Logo Logo
Help
Contact
Switch language to German
Integrative bioinformatics applications for complex human disease contexts
Integrative bioinformatics applications for complex human disease contexts
This thesis presents new methods for the analysis of high-throughput data from modern sources in the context of complex human diseases, at the example of a bioinformatics analysis workflow. New measurement techniques improve the resolution with which cellular and molecular processes can be monitored. While RNA sequencing (RNA-seq) measures mRNA expression, single-cell RNA-seq (scRNA-seq) resolves this on a per-cell basis. Long-read sequencing is increasingly used in genomics. With imaging mass spectrometry (IMS) the protein level in tissues is measured spatially resolved. All these techniques induce specific challenges, which need to be addressed with new computational methods. Collecting knowledge with contextual annotations is important for integrative data analyses. Such knowledge is available through large literature repositories, from which information, such as miRNA-gene interactions, can be extracted using text mining methods. After aggregating this information in new databases, specific questions can be answered with traceable evidence. The combination of experimental data with these databases offers new possibilities for data integrative methods and for answering questions relevant for complex human diseases. Several data sources are made available, such as literature for text mining miRNA-gene interactions (Chapter 2), next- and third-generation sequencing data for genomics and transcriptomics (Chapters 4.1, 5), and IMS for spatially resolved proteomics (Chapter 4.4). For these data sources new methods for information extraction and pre-processing are developed. For instance, third-generation sequencing runs can be monitored and evaluated using the poreSTAT and sequ-into methods. The integrative (down-stream) analyses make use of these (heterogeneous) data sources. The cPred method (Chapter 4.2) for cell type prediction from scRNA-seq data was successfully applied in the context of the SARS-CoV-2 pandemic. The robust differential expression (DE) analysis pipeline RoDE (Chapter 6.1) contains a large set of methods for (differential) data analysis, reporting and visualization of RNA-seq data. Topics of accessibility of bioinformatics software are discussed along practical applications (Chapter 3). The developed miRNA-gene interaction database gives valuable insights into atherosclerosis-relevant processes and serves as regulatory network for the prediction of active miRNA regulators in RoDE (Chapter 6.1). The cPred predictions, RoDE results, scRNA-seq and IMS data are unified as input for the 3D-index Aorta3D (Chapter 6.2), which makes atherosclerosis related datasets browsable. Finally, the scRNA-seq analysis with subsequent cPred cell type prediction, and the robust analysis of bulk-RNA-seq datasets, led to novel insights into COVID-19. Taken all discussed methods together, the integrative analysis methods for complex human disease contexts have been improved at essential positions., Die Dissertation beschreibt Methoden zur Prozessierung von aktuellen Hochdurchsatzdaten, sowie Verfahren zu deren weiterer integrativen Analyse. Diese findet Anwendung vor allem im Kontext von komplexen menschlichen Krankheiten. Neue Messtechniken erlauben eine detailliertere Beobachtung biomedizinischer Prozesse. Mit RNA-Sequenzierung (RNA-seq) wird mRNA-Expression gemessen, mit Hilfe von moderner single-cell-RNA-seq (scRNA-seq) sogar für (sehr viele) einzelne Zellen. Long-Read-Sequenzierung wird zunehmend zur Sequenzierung ganzer Genome eingesetzt. Mittels bildgebender Massenspektrometrie (IMS) können Proteine in Geweben räumlich aufgelöst quantifiziert werden. Diese Techniken bringen spezifische Herausforderungen mit sich, die mit neuen bioinformatischen Methoden angegangen werden müssen. Für die integrative Datenanalyse ist auch die Gewinnung von geeignetem Kontextwissen wichtig. Wissenschaftliche Erkenntnisse werden in Artikeln veröffentlicht, die über große Literaturdatenbanken zugänglich sind. Mittels Textmining können daraus Informationen extrahiert werden, z.B. miRNA-Gen-Interaktionen, die in eigenen Datenbank aggregiert werden um spezifische Fragen mit nachvollziehbaren Belegen zu beantworten. In Kombination mit experimentellen Daten bieten sich so neue Möglichkeiten für integrative Methoden. Durch die Extraktion von Rohdaten und deren Vorprozessierung werden mehrere Datenquellen erschlossen, wie z.B. Literatur für Textmining von miRNA-Gen-Interaktionen (Kapitel 2), Long-Read- und RNA-seq-Daten für Genomics und Transcriptomics (Kapitel 4.2, 5) und IMS für Protein-Messungen (Kapitel 4.4). So dienen z.B. die poreSTAT und sequ-into Methoden der Vorprozessierung und Auswertung von Long-Read-Sequenzierungen. In der integrativen (down-stream) Analyse werden diese (heterogenen) Datenquellen verwendet. Für die Bestimmung von Zelltypen in scRNA-seq-Experimenten wurde die cPred-Methode (Kapitel 4.2) erfolgreich im Kontext der SARS-CoV-2-Pandemie eingesetzt. Auch die robuste Pipeline RoDE fand dort Anwendung, die viele Methoden zur (differentiellen) Datenanalyse, zum Reporting und zur Visualisierung bereitstellt (Kapitel 6.1). Themen der Benutzbarkeit von (bioinformatischer) Software werden an Hand von praktischen Anwendungen diskutiert (Kapitel 3). Die entwickelte miRNA-Gen-Interaktionsdatenbank gibt wertvolle Einblicke in Atherosklerose-relevante Prozesse und dient als regulatorisches Netzwerk für die Vorhersage von aktiven miRNA-Regulatoren in RoDE (Kapitel 6.1). Die cPred-Methode, RoDE-Ergebnisse, scRNA-seq- und IMS-Daten werden im 3D-Index Aorta3D (Kapitel 6.2) zusammengeführt, der relevante Datensätze durchsuchbar macht. Die diskutierten Methoden führen zu erheblichen Verbesserungen für die integrative Datenanalyse in komplexen menschlichen Krankheitskontexten.
Not available
Joppich, Markus
2021
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Joppich, Markus (2021): Integrative bioinformatics applications for complex human disease contexts. Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics
[img]
Preview
PDF
Joppich_Markus.pdf

