +
∑
n, l

2 ∈N

a2,2
[O2O2]n,l

[O2O2]n,l ≡ 1 +
∑
n, l

2 ∈N

(a2,2
OS

n,l

OS
n,l + a2,2

OA
n,l

OA
n,l) ,

where the OPE coefficients a∆,∆
[O∆O∆]n,l

for the generalized free field are given in sec-
tion 2.2.
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To find the OPE coefficients of the operators in the orthogonal basis we can express
the four-point functions of the generalized free field in terms of conformal blocks as

〈O1(x1)O1(x2)O1(x3)O1(x4)〉|λ0 = 1
x2

12x
2
34

1 +
∑
n, l

2 ∈N

(
A1,1

OS
n,l

+A1,1
OA

n,l

) 1
2G

0,0
∆n,l

 ,
〈O2(x1)O2(x2)O2(x3)O2(x4)〉|λ0 = 1

x4
12x

4
34

1 +
∑
n, l

2 ∈N

(
A2,2

OS
n,l

+A2,2
OA

n,l

) 1
2G

0,0
∆n,l

 ,
〈O2(x1)O2(x2)O1(x3)O1(x4)〉|λ0 = 1

x4
12x

2
34

1 +
∑
n, l

2 ∈N

(
a2,2
OS

n,l

a1,1
OS

n,l

+ a2,2
OA

n,l

a1,1
OA

n,l

) 1
2G

0,0
∆n,l

 ,
with the equation for the conformal blocks Ga,b∆n,l

given in the appendix D. We used
the fact that the conformal blocks for operators with the same dimension and spin are
identical, meaning they coincide for OS

n,l and OA
n,l. Comparing this expansion to the

generalized free field, we see immediately that the OPE coefficients in the new basis
must obey the following conditions

A1,1
OS

n,l

+A1,1
OA

n,l

=2A1,1
[O1O1]n,l

; A2,2
OS

n,l

+A2,2
OA

n,l

= 2A2,2
[O2O2]n−1,l

;

a2,2
OS

n,l

a1,1
OS

n,l

+ a2,2
OA

n,l

a1,1
OA

n,l

= 0 . (6.19)

Note, that from the second condition it follows that a2,2
OS

0,l

= a2,2
OA

0,l

= 0, since A2,2
[O2O2]−1,l

=
0.

Equation (6.19) does not determine the zeroth order OPE coefficients uniquely. We
have to proceed to first order in λ to obtain additional conditions to fix them. We expect
the operators OS

n,l and OA
n,l to receive anomalous dimensions from the interaction term

in the bulk

∆S/A = 2 + 2n+ l +
∞∑
i=0

γ
(i)S/A
n,l

with γ
(i)S/A
n,l of order λi in the coupling constant. A convenient parametrization is to

expand the squared OPE coefficients and conformal blocks in γ [93, 94]:

A
∆,∆
O

S/A
n,l

=A∆,∆
O

S/A
n,l

+ (γ(1)S/A
n,l + γ

(2)S/A
n,l )A∆,∆(1)

O
S/A
n,l

+ 1
2(γ(1)S/A

n,l )2A
(2)∆,∆
O

S/A
n,l

+ · · ·

a
1,1
OS

n,l

a
2,2
OS

n,l

= a1,1
O

S/A
n,l

a2,2
O

S/A
n,l

+ (γ(1)S/A
n,l + γ

(2)S/A
n,l )a1,1(1)

O
S/A
n,l

a
2,2(1)
O

S/A
n,l

+ 1
2(γ(1)S/A

n,l )2a
1,1(2)
O

S/A
n,l

a
2,2(2)
O

S/A
n,l

+ · · ·

G
0,0
∆(n,l),l

=G0,0
∆(n,l),l + (γ(1)S/A

n,l + γ
(2)S/A
n,l )

∂G0,0
∆,l

∂∆

∣∣∣∣∣∣
∆(n,l)︸ ︷︷ ︸

G′0,0
∆(n,l),l

+1
2(γ(1)S/A

n,l )2 ∂
2G0,0

∆,l
∂∆2

∣∣∣∣∣∣
∆(n,l)︸ ︷︷ ︸

G′′0,0
∆(n,l),l

+ · · · ,

where the expansion of a1,1
OS

n,l

a
2,2
OS

n,l

can be obtained by expanding
√
A

2,2
O

S/A
n,l

A
1,1
O

S/A
n,l

, pro-

viding us with an additional consistency check for our calculation.
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In the following we will go in detail through the process of extracting the anomalous
dimensions and OPE coefficients up to second order in λ. Since this part is quite tech-
nical, we highlighted the main result, which are the first and second order anomalous
dimensions.

First order calculation The first order contributions in λ to the four-point func-
tions (6.18) are then given by

〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉|λ1 = 1
(x2

12x
2
34)∆ ×

∑
n, l

2 ∈N

(
(γ(1)S

n,l A∆,∆
OS

n,l

+ γ
(1)A
n,l A∆,∆

OA
n,l

)G′0,0
∆(n,l),l +

(
γ

(1)S
n,l A

∆,∆(1)
OS

n,l

+ γ
(1)A
n,l A

∆,∆(1)
OA

n,l

)
G0,0

∆(n,l),l

)
(6.20a)

〈O2(x1)O2(x2)O1(x3)O1(x4)〉|λ1 = 1
x4

12x
2
34

∑
n, l

2 ∈N

(
(γ(1)S

n,l a1,1
OS

n,l

a2,2
OS

n,l

+ γ
(1)A
n,l a1,1

OA
n,l

a2,2
OA

n,l

)G′0,0
∆(n,l),l

+
(
γ

(1)S
n,l a

2,2(1)
OS

n,l

a
1,1(1)
OS

n,l

+ γ
(1)A
n,l a

2,2(1)
OA

n,l

a
1,1(1)
OA

n,l

)
G0,0

∆(n,l),l

)
. (6.20b)

We compare this expansion to the bulk calculation. Keeping in mind that the derivative
of a conformal block produces a term ∝ log v we notice that the logarithmic terms in
the four-point functions give us three additional conditions on the free OPE coefficients
a1,1
O

S/A
n,l

and a2,2
O

S/A
n,l

, while also introducing two new unknown quantities in the first order

anomalous dimensions γ(1)S
n,l and γ

(1)A
n,l . Comparing to the bulk results, the additional

conditions for l = 0 are

γ
(1)S
n,l A

1,1
OS

n,l

+ γ
(1)A
n,l A1,1

OA
n,l

= λ

16π2A
1,1
[O1O1]n,l

,

γ
(1)S
n,l A

2,2
OS

n,l

+ γ
(1)A
n,l A2,2

OA
n,l

= λ

16π2A
2,2
[O2O2]n−1,l

(6.21)

γ
(1)S
n,l a

2,2
OS

n,l

a1,1
OS

n,l

+ γ
(1)A
n,l a2,2

OA
n,l

a1,1
OA

n,l

= λ

16π2a
1,1
[O1O1]n,l

a2,2
[O2O2]n−1,l

.

For n > 0, equations (6.19) and (6.21) require either γ(1)S
n,l or γ(1)A

n,l to vanish. This
choice is a matter of convention as OS and OA have not been defined separately so far.
We choose γ(1)A

n>0,l = 0. Then the solution for the zeroth order OPE coefficients and first
order anomalous dimensions is

A1,1
OS

n,l

= A1,1
OA

n,l

= A1,1
[O1O1]n,l

; A2,2
OS

n,l

= A2,2
OA

n,l

= A2,2
[O2O2]n−1,l

,

a1,1
OS

n,l

a2,2
OS

n,l

= −a1,1
OA

n,l

a2,2
OA

n,l

=
√
A1,1

[O1O1]n,l
A2,2

[O2O2]n−1,l
,

γ
(1)S
n,l = γδ0,l; γ

(1)A
n,l = 0 with γ := λ

16π2 .

From the pieces without logarithmic terms we can access information about the first
order OPE coefficients. Since we chose γ(1)A

n,l = 0 this determines only the OPE coeffi-
cients for OS

n,l:

A
1,1(1)
OS

n,0
= 1

2
∂

∂n
A1,1

OS
n,0

; A
2,2(1)
OS

n,0
= 1

2
∂

∂n
A2,2

OS
n,0

for n ≥ 1 .
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Note that the first order OPE coefficients of the four-point function with mixed external
dimensions are determined by the four-point functions with equal dimensions as

a
2,2(1)
O

S/A
n,0

a
1,1(1)
O

S/A
n,0

=
A

2,2(1)
O

S/A
n,0

A1,1
O

S/A
n,0

+A2,2
O

S/A
n,0

A
1,1(1)
O

S/A
n,0

2
√
A1,1

O
S/A
n,0

A2,2
O

S/A
n,0

, for n ≥ 1 ,

therefore providing an additional consistency check for the calculation, which our result
passes.

For n = 0 the situation is a bit more complicated. Since a2,2
O

S/A
0,l

= 0 we do not have
the additional condition on the difference of the anomalous dimensions coming from
equation (6.20b). We therefore find from equation (6.20a) that

γ
(1)S
0,0 A1,1

OS
0,0

+ γ
(1)A
0,0 A1,1

OA
0,0

= 2γA1,1
[O1O1]0,0

,

and since the expansion of equation (6.20a) with ∆ = 2 starts with O(v2) we need to
have

γ
(1)S
0,0 A

2,2(1)
OS

0,0
+ γ

(1)A
0,0 A

2,2(1)
OA

0,0
= 0. (6.22)

The expansion of the bulk result for equation (6.20b) starts already at order O(v) but
since it does not contain any log(v) terms at that order we get the additional condition

γ
(1)S
0,0 a

2,2(1)
OS

0,0
a

1,1(1)
OS

0,0
+ γ

(1)A
0,0 a

2,2(1)
OA

0,0
a

1,1(1)
OA

0,0
= 2γ. (6.23)

Second order calculation At second order in λ, the contributions from the con-
formal block expansion are given by

〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉|λ2 = 1
(x2

12x
2
34)∆

∑
n, l

2 ∈N

(
1
2

(
(γ(1)S

n,l )2 + (γ(1)A
n,l )2

)
A∆,∆

OS
n,l

G′′0,0
∆(n,l),l

+
(

(γ(1)S
n,l )2A

∆,∆(1)
OS

n,l

+ (γ(1)A
n,l )2A

∆,∆(1)
OA

n,l

)
G′0,0

∆(n,l),l + 1
2

(
(γ(1)S

n,l )2A
∆,∆(2)
OS

n,l

+ (γ(1)A
n,l )2A

∆,∆(2)
OA

n,l

)
G0,0

∆(n,l),l

+ (γ(2)S
n,l + γ

(2)A
n,l )A∆,∆

OS
n,l

G′0,0
∆(n,l),l +

(
γ

(2)S
n,l A

∆,∆(1)
OS

n,l

+ γ
(2)A
n,l A

∆,∆(1)
OA

n,l

)
G0,0

∆(n,l),l

)

and

〈O2(x1)O2(x2)O1(x3)O1(x4)〉|λ2 = 1
x4

12x
2
34

∑
n, l

2 ∈N

(
1
2

(
(γ(1)S

n,l )2 − (γ(1)A
n,l )2

)
a1,1
OS

n,l

a2,2
OS

n,l

G′′0,0
∆(n,l),l

+
(

(γ(1)S
n,l )2a

1,1(1)
OS

n,l

a
2,2(1)
OS

n,l

+ (γ(1)A
n,l )2a

1,1(1)
OA

n,l

a
2,2(1)
OA

n,l

)
G′0,0

∆(n,l),l

+ (γ(2)S
n,l − γ

(2)A
n,l )a1,1

OS
n,l

a2,2
OS

n,l

G′0,0
∆(n,l),l +

(
γ

(2)S
n,l a

1,1(1)
OA

n,l

a
2,2(1)
OS

n,l

+ γ
(2)A
n,l a

1,1(1)
OA

n,l

a
2,2(1)
OA

n,l

)
G0,0

∆(n,l),l

+ 1
2

(
(γ(1)S

n,l )2a
1,1(2)
OS

n,l

a
2,2(2)
OS

n,l

+ (γ(1)A
n,l )2a

1,1(2)
OA

n,l

a
2,2(2)
OA

n,l

)
G0,0

∆(n,l),l

)
, (6.24)

where all single trace primaries have the same weight in the first equation. Again we
compare this to the results from the bulk calculation. The terms proportional to log(v)2
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provide us with a consistency check between the first and second order calculation. We
find (

