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Zusammenfassung

Die Dissertation beschreibt Methoden zur Prozessierung von aktuellen Hochdurchsatzdaten,
sowie Verfahren zu deren weiterer integrativen Analyse. Diese findet Anwendung vor allem
im Kontext von komplexen menschlichen Krankheiten.

Neue Messtechniken erlauben eine detailliertere Beobachtung biomedizinischer Prozesse.
Mit RNA-Sequenzierung (RNA-seq) wird mRNA-Expression gemessen, mit Hilfe von
moderner single-cell-RNA-seq (scRNA-seq) sogar für (sehr viele) einzelne Zellen. Long-
Read-Sequenzierung wird zunehmend zur Sequenzierung ganzer Genome eingesetzt. Mittels
bildgebender Massenspektrometrie (IMS) können Proteine in Geweben räumlich aufgelöst
quantifiziert werden. Diese Techniken bringen spezifische Herausforderungen mit sich, die
mit neuen bioinformatischen Methoden angegangen werden müssen. Für die integrative
Datenanalyse ist auch die Gewinnung von geeignetem Kontextwissen wichtig. Wissenschaft-
liche Erkenntnisse werden in Artikeln veröffentlicht, die über große Literaturdatenbanken
zugänglich sind. Mittels Textmining können daraus Informationen extrahiert werden, z.B.
miRNA-Gen-Interaktionen, die in eigenen Datenbank aggregiert werden um spezifische
Fragen mit nachvollziehbaren Belegen zu beantworten. In Kombination mit experimentellen
Daten bieten sich so neue Möglichkeiten für integrative Methoden.

Durch die Extraktion von Rohdaten und deren Vorprozessierung werden mehrere Daten-
quellen erschlossen, wie z.B. Literatur für Textmining von miRNA-Gen-Interaktionen
(Kapitel 2), Long-Read- und RNA-seq-Daten für Genomics und Transcriptomics (Kapitel
4.2, 5) und IMS für Protein-Messungen (Kapitel 4.4). So dienen z.B. die poreSTAT und
sequ-into Methoden der Vorprozessierung und Auswertung von Long-Read-Sequenzierungen
[142]. In der integrativen (down-stream) Analyse werden diese (heterogenen) Datenquellen
verwendet. Für die Bestimmung von Zelltypen in scRNA-seq-Experimenten wurde die
cPred-Methode (Kapitel 4.2) erfolgreich im Kontext der SARS-CoV-2-Pandemie eingesetzt
[228, 238]. Auch die robuste Pipeline RoDE fand dort Anwendung, die viele Methoden zur
(differentiellen) Datenanalyse, zum Reporting und zur Visualisierung bereitstellt (Kapitel
6.1). Themen der Benutzbarkeit von (bioinformatischer) Software werden an Hand von
praktischen Anwendungen diskutiert (Kapitel 3, [145]). Die entwickelte miRNA-Gen-
Interaktionsdatenbank gibt wertvolle Einblicke in Atherosklerose-relevante Prozesse [144]
und dient als regulatorisches Netzwerk für die Vorhersage von aktiven miRNA-Regulatoren
in RoDE (Kapitel 6.1). Die cPred-Methode, RoDE-Ergebnisse, scRNA-seq- und IMS-Daten
werden im 3D-Index Aorta3D (Kapitel 6.2) zusammengeführt, der relevante Datensätze
durchsuchbar macht. Die diskutierten Methoden führen zu erheblichen Verbesserungen für
die integrative Datenanalyse in komplexen menschlichen Krankheitskontexten.





Summary

This thesis presents new methods for the analysis of high-throughput data from modern
sources in the context of complex human diseases, at the example of a bioinformatics
analysis workflow. New measurement techniques improve the resolution with which cellular
and molecular processes can be monitored. While RNA sequencing (RNA-seq) measures
mRNA expression, single-cell RNA-seq (scRNA-seq) resolves this on a per-cell basis. Long-
read sequencing is increasingly used in genomics. With imaging mass spectrometry (IMS)
the protein level in tissues is measured spatially resolved. All these techniques induce
specific challenges, which need to be addressed with new computational methods. Collecting
knowledge with contextual annotations is important for integrative data analyses. Such
knowledge is available through large literature repositories, from which information, such as
miRNA-gene interactions, can be extracted using text mining methods. After aggregating
this information in new databases, specific questions can be answered with traceable evidence.
The combination of experimental data with these databases offers new possibilities for data
integrative methods and for answering questions relevant for complex human diseases.

Several data sources are made available, such as literature for text mining miRNA-gene
interactions (Chapter 2), next- and third-generation sequencing data for genomics and
transcriptomics (Chapters 4.1, 5), and IMS for spatially resolved proteomics (Chapter 4.4).
For these data sources new methods for information extraction and pre-processing are
developed. For instance, third-generation sequencing runs can be monitored and evaluated
using the poreSTAT and sequ-into [142] methods. The integrative (down-stream) analyses
make use of these (heterogeneous) data sources. The cPred method (Chapter 4.2) for
cell type prediction from scRNA-seq data was successfully applied in the context of the
SARS-CoV-2 pandemic [228, 238]. The robust differential expression (DE) analysis pipeline
RoDE (Chapter 6.1) contains a large set of methods for (differential) data analysis, reporting
and visualization of RNA-seq data. Topics of accessibility of bioinformatics software are
discussed along practical applications (Chapter 3, [145]). The developed miRNA-gene
interaction database gives valuable insights into atherosclerosis-relevant processes [144] and
serves as regulatory network for the prediction of active miRNA regulators in RoDE (Chapter
6.1). The cPred predictions, RoDE results, scRNA-seq and IMS data are unified as input
for the 3D-index Aorta3D (Chapter 6.2), which makes atherosclerosis related datasets
browsable. Finally, the scRNA-seq analysis with subsequent cPred cell type prediction, and
the robust analysis of bulk-RNA-seq datasets, led to novel insights into COVID-19 [238].
Taken all discussed methods together, the integrative analysis methods for complex human
disease contexts have been improved at essential positions.
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Parts of the work described in this thesis have been performed within the DFG Collaborative
Research Center (CRC) 1123 on Atherosclerosis: Mechanisms and Networks of Novel
Therapeutic Targets. During that time I have been associated with the International
Research Training Group (IRTG) 1123. My work within the CRC has not been limited to
the project setting, but also involved regular meetings, or scientific conferences, with all
members of the CRC. Subsequently, I have been working together with several collaboration
partners from the CRC in the course of this doctoral thesis. In addition, I have supervised
several practical courses and final theses as part of my teaching activity in the Bioinformatics
Bachelor and Master programme at LMU Munich.