28MB

Abstract

This thesis presents new methods for the analysis of high-throughput data from modern sources in the context of complex human diseases, at the example of a bioinformatics analysis workflow. New measurement techniques improve the resolution with which cellular and molecular processes can be monitored. While RNA sequencing (RNA-seq) measures mRNA expression, single-cell RNA-seq (scRNA-seq) resolves this on a per-cell basis. Long-read sequencing is increasingly used in genomics. With imaging mass spectrometry (IMS) the protein level in tissues is measured spatially resolved. All these techniques induce specific challenges, which need to be addressed with new computational methods. Collecting knowledge with contextual annotations is important for integrative data analyses. Such knowledge is available through large literature repositories, from which information, such as miRNA-gene interactions, can be extracted using text mining methods. After aggregating this information in new databases, specific questions can be answered with traceable evidence. The combination of experimental data with these databases offers new possibilities for data integrative methods and for answering questions relevant for complex human diseases. Several data sources are made available, such as literature for text mining miRNA-gene interactions (Chapter 2), next- and third-generation sequencing data for genomics and transcriptomics (Chapters 4.1, 5), and IMS for spatially resolved proteomics (Chapter 4.4). For these data sources new methods for information extraction and pre-processing are developed. For instance, third-generation sequencing runs can be monitored and evaluated using the poreSTAT and sequ-into methods. The integrative (down-stream) analyses make use of these (heterogeneous) data sources. The cPred method (Chapter 4.2) for cell type prediction from scRNA-seq data was successfully applied in the context of the SARS-CoV-2 pandemic. The robust differential expression (DE) analysis pipeline RoDE (Chapter 6.1) contains a large set of methods for (differential) data analysis, reporting and visualization of RNA-seq data. Topics of accessibility of bioinformatics software are discussed along practical applications (Chapter 3). The developed miRNA-gene interaction database gives valuable insights into atherosclerosis-relevant processes and serves as regulatory network for the prediction of active miRNA regulators in RoDE (Chapter 6.1). The cPred predictions, RoDE results, scRNA-seq and IMS data are unified as input for the 3D-index Aorta3D (Chapter 6.2), which makes atherosclerosis related datasets browsable. Finally, the scRNA-seq analysis with subsequent cPred cell type prediction, and the robust analysis of bulk-RNA-seq datasets, led to novel insights into COVID-19. Taken all discussed methods together, the integrative analysis methods for complex human disease contexts have been improved at essential positions.