γ
(1)S
0,0

)2
A1,1

OS
0,0

+
(
γ

(1)A
0,0

)2
A1,1

OA
0,0(

γ
(1)S
0,0 A1,1

OS
0,0

+ γ
(1)A
0,0 A1,1

OA
0,0

)2 = 1
2A1,1

[O1O1]0,0

;

(
γ

(1)S
n>0,0

)2
+
(
γ

(1)A
n>0,0

)2

(
γ

(1)S
n>0,0 + γ

(1)A
n>0,0

)2 =

(
γ

(1)S
n>0,0

)2
−
(
γ

(1)A
n>0,0

)2

(
γ

(1)S
n>0,0 − γ

(1)A
n>0,0

)2 = 1

from which it follows that γ(1)A
n>0,0 = 0 in consistency with the first order calculation,

while for n = 0 we find that

γ
(1)S
0,0 = γ

(1)A
0,0 = γ; A1,1

OS
0,0

+A1,1
OA

0,0
= 2A1,1

[O1O1]0,0
.

From condition (6.22) it follows then, that

A
2,2(1)
OS

0,0
+A

2,2(1)
OA

0,0
= 0,

and from equation (6.23) we get

a
2,2(1)
OS

0,0
a

1,1(1)
OS

0,0
+ a

2,2(1)
OA

0,0
a

1,1(1)
OA

0,0
= 2.

The expansion of equation (6.24) starts at order O(v), where the terms at that
order contain log(v) terms and terms purely polynomial in v, Y . The logarithmic
terms can be absorbed by imposing equation (6.23) providing an additional consis-
tency check between the first and second order calculation. The polynomial parts give
γ

(2)S
0,0 a

2,2(1)
OS

0,0
a

1,1(1)
OS

0,0
+ γ

(2)A
0,0 a

2,2(1)
OA

0,0
a

1,1(1)
OA

0,0
, which can only be solved, if we go to the next

order in λ.
The expansion of 〈O2(x1)O2(x2)O2(x3)O2(x4)〉|λ2 starts at O(v), where the terms

at this order are purely polynomial in v and Y . These terms can be absorbed by
choosing

A
2,2(2)
OS

0,0
+A

2,2(2)
OA

0,0
= 1.

The coefficients of the log(v) terms give us access to the sum and difference between
the second order anomalous dimensions. We obtain the following results

γ
(2)S
n>0,l>0 + γ

(2)A
n>0,l>0 = − γ2

l(l + 1) − γ2

2n+ l
+ γ2

2n+ l + 1 ,

γ
(2)S
n>0,l>0 − γ

(2)A
n>0,l>0 = − γ2

l(l + 1) + γ2

2n+ l
− γ2

2n+ l + 1 ,

If l = 0 we find the following

γ
(2)S
n>0,0 + γ

(2)A
n>0,0 = 3H(1)

2n γ
2 − γ2

2n(2n+ 1) − γ2,

γ
(2)S
n>0,0 − γ

(2)A
n>0,0 = 3H(1)

2n γ
2 + γ2

2n(2n+ 1) − 7γ2,
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with H
(1)
n = ∑n

m=1 1/m the harmonic number, which implies that

γ
(2)S
n>0,l>0 = − γ2

l(l + 1); γ
(2)A
n>0,l>0 = − γ2

(2n+ l)(2n+ l + 1) ,

γ
(2)S
n>0,0 = 3γ2

2n∑
m=1

1
m

− 4γ2; γ
(2)A
n>0,0 = − γ2

2n(2n+ 1) + 3γ2.

Remarkably the anomalous dimensions for OS
n>0,l>0 seem to be completely degenerate

for all values of n and the dimension for OA
n,l>0 can be brought into the general form

∆A
n,l>0 = ∆̄A

n,l − γ2

(∆̄A
n,l − 2)(∆̄A

n,l − 1)
+ O(γ3) (6.25)

where ∆̄A
n,l = ∆A

n,l|λ=0 = 2 + 2n+ l. For the n = 0 trajectory we can again only make
a statement about the sum

γ
(2)S
0,0 + γ

(2)A
0,0 = −2γ2; γ

(2)S
0,l>0 + γ

(2)A
0,l>0 = − γ2

l(l + 1) .

6.3.2 Correlation functions with non-degenerate conformal block ex-
pansion

The four-point functions 〈O2(x1)O1(x2)O2(x3)O1(x4)〉 and 〈O2(x1)O1(x2)O1(x3)O2(x4)〉
provide us with the OPE of

O1 × O2 ∼
∑
n,l∈N

a1,2
[O1O2]n,l

[O1O2]n,l.

Since the two-point function between these operators vanishes, the OPE will be regular.
The double trace operators appearing in the free four-point function are the double
trace operators [O1O2]n,l with scaling dimension ∆n,l = 3+2n+ l. Since they have odd
dimensions for even spin and even dimensions for odd spin, they can be distinguished
from the operators OS

n,l and OA
n,l in the OPE and the conformal block expansion will

be non-degenerate.
The free four-point functions are given by

〈O2(x1)O1(x2)O2(x3)O1(x4)〉|λ0 = 1
(x2

12x
2
34) 3

2

(
x2

24
x2

13

) 1
2 ( v

1 − Y

) 3
2
,

〈O2(x1)O1(x2)O1(x3)O2(x4)〉|λ0 = 1
(x2

12x
2
34) 3

2

(
x2

24x
2
13
) 1

2

x2
14

v
3
2

√
1 − Y

.

Expanding in terms of conformal blocks gives

〈O2(x1)O1(x2)O2(x3)O1(x4)〉|λ0 = 1
(x2

12x
2
34) 3

2

(
x2

24
x2

13

) 1
2 ∑
n,l∈N

A2,1
[O2O1]n,l

G
1
2 ,

1
2

∆n,l
,

〈O2(x1)O1(x2)O1(x3)O2(x4)〉|λ0 = 1
(x2

12x
2
34) 3

2

(
x2

24x
2
13
) 1

2

x2
14

∑
n,l∈N

A2,1
[O2O1]n,l

G
1
2 ,−

1
2

∆n,l
,
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where the squared OPE coefficients are given in the appendix D. A major difference
with respect to the OPE of the correlation functions in the previous section is the fact
that now also operators with odd spin l contribute.

At first order in the bulk coupling λ we can determine the first order anomalous
dimensions and OPE coefficients through

〈O2(x1)O1(x2)O2(x3)O1(x4)〉|λ1 = 1
(x2

12x
2
34) 3

2

(
x2

24
x2

13

) 1
2

×

∑
n,l∈N

γ
(1)
n,l

(
A2,1

[O2O1]n,l
G′

1
2 ,

1
2

∆n,l
+A

2,1(1)
[O2O1]n,l

G
1
2 ,

1
2

∆n,l

)
,

〈O2(x1)O1(x2)O2(x3)O1(x4)〉|λ1 = 1
(x2

12x
2
34) 3

2

(
x2

24x
2
13
) 1

2

x2
14

×

∑
n,l∈N

γ
(1)
n,l

(
A2,1

[O2O1]n,l
G′

1
2 ,−

1
2

∆n,l
+A

2,1(1)
[O2O1]n,l

G
1
2 ,−

1
2

∆n,l

)
.

Comparing with the bulk calculation gives the result

γ
(1)
n,l = γδ0,l; A

2,1(1)
[O2O1]n,0

= 1
2
∂

∂n
A2,1

[O2O1]n,0
.

The result is the same for both of the above four-point functions showing the consistency
of the calculation.

At second order in λ we get the following conformal block expansion

〈O2(x1)O1(x2)O2(x3)O1(x4)〉|λ2 = 1
(x2

12x
2
34) 3

2

(
x2

24
x2

13

) 1
2

×

∑
n,l∈N

[
γ

(2)
n,l

(
A2,1

[O2O1]n,l
G′

1
2 ,

1
2

∆n,l
+A

2,1(1)
[O2O1]n,l

G
1
2 ,

1
2

∆n,l

)

+1
2
(
γ

(1)
n,l

)2
(
A2,1

[O2O1]n,l
G′′

1
2 ,

1
2

∆n,l
+ 2A2,1(1)

[O2O1]n,l
G′

1
2 ,

1
2

∆n,l
+A

2,1(2)
[O2O1]n,l

G
1
2 ,

1
2

∆n,l

)]
, (6.29a)

〈O2(x1)O1(x2)O1(x3)O2(x4)〉|λ2 = 1
(x2

12x
2
34) 3

2

(
x2

24x
2
13
) 1

2

x2
14

×

∑
n,l∈N

[
γ

(2)
n,l

(
A2,1

[O2O1]n,l
G′

1
2 ,−

1
2

∆n,l
+A

2,1(1)
[O2O1]n,l

G
1
2 ,−

1
2

∆n,l

)

+1
2
(
γ

(1)
n,l

)2
(
A2,1

[O2O1]n,l
G′′

1
2 ,−

1
2

∆n,l
+ 2A2,1(1)

[O2O1]n,l
G′

1
2 ,−

1
2

∆n,l
+A

2,1(2)
[O2O1]n,l

G
1
2 ,−

1
2

∆n,l

)]
. (6.29b)

Again the coefficient of the log(v)2 term provides us with a consistency check between
the first and second order calculation which our results pass. From either (6.29a)
or (6.29b) we can determine the second order anomalous dimensions. As it should be
they lead to identical results given by the following formulas:

γ
(2)
n,0 = 3γ2

2n+1∑
m=1

1
m

− 7γ2,

γ
(2)
n,l>0 =

− γ2

l(1+l) for l mod 2 = 0
− γ2

(l+2n+2)(l+2n+1) for l mod 2 = 1.
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Comparing to the results from the previous section we notice a striking similar-
ity. The anomalous dimensions of [O1O2]n,2l>0 and OS

n,2l>0 are the same while for
[O1O2]n,2l+1 we find a form similar to OA

n,2l

∆n,2l+1 = ∆̄n,2l+1 − γ2

(∆̄n,2l+1 − 2)(∆̄n,2l+1 − 1)
+ O(γ3), l ≥ 0 (6.30)

with ∆̄n,l = ∆n,l|λ=0 = 3 + 2n + l. Note that ∆A
n,l>0 in (6.25) only has contributions

for even spin, while (6.30) applies to odd spins.

6.4 The whole picture
Let us summarize the results of this rather technical section: We confirmed the proposal
in [87], that cosmological four-point functions can be described by a CFT dual to
an effective field theory in Euclidean AdS, by describing explicitly the CFT dual to
conformally coupled scalar φ4 theory at loop level. The CFT consists of two scalar
single-trace operators O1 and O2 with scaling dimension ∆ ∈ {1, 2} and an infinite tower
of three types of double-trace operators OS

n,l, OA
n,l with dimension ∆̄S/A

n,l = 2 + 2n + l

and [O1O2]n,l with dimension ∆̄n,l = 3 + 2n+ l. For OS
n,l and OA

n,l the spin l can only
take even integer values, while for [O1O2]n,l it can take all integer values.