As part of the doctoral studies and my activity within the CRC, some work of this
doctoral thesis has already been published in peer-reviewed journals. This applies to the
atheMir method for text-mining atherosclerosis-relevant miRNA-gene interactions (Chapter
2.2) [144]. Also, the work on sequ-into [142] (Chapter 5.2) and bioGUI [145] (Chapter 3.1)
has been published in advance. The cPred method (Chapter 4.2) and the robust differential
expression pipeline (RoDE , Chapter 4.2) have already been applied in two publications [228,
238]. The papers are joint work and co-authored with collaborators, mostly with scientists
contributing experimental data, samples or research questions. My contributions are the
bioinformatics research question, the methods and the analysis of the experimental results.
The author contributions for these publications have been outlined in the respective chapters
and their appendix, and in the published papers according to the reporting standards of the
respective scientific journal. The implementation of the pIMZ and Aorta3D frameworks has
been started within the Bachelor thesis [232] of Margaritha Olenchuk under my supervision.
The research questions and ideas for implementing both frameworks have been designed by
me. The description of methods within these frameworks, which originate from this bachelor
thesis, are included here for completeness and are indicated as being part of Olenchuk’s
bachelor thesis.

There exist two further publications which origin from my Master thesis [143] or cover
work not contained in this thesis [259]. These do not contribute, with regard to content, to
this doctoral thesis.
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1
Introduction

Major progress in the life sciences was made in recent years due to the introduction of new
experimental techniques [300], new sequencing techniques [31, 165] and more multi-omics
[147] data acquisition. Multi-omics data acquisition refers to the measurement of multiple
omics data, e.g. the proteome and transcriptome, of the same sample. The branches of
science known informally as omics are various disciplines in biology whose names end in the
suffix -omics, such as genomics, proteomics, metabolomics, and glycomics1. Generating high-
throughput data, be it sequencing-based, or in the area of proteomics, becomes a routine
task. More multi-omics datasets are generated, which capture a biomedical sample through
multiple different omics technologies simultaneously. Such multi-omics data analyses, in
which data from multiple omics techniques are combined, are one example of integrative
data analyses.

About 15 years ago, microarrays were routinely used for monitoring gene expression.
Nowadays, microarrays are used with a decreasing frequency. Instead, they are replaced
by sequencing-based techniques (Figures 1.2 and A.11), like it can be seen in the number
of stored experiments in National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) [22, 82],. The analysis of microarray data has already been
challenging from a computer scientific and bioinformatics point-of-view, because several
considerations for the analysis of large-scale data, but particularly also the interpretation,
were required [78]. Microarrays are outdated nowadays, but with the number of high-
throughput sequencing experiments per year increasing, the demand for, and the challenges
of (sequencing) data analyses are still rising [113, 244, 321].

Commonly, scientific findings are presented to the community in the form of peer-

1see https://en.wikipedia.org/wiki/Omics

https://en.wikipedia.org/wiki/Omics
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reviewed articles. More than 30 million abstracts are currently listed in NCBI PubMed2,
the primary literature index in the biomedical domain, each containing valuable information.
Extracting knowledge from these texts, such that machine-interpretable data is generated, is
within the domain of text mining. However, information extraction is challenging: the sheer
amount of text requires efficient methods, and the biomedical setting, in which authors
write about complicated relations in maybe even more complicated contexts3, requires a
specific understanding of the text. Hence, challenges, which need to be overcome, do not
only relate to the pure finding of information, but also to dealing with the characteristics
of biomedical literature, like the mixing of mathematical terms in text, and the usage of
many ambiguous abbreviations. Overcoming these problems, biomedical literature can be a
rewarding resource which must be exploited to aggregate existing knowledge.

Besides these bioinformatics challenges, the sequencing-based experimental data are
also computationally interesting. Microarray data were usually in the hundred megabyte
range per sample. Modern sequencing experiments easily produce several gigabytes of
(compressed) data per sample, and require more compute-intensive steps, mainly in the
pre-processing stages, than were needed for microarray data, such as the mapping of reads
to the genome [321]. With sequencing becoming increasingly common in laboratories, the
amount of data to process and interpret still rises. The thereby induced problems do not
restrict to pure bioinformatics tasks, but to computer scientific problems in general: large
data storages, which are easy to access [206], and efficient algorithms for processing on
modern many-core or GPU architectures are needed [4, 252].

Due to the increase of high-throughput data from sequencing experiments, new compu-
tational methods for processing these data are developed, while many non-bioinformaticians
already perform their own data analysis right after data acquisition. Meanwhile, bioinform-
atics has become intrinsic to almost every life science research project [17]. Bioinformatics
evolved into a broad discipline and touches the areas of computer science, biology and data
science. Problems no longer only belong to only one of these areas: bioinformatics is highly
interdisciplinary. An important, but less frequently handled topic is the accessibility of
data and software [271, 299]. There are many attempts in the biological and biomedical
data domain to incorporate Findable, Accessible, Interoperable and Reusable (FAIR) data
[328]. These principles are also increasingly applied to software [150]. Still, many methods
and analyses do not adhere to these principles, making it even harder for non-computer
experts to access computational methods. This is discussed as reproducibility crisis within
the scientific community, because the problem is not limited to bioinformatics or computer
science [20].

Considering that there are several resources of information in bioinformatics, be it
experimental data, literature, or databases, combining all these resources can be of high
relevance, importance and reward. This is what the bioinformatics domain of integrative
data analysis is about. This thesis was started in the context of the collaborative research
centre (CRC) 1123 on atherosclerosis. Much knowledge about relevant processes in the

2https://www.ncbi.nlm.nih.gov/pubmed/
3Context here refers to the experimental-, disease-, perturbation-, etc. conditions of an analysis.
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development of this disease has already been gained [89, 91, 100, 331]. However, in order to
identify new mechanisms in the genesis and progression of this disease, the use of already
existing information is beneficial and motivates the use of integrative techniques within
this area of a complex human disease. In the course of this thesis the COVID-19 pandemic
emerged, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Hence, the scientific community was massively interested in understanding the
effects of COVID-19. Some methods developed in this thesis contribute to understanding
this disease.

In Figure 1.1 a general bioinformatics analysis workflow of an integrative data analysis
for transcriptomic data is shown. This workflow can generally be structured into two stages:
a pre-processing stage, which primarily makes data sources available, and a down-stream
analysis, which builds upon these data to derive specific results, e.g. using integrative
analyses. A typical bioinformatics workflow starts with finding relevant data sources from
which data can be extracted, such that user-friendly and interoperable algorithms and
methods can be applied to these data. The obtained results are then reported, visualized
and used for data integration and knowledge discovery tasks.

This work contributes to the scientific community by addressing each step of a general
data analysis workflow: from finding data and exploiting it, making new technologies
available for analysis, and presenting new methods for specific analyses. The structure
of the thesis reflects the steps of an integrative data analysis (Figure 1.1). Chapter 2
presents methods for identifying miRNA-gene interactions using text mining and for using
these data to interpret disease-relevant datasets. Chapter 3 is about accessibility and
computability in bioinformatics, two aspects of the FAIR principles. In Chapter 4, two
new data sources, single-cell RNA-seq (scRNA-seq) and MALDI-TOF-based imaging mass-
spectrometry (IMS), are introduced, together with methods using data from these new
technologies. Chapter 5 picks up the topic of accessibility but transfers it to a novel
sequencing technology and applies it to a new complex human disease, the coronavirus
disease 2019 (COVID-19). Finally, Chapter 6 addresses multi-modal and integrative data
analysis. Within the following paragraphs, the topics presented in this thesis are brought in
line with the typical data analysis workflow (Figure 1.1), which serves as a guide through
this thesis.