Abstract

Die Dissertation beschreibt Methoden zur Prozessierung von aktuellen Hochdurchsatzdaten, sowie Verfahren zu deren weiterer integrativen Analyse. Diese findet Anwendung vor allem im Kontext von komplexen menschlichen Krankheiten. Neue Messtechniken erlauben eine detailliertere Beobachtung biomedizinischer Prozesse. Mit RNA-Sequenzierung (RNA-seq) wird mRNA-Expression gemessen, mit Hilfe von moderner single-cell-RNA-seq (scRNA-seq) sogar für (sehr viele) einzelne Zellen. Long-Read-Sequenzierung wird zunehmend zur Sequenzierung ganzer Genome eingesetzt. Mittels bildgebender Massenspektrometrie (IMS) können Proteine in Geweben räumlich aufgelöst quantifiziert werden. Diese Techniken bringen spezifische Herausforderungen mit sich, die mit neuen bioinformatischen Methoden angegangen werden müssen. Für die integrative Datenanalyse ist auch die Gewinnung von geeignetem Kontextwissen wichtig. Wissenschaftliche Erkenntnisse werden in Artikeln veröffentlicht, die über große Literaturdatenbanken zugänglich sind. Mittels Textmining können daraus Informationen extrahiert werden, z.B. miRNA-Gen-Interaktionen, die in eigenen Datenbank aggregiert werden um spezifische Fragen mit nachvollziehbaren Belegen zu beantworten. In Kombination mit experimentellen Daten bieten sich so neue Möglichkeiten für integrative Methoden. Durch die Extraktion von Rohdaten und deren Vorprozessierung werden mehrere Datenquellen erschlossen, wie z.B. Literatur für Textmining von miRNA-Gen-Interaktionen (Kapitel 2), Long-Read- und RNA-seq-Daten für Genomics und Transcriptomics (Kapitel 4.2, 5) und IMS für Protein-Messungen (Kapitel 4.4). So dienen z.B. die poreSTAT und sequ-into Methoden der Vorprozessierung und Auswertung von Long-Read-Sequenzierungen. In der integrativen (down-stream) Analyse werden diese (heterogenen) Datenquellen verwendet. Für die Bestimmung von Zelltypen in scRNA-seq-Experimenten wurde die cPred-Methode (Kapitel 4.2) erfolgreich im Kontext der SARS-CoV-2-Pandemie eingesetzt. Auch die robuste Pipeline RoDE fand dort Anwendung, die viele Methoden zur (differentiellen) Datenanalyse, zum Reporting und zur Visualisierung bereitstellt (Kapitel 6.1). Themen der Benutzbarkeit von (bioinformatischer) Software werden an Hand von praktischen Anwendungen diskutiert (Kapitel 3). Die entwickelte miRNA-Gen-Interaktionsdatenbank gibt wertvolle Einblicke in Atherosklerose-relevante Prozesse und dient als regulatorisches Netzwerk für die Vorhersage von aktiven miRNA-Regulatoren in RoDE (Kapitel 6.1). Die cPred-Methode, RoDE-Ergebnisse, scRNA-seq- und IMS-Daten werden im 3D-Index Aorta3D (Kapitel 6.2) zusammengeführt, der relevante Datensätze durchsuchbar macht. Die diskutierten Methoden führen zu erheblichen Verbesserungen für die integrative Datenanalyse in komplexen menschlichen Krankheitskontexten.