The operator OS
n,l receives anomalous dimensions encoded in the four-point func-

tions
〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉 and 〈O2(x1)O2(x2)O1(x3)O1(x4)〉 and so does OA

n,l.
Similarly, the operator [O1O2]n,l receives anomalous dimensions from the four-point
function
〈O2(x1)O1(x2)O2(x3)O1(x4)〉 or, equivalently, 〈O2(x1)O1(x2)O1(x3)O2(x4)〉. However,
the spectrum contains operators with all integer spins instead of only even spins, which
was the case for OS

n,l and OA
n,l. Interestingly, there is a simple relation between the

anomalous dimensions of OS
n,l, OA

n,l and [O1O2]n,l given by

γ
(2)
n,2l>0 = γ

(2)S
n,2l>0, γ

(2)
n,2l+1>0 = γ

(2)A
n,2l+2 l > 0.

This relation seems to suggest a symmetry between the operators OA
n,l,O

S
n,l and [O1O2]n,l,

which could have several origins. One possible explanation is the special choice for the
scaling dimension of the single-trace operators, ∆± ∈ {1, 2}. It is easily checked that
for different values of ∆± the relative coefficients between the vertices in (3.71) change
and even new vertices of the form φ+3

φ− are generated. The cancellation of the elliptic
sector, discussed in section 6.2.2, does not occur anymore, and we expect the integrals
to have a very different structure. As we do not have a simple form for the propagator
for general values of ∆ the technical implementation of the explicit loop calculation,
necessary to check this claim, is much more involved, and we leave it for future studies.
For conformal coupling in odd d the propagator simplifies to a rational function of K
and the auxiliary EAdS action (6.2) is always the same. We therefore expect the gen-
eral structure of the results, including the apparent symmetry to hold for those cases
as well.

On the other hand, for generic scaling dimension of the single trace operators, the
action (3.71) still displays a symmetry due to the fact that all vertices have the same
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coupling constant λ, which look fine-tuned in the general class of φ4 theories in EAdS.
Possibly, the apparent symmetry in the anomalous dimensions of the double trace
operators is related to this.

Comparing with the results from section 6.1 and chapter 5 we can draw the following
picture. Starting from the theory in the bulk we can calculate either the Bunch-Davies
wave function as in section 6.1 or the cosmological correlation functions as we did here.
The Bunch-Davis wavefunction is defined as

Ψ[φ0(x)] = lim
η′→−∞(1+iε)

∫
φ(0,x)=φ0(x)
φ(η′,x)=0

DφeiS[φ] or

Ψ̃[π0(x)] =
∫

Dφ0ei
∫

d3xφ0(x)π0(x)Ψ[φ0] , (6.31)

where φ0 and π0(x) denote the value of the bulk field and its canonically conjugate
momentum at the boundary respectively. From a dS point of view Ψ[π0] corresponds
to choosing Neumann instead of Dirichlet boundary conditions at future infinity.

Performing a semiclassical expansion of (6.31) one finds that the Bunch-Davis wave
function has an interpretation as a generating functional for a CFT at future infinity.
A conformally coupled scalar field in dS, without self-interactions, will give rise to a
direct product of CFTs of two generalized free fields, where Ψ[φ0(x)] corresponds to
the external dimension ∆ = 2 while Ψ[π0(x)] to ∆ = 1. Introducing interactions in
the bulk theory deforms the theory on the boundary. However, no non-trivial OPEs
between O1 and O2 are introduced. Thus, the deformations will only affect the ∆ = 1
and ∆ = 2 sector separately and the theory keeps its product structure. In section 6.1
it was shown that the deformed CFT obtained in this way is identical to that obtained
from a bulk theory in EAdS considered in [55–57] and chapter 5.

The cosmological correlator CFT introduces non-trivial OPE’s between O1 and O2.
Thus, the deformed CFT looses its product structure. Additionally, a new tower of
double trace operators [O1O2]n,l receives anomalous dimensions due to the new mixing
vertex introduced by the Schwinger-Keldysh formalism. Curiously we noticed, that
the anomalous dimensions generated for these new operators are the same as the ones
already found for OS

n,l and OA
n,l.

There is, however, a relation between the CFT of the Bunch-Davies wave function
and that of cosmological correlators. This can be seen by expressing a cosmological
correlation function as

〈φ0(x1)φ0(x2)φ0(x3)φ0(x4)〉 =
∫

Dφ0Ψ∗[φ0]Ψ[φ0]φ0(x1)φ0(x2)φ0(x3)φ0(x4) (6.32)

or, equivalently,

〈φ0(x1)φ0(x2)φ0(x3)φ0(x4)〉 =∫
Dφ0Dπ0ei

∫
d3xφ0(x)π0(x)Ψ̃[π0]Ψ[φ0]φ0(x1)φ0(x2)φ0(x3)φ0(x4) ,

where in the second step we used the inverse Fourier transformation of (6.31) as is
explained in [87]. Analogous expressions exist for π0(x). The CFT of cosmological
correlators can therefore be understood as a functional integral over the wavefunction
CFTs with all possible boundary conditions, where the mixing between the two kinds
boundary conditions contained in the Fourier exponential. This is analogous to the
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mixing vertex that was introduced in section 3.3.2 resulting from the Schwinger-Keldysh
contour.

Finally, let us note, that the expression (6.32) is merely of conceptual value since it
requires the exact knowledge of the wavefunctionals to perform the integral. From (6.32)
it is not even clear that the result of the functional integration should preserve conformal
symmetry. Computationally, the way to go is through the Schwinger-Keldysh formal-
ism and the auxiliary EAdS action, introduced in [87] and reviewed in section 3.3.2.
The two different ways to deform the generalized free field is schematically depicted in
figure 1.1.



Chapter 7

Conclusion and Outlook

In this thesis we derived analytic expressions for cosmological correlation functions
in the late time limit of a conformally coupled scalar field with λφ4 interaction in
the Poincaré patch of dS up to one-loop order [90]. On the way we also computed
boundary correlation functions of the same theory in EAdS [57], generalizing the results
of [55, 56]. It turns out that in both cases the results are determined by a dual CFT
which consists of two different deformations of a generalized free field theory. We extract
the OPE coefficients and anomalous dimensions to all primary double trace operators
and find closed expressions for the latter. This result is equivalent to finding the
masses of all resonances in a scattering process in flat space. By utilizing the dS/CFT
correspondence [14, 69], we also showed that the expansion coefficients of the Bunch-
Davis wave function for this theory in dS are governed by the same CFT as in EAdS
[71]. Our results are consistent with the asymptotic fall-off behavior of the anomalous
dimensions which were obtained by conformal bootstrap methods [36,153–155] and we
manage to generalize them.

We performed this computation by mapping the four point Witten diagrams to an
equivalent calculation of flat space Feynman integrals with three external momenta. To
obtain finite results we needed to regularise UV divergences that appear at one-loop
level. We implemented a dimensional regularisation scheme that restores the (A)dS
invariance of the theory which we checked by comparing the results to the covariant cut-
off regularisation, developed in [55, 56]. To our knowledge, this has not been achieved
before and we showed that our method produces consistent CFT correlation functions
on the boundary. This allowed us to use the techniques from [96,102,137] to solve most
of the integrals analytically.

By evaluating the Witten diagrams for EAdS we noticed that most of them are
linearly reducible [102] and can therefore be expressed in terms of single valued multiple
polylogarithms. Only one subclass of integrals turned out to contain an elliptic sector,
which we managed to expand efficiently in terms of conformal cross ratios. The dual
CFT we obtain is a deformed generalized free field with external dimensions either
∆ = 1 or ∆ = 2 with no nontrivial mixing between the two. The effect of the elliptic
integrals manifests itself in the form of a non-rational contribution to the leading Regge
trajectory of the anomalous dimensions.

We then considered the Bunch-Davies wave function in dS with the same bulk the-
ory. Following the conjectured dS/CFT correspondence [69] we used the wave function
as a generating functional to calculate CFT correlators at the future boundary of dS
up to one loop order. As it turns out this CFT is exactly the same as the one in EAdS,
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considered before.
This result could potentially affect the conjectured higher spin/CFT correspondence

in dS. In [80] a duality between an interacting Sp(N) model and Vasiliev higher spin
theory in dS [157] was conjectured in analogy to the duality between an interacting
O(N) model and higher spin theory in AdS [158]. Going from O(N) to Sp(N) cor-
responds to continuing N → −N . As N is the parameter controlling the quantum
fluctuations in the 1/N expansion it is the prefactor of the action in the partition func-
tion. This would mean that the action should switch the sign and it was argued in [80]
that, as a consequence, every connected tree level n point function would acquire an
extra minus sign when going from EAdS to dS. By looking at the analysis performed
in [71] and in this thesis we see that the two point function does in fact change sign
while the four point function does not. For the two point function this is just a nor-
malization issue. After this normalization is fixed the relative sign of all the higher
order contributions to the n point functions are fixed and we get the same result as for
EAdS, i.e. no change of sign in the four point function. In order to have a sign change
one has to additionally change the sign of the φ4 coupling.

However, this is no statement about the higher spin theory, since we do not know
the exact form of the quartic interaction term for higher spin fields. Our analysis in this
thesis does not consider higher spin fields and we only consider quartic self-interactions.
Thus the only implication we can make is that if such a quartic scalar interaction were
present in the higher spin theory it would change sign when passing from EAdS to dS.

Finally we computed loop corrections to the actual cosmological correlation func-
tions in dS. We did this by taking advantage of a relation between the Witten diagrams
in EAdS and the cosmological correlators in the Schwinger-Keldysh formalism, first ex-
plained in [84–86] and formulated in terms of an auxiliary EAdS action in [87]. The
correlators are therefore best described by an effective theory in EAdS with a doubled
field content, corresponding to the ∆ = 1 and ∆ = 2 boundary terms. We were able
to use the methods and many of the results from the EAdS calculation to evaluate the
cosmological correlators. Curiously, due to some non-trivial cancellations in the loop
diagrams, the elliptic sector that was present in the EAdS calculations vanishes and
the results can all be expressed in terms of single valued multiple polylogarithms. In
contrast to the EAdS and wave function CFT, we observed non-trivial mixing between
the fields with different boundary conditions. This reflects itself in the conformal block
expansion as well, where three different trajectories of double trace operators receive
anomalous dimensions. Interestingly, there is a symmetry between the anomalous di-
mensions of operators with different spin, as well as a degeneracy in twist, which we did
not observe in the EAdS case. Furthermore the data of OPE coefficients and anoma-
lous dimensions obeys several CFT consistency conditions between the tree level and
one-loop level data, therefore showing that, at least perturbatively, the cosmological
correlation functions are in fact described by a CFT.

The consequences and further applications of our results are manifold. On the
technical side we can proceed with the calculation at higher loops, which would be
the next straightforward application of the formalism described in this thesis. For the
EAdS case we expect the integrals to become much more complicated, meaning, that
different elliptic integrals and even more complicated structures will appear. To extract
anomalous dimensions we therefore would stick to calculating the discontinuity by
applying flat space Cutkosky rules [145,147]. For the cosmological correlation functions
we expect the higher loop corrections to be simpler with respect to the corresponding
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EAdS expressions, since similar cancellations as described before are expected. In
that case it would be most interesting to check if the symmetries and degeneracies we
discovered, hold at higher loop level as well. If this is the case, one would expect that
this effect is connected to some deeper property of the theory at future infinity.

Another straightforward next step would be the application of the above formalism
to different values of the external scaling dimensions ∆, i.e. to consider a bulk field with
a different mass. This is especially relevant for the EAdS calculation, where ∆ can take
almost any real value. We found that by introducing an additional analytic parameter
in the propagator we can in principle map the computation with any integer value of
∆ to a flat space calculation. For these cases one could apply the method of mapping
the Feynman integrals to master integrals by applying tensor reduction, integration by
parts relations [95,135,138–141] and intersection theory [100,159,160].