Data Sources and Information Extraction

Literature Scientific literature is an important resource for any integrative analysis. The
advantage of literature is that virtually any scientific finding is published in text. However,
in order to extract this information, multiple steps are required.

At the beginning of any literature mining task stands the acquisition of the texts in a
machine-readable format. However, due to the highly commercialized nature of scientific
publishing, most full text documents are only available as PDF or HTML behind a pay-wall.
Thus, methods for text extraction from PDFs are explored in Chapter 2.1. Furthermore,
it is explored how well the structure of articles can be retrieved, and whether full texts
contain more named concepts than abstracts only.
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Figure 1.1: Overview of the topics addressed in this thesis Information Extraction
methods are applied to texts, proteomics, genomics and transcriptomics data. Accessibility
and Interoperability aspects for using such methods are discussed in the respective topic.
Tools for the analysis and interpretation of extracted data are addressed under the topic of
Reporting and Visualization. Finally, results are used for multi-modal analyses in the Data
Integration and Knowledge Discovery step. All steps combined result in an Integrative Data
Analysis in Complex Human Disease Contexts.
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Figure 1.2: Number of expression profiling experiments in GEO per year and
per method. Until 2013 the number of expression profiling by array experiments rose. By
2017, there are more sequencing experiments (for expression profiling) yearly deposited in
NCBI GEO than microarray experiments. A still ongoing growth in sequencing experiments
can be noticed.

In Chapter 2.2 an initial version of the anticipated text mining application for finding
miRNA-gene interactions is evaluated and applied to the context of atherosclerosis. The
advantages of extracting information from literature are described, namely retrieving a
quite complete and comprehensive overview of the already existing knowledge.

Finally, Chapter 2.3 presents the miRExplore framework, which retrieves miRNA-gene
interactions from biomedical literature. This framework is evaluated on a public benchmark,
on which it shows better precision and recall than existing state-of-the-art software, and
serves as one main data source for the miRNA-related integrative analyses presented in
this thesis. Moreover, the miRExplore framework also touches topics of the reporting and
visualization step, and proposes an integrative method to infer miRNA activity based on
differential gene expression data. With this method it is possible to identify both interesting
miRNAs and their gene interactions in a context-sensitive manner.

Sequencing Data Besides biomedical literature, sequencing data are an important
ingredient for any bioinformatics analysis. Depending on the analysis and the task, several
sequencing platforms are suitable. In this work the main focus for expression data will
lie on the Illumina short read sequencing platform, a next-generation sequencing (NGS)
technology. Using the 10X Genomics libraries4, this technology is often used for scRNA-
seq. In Chapter 4.1 and 4.2 methods related to the evaluation of scRNA-seq data are
presented, while Chapter 6.1 deals with the evaluation of bulk RNA-sequencing (RNA-seq)

4https://www.10xgenomics.com/products/single-cell-gene-expression

https://www.10xgenomics.com/products/single-cell-gene-expression
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experiments using the robust Differential Expression (DE) analysis pipeline RoDE, which
can be combined with the text mining resource miRExplore for the prediction of active
miRNA regulators (Chapter 2.3).

Third-generation sequencing (TGS) platforms are more suitable for an analysis in the
domain of genomics, e.g. for genome assemblies (in remote places) [51] or meta-genomics
[263], but also finds areas of application in neurosurgery [235] or pathogen detection
[133]. The Oxford Nanopore Technologies MinION sequencing platform is an example of
a TGS platform. Chapter 5 describes methods to assess TGS sequencing runs using the
MinION platform, to access the acquired data and to use these data to detect specific
sequences, while sequencing, with a focus on the usability of the software. This work is
discussed at the example of the publicly available dataset of transcriptomic reads from a
SARS-CoV-2-infected green monkey.

Proteomics / Imaging Mass Spectrometry For the final integrative analysis of a multi-
modal atherosclerosis model, imaging mass spectrometry data is used. This experimental
technique measures proteomics data spatially resolved and therefore allows interesting
insights into the composition of tissue. In Chapter 4.4 methods for accessing this data type
and performing several analyses are presented. A particular focus is set on FAIR software
principles and usability, but also on comparative analyses using notebook-technology5.
With the presented framework arteries with little and large atherosclerotic plaques were
analysed, and the results are in good agreement with existing literature.

Accessibility, Interoperability, Reporting and Visualization

Recently it was found that bioinformatics web resources become unavailable at alarming
rates soon after initial publication (with 20% of web resources being unavailable 4 years
after publication) [152]. The topics of accessibility and interoperability are originally
located in the domain of computer science, but become of increasing importance within
bioinformatics. Among such topics are FAIR data and methods [150, 206, 299, 328]. Chapter
3.1 introduces the bioGUI framework which empowers non-computer experts to perform
FAIR and repeatable analyses, while promoting the usability of bioinformatics tools. The
second part of this chapter (Chapter 3.2) introduces tsxCount, which benchmarks the
employability of hardware transactional memory for the bioinformatics problem of k-mer
counting. With these results it becomes possible to choose the most suitable serialization
technique for shared-memory parallel applications in a comparable biomedical setting.

Reporting and visualization often follows data extraction tasks. Tools for the extraction
of MinION sequencing data, as well as IMS, also have integrated reporting and visualization
features implemented. These are discussed in their respective chapters (Chapters 4, 5 and
6).

5E.g. Jupyter notebooks https://jupyter.org/ or R Markdown https://rmarkdown.rstudio.com/

https://jupyter.org/
https://rmarkdown.rstudio.com/
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Data Analysis

Differential Expression Analysis In the context of this thesis, DE analyses are em-
ployed to scRNA-seq data (Chapter 4.2), proteomic data (Chapter 4.4) and to bulk RNA-seq
data as part of the robust DE analysis pipeline RoDE (Chapter 6.1). With a DE analysis,
the key differences between two biological conditions can be determined. Not only the
difference is quantified (as logarithmic fold-change (logFC)), but also the certainty for
the difference being a true difference between the conditions is assessed (using (adjusted)
p-values or q-values, depending on the method). Regularly such DE analyses are performed
using one specific way of applying methods to the data, motivating a robust view on such
analyses.

Creating new insights by using different data sources is the aim of any integrative
analysis. The analysis of transcriptomic sequencing data is often an integrative task, since
multiple resources are used during the analysis. This particularly applies to set enrichment
analysis after a DE analysis, for instance. The presented DE analysis pipeline (Chapter 6.1)
also allows to use the miRExplore database (see Chapter 2.3) and the therein described
integrative miRNA regulatory prediction. The RoDE pipeline improves the generalizability
of analyses by using external DE analyses for robust combination. This robust DE pipeline
visualizes and reports the findings from several pre-processed inputs.

Integrative Analysis In Chapter 6.2 the Aorta3D framework for the multi-modal analysis
of multiple data sources is presented. This framework allows using RNA-seq, scRNA-seq,
microscopy and IMS data and combines these into a 3D model of the analysed tissue, e.g.
an atherosclerotic aorta or artery. The Aorta3D framework serves as a spatial and 3D-index
for atherosclerosis relevant data, with a unique 3D user interface.

The usage of text mining results for the prediction of miRNA-gene interactions in
(robustly) analysed RNA-seq experiments, the prediction of cell types from scRNA-seq or
IMS experiments, and the combination of such results in a 3D index are important building
blocks, which are required for state-of-the-art data integration and knowledge discovery
tasks (Figure 1.1), particularly in complex human disease contexts. With the current trends
towards new measurement techniques using NGS and TGS, the ability to perform quality
checks on such data, and to visualize the findings such that they can be assessed directly,
is an important first step before an in-depth analysis can start. Only after this, further
steps in the analysis should be performed, such as the creation of a fully integrative model
of atherosclerotic tissue. The methods presented in this thesis make new data sources
accessible, extract information from these data and allow a comparative view on the data,
with the aim to make the respective complex disease contexts more understandable.

1.1 Current Trends in Bioinformatics

In contrast to microarray techniques, deoxyribonucleic acid (DNA) sequencing techniques
and their application to transcriptomics allow answering multiple questions (Figures 1.2,
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Figure 1.3: Timeline of sequencing technology milestones New sequencing techniques
are published with increasing speed. Each release improves accuracy, cost per base, and
resolution. Higher resolutions allow the analysis of complete transcriptomes and genomes,
or closer looks into the regulation within (single) cells.

1.3) with just one experiment, e.g. using gene expression, alternative splicing [321] or gene
fusion [90] analyses. Using microarrays it was only possible to measure the expression or
presence of pre-defined sequences, where messenger RNAs (mRNAs) attached directly to
short sequences, so called oligos. These arrays were designed before the experiment, and
only sequences (e.g. mRNAs) which were considered at that time could be measured. Using
RNA-seq technology it is now possible to measure sequences and thereby the mRNA levels
directly, while also being able to identify new isoforms of genes, or changes in the base-pair
composition of a gene. Moreover, using the more explorative approach of sequencing, novel
features such as gene fusions [90] or alternative splicing [254] can be detected without first
having to design the array accordingly. By increasing the number of sequenced reads6,
even low abundant isoforms can be detected. These advances mainly stem from short-
read sequencing, or NGS, which is continually getting cheaper7. Nowadays, the costs for
sequencing a whole human genome at 30x coverage are as low as $300 for a commercially
available test8.

However, with an increasing amount of data being generated, and new analysis methods
emerging continuously, new problems arise. The re-analysis of published findings is often
hampered. Many datasets are not available, but even if they were, the used methods are
not published, not working and possibly also not accurately described. This was described
as reproducibility crisis [20]. Nowadays increasing effort is put into making research data

6Also referred to sequencing depth.
7https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
8The 30x coverage package can be bought for $300 at Nebula Genomics Inc., https://portal.nebula.org/

cart/nebula-30x, May 2021.

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://portal.nebula.org/cart/nebula-30x
https://portal.nebula.org/cart/nebula-30x
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and software FAIR [150, 328]: findable, accessible, interoperable and reusable. For data,
this is in most cases achieved by uploading the (raw) data to repositories such as NCBI’s
GEO [22, 82], SRA [3], or EBI’s ArrayExpress [16] and ENA[173]. Services like FigShare9,
Zenodo10 or MendeleyData11 also allow providing data in an unstructured way. These
services become increasingly popular, even though therein deposited data are not as findable
as with GEO or SRA, for instance. At the software side, many bioinformatics analyses use
standardized tools, hence a brief description of what was done seems to be sufficient for
many authors. But not for all software all old versions are accessible, or are still usable
on current computers. Providing containerized software, or environments with all required
software, thus would improve both the accessibility and repeatability of analyses. However,
the provisioning of such containers would also require substantial amounts of storage.

Even though it does not solve the above mentioned problems regarding software version-
ing, the chance to share analyses in the form of (interactive) notebooks should be pursued.
This would allow for anyone to reproduce or repeat the analysis, given all software tools are
accessible. Even though workflow systems can be seen critically, e.g. for not being flexible
enough to react to non-standard analyses, they provide a repeatable and reproducible way
of sharing data analyses. Regarding newly developed methods, it recently became popular
to publish software (together with its source code) in large repositories such as GitHub,
GitLab or BitBucket. However, this does not guarantee that the software is FAIR: quite
frequently available software does not run or aborts with errors [200, 292]. These problems
are tackled at various levels in this work. In order to perform an analysis, the required
software must be installable and runnable on a computer system. Frequently, software only
runs on Linux. With the bioGUI project not only the installation of required software gets
a point-and-click endeavour, but most importantly, Linux software becomes easily usable
on the Microsoft Windows platform by making software use the ‘Windows Subsystem for
Linux’, completely managed by bioGUI and therefore hidden to the UNIX-inexperienced
user. But FAIR data is not the only problem. Quite frequently, data is analysed using
multiple tools. The one with the best outcome, or the tool which is easiest to use, is picked
and its results are reported in scientific articles. A combination of multiple tools, applied to
the same raw data, in order to get a consensus set of DE genes, is rarely performed. Such a
robust DE analysis, including down-stream analyses like set enrichments, can be performed
using the robust DE pipeline RoDE presented in Chapter 6.1. This pipeline also compares
the down-stream results of the different analyses.

New experimental techniques are developed, frequently with new and better opportunities
in understanding the biological behaviour. However, all of these induce new problems,
such as the missing data problem in scRNA-seq analysis [122]. But, new technologies also
solve common problems of previous generation technology. For example, with RNA-seq
it was common to only have few replicates, because a larger amount of input-ribonucleic
acid (RNA) was needed. Newer techniques like scRNA-seq do not require as much RNA,

9https://figshare.com/
10https://zenodo.org/
11https://data.mendeley.com/

https://figshare.com/
https://zenodo.org/
https://data.mendeley.com/
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enabling even measurements per cell. Such methods induce new problems, like missing data,
low coverage or low sequencing depth, which require specific analysis methods. For low-
replicate experiments thorough statistical models were needed. With many replicates, like
single cells, the t-test becomes reasonably robust again [164] and receives new appreciation.
Particularly in case of scRNA-seq analysis, most authors [183, 324, 329] are interested in
the cell-composition of their sample: which cell type is present, and which fraction of all
cells does it make up? These questions are answered using the results of the cell type
prediction method cPred in Chapter 4.2.