For dS, however, the situation is a bit more complicated since unitarity puts severe
restrictions on the value of ∆, forcing it to be complex for high masses. Especially in
four dimensions, the only allowed integer values of ∆ are the ones we already considered
in this thesis and for other values no general simplifications of the hypergeometric
functions in the propagator exist, at least to our knowledge. How to apply our method
to those cases therefore remains an open question.

So far everything we did was done in an exact (A)dS background. This is an im-
portant step in understanding how QFT behaves in a cosmological scenario, however,
not a realistic model for our universe. From a physical perspective the next logical
step would be to try to apply this formalism to space-times with a slightly broken dS
symmetry, like inflation. Under the cosmological bootstrap program some interesting
results have been obtained recently, by trying to reconstruct the inflationary cosmo-
logical correlators from physical principles like locality, unitarity and symmetries (see
e.g. [17,73,161]. A relevant question for us to ask in that context is, which properties of
the dS symmetry are preserved and can be carried over. On the one hand this is a tech-
nical issue, since our formalism is based heavily on the fact that we have a maximally
symmetric space-time. On the other hand it is also conceptually interesting since going
away from an exact dS symmetry should reflect itself in a breaking of the conformal
symmetry in the dual theory. It has been conjectured in [162] that this should trigger
an inverse renormalisation group flow of the boundary theory from an IR to a UV fixed
point in the future. As we expect our universe to behave like an exact dS space in the
far future it is tempting to think about this renormalisation group flow as a holographic
dual to cosmic time evolution, from inflation in the past to dark energy domination
in the future. This statement is obviously highly speculative and leaves many open
questions, most importantly how the concept of causality would be implemented in
that description of time evolution. Nevertheless it is a fascinating idea and we leave its
further investigation to future work.





Appendix A

Multiple polylogarithms

A.1 Definitions
In the evaluation of the Witten diagrams, we encountered multiple polylogarithms as
the results of linearly reducible Witten diagrams in the parametric representation as
described in section 4.3. Following the convention used by Panzer in HyperInt [137],
they are defined by the nested sum

Lis1,...,sk
(x1, . . . , xk) :=

∞∑
0<p1<···<pk

xp1
1
ps1

1
· · ·

xpk
k

psk
k

for |x1 · · ·xi| < 1, ∀i ∈ {1, .., k} .

The sum s1 + s2 + · · · + sk is referred to as the weight of the multiple polylogarithm.
Some useful definitions and identities are

Li1 (x) = − log(1 − x) ,

Li1,1 (y, x) = Li2
(
x(y − 1)

1 − x

)
− Li2

(
x

x− 1

)
− Li2 (xy) ,

Li2 (1 − x) = −Li2 (x) − log(x) log(1 − x) + ζ(2) ,

Li2
(

1 − 1
x

)
= Li2 (x) − 1

2 log2(x) + log(x) log(1 − x) − ζ(2) (A.1)

and the Bloch-Wigner dilogarithm given by:

D(ζ, ζ̄) = 1
2i

(
Li2 (ζ) − Li2

(
ζ̄
)

− 1
2 log(ζζ̄)

(
Li1 (ζ) − Li1

(
ζ̄
)))

. (A.2)

For a detailed discussion of these functions and their properties we refer the interested
reader to [103,150–152].

A.2 Some recurring expressions
We collect recurring expressions that enter the evaluation of the Witten diagrams:

f1(ζ, ζ̄) = log(ζζ̄)
(

Li1,1

(
ζ̄,
ζ

ζ̄

)
− Li1,1

(
ζ,
ζ̄

ζ

)
+ Li1 (ζ) Li1

(
ζ̄

ζ

)
− Li1

(
ζ̄
)

Li1
(
ζ

ζ̄

))
+ Li3 (ζ) − Li3

(
ζ̄
)

+ Li2,1 (1, ζ) − Li2,1
(
1, ζ̄
)

+ 2 Li2,1

(
ζ,
ζ̄

ζ

)
− 2 Li2,1

(
ζ̄,
ζ

ζ̄

)
+ Li1,2

(
ζ,
ζ̄

ζ

)
− Li1,2

(
ζ̄,
ζ

ζ̄

)
− 2 Li1

(
ζ̄

ζ

)
Li2 (ζ) − Li2

(
ζ̄

ζ

)
Li1 (ζ) + 2 Li1

(
ζ

ζ̄

)
Li2
(
ζ̄
)

+ Li1
(
ζ̄
)

Li2
(
ζ

ζ̄

)
(A.3)



128 A. Multiple polylogarithms

f2(ζ, ζ̄) = −1
2f1(ζ, ζ̄) + 1

2
(
Li2 (ζ) Li1

(
ζ̄
)

− Li2
(
ζ̄
)

Li1 (ζ)
)

+ Li1,2 (1, ζ) − Li1,2
(
1, ζ̄
)

+ 1
2
(
Li2,1 (1, ζ) − Li2,1

(
1, ζ̄
))

+ 1
2 log(ζζ̄)

(
Li2 (ζ) − Li2

(
ζ̄
)

− Li1,1 (1, ζ) + Li1,1
(
1, ζ̄
))

− 1
4 log2(ζζ̄)

(
Li1 (ζ) − Li1

(
ζ̄
))
,

f3(ζ, ζ̄) = 4i ζ + ζ̄ − 2
ζ − ζ̄

D(ζ, ζ̄) + log(ζζ̄) log
(

(1 − ζ)(1 − ζ̄)
ζζ̄

)
,

f4(ζ, ζ̄) = −4i ζ + ζ̄

ζ − ζ̄
D(ζ, ζ̄) − log((1 − ζ)(1 − ζ̄)) log

(
(1 − ζ)(1 − ζ̄)

ζζ̄

)
f5(ζ, ζ̄) = 4i(ζ + ζ̄ − 2ζζ̄)

ζ − ζ̄
D(ζ, ζ̄) − log(ζζ̄) log((1 − ζ)(1 − ζ̄)),

f6(ζ, ζ̄) = 1
2
(
Li2 (ζ) Li1

(
ζ̄
)

− Li2
(
ζ̄
)

Li1 (ζ)
)

+ Li1,2 (1, ζ) − Li1,2
(
1, ζ̄
)

+ 1
2
(
Li2,1 (1, ζ) − Li2,1

(
1, ζ̄
))

+ 1
2 log

(
ζζ̄
) (

−Li1,1 (1, ζ) + Li1,1
(
1, ζ̄
))
,

f7(ζ, ζ̄) = −(Li1,1 (1, ζ) + Li1,1
(
1, ζ̄
)
) + 1

2
(
log(ζζ̄) + 4

)
log((1 − ζ)(1 − ζ̄))

− log(1 − ζ) log(1 − ζ̄)



Appendix B

Evaluation of the Witten cross
diagram

In this appendix we collect exact evaluations of the Witten cross diagram. In section B.1
we given an analytic evaluation of the cross diagram for all ∆, in section B.2 we give the
results for the evaluation of the cross diagram in dimensional regularisation for ∆ = 1
and ∆ = 2 and in section B.3 we give the v and Y expansion of the cross diagram for
all values of ∆.

B.1 The analytic evaluation of cross diagram for all ∆

The case of ∆ integer. When ∆ is a positive integer we have that for ∆ ≥ 5

I∆
× (ζ, ζ̄) =

3∑
r=0

∑
0≤a,b≤∆+1 n

a,b
r (∆)(ζζ̄)a(ζ + ζ̄)b

(ζ − ζ̄)4(∆−4) I1+r
× (ζ, ζ̄).

The evaluation of the integrals Ir×(ζ, ζ̄) with 1 ≤ r ≤ 4 is easily done with HyperInt [137],
with the results

I1
×(ζ, ζ̄) = 4iD(ζ, ζ̄)

ζ − ζ̄
,

and

I2
×(ζ, ζ̄) =

4i
(
−(ζ + ζ̄)3 + 2(ζ + ζ̄)2ζζ̄ + 2(ζ + ζ̄)2 − 8(ζ + ζ̄)ζζ̄ + 4ζ2ζ̄2 + 4ζζ̄

)
(ζ − ζ̄)4

D(ζ, ζ̄)
ζ − ζ̄

+
4
((
ζ + ζ̄

)2 − 3
(
ζ + ζ̄

)
ζζ̄ + 2ζζ̄

)
(ζ − ζ̄)4

log(ζζ̄)

+
4
(

−2
(
ζ + ζ̄

)2 + 3
(
ζ + ζ̄

)
ζζ̄ + 3ζ + 3ζ̄ − 4ζζ̄

)
(ζ − ζ̄)4

log((1 − ζ)(1 − ζ̄)) + 2
(ζ − ζ̄)2

and

I3
×(ζ, ζ̄) = c3

1(ζ, ζ̄)
(ζ − ζ̄)8

4iD(ζ, ζ̄)
ζ − ζ̄

+ c3
2(ζ, ζ̄)

(ζ − ζ̄)8 log(ζζ̄)+ c3
3(ζ, ζ̄)

(ζ − ζ̄)8 log((1−ζ)(1− ζ̄))+ c3
4(ζ, ζ̄)

(ζ − ζ̄)8 ,
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with

c3
1(ζ, ζ̄) =

(
ζ + ζ̄

)6 − 6
(
ζ + ζ̄

)5
ζζ̄ + 6

(
ζ + ζ̄

)4
ζ2ζ̄2 − 6

(
ζ + ζ̄

)5 + 66
(
ζ + ζ̄

)4
ζζ̄

− 132
(
ζ + ζ̄

)3
ζ2ζ̄2 + 72

(
ζ + ζ̄

)2
ζ3ζ̄3 + 6

(
ζ + ζ̄

)4 − 132
(
ζ + ζ̄

)3
ζζ̄ + 324

(
ζ + ζ̄

)2
ζ2ζ̄2

− 216
(
ζ + ζ̄

)
ζ3ζ̄3 + 36ζ4ζ̄4 + 72

(
ζ + ζ̄

)2
ζζ̄ − 216

(
ζ + ζ̄

)
ζ2ζ̄2 + 104ζ3ζ̄3 + 36ζ2ζ̄2

c3
2(ζ, ζ̄) = −3

(
ζ + ζ̄

)5 + 22
(
ζ + ζ̄

)4
ζζ̄ − 25

(
ζ + ζ̄

)3
ζ2ζ̄2 + 6

(
ζ + ζ̄

)4 − 96
(
ζ + ζ̄

)3
ζζ̄
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(
ζ + ζ̄

)2
ζ2ζ̄2 − 110

(
ζ + ζ̄

)
ζ3ζ̄3 + 72

(
ζ + ζ̄

)2
ζζ̄ − 198

(
ζ + ζ̄

)
ζ2ζ̄2 + 92ζ3ζ̄3 + 36ζ2ζ̄2

c3
3(ζ, ζ̄) = −6

(
ζ + ζ̄

)5 + 28
(
ζ + ζ̄

)4
ζζ̄ − 25

(
ζ + ζ̄

)3
ζ2ζ̄2 + 28

(
ζ + ζ̄

)4 − 192
(
ζ + ζ̄

)3
ζζ̄
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(
ζ + ζ̄

)2
ζ2ζ̄2 − 110

(
ζ + ζ̄

)
ζ3ζ̄3 − 25

(
ζ + ζ̄

)3 + 276
(
ζ + ζ̄

)2
ζζ̄ − 396

(
ζ + ζ̄

)
ζ2ζ̄2

+ 128ζ3ζ̄3 − 110
(
ζ + ζ̄

)
ζζ̄ + 128ζ2ζ̄2

c3
4(ζ, ζ̄) =

−13
(
ζ + ζ̄

)3 + 26
(
ζ + ζ̄

)2
ζζ̄ + 26

(
ζ + ζ̄

)2 − 88
(
ζ + ζ̄

)
ζζ̄ + 36ζ2ζ̄2 + 36ζζ̄

2

and

I4
×(ζ, ζ̄) = c4

1(ζ, ζ̄)
(ζ − ζ̄)12

4iD(ζ, ζ̄)
ζ − ζ̄

+ c3
2(ζ, ζ̄)