The drive experienced in wet labs through sequencing technology however is not limited
to transcriptomics, but is also felt in genomics or even metagenomics. Sequencing has
become a routine task. However, the efficient storage and analysis of these data is a
bottleneck [50, 233, 268]. On the one hand, efficient algorithms being capable of handling
the massive amount of data are required. On the other hand, existing software must be
easily available and usable. Even non-computer affine scientists need to use this software
when performing their data analysis. A user-friendly execution of the required software is
enabled through bioGUI (Chapter 3.1). Particularly in the fields of genomics, long-read
sequencing has become very popular, due to its easy application to even small samples.
The release of the Oxford Nanopore MinION sequencing device, no larger than a 2.5"
SSD drive, has revolutionized sequencing: orbital microbes have been sequenced on the
International Space Station [51], and with this small device, sequencing has become possible
virtually everywhere. Combining this with an easy library preparation, MinION sequencing
is quite popular in genomics. It is thus not surprising that it became a commonly used
platform in the COVID-19 Genomics Consortium in the UK [306]. Reads originating from
this device are bioinformatically of interest: basecalling, the transformation of the raw
signal into nucleotide information, is an application of machine learning. But even beyond
that, specific read aligners are required due to the technique’s error rate. Due to these
circumstances, an in-depth analysis of sequencing data is required after each run and before
downstream analyses take place. A full stack analysis framework, from sequencing analysis,
over alignment and differential analysis is provided by the poreSTAT package (Chapter 5.1).
In contrast to other quality control frameworks, poreSTAT creates interactive figures, which
can be thoroughly explored, and where annotations for single data points can be provided.
A further advantage of the Oxford Nanopore sequencing technique is that the sequencing
process can be paused or even stopped. After replacing the sample, sequencing can be
continued on the same chip with the new sample (likely at lower fidelity, though). In case
of a contaminated sample, being able to read out the data almost instantly also enables
the early detection of unwanted sequences. This can help to improve sequencing results,
by aborting the run, preserving the sequencing chip, and continuing with an improved
sample. sequ-into is a tool to quickly align reads against a user-defined set of sequences,
and evaluate which reads can be either marked on- or off-target sequences (Chapter 5.2,
[142]). It therefore detects sample contaminations and allows an early decision on whether
to continue the sequencing run, or to redo the library preparation.

Genome assembly is a common task which takes data from such long-read sequencing
experiments as input. Many assembly methods make use of short k-long nucleotide fragments
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of the reads, so called k-mers. The resulting k-mer profiles are then used by the respective
methods for evaluation. With the tsxCount (Chapter 3.2) project, several serialization
paradigms for parallel memory access have been evaluated in the context of k-mer counting.

Not only the area of genomics and transcriptomics is driven by advances in technology,
like sequencing, for instance. Proteomics, the subdomain about protein related research,
also receives new opportunities due to better technology. One of the trends, which was
first observed in proteomics, is to include spatial information into the analysis of samples:
MALDI IMS [262, 297]. Raw information, mass spectra, are collected for a whole area,
where for each measurement point (pixel) a mass spectrum (intensity value for each recorded
m/z value12) is available. This trend was also recently transferred to scRNA-seq, which
was awarded Method of the year 2020 by Nature Methods [84]. With additional spatial
information, not only questions regarding which masses are differentially expressed can
be answered, but also where. Where are similar expression patterns on the tissue? This
information can then be correlated with imaging techniques, for instance. Similar to scRNA-
seq analysis, the key questions here are: which areas show a similar protein prevalence,
which masses define these areas and which cell types or tissues are at that location. Current
analysis tools are either commercial software and closed-source, use the R programming
language or do not answer above questions. The pIMZ framework developed in this thesis
allows a full stack analysis to these regards (Chapter 4.4), also adhering to FAIR software
guidelines.

This availability of new analysis techniques also drives bioinformatics, particularly
in the area of integrative bioinformatics. Here, several of these new techniques, and
further resources, are combined, where suitable. In recent years, several new ideas and
techniques were applied in so-called multi-omics analyses. Due to the sheer amount of
data, and the wish to perform analyses in an unbiased way, these methods mainly rely on
unsupervised machine-learning methods [213], and are frequently applied on scRNA-seq
analyses [294]. The multi-omics factor analysis (MOFA) method [14] is one of the first in a
row of such methods. For multiple samples, multiple factors are calculated, which are then
used for decomposition of the samples, thereby allowing an automated inspection of the
key differences between the samples. There are further methods which rely on canonical
correlation analysis [304], like the DIABLO method [283]. Other integrative techniques,
e.g. for the identification of cancer signatures, rely on network-based methods, and try
to derive sets of edges as predictive marker [157]. Most work is performed on machine-
learning techniques. The multi-omics late integration (MOLI) [278] contrasts MOFA by
performing all predictions not on extracted features, but on the encoding subnetworks,
thereby discretizing the feature factors as late as possible. The evaluation of such methods
is hard, because no ground truth is known [207]. Yet, using small and large datasets, as well
as totally unrelated ones, it is possible to see at least whether these differences are detected
by such methods [207]. All these methods do not make use of specific prior knowledge —
they are not context-sensitive. In combination with the text mining-based miRNA-gene
interaction database (Chapter 2.2 and 2.3), a context-sensitive network analysis method for

12m/z is the mass-to-charge ratio [70, Chapter 11.7.1]
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predicting actively regulating miRNAs from differential mRNA expression data is developed
(Chapter 2.3). Using such a context-driven approach has the advantage, that the predictions
are funded on existing knowledge, which can easily be checked for relevance. Reported
results hence base on peer-reviewed findings. This approach, in contrast to data-driven
machine-learning approaches, is more explicit in its predictions, and allows the backtracing
of justifications.

The results obtained from sequencing experiments, be it from RNA-seq via RoDE,
scRNA-seq, or IMS data, can contain important information about a disease: buried in huge
lists of DE gene lists. In order to make such data available to researchers in a structured
manner, e.g. filterable by disease progression or involved cell types, the Aorta3D project
(Chapter 6.2) serves as 3D-index for such experiments.

Nowadays, many trends in bioinformatics are technology driven. New measurement
techniques allow the combination of more information, from an increasing number of single
entities. Hence, the domain of integrative bioinformatics, which combines many of these
resources, can help to interpret this huge amount of data. This work selects, improves and
applies methods and applications, which are relevant for context-sensitive data analysis
in complex human disease contexts. In order to achieve this, several new data sources are
made available, or existing ones are further exploited. In the end, the context in which
observations are made, is a good estimator for which results can be expected, and is a good
filter for irrelevant observations.

The following Chapters will present the methods developed in this thesis along a typical
analysis workflow (Figure 1.1). Several data sources are made available: text mining
(Chapter 2), scRNA-seq (Chapter 4.2), IMS (Chapter 4.4) and TGS (Chapter 5 and
5.2). These resources are integrated in multiple analyses, like the miRNA-gene regulatory
prediction (Chapter 2.3), the bulk RNA-seq DE analysis pipeline RoDE (Chapter 6.1) and
the 3D-spatial index Aorta3D (Chapter 6.2). With bioGUI and tsxCount (Chapter 3) a
focus on accessibility and interoperability is set.

1.2 Relevant Data and Data Resources

Within this work multiple data sources are used to analyse specific disease-related conditions.
Here, the most common data sources and their relevance in the context of this thesis are
presented. Commonly used file formats are described in the Appendix (Chapter A.1).

Text Mining Most results from biological experiments are not published in an easily
machine-interpretable format. Experimental data from low-throughput experiments, like
(immuno-)blots, histologic staining, fluorescence markers or PCR results, are extremely
important in the reporting of scientific findings. However, such data is usually only presented
in figures and discussed in the text of scientific literature [59, 258]. Hence, the extraction
of information from unstructured text, like journal articles, is of high importance in order
to collect biomedical knowledge. Such collected data can then be combined with high-
throughput data, which is usually analysed by bioinformaticians. The steps required for
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information extraction from texts is in the domain of text mining.
MEDLINE is the prevailing online source for abstracts of biomedical research publications.

It is maintained by the National Library of Medicine (NLM) and the National Institute
of Health (NIH) and hosted at the National Center of Biotechnology Information (NCBI)
[3]. MEDLINE contains over 30 million article abstracts which also include additional
meta-information (July 2020). It is freely accessible and can be searched through the
PubMed interface, but can also be downloaded in yearly releases in a standardized XML
format (journal article tag suite (JATS)13). This allows the extraction of the unstructured
text together with further meta-information like publication date, authors or journal. Open-
Access articles are becoming increasingly popular. Thus, the number of full text articles
available in the PubMed Central (PMC) database14 continues to increase, with currently
more than 600 000 open-access articles for download. These articles are partly available
as JATS-formatted files. Non-open-access articles can be accessed by researchers from the
publishers’ websites and can be downloaded as PDF to a local hard drive, e.g. through
citation managers, like Elsevier’s Mendeley15. Considering that an abstract is considerably
shorter than a full text, which may even be available as PDF, the computational effort
needed to process full texts is much higher than just abstracts.

Even after obtaining the article texts, several problems need to be overcome. For
instance, multiple researchers may use different terms, different vocabulary, for expressing
the same meaning. Moreover, the name of an entity may change over the years: For
instance, C-C Motif Chemokine Ligand 2 has multiple accepted long form names listed as
synonyms, among these are Monocyte Chemotactic Protein 1 or Small-Inducible Cytokine
A2 [36]. For any computational analysis of such unstructured text it is important to
map all these possibilities onto a common identifier, a common language which can be
further used. Such common identifiers are, for instance, the official gene symbols (even
though these change over time, too [40]). More generally, ontologies are used in several
disciplines to structure information in a hierarchical way. Conceptually such ontologies
are directed acyclic graphs (DAGs). A node within an ontology defines a term of the
ontology, e.g. a specific concept. Each term usually has at least an ID and name. Any
edge within this DAG then defines a special relationship between the connected concepts.
Frequently further descriptive synonyms are annotated for each node, too, which can then
be used for text mining. Using an ontology [111] has two pragmatic advantages: to facilitate
communication between people and organizations and to improve interoperability between
systems. Examples of ontology based controlled vocabularies are the Gene Ontology [48,
105], Disease Ontology [270] and the National Cancer Institute Thesaurus (NCIT) [117],
which are used for text mining context-sensitive miRNA-gene interactions (Chapter 2).

Illumina Sequencing Analysis Using Illumina short read sequencing, which is the
dominant NGS technique, the workflow from reads to expression values involves multiple

13https://www.niso.org/publications/z3996-2019-jats
14https://www.ncbi.nlm.nih.gov/pmc/
15https://www.mendeley.com/

https://www.niso.org/publications/z3996-2019-jats
https://www.ncbi.nlm.nih.gov/pmc/
https://www.mendeley.com/
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steps [63]. The analyst starts with reads which are presented in a FASTQ-formatted file.
For each read, which is of fixed length, also quality information are available. This quality
information should give clues how confident the machine was that the respective base was
measured correctly. However, particularly in downstream steps, this information is rarely
used. After performing a quality control on these reads (e.g., quality per read position, or
overrepresented substrings/k-mers), the reads are aligned to reference sequences. These are
usually reference genomes, like the GRCh38 (human) or GRCm38 (mouse)16 assemblies
with given genome annotation files [93]. This alignment or mapping process can take several
hours depending on the tool used and the amount of reads. Particularly for transcriptomics,
additionally the transcriptomic features (provided as genome annotation files) are required,
as mRNA is spliced (which becomes visible as gaps on the genome) and some aligners need
this information to be passed on. Popular choices for alignment tools are STAR [75] or
HISAT2 [153]. The transcriptomic reference finally is required to determine how many reads
have been found per gene or transcript during the counting step. Popular tools for this task
are HTSeq [11] or featureCounts [184]. With the number of reads per gene or transcript the
actual DE analysis between several conditions can be performed. This analysis is required
for downstream analyses, such as gene set enrichments, etc. There exist several tools for
the purpose of finding DE genes. Some of the more popular ones are DESeq2 [10], limma
[255] or the EmpiRe-framework [7].

MinION Sequencing Analysis The Oxford Nanopore Technologies MinION sequencing
device is one example of TGS. Compared to short read analyses, both the molecular process
of MinION sequencing, and the analysis of data obtained from it, is fundamentally different
[196]. The output from MinION sequencing is not a FASTQ file, but a fast5 file (a HDF5-file
following specific rules). Within this file, the raw measurements of the device are recorded.
These raw measurements are interpreted on the fly (LiveBasecalling), or afterwards using
several commercial or open-source methods. This has the advantage that these files can
be reinterpreted at later times, when the algorithms used for the interpretation of the raw
signal and transformation into sequences (basecalling) made significant improvements. The
default basecalling programs for MinION reads are albacore or guppy17. Most methods in
this domain rely on machine learning approaches [196].

After basecalling, the process of analysing MinION data is very similar to Illumina data.
Most frequently MinION sequencing data are used for tasks in genomics, less frequently in
transcriptomics. This is due to the lower throughput of the MinION sequencing, resulting
in fewer reads per transcript or gene. DE analysis becomes problematic with only a few
reads per gene because the established statistical models, which were originally designed for
many short reads, can not be applied. With small counts the determination of fold changes
is too imprecise. Two common choices for aligning TGS reads to reference sequences are
Minimap2 [179] and graphmap [286].

16Both GRCh38 and GRCm38 assemblies are released by the Genome Reference Consortium https:
//www.ncbi.nlm.nih.gov/grc.

17Both only available to registered Oxford Nanopore Technologies (ONT) customers.

https://www.ncbi.nlm.nih.gov/grc
https://www.ncbi.nlm.nih.gov/grc
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Imaging Mass Spectrometry Imaging mass-spectrometry (IMS) [297] probably is the
most special measurement technique used in the course of this work. Instead of measuring
mRNA, ion masses are measured in proteomics. While this concept is physically quite
complex, the setup of IMS makes this slightly easier: for each detected mass (which here
corresponds to the m/z value) an intensity is assigned. A complete overview of possible
proteomic techniques is given by [230]. The general process during the bioinformatics
analysis of IMS data is the following: from the machine vendor’s software the measured
spectra are exported into a standardized data format, imzML [269]. In the data used
in this thesis, the spectra’s masses were already binned. This means, all spectra have
intensities for a common set of m/z values. After normalization of the binned spectra, they
can be compared among the same measurement, but also among different measurements,
if these were normalized with a suitable strategy. Since the single spectra were recorded
with spatial information, there are many spectra available within one measurement. The
position, where a spectrum has been recorded is also referred to as the pixel coordinate. The
spectra can be clustered, only considering spectral similarity for all masses, or by making
use of prior knowledge, e.g. about the structure which is observed, or relevant masses. All
spectra from pixels of the same group can serve as replicates in order to identify common
features of a group, such as marker masses after differential expression analysis. Using a
reference, the masses can then be assigned to specific proteins, so that they can be related
to transcriptomic analyses.