(ζ − ζ̄)12 log(ζζ̄)+ c3
3(ζ, ζ̄)

(ζ − ζ̄)12 log((1−ζ)(1−ζ̄))+ c3
4(ζ, ζ̄)

(ζ − ζ̄)12

with

c4
1(ζ, ζ̄) = 400ζ3ζ̄3 − 5076

(
ζ + ζ̄

)5
ζ2ζ̄2 + 9312

(
ζ + ζ̄

)4
ζ3ζ̄3 − 6900

(
ζ + ζ̄

)3
ζ4ζ̄4
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(
ζ + ζ̄

)2
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(
ζ + ζ̄
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(
ζ + ζ̄

)2
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(
ζ + ζ̄

)
ζ5ζ̄5
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(
ζ + ζ̄

)
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(
ζ + ζ̄

)8
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(
ζ + ζ̄

)7
ζ2ζ̄2 + 20

(
ζ + ζ̄

)6
ζ3ζ̄3
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(
ζ + ζ̄

)7
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(
ζ + ζ̄

)6
ζ2ζ̄2 − 1320

(
ζ + ζ̄

)5
ζ3ζ̄3 + 600

(
ζ + ζ̄

)4
ζ4ζ̄4
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(
ζ + ζ̄

)6
ζζ̄ − 1320

(
ζ + ζ̄

)5
ζζ̄ + 9312

(
ζ + ζ̄

)4
ζ2ζ̄2 + 600

(
ζ + ζ̄

)4
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(
ζ + ζ̄

)3
ζ2ζ̄2 + 15528

(
ζ + ζ̄

)2
ζ3ζ̄3 + 1800

(
ζ + ζ̄

)2
ζ2ζ̄2

− 4800
(
ζ + ζ̄

)
ζ3ζ̄3 −

(
ζ + ζ̄

)9 + 12
(
ζ + ζ̄

)8 − 30
(
ζ + ζ̄

)7 + 20
(
ζ + ζ̄

)6 + 2352ζ5ζ̄5

+ 400ζ6ζ̄6 + 2352ζ4ζ̄4

c4
2(ζ, ζ̄) = 1

3

(
11
(
ζ + ζ̄

)8 − 150
(
ζ + ζ̄

)7
ζζ̄ + 411

(
ζ + ζ̄

)6
ζ2ζ̄2 − 294

(
ζ + ζ̄

)5
ζ3ζ̄3 − 60

(
ζ + ζ̄

)7

+ 1444
(
ζ + ζ̄

)6
ζζ̄ − 6390

(
ζ + ζ̄

)5
ζ2ζ̄2 + 9306

(
ζ + ζ̄

)4
ζ3ζ̄3 − 4368

(
ζ + ζ̄

)3
ζ4ζ̄4
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(
ζ + ζ̄

)6 − 3060
(
ζ + ζ̄

)5
ζζ̄ + 18786

(
ζ + ζ̄

)4
ζ2ζ̄2 − 34920

(
ζ + ζ̄

)3
ζ3ζ̄3

+ 24264
(
ζ + ζ̄

)2
ζ4ζ̄4 − 5544

(
ζ + ζ̄

)
ζ5ζ̄5 + 1800

(
ζ + ζ̄

)4
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(
ζ + ζ̄

)3
ζ2ζ̄2
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(
ζ + ζ̄
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(
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)
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(
ζ + ζ̄
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(
ζ + ζ̄

)
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)
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3
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(
ζ + ζ̄
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(
ζ + ζ̄
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(
ζ + ζ̄
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(
ζ + ζ̄
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(
ζ + ζ̄
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(
ζ + ζ̄
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(
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(
ζ + ζ̄
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(
ζ + ζ̄
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(
ζ + ζ̄
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(
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(
ζ + ζ̄
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ζ + ζ̄
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(
ζ + ζ̄
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ζ + ζ̄
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ζ + ζ̄
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ζ + ζ̄
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ζ + ζ̄
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− 5544
(
ζ + ζ̄

)
ζ2ζ̄2 + 22

(
ζ + ζ̄

)8 − 210
(
ζ + ζ̄

)7 + 471
(
ζ + ζ̄

)6 − 294
(
ζ + ζ̄

)5 + 6144ζ5ζ̄5

+ 13312ζ4ζ̄4
)

c4
4(ζ, ζ̄) = 1
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(
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(
ζ + ζ̄

)6 − 1044
(
ζ + ζ̄

)5
ζζ̄ + 1044

(
ζ + ζ̄

)4
ζ2ζ̄2 − 1044

(
ζ + ζ̄

)5

+ 9384
(
ζ + ζ̄

)4
ζζ̄ − 17352

(
ζ + ζ̄

)3
ζ2ζ̄2 + 8784

(
ζ + ζ̄

)2
ζ3ζ̄3 + 1044

(
ζ + ζ̄

)4

− 17352
(
ζ + ζ̄

)3
ζζ̄ + 39648

(
ζ + ζ̄

)2
ζ2ζ̄2 − 24768

(
ζ + ζ̄

)
ζ3ζ̄3 + 3600ζ4ζ̄4

+ 8784
(
ζ + ζ̄

)2
ζζ̄ − 24768

(
ζ + ζ̄

)
ζ2ζ̄2 + 11552ζ3ζ̄3 + 3600ζ2ζ̄2

)

The cross diagram with mixed external dimensions is given by acting with H12, H13
or H14 on the ∆ = 1 result. We obtain the following parametric representations

W
2211,4−4ε
0 = π2−2ε(ζζ̄)2Γ(2 − 2ε)

4Γ(1 − 4ε)x4
12x

2
34

×
∫

(RP+)2

dα1dα2dα3α1α
−4ε
2 α3

(α1 + α2 + α3)
(
α2α3(1 − ζ)(1 − ζ̄) + α1(α2 + α3ζζ̄)

)2−2ε .

We obtain for the O(1) terms

2x4
12x

2
34

π2(ζζ̄)2W
2211,4
0 = (ζ + ζ̄ − 2)2iD(ζ, ζ̄)

(ζ − ζ̄)3 − ζ + ζ̄ − 2ζζ̄
2ζζ̄(ζ − ζ̄)2 log((1 − ζ)(1 − ζ̄)) − log(ζζ̄)

(ζ − ζ̄)2 .

(B.1)

B.2 Cross in dimensional regularisation

The cross term for ∆ = 1 in D = 4 − 4ε dimensions is given by:

W
1,4−4ε
0 = 1

2
ζζ̄

x2
12x

2
34

∫
R4−4ε

d4−4εX(u ·X)4

‖X‖4 ‖X − u1‖4(1−4ε) ‖X − uζ‖4

= 1
2
π2−2εζζ̄

x2
12x

2
34

Γ(1 − 2ε)
Γ(1 − 4ε)

∫
(RP+)2

dα1dα2dα3α
−4ε
2

(α1 + α2 + α3)(α1α2 + α1α3ζζ̄ + (1 − ζ)(1 − ζ̄)α2α3)1−2ε

(B.2)

Acting on (B.2) with H1234 we obtain the parametric representation of the ∆ = 2 case:

W
2,4−4ε
0 = 1

2
(ζζ̄)2

x4
12x

4
34

∫
R4−4ε

d4−4εX(u ·X)4

‖X‖4 ‖X − u1‖4(1−4ε) ‖X − uζ‖4

= 2π2−2ε

16
(ζζ̄)2

x4
12x

4
34

Γ(1 − 2ε)
Γ(1 − 4ε)×∫

(RP+)2

dα1dα2dα3α
−4ε
2 (C1α1α

2
2α3 + C2α

2
1α2α3 + C3α

2
2α

2
3 + C4α1α2α

2
3 + C5α

2
1α

2
3)

(α1 + α2 + α3)(α1α2 + α1α3ζζ̄ + (1 − ζ)(1 − ζ̄)α2α3)3−2ε

(B.3)
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The coefficients in the parametric integral (B.3) are given by:

C1 = (1 − 6ε)(ζ + ζ̄ − ζζ̄) + 8ε− 2
C2 = −(1 − 6ε)ζζ̄ − 1 + 2ε
C3 = (4ζζ̄ε2 − 4ε2(ζ + ζ̄) + 8ε2 − 4ε+ 1)(1 − ζ)(1 − ζ̄)

C4 = 8ζ2ζ̄2ε2 − 8ζζ̄ε2(ζ + ζ̄) + ζζ̄
(
8ε2 + 4ε− 2

)
+ (1 − 2ε)(ζ + ζ̄) + 2ε− 1

C5 = 4ζ2ζ̄2ε2 + ζζ̄
(
4ε2 − 4ε+ 1

)
The O(ε) term of the result of equation (B.3) is given by

W
2,4
0,ε =

3(ζζ̄)2
(

−
(
ζ + ζ̄

)3
+ 2
(
ζ + ζ̄

)2
ζζ̄ + 2

(
ζ + ζ̄

)2
− 8ζζ̄

(
ζ + ζ̄

)
+ 4ζ2ζ̄2 + 4ζζ̄

)
2(ζ − ζ̄)5

f2

−
4i(ζζ̄)2

(
−3
(
ζ + ζ̄

)3
+ 5
(
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)2
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(
ζ + ζ̄

)2
− 12ζζ̄

(
ζ + ζ̄

)
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+
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(
ζ + ζ̄
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(
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)
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Li1 (ζ) Li1

(
ζ̄
)

+ Li1,1 (1, ζ) + Li1,1
(
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))

−
3ζζ̄
(

−
(
ζ + ζ̄

)2
ζζ̄ + 3

(
ζ + ζ̄

)
ζ2ζ̄2 − 2ζ2ζ̄2

)
2(ζ − ζ̄)4

log(ζζ̄) log((1 − ζ)(1 − ζ̄))

−
ζζ̄

((
ζ + ζ̄

)3
ζζ̄ +

(
ζ + ζ̄

)3
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(
ζ + ζ̄

)2
ζζ̄ + 8

(
ζ + ζ̄

)
ζ2ζ̄2 + 8ζζ̄

(
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)
+ 24ζ2ζ̄2

)
4(ζ − ζ̄)4

log((1 − ζ)(1 − ζ̄))

+
3(ζζ̄)2

(
−
(
ζ + ζ̄

)2
+ 3ζζ̄

(
ζ + ζ̄

)
− 2ζζ̄

)
4(ζ − ζ̄)4

log2(ζζ̄)+

+
(ζζ̄)2

(
−
(
ζ + ζ̄

)4
+
(
ζ + ζ̄

)3
ζζ̄ + 10

(
ζ + ζ̄

)3
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(
ζ + ζ̄

)2
ζζ̄ + 8

(
ζ + ζ̄

)
ζ2ζ̄2 − 8

(
ζ + ζ̄

)2
)

log(ζζ̄)

4(ζ − ζ̄)4(1 − ζ)(1 − ζ̄)

−
(ζζ̄)2

(
ζζ̄
(
ζ + ζ̄

)
+ 4ζ2ζ̄2 + 2ζζ̄

)
log(ζζ̄)

(ζ − ζ̄)4(1 − ζ)(1 − ζ̄)
(B.4)