Biological Gene Sets The Gene Ontology (GO) [48, 105] probably provides the most
commonly used controlled vocabulary and ontology — but is also annotated with gene
symbols for each concept, and hence can be used to derive corresponding gene sets. Its
ontology describes virtually any biologically relevant concept in its three domains: cellular
component, molecular function and biological process. The deeper the term is within the
ontology (that means the more distant from its root), the more specific the concepts within
the ontology become.

A recent collection of (hierarchical) pathways is given by the Reactome database
[136]. Within this database pathways consisting of multiple genes are listed by topic, for
instance, immune system, signal transduction, or more common, disease. Within Reactome,
pathways describe chemical reactions, or protein-protein interactions. To arrange the
Reactome pathways within their cellular location GO terms are used.

Common analyses involving any biological gene sets in the context of DE analysis involve
checks whether the collection of differential genes is enriched in one of the concepts of
either GO or Reactome, for instance. In order to assess this enrichment, over-representation
analyses using the hypergeometric test are performed [101], as well as more involved tests,
like the gene set enrichment analysis (GSEA) [295].

miRNA Nomenclature and Resources Protein and gene-symbol nomenclature was
in the beginning not fully deterministic. Specific consortia were established to name novel
genes and proteins, and to update names and symbols of existing ones. The Human Gene
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Name Consortium (HGNC) [36] or Mouse Genome Informatics (MGI) [41] are two of such
consortia providing essential resources. With genomics becoming increasingly important in
health care the need for standardizing gene naming and providing guidelines for the naming
of protein-coding genes, non-coding RNAs or pseudo-genes was emphasized by HGNC [40].

In the early beginning of miRNA research, the nomenclature of the approx. 22nt
long miRNAs was rather non-deterministic. This changed with the identification of even
species-conserved miRNAs. Nowadays, miRNA nomenclature has become quite structured
[110, 162, 163]. miRNAs are numbered sequentially and denoted in the form hsa-mir-121,
meaning that this is the 121th human miRNA (the first three letters denote the organism).
Mature miRNAs are written with capital R (miR-121). Each distinct precursor sequence
and genomic loci expressing the same mature miRNA sequences are denoted as hsa-mir-121-1
and hsa-mir-121-2. Lettered suffixes identify closely related mature sequences. For example,
hsa-miR-121a and hsa-miR-121b would be expressed from precursors hsa-mir-121a and
hsa-mir-121b, respectively. Some studies identify two miRNAs from the same predicted
precursor. The mature sequence of the dominant product has no extension, while the
opposite arm sequence is denoted with an asterisk. More formally, the 5p suffix denotes a
miRNA originating from the 5’ arm of the precursor, while 3p denotes the one from the 3’
arm (e.g. miR-142-5p or miR-142-3p).

There are several resources for miRNA research. Most important is the miRBase
Sequence database and Registry [110, 161, 162, 163]. From there all (known) miRNAs are
accessible, by name or sequence. It also provides a portal with relevant literature for specific
miRNAs. Even though miRBase provides several tools for miRNA genomics, its focus is
neither on text mining nor on providing integrative analyses. miRBase is a resource for
listing miRNAs. In contrast, miRTarBase is a resource which focuses on integrative analysis
and identifying miRNA-gene interactions from high-throughput sequencing experiments
or small-scale experiments. However, miRNA-gene interaction predictions are left out.
Databases containing predicted miRNA-gene interactions are TargetScan [2], miRWalk [80]
or DIANA-TarBase [149], the latter also including experimentally validated interactions.
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2
Text Mining Disease Specific Interactions

Most scientific findings are published in scientific articles, which contain almost endless
amounts of knowledge. While regular articles shed new light into specific processes, scientific
reviews try to give an overview over specific fields of interest. Delivering a good review
requires a lot of effort, even for domain experts, and almost always a restrictive selection,
assessment and compilation of the established scientific facts from existing literature. On
the other hand, a review is maybe not as helpful for everyone, because the selection is too
distant from the needs of the individual researcher, who wants to employ a review to set
own research into context with the state-of-the-art.

In this chapter it is investigated whether an automated approach can make use of
already published facts, and thus contribute to writing a compelling and up-to-date review
more easily, allowing the user to obtain all established facts related to the reviewed field of
interest. This is evaluated in the setting of miRNA-gene interactions. Many miRNAs have
been already identified, and it is known that these small, 21-25-nt long small RNAs play
a crucial role in many diseases and processes [26, 55, 139, 310, 338]. Thus, inherently, in
this field long lists of findings have to be reviewed, and any of these findings can yield a
relevant hypothesis for the question investigated by the researcher or measured via some
high-throughput technique. Often researchers want to check whether their current finding
is indeed new and surprising, and how it adds new facts to the established knowledge of
the field. Thus, it is important to provide convenient access to facts, hypotheses, and the
associated evidence in an as complete as possible manner.

Another challenge in any field of study is the dynamics of scientific progress. Findings
are added continuously to the published literature. Performing incremental updates of
reviews and the associated evidence becomes critical in order to achieve the above-mentioned
goals. Otherwise, review articles quickly become outdated.

miRNAs have often been identified as important post-transcriptional regulators [211,
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219] associated to various stages of complex human diseases, like diabetes[86] or cardiovas-
cular diseases[140, 310]. For atherosclerosis research, in particular, a number of relevant
miRNAs have been identified and brought into context[77, 135]. It has been found that
miRNAs modulate the function of endothelial cells, smooth muscle cells and macrophages
by controlling the expression levels of chemokines [118].

miRNAs are important regulators within complex human diseases, and therefore miRNA-
gene interactions are a useful base to tackle a context-sensitive analysis (with the focus on
finding new regulations). Predicting miRNA-gene interactions, which have already been
confirmed in a broader context, from gene expression data would just be one interesting
application for a context-sensitive miRNA-gene interaction database. The generated
hypotheses could be used for further testing in animal models.

In this chapter methods for text mining miRNA-gene interactions with a context-sensitive
approach will be designed. Along the analysis workflow (Figure 1.1), text mining uses
specific data sources, but also methods for data extraction. Such methods are formulated
and applied for the purpose of named-entity recognition (NER) in Chapter 2.1. A new
strategy for the automatic creation of synonyms for ontology-derived synonyms (inflating)
is proposed, as well as a benchmark of structured text extraction from PDF files. Using
these resources, and a newly developed method for miRNA-gene interaction extraction,
an independent resource for integrative analyses is constructed: a database of literature
extracted miRNA-gene interactions (Chapters 2.2 and 2.3). Methods for miRNA-gene
interaction extraction are established and benchmarked against other state-of-the-art
methods. Using only the literature evidences, the knowledge of the field, e.g. regarding
specific miRNA-gene interactions, can be explored. The new Timeline feature allows
a direct comparison of literature evidences within the same selected context, e.g. for
specific miRNA-gene interactions in a specific disease. And also the novel, data integrative
prediction of actively regulating miRNAs from DE results, is an interesting application of
the miRExplore database.