B.3 The expansion of the cross diagram

Here we rederive the cross term in general ∆ ≥ 1 as an expansion in v and Y .
We start from equation (5.3), replace v = ζζ̄ and Y = 1 − (1 − ζ)(1 − ζ̄) and make

the coordinate transformation αi → α−1
i . Setting α1 = 1 due to the projectivity of the

integral and expanding in Y we arrive at

I∆
× =

∞∑
m=0

Y m

m!
Γ(∆ +m)

Γ(∆)

∞∫
0

dα2dα3(α2α3)∆−1

(α2 + α3 + α2α3)∆(1 + α3 + α2v)∆+m

=
∞∑
m=0

Y m

m!
Γ(∆ +m)2

Γ(2∆ +m)

∞∫
0

dα3α
∆−1
3

(1 + α3)2∆+m 2F1

(∆,∆ +m

2∆ +m
, 1 − α3v

(1 + α3)2

)

For a, b ∈ N the hypergeometric function can be expanded as
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2F1

(
a, b

a+ b
, 1 − z

)
= − Γ(a+ b)

Γ(a)Γ(b)
∑
n≥0

(
log(z) +H

(1)
a+n−1 +H

(1)
b+n−1 − 2H(1)

n

)
× Γ(a+ n)Γ(b+ n)

Γ(a)Γ(b)
zn

n!2 ,

where H(1)
n = ∑n

r=1 1/r is the harmonic number. Using that∫ ∞

0

αn+∆−1
3

(1 + α3)2n+m+2∆ dα3 = Γ(∆ + n)Γ(∆ +m+ n)
Γ(2∆ + 2n+m) ,

and
∫ ∞

0

αn+∆−1
3

(1 + α3)2n+m+2∆ log
(

α3
(1 + α3)2

)
dα3 = Γ(∆ + n)Γ(∆ +m+ n)

Γ(2∆ + 2n+m)
×
(
H

(1)
∆+n−1 +H

(1)
∆+m+n−1 − 2H(1)

2∆+m+2n−1

)
,

the expansion of I∆
× reads

I∆
× = −

∑
n,m≥0

Γ(∆ + n)2Γ(∆ +m+ n)2

Γ(∆)2Γ(2∆ +m+ 2n)
vnY m

n!2m!

×
(
log(v) + 2H(1)

∆+n−1 + 2H(1)
∆+m+n−1 − 2H(1)

n − 2H(1)
2∆+m+2n−1

)
.

This expression matches the one given in [109].





Appendix C

Evaluation of the one-loop
Witten bubble diagram

In this appendix we give the expressions for the evaluation of the one-loop Witten
bubble diagram in dimensional regularisation for ∆ = 1 and ∆ = 2.

C.1 The one-loop diagrams with equal external dimen-
sions

The general integrals to be solved in dimensional regularisation are given by:

W
∆,4−2ε,s
1,div =1

2
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R2D

d4−2εX1d4−2εX2(u ·X1)2∆−2(u ·X2)2∆−2

‖X1‖2∆ ‖X1 − uζ‖2∆ ‖X2 − u1‖2∆−4ε ‖X1 − u1‖−4ε ‖X1 −X2‖4

W
∆,4−2ε,t
1,div =1

2
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R2D

d4−2εX1d4−2εX2(u ·X1)2∆−2(u ·X2)2∆−2

‖X1‖2∆ ‖X2 − uζ‖2∆ ‖X2 − u1‖2∆−4ε ‖X1 − u1‖−4ε ‖X1 −X2‖4

W
∆,4−2ε,u
1,div =1

2
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R2D

d4−2εX1d4−2εX2(u ·X1)2∆−2(u ·X2)2∆−2

‖X1‖2∆ ‖X2 − uζ‖2∆ ‖X1 − u1‖2∆−4ε ‖X2 − u1‖−4ε ‖X1 −X2‖4

W
∆,4,s
1,fin =1

2
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R8

d4X1d4X2(u ·X1)2∆−3(u ·X2)2∆−3

‖X1‖2∆ ‖X1 − uζ‖2∆ ‖X2 − u1‖2∆ ‖X1 −X2‖2

W
∆,4,t
1,fin =1

2
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R8

d4X1d4X2(u ·X1)2∆−3(u ·X2)2∆−3

‖X1‖2∆ ‖X2 − uζ‖2∆ ‖X2 − u1‖2∆ ‖X1 −X2‖2

W
∆,4,u
1,fin =1

2
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R8

d4X1d4X2(u ·X1)2∆−3(u ·X2)2∆−3

‖X1‖2∆ ‖X2 − uζ‖2∆ ‖X1 − u1‖2∆ ‖X1 −X2‖2

(C.1)

The auxiliary integrals used to obtain the parametric representation of the finite
integrals for ∆ = 2 are given by

W̃
2,4,s
1,fin = 1

8

∫
R8

d4X1d4X2

‖X1 − ~x1‖2 ‖X1 − ~x2‖4 ‖X2 − ~x3‖4 ‖X2 − ~x4‖2 ‖X1 −X2‖2

= 1
8

x2
14

x4
12x

4
34

(ζζ̄)2
∫
R8

d4X1d4X2

‖X1‖2 ‖X1 − uζ‖4 ‖X2 − u1‖2 ‖X1 −X2‖2

W̃
2,4,t
1,fin = 1

8

∫
R8

d4X1d4X2

‖X1 − ~x1‖2 ‖X1 − ~x3‖4 ‖X2 − ~x2‖2 ‖X2 − ~x4‖4 ‖X1 −X2‖2
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= 1
8

ζζ̄

x2
12x

4
34

∫
R8

d4X1d4X2

‖X1‖2 ‖X2 − u1‖4 ‖X2 − uζ‖2 ‖X1 −X2‖2

W̃
2,4,u
1,fin = 1

8

∫
R8

d4X1d4X2

‖X1 − ~x1‖2 ‖X1 − ~x4‖4 ‖X2 − ~x2‖2 ‖X2 − ~x3‖4 ‖X1 −X2‖2

= 1
8

ζζ̄

x2
12x

4
34

∫
R8

d4X1d4X2

‖X1‖2 ‖X1 − u1‖4 ‖X2 − uζ‖2 ‖X1 −X2‖2 . (C.2)

The integrals to be solved in the AdS-invariant regularisation are given by:

W
∆,δ,s
1 =1

4
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R8

d4X1d4X2z
2∆−4
1 z2∆−4

2

‖X1‖2∆ ‖X1 − uζ‖2∆ ‖X2 − u1‖2∆

(
Kδ(X1,X2)∆

1 −Kδ(X1,X2)2

)2

W
∆,δ,t
1 =1

4
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R8

d4X1d4X2z
2∆−4
1 z2∆−4

2

‖X2‖2∆ ‖X1 − uζ‖2∆ ‖X1 − u1‖2∆

(
Kδ(X1,X2)∆

1 −Kδ(X1,X2)2

)2

W
∆,δ,u
1 =1

4
(ζζ̄)∆

(x2
12x

2
34)∆

∫
R8

d4X1d4X2z
2∆−4
1 z2∆−4

2

‖X1‖2∆ ‖X2 − uζ‖2∆ ‖X1 − u1‖2∆

(
Kδ(X1,X2)∆

1 −Kδ(X1,X2)2

)2

.

(C.3)

C.1.1 ∆ = 1

The finite integrals are the L′
0 integrals which are discussed in detail in ap-

pendix C.1.4.

The divergent integrals in the parametric representation are given by
• For the s-channel

W
1,4−2ε,s
1,div = π4−2εζζ̄

Γ(−2ε)x2
12x

2
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

3 α−2ε
1 α5(U s)−1−ε

(F s)1−2ε (C.4)

with

U s := (α2 + α3 + α4)α5 + (α2 + α3 + α4 + α5)α1

F s := α4(α3α5 + α1(α3 + α5))(1 − ζ)(1 − ζ̄) + α2α4(α1 + α5)ζζ̄
+ α2(α3α5 + α1(α3 + α5)) (C.5)

• For the t-channel

W
1,4−2ε,t
1,div = π4−2εζζ̄

Γ(−2ε)x2
12x

2
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

2 α−2ε
3 α5(U t)−1−ε

(F t)1−2ε

with

U t := (α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5

F t := α4((α1 + α2)α3 + (α2 + α3)α5)(1 − ζ)(1 − ζ̄) + α1α2(α3 + α4 + α5)
+ α1α5(α3 + α4ζζ̄) (C.6)
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• For the u-channel

W
1,4−2ε,u
1,div = π4−2εζζ̄

Γ(−2ε)x2
12x

2
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

1 α−2ε
4 α5(Uu)−1−ε

(F )1−2ε

with

Uu := (α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5

F u := α3α4α5 + α1α3(α4 + α5) + α2(α4α5 + α1(α3 + α4 + α5))(1 − ζ)(1 − ζ̄)
+ α2α3(α4 + α5ζζ̄). (C.7)

The result is given by

W
1,4−2ε,i
1,div = −π2

ε
W

1,4−4ε
0 + W

1111,i
1,finite withi = s, t, u ,

where W
1111,i
1,finite for each channel is given by

W
1111,i
1,finite = π4v

2x2
12x

2
34
L1,i

0 (C.8)

where the integrals L1,i
0 for i ∈ {s, t, u} ar given in section C.1.3.

C.1.2 ∆ = 2
The finite integrals are given by:

W 2,4,s
1,fin =π4

2
(ζζ̄)2

(x12x34)4

∫
(RP+)3

4∏
i=1

dαi
α1α2α3α4(α4(α1 + α2 + α3) + α3(α1 + α2))−1

(α1α2(α3 + α4)ζζ̄ + α1α3α4(1 − ζ)(1 − ζ̄) + α2α3α4)2
,

W 2,4,t
1,fin =π4

2
(ζζ̄)2

(x12x34)4

∫
(RP+)3

4∏
i=1

dαi
α1α2α3α4(α4(α1 + α2 + α3) + α2(α1 + α3))−1

(α1α3(α2 + α4)(1 − ζ)(1 − ζ̄) + α1α2α4ζζ̄ + α2α3α4)2
,

W 2,4,u
1,fin =π4

2
(ζζ̄)2

(x12x34)4

∫
(RP+)3

4∏
i=1

dαi
α1α2α3α4(α1(α2 + α3 + α4) + α4(α2 + α3))−1

(α1α2(α3 + α4ζζ̄) + α1α3α4(1 − ζ)(1 − ζ̄) + α2α3α4)2
. (C.9)

The solution to the integrals (C.9) is given by

W
2,4,s
1,fin = π4

8
(ζζ̄)2

(x12x34)4

(
(ζ + ζ̄ − 2)8iD(ζ, ζ̄)

(ζ − ζ̄)3
+ (4ζ − 2)ζ̄ − 2ζ

ζζ̄(ζ − ζ̄)2
log((1 − ζ)(1 − ζ̄)) − 4 log(ζζ̄)

(ζ − ζ̄)2

)
W

2,4,t
1,fin = π4

8
(ζζ̄)2

(x12x34)4

(
− (ζ + ζ̄)8iD(ζ, ζ̄)

(ζ − ζ̄)3
+ (4ζ − 2)ζ̄ − 2ζ

(1 − ζ)(1 − ζ̄)(ζ − ζ̄)2
log(ζζ̄) − 4 log((1 − ζ)(1 − ζ̄))

(ζ − ζ̄)2

)
W

2,4,u
1,fin = π4

8
(ζζ̄)2

(x12x34)4

(
− ((4ζ − 2)ζ̄ − 2ζ)4iD(ζ, ζ̄)

(ζ − ζ̄)3
+ 2(ζ + ζ̄)

(ζ − ζ̄)2
log(ζζ̄) − 2(ζ + ζ̄ − 2) log((1 − ζ)(1 − ζ̄))

(ζ − ζ̄)2

)

(C.10)
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The divergent integrals in the parametric representation is given by
• For the s-channel

W
2222,4−2ε,s
1,div = 4π4−2ε(ζζ̄)2

16Γ(−2ε)x4
12x

4
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

3 α−2ε
1 α5(U s)−1−ε

(F s)3−2ε

× Fs(ζ, ζ̄, ε;α1, α2, α3, α4, α5), (C.11)

with U s and F s given in (C.6).
• For the t-channel

W
2222,4−2ε,t
1,div = 4π4−2ε(ζζ̄)2

16Γ(−2ε)x4
12x

4
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

2 α−2ε
3 α5(U t)−1−ε

(F t)3−2ε

× Ft(ζ, ζ̄, ε;α1, α2, α3, α4, α5),

with U t and F t given in (C.6).
• For the u-channel

W
2222,4−2ε,u
1,div = 4π4−2ε(ζζ̄)2

16Γ(−2ε)x4
12x

4
34

∫
(RP+)4

5∏
i=1

dαi
α−1−2ε

1 α−2ε
4 α5(Uu)−1−ε

(F u)3−2ε

× Fu(ζ, ζ̄, ε;α1, α2, α3, α4, α5),

with Uu and F u given in (C.7).
The expansion of the prefactors starts at O(ε) so only integrals that diverge at least

with ε−1 contribute to the final result. When only keeping those terms, the functions
Fs, Ft and Fu are given by:

Fs = C1(α2
1α2α4α

2
5 + 2α1α2α3α4α

2
5 + α2α

2
3α4α

2
5)
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2
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2
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2
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2
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2
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2
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2
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2
4α

2
5 + α2

3α
2
4α

2
5 + α2

1α
2
3α

2
4 + 2α1α
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2
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2
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2
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2
5)

+ C4(α1α
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2
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2
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5
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with the coefficients Ci given by

C1 = (1 − 6ε)(ζ + ζ̄ − ζζ̄) + 8ε− 2,
C2 = −(1 − 6ε)ζζ̄ − 1 + 2ε,
C3 = (4ζζ̄ε2 − 4ε2(ζ + ζ̄) + 8ε2 − 4ε+ 1)(1 − ζ)(1 − ζ̄),

C4 = 8ζ2ζ̄2ε2 − 8ζζ̄ε2(ζ + ζ̄) + ζζ̄
(
8ε2 + 4ε− 2

)
+ (1 − 2ε)(ζ + ζ̄) + 2ε− 1,

C5 = 4ζ2ζ̄2ε2 + ζζ̄
(
4ε2 − 4ε+ 1

)
.

Integrating over the Feynman parameters we obtain the result for the channels i = s, t, u

W
2222,4−2ε,i
1 = −π2

ε
W

2222,4−4ε
0 + 3π2W2222,4

0 + 3π4

8x4
12x

4
34
L2,i

0 + 1
2W

2222,i
fin + O(ε2)

After a minimal substraction scheme, i.e. subtracting the term −π2

ε W
2,4−4ε
0 the remain-

ing finite piece is given by

W
2222,i
1,finite = 3π2W2222,4

0 + 3π4

8x4
12x

4
34
L2,i

0 + 1
2W

2222,i
fin . (C.12)

where W
2222,4
0 is given in (5.5), the contributions W

2222,i
fin were denoted W

2,4,i
fin in equa-

tion (C.10) and L2,i
0 is evaluated in section C.1.3.

C.1.3 L∆
0 integrals

The L∆
0 pieces appearing in the finite part of the one-loop bubble integrals of ∆ = 1

and ∆ = 2 are given by:

L∆
0 (x,y, z) =

∞∫
0

dσ
1∫

0

d% (σ%(1 − %))∆−1 log(1 + σ)
(1 + σ)∆ (σ%(1 − %)x + %y + (1 − %)z)∆

Where the three channels are given by

• s-channel: x → v, y → 1 − Y , z → 1

• t-channel: x → 1 − Y , y → v, z → 1

• u-channel: x → 1, y → 1 − Y , z → v

They are linearly reducible and given by single valued polylogarithms of maximal weight
three

For ∆ = 1 we have

L1,s
0 (ζ, ζ̄) = f1(ζ, ζ̄) − 2i log(ζζ̄)D(ζ, ζ̄)

ζ − ζ̄

L1,t
0 (ζ, ζ̄) = f1(ζ, ζ̄) − 2i log((1 − ζ)(1 − ζ̄))D(ζ, ζ̄)

ζ − ζ̄
(C.13)

L1,u
0 (ζ, ζ̄) = f1(ζ, ζ̄)

ζ − ζ̄
.
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For ∆ = 2 we have

L2,s
0 (ζ, ζ̄) · (ζ − ζ̄)5 =

((
ζ + ζ̄

)2
− 3

(
ζ + ζ̄

)
ζ ζ̄ + 2 ζ ζ̄

)
f3(ζ, ζ̄)
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−
(
ζ + ζ̄

)3
+ 2

(
ζ + ζ̄

)2
ζ ζ̄ + 2

(
ζ + ζ̄

)2
− 8

(
ζ + ζ̄

)
ζ ζ̄ + 4 ζ2ζ̄2 + 4 ζ ζ̄

)
f1(ζ, ζ̄)

−2 i
(
2 ζ3ζ̄ + 8 ζ2ζ̄2 + 2 ζ ζ̄3 − ζ3 − 11 ζ2ζ̄ − 11 ζ ζ̄2 − ζ̄3 + 2 ζ2 + 8 ζ ζ̄ + 2 ζ̄2

)
ln
(
ζ ζ̄
)
D(ζ, ζ̄)

− 4 i
(
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)
D(ζ, ζ̄)

− 2
(
ζ − ζ̄

)
ζ ζ̄

(
ζ + ζ̄ − 2

)
ln
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ζ ζ̄
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) (
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)3

L2,t
0 (ζ, ζ̄) · (ζ − ζ̄)5 =
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ζ2 − 8 ζ + 6

)
ζ̄ + ζ2

)
D(ζ, ζ̄)

−
(
2 ζ ζ̄ − ζ − ζ̄

) (
ζ2 − ζ̄2

)
ln
(
ζ ζ̄
)
+2

(
1 − ζ̄

)
(1 − ζ)

(
ζ − ζ̄

) (
ζ + ζ̄

)
ln
(
(1 − ζ)

(
1 − ζ̄

))
+ 2

(
ζ − ζ̄

)3
(C.14)

L2,u
0 (ζ, ζ̄) · (ζ − ζ̄)5 =

(
ζ2 + 4 ζ ζ̄ + ζ̄2 − 3 ζ − 3 ζ̄

)
f5(ζ, ζ̄)

+
(
2 ζ3ζ̄ + 8 ζ2ζ̄2 + 2 ζ ζ̄3 − ζ3 − 11 ζ2ζ̄ − 11 ζ ζ̄2 − ζ̄3 + 2 ζ2 + 8 ζ ζ̄ + 2 ζ̄2

)
f1(ζ, ζ̄)

− 4 i
(
2 ζ3ζ̄ + 4 ζ2ζ̄2 + 2 ζ ζ̄3 − ζ3 − 7 ζ2ζ̄ − 7 ζ ζ̄2 − ζ̄3 + ζ2 + 6 ζ ζ̄ + ζ̄2

)
D(ζ, ζ̄)

−
(
2 ζ ζ̄ − ζ − ζ̄

) (
ζ − ζ̄

) (
ζ + ζ̄

)
ln
(
ζ ζ̄
)

+
(
2 ζ ζ̄ − ζ − ζ̄

) (
ζ − ζ̄

) (
ζ + ζ̄ − 2

)
ln
(
(1 − ζ)

(
1 − ζ̄

))
+ 2

(
ζ − ζ̄

)3

C.1.4 L′
0 integrals

The finite integrals for ∆ = 1 are much harder to evaluate since they involve elliptic
integrals in the parametric representation. Therefore we were not able to find closed
expressions. But as the main goal of this work is to extract anomalous dimensions of
the double-trace operators in the dual CFT, we are mainly interested in the coefficients
of the log(v)n terms. After identifying these terms the rest of the integral is finite and
we can expand the integrand in powers of v and Y and integrate over the coefficients.

Let us first note that the integrals involved in the finite piece are all of the form

I(v1, v2) :=
∫
R8

d4Xd4Y

‖X‖2 ‖Y − v1‖2 ‖Y − v2‖2 ‖X − Y ‖2 u ·X u · Y
.
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Comparing with (C.1) we recognise the finite pieces of the different channels as:

W
1,4,s
1,fin =1

2
(ζζ̄)∆

(x2
12x

2
34)∆ I(u1, u1 − uζ),

W
1,4,t
1,fin =1

2
(ζζ̄)∆

(x2
12x

2
34)∆ I(u1, uζ),

W
1,4,u
1,fin =1

2
(ζζ̄)∆

(x2
12x

2
34)∆ I(uζ , uζ − u1).

A parametric representation is given by

I(v1, v2) := π4
∫

(RP+)4

dα0 · · · dα5

(α1+α2+α3
4 α2

4 + α0+α1
4 α2

5 + α1
2 α4α5 + F̂ )2

,

with
F̂ = −(v1 − v2)2(α0 + α1)α2α3 − v2

1α0α1α2 − v2
2α0α1α3 .

Changing variables to

α1 + α2 + α3
4 α2

4 + α0 + α1
4 α2

4 + α1
2 α4α4 = α1 + α2 + α3

4 (β2
4 + β2

5),

with

β4 = α4 + α1α5
α1 + α2 + α3

; β5 = α5
√
α0(α1 + α2 + α3) + α1(α2 + α3)

α1 + α2 + α3
.

Setting
β4 = tβ5α1√

α0(α1 + α2 + α3) + α1(α2 + α3)
,

and performing the integration over β5, and changing variables to αi → 1/αi we get

I(v1, v2; 0) := −2π4
∫ ∞

1
dt

∫ ∞

0

dα0dα1dα2dα3
(v1 − v2)2(α0 + α1) + v2

1α3 + v2
2α2

× 1
α1((α0 + α1)(α2 + α3) + α2α3) + α0α2α3t2

.

Setting x := (v1−v2)2, y := v2
1 and z := v2

2, this defines the L′
0(x, y, z) := I(v1, v2; 0)/(4π4)

integral

L′
0(x, y, z) =

∫ ∞

1
dλ

∫ ∞

0
ds

∫ 1

0
dr

log(1 + λs)
4λ
√

(1 + s)(1 + λs)(sr(1 − r)x+ ry + (1 − r)z)
.

For the s-channel we have

(x, y, z) = (v, 1 − Y, 1),

For the t-channel we have
(x, y, z) = (1 − Y, 1, v),

For the u-channel we have

(x, y, z) = (1, v, 1 − Y ).
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We first evaluate the integral over λ to get

I(s) =
∫ ∞

1

log(1 + sλ)
λ

√
1 + λs

dλ

= 2Li2
( 1√

s+ 1

)
− 2Li2

(
− 1√

s+ 1

)
− log(s+ 1) log

(√
s+ 1 − 1√
s+ 1 + 1

)
.

For computing this integral we evaluated

∫ ∞

1

(1 + sλ)− 1
2 +ε

λ
dλ = −

2s− 1
2 +ε

2F1
(

1
2 − ε, 1

2 − ε; 3
2 − ε; −1

s

)
−1 + 2ε

= − log
(√

s+ 1 − 1√
s+ 1 + 1

)
+ ε
(
2Li2

( 1√
s+ 1

)
− 2Li2

(
− 1√

s+ 1

)

− log(s+ 1) log
(√

s+ 1 − 1√
s+ 1 + 1

))
+O

(
ε2
)

changing variables by setting s = 1/σ2 − 1 we have

I(σ) = 2Li2 (σ) − 2Li2 (−σ) + 2 log(σ) (log(1 − σ) − log(1 + σ)) (C.15)

L′
0(x, y, z) = 1

4

∫ 1

0

∫ 1

0

I(σ)
(σ2 − 1)xr2 + ((−x+ y − z)σ2 + x) r + z σ2drdσ (C.16)

The vanishing locus of the denominator of the integral(
σ2 − 1

)
xr2 +

(
(−x+ y − z)σ2 + x

)
r + z σ2 = 0 (C.17)

defines an elliptic curve. Therefore the result of the integral is an elliptic polylogarithm.
We are not interested in the exact expression but in the degeneration limit of the elliptic
curve for small v and Y . Therefore, we only evaluate the integrals in the asymptotic
0 ≤ v � 1 region.

s-channel We can perform the integration over σ right away. The positive root of
equation (C.17) in σ is given by

σ(r) :=
√

(1 − r) rv√
−r2v + Y r + rv − 1

.

Note that the limit v → 0 coincides with σ(r) → 0, which means that the integration
in σ should provide us with the log(v)2 and log(v) divergences of the integral.
Indeed, performing the integration over σ leads to

L′
0(v, 1 − Y, 1) = 1

4

∫ 1

0
log

(1 − σ(r)
1 + σ(r)

)
dr

2 (−1 − r2v + r (v + Y ))σ(r) log(v)2

+
∫ 1

0
(Li2 (σ(r)) − Li2 (−σ(r)) + iπLi1 (−σ(r)) − iπLi1 (σ(r))) log(v)dr

2 (−1 − r2v + r (v + Y ))σ(r)

+
∫ 1

0
log

(
−i
√
r(1 − r)√

1 − Y r

)
log(v)dr

2 (−1 − r2v + r (v + Y ))σ(r) +O(v0)

One can perform the small v series expansion under the integrals and integrate in r
term by term.
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t-channel Here the log(v) divergence can be extracted from the r integral. We notice
that equation (C.16) can be written as

L′
0(1 − Y, 1, y) = 1

4

∫ 1

0

∫ 1

0

I(σ)
(r − r+(σ))(r − r−(σ))

1
(σ2 − 1)(1 − Y )drdσ

= 1
4

∫ 1

0

I(σ) log
(
r+(1−r−)
r−(1−r+)

)
r− − r+

dσ

with

r± = 1
2
σ2(v − Y ) − (1 − Y ) ±

√
(σ2(v − Y ) − (1 − Y ))2 − 4σ2v(σ2 − 1)(1 − Y )√

(σ2 − 1)(1 − Y )

The logarithmic term in the numerator diverges with log(v) in the limit v → 0. The
log(v) term to the integral is therefore given by

L′
0(1−Y, 1, v) = −

∫ 1

0

(Li2 (σ) − Li2 (−σ) + log(σ) (log(1 − σ) − log(1 + σ))) dσ√
(Y 2 + 2Y v + v2 − 4v) σ4 − 2 (Y − 1) (v + Y ) σ2 + (Y − 1)2

log(v)+O(v0)

The integrand can be expanded for small v and Y and integrated term-by-term
using the small σ expansion

Li2 (σ) − Li2 (−σ) + log(σ) (log(1 − σ) − log(1 + σ)) = 2
∑
n≥0

σ2n
( 1

(2n+ 1)2 − log(σ)
2n+ 1

)

so that∫ 1

0
(Li2 (σ) − Li2 (−σ) + log(σ) (log(1 − σ) − log(1 + σ)))σ2mdσ

= π2

6(1 + 2m) + 1
2(1 + 2m)

m∑
n=1

1
n2 . (C.18)

u-channel Repeating the same steps as for the t channel we arrive at the integral

L′
0(1, v, 1 − Y ) = −

∫ 1

0

(Li2 (σ) − Li2 (−σ) + log(σ) (log(1 − σ) − log(1 + σ))) dσ√
1 + (v2 + (2Y − 4) v + Y 2) σ4 + (−2Y + 2v) σ2

log(v) + O(v0)

The integrand can be expanded for small v and Y and integrated term by term us-
ing (C.18).

C.2 The one-loop diagrams with mixed external dimen-
sions

The subleading terms are given by either acting with H12,H13 or H14 on the divergent
part of the ∆ = 1 result. In the parametric representation we obtain
• For the s-channel

W
2211,4−2ε,s
1 = π4−2ε(ζζ̄)2(1 − 2ε)

4Γ(−2ε)x4
12x

2
34

∫
(RP+)4

4∏
i=1

dαi
α2α4α5(α1 + α5)α−2ε

1 α−2ε−1
3 (U s)−ε−1

(F s)−2(ε−1)
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with U s and F s given in (C.5).
• For the t-channel

W
2211,4−2ε,t
1 = π4−2ε(ζζ̄)2

4Γ(−2ε))x4
12x

2
34

∫
(RP+)4

4∏
i=1

dαi
α1α

−1−2ε
2 α4α

2
5(U t)−1−ε(1 − 2ε)

(F t)−2(ε−1)

with U t and F t given in (C.6).
• For the u-channel

W
2211,4−2ε,u
1 = π4−2ε(ζζ̄)2

4Γ(−2ε))x4
12x

2
34

∫
(RP+)4

4∏
i=1

dαi
α−1−2ε

1 α2α3α
−2ε
4 α2

5(U)−1−ε(1 − 2ε)
(F u)−2(ε−1)

with Uu and F u given in (C.7).
Integrating over the Feynman parameters and expanding in ε we find the following

structure for each diagram

W
2211,4−2ε,i
1 = −π2

ε
W

2211,4−4ε
0 + W

2211,i
1,finite + O(ε2) with i = s, t, u

where the finite part W1,finite for each diagram is given by

4x4
12x

2
34

π4(ζζ̄)2W
2211,s
1,finite = ζ + ζ̄ − 2

(ζ − ζ̄)3 f1 − (ζ + ζ̄ − 2) log(ζζ̄)
(ζ − ζ̄)3 2iD(ζ, ζ̄) + 4iD(ζ, ζ̄)

ζζ̄(ζ − ζ̄)

− log(ζζ̄)(log((1 − ζ)(1 − ζ̄)) − log(ζζ̄) + 4)
(ζ − ζ̄)2

− 2(ζ + ζ̄ − 2ζζ̄) log((1 − ζ)(1 − ζ̄))
ζζ̄(ζ − ζ̄)2

4x4
12x

2
34

π4(ζζ̄)2W
2211,t
1,finite = ζ + ζ̄ − 2

(ζ − ζ̄)3 (f1 + 2f6) + 2iD(ζ, ζ̄)
ζζ̄(ζ − ζ̄)

− 4 log(ζζ̄)
(ζ − ζ̄)2 + ζ + ζ̄ − 2ζζ̄

ζζ̄(ζ − ζ̄)2 f7

4x4
12x

2
34

π4(ζζ̄)2W
2211,u
1,finite = ζ + ζ̄ − 2

(ζ − ζ̄)3 f1 + 2iD(ζ, ζ̄)
ζζ̄(ζ − ζ̄)

+ 2(2ζζ̄ − ζ − ζ̄)
ζζ̄(ζ − ζ̄)2 log((1 − ζ)(1 − ζ̄))

− ζ + ζ̄

ζζ̄(ζ − ζ̄)2 log(ζζ̄) log((1 − ζ)(1 − ζ̄)) − 4 log(ζζ̄)
(ζ − ζ̄)2

where D(ζ, ζ̄), f1, f6 and f7 are given in appendix A.2.

C.3 Expressions from unitarity cuts
The unitarity cut of the cross diagram in D = 4 − 4ε dimensions up to order ε is given
by

Cutuζ
W

1,4−4ε
0 = (2π)3

4
(πeγ)−2εv

(x12x34)2

+1∫
−1

dx (1 − x2)−2ε(ζζ̄)1−4ε

(ζ + ζ̄ − x(ζ − ζ̄))(ζ + ζ̄ − 2ζζ̄ − x(ζ − ζ̄))1−4ε
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which evaluates

Cutuζ
W

1,4−4ε
0 = − vπ3

(x12x34)2
1

(ζ − ζ̄)

[
log

(1 − ζ

1 − ζ̄

)

− 2ε
(

Li1,1
(
ζ̄,
ζ

ζ̄

)
− Li1,1

(
ζ,
ζ̄

ζ

)
+ Li1 (ζ) Li1

(
ζ̄

ζ

)
− Li1

(
ζ̄
)

Li1
(
ζ

ζ̄

)
−(Li2 (ζ) − Li2

(
ζ̄
)
) + log

(1 − ζ

1 − ζ̄

)
log((1 − ζ)(1 − ζ̄))

+ log(ζζ̄) log
(1 − ζ

1 − ζ̄

))
+ O(ε2) (C.20)

The O(ε0) term of the cut one-loop s-channel integral is given by

I1,ε
1,div = 1

2(ζ − ζ̄)

(
Li1,1

(
ζ̄,
ζ

ζ̄

)
− Li1,1

(
ζ,
ζ̄

ζ

)
+ Li1 (ζ) Li1

(
ζ̄

ζ

)
− Li1

(
ζ̄
)

Li1
(
ζ

ζ̄

)
− (Li2 (ζ) − Li2

(
ζ̄
)
) + log

(1 − ζ

1 − ζ̄

)
log((1 − ζ)(1 − ζ̄)) − log(ζζ̄) log

(1 − ζ

1 − ζ̄

))
+O(ε).

(C.21)





Appendix D

Conformal blocks and OPE
coefficients

The squared OPE coefficients for a canonically normalized double trace operator [OiOj ]n,l
in an OPE between Oi and Oj for a generalized free field has been calculated in [94]
and is given by

Ai,j
[OiOj ]n,l

=
(−1)l

(
∆i − d

2 + 1
)

n

(
∆j − d

2 + 1
)

n
(∆i)l+n(∆j)l+n

l!n!
(
l + d

2

)
n

(∆i + ∆j + n − d + 1)n(∆i + ∆j + 2n + l − 1)l

(
∆i + ∆j + n + l − d

2

)
n

,

where (x)n := Γ(x+n)
Γ(x) is the Pochhammer symbol. The conformal block for a multiplet

of dimension ∆ and spin l in a four-point function with external dimensions ∆1,∆2,∆3
and ∆4 in d = 3 space-time dimensions has been calculated in [111] and is given by

Ga,b∆,l(ṽ, Ỹ ) =
∞∑
k=0

ṽ
∆−l

2 +k
2k∑
m=0

Aa,bk,mf
a,b
k,m(Ỹ ),

with

fa,bk,m(Ỹ ) = Ỹ l−m
2F1

(∆ + l

2 + k −m− a,
∆ + l

2 + k −m+ b,∆ + l + 2k − 2m; Ỹ
)
,

and

Aa,bk,m(∆) =
b m

2 c∑
m1,m2=0

(−1)m+m1+14m1+m2 (−l)m(−bm/2c))m1+m2(k − bm/2c) + 1/2)m1

m!m1!m2!(k −m+m1)!

×
(∆ − 1)2k−m(3/2 − ∆)m−k−m1−m2(l − ∆ + 2)2(bm/2c−m2)−n

(∆ + l −m− 1)2k−m(∆ + l)2(k+m1−bm/2c)−m

×
∏

α∈{±a,±b}

((1
2(∆ + l) + α

)
k−m+m1

(1
2(∆ − l − 1) + α

)
m2

)
(1+(4ab−1)(n mod 2)).

where a = ∆1−∆2
2 and b = ∆3−∆4

2 and the conformal cross ratios are defined in a slightly
different way as

ṽ = v

1 − Y
; 1 − Ỹ = 1

1 − Y
.

Note that we use a slightly different normalization compared to [111].
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