This work builds upon the in-house developed NER application syngrep1, which was
used in favour of other possible strategies.

2.1 Methods for Ontology-based Research in Structure-
Extracted Documents (MORSED)

In this section, a text mining framework for mining miRNA-gene target relations will be
set up. The used NER approach requires user-supplied synonym lists to identify words of
interest (entities). Hence, it is important to know whether these synonym lists are already
sufficient, or whether an automatic extension of the synonyms improves NER results. In
order to improve the coverage of known miRNA-gene interactions, not only PubMed may
be used, but also PMC full texts. Thus, another interesting question is, whether full texts
improve the coverage of contextual information.

1Csaba, Gergely. Personal Communication. 2015-2020.
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These questions are answered with MORSED: Methods for Ontology-based Research in
Structure-Extracted Documents.

Scientific knowledge is usually published in text form and made available as PDF
documents. This way, researchers are able to describe their work and share it with the
community. From a bioinformatics perspective, there are two disadvantages of this approach
that are addressed here: first, there is an increasing amount of publications added each
year, making it hard to keep track of newly published resources and requiring automatic
tools. Second, text publications are structured in itself, but automatic retrieval of the text
(e.g. from PDFs) including its structure is hard.

Here, the MORSED framework describing methods for ontology-based research in
structure-extracted documents is realized. With MORSED it is possible to search within a
library of PDF documents for those documents which contain concepts the user is interested
in. PDF documents can be automatically and structure-aware extracted. The therein
identified sections can be classified to common sections, such as abstract, introduction,
methods, results, discussion or references. This process is benchmarked regarding the ability
to extract structures (document sections) as well as the ability to identify above classified
sections from the extracted text. A method to increase (inflate) the number of synonyms
for given ontology terms is proposed and evaluated. It is further assessed, whether the full
text can support context-sensitive text mining in the sense that specific full text sections
add relevant information, particularly information not present in the abstract. MORSED
can be applied within an app and a web-based platform to perform the text extraction and
structured-NER for custom PDFs in a user-friendly way.

Both, structured text extraction and section classification work accurately. The latter
is correct in 99% of all cases. The remaining errors are a result of an incorrect PDF
extraction, which makes it impossible to classify sections. Using inflated synonym lists
increases the number of found terms per document up to 100%. This strategy proved to be
context-sensitive, such that some contexts profit more from this strategy than others. Using
the presented methods, it could be shown, that, depending on the input ontology, many
synonyms are only found in other sections than the abstract. Particularly if the interest
lies in methods and techniques used to measure biomedical entities, such information is
often only contained in the methods section, and in no other sections.

With these methods a structure-aware text extraction can be performed, and sections
are classified almost error-free. Moreover, it is shown that inflating the synonym lists
improves the detection of synonyms with the applied NER method. Finally, by using the
full text information, many synonyms, which are not contained in the abstracts, could be
found. This makes the point, that whenever possible, text mining should be performed on
the full texts.

Science evolves continuously, and the amount of released publications increases month
over month. Keeping track of this never-ending flow of new information is hard. While
there are numerous literature recommendation systems available, making the content of
literature available through certain concepts (e.g. terms from ontologies) is not currently
integrated in such tools. In order to tackle this hurdle, a system is proposed, which first
takes a user’s current literature, extracts its content in a structured form and finally searches



20 2. Text Mining Disease Specific Interactions

for occurrences of previously registered synonyms from, for instance, ontology terms. It
can be observed that specific sections contain information which are not included in the
abstract and thereby deliver a more complete picture of the document and its information.

Introduction

There is a vast amount of bio-medical literature currently available. The most famous
resource for bio-medical literature is PubMed, which currently contains more than 30mio
documents. But also PMC is constantly growing, with currently providing more than 650 000
open-access full texts. In addition, pre-prints are becoming more and more popular in life
sciences and contain valuable information, even though they are not (yet) peer-reviewed.
A lot of information is contained within these texts, and many structured collections (e.g.
ontologies) of synonyms for summarizing this information exist. PubMed uses MeSH terms
and NCBI Thesaurus [117] for this task, for instance.

These concepts cover all areas of interest. However, most life scientists probably only
have few areas they are interested in for their daily research. Moreover, the structure or the
concepts which are used by PubMed may not reflect the context domain these experts are
in: the ontology might not be fine-grained enough, terms might be connected in different
ways, or common abbreviations within the field might not be included.

Several tools exist, which allow a search of terms over all available open-access articles,
like Textpresso Central [221] for general keyword queries. Recently, it has been shown that
full-text articles have a gain in information, especially for determining protein-protein or
gene-disease interactions [325].

The MORSED framework contains methods for named-entity recognition of (custom)
ontologies in custom PDF-libraries in a structure-aware manner. The concept of MORSED
differs from existing approaches, because it is not as specific as, for instance, ARMOUR,
but allows more detailed searches than Textpresso Central, since the user can specify the
ontology by himself, as well as the literature corpus to search in. In addition, MORSED
focuses on full-text PDFs and extracts these structurally, using a customized2 version of
CERMINE[307]. Furthermore, it is analysed whether certain document sections are more
valuable for specific ontologies than others.

Materials and Methods

Structured Text Extraction One of the necessities for NER is the provision of machine-
readable text. For PDF files this implies the usage of specific structured text extraction
methods, because not only the text must be recognized within a PDF file, which is already
a challenge, but also section titles must be recognized, such that a relation between section
titles and sentences can be established. In order to accomplish this task a modified version
of CERMINE [307] is used. The modification is required to highlight the location of a
specific term within the PDF. Additionally, the text extraction framework should avoid

2https://github.com/mjoppich/CERMINE

https://github.com/mjoppich/CERMINE
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hyphenation, newlines and multiple white spaces wherever possible. Specific to scientific
papers, abstract texts need to be processed in the same way as the main body. CERMINE
has been parallelized in order to process large libraries of PDF files. Batches of PDF files
are processed by distinct threads. The CERMINE package has been modified to cover these
additional requirements and is available from https://github.com/mjoppich/CERMINE.

Synonym Localization Since a general NER approach is used, finding the named entities
in a text fast is crucial for success. Thus, the syngrep3-implemented Aho-Corasick approach
is used, leaving this task in linear time-complexity (length of strings, length of searched text
and number of output matches). The used algorithm is able to search for inline abbreviation,
but will only return the longest hit per position. Furthermore, small hits (e.g. abbreviations,
gene symbols) are only accepted if they are a perfect match (including capitalization).

Synonym Creation Due to the NER approach, having a correct and complete list of
synonyms is crucial. This is ensured by the synonym-inflation-strategy which was developed
for this framework.

First certain synonyms are added (replace stage). For instance the term oxygen level
would be duplicated into oxygen concentration. However, this step is context-sensitive. The
user may submit more of such replacement tuples at run-time. In the second step spelling
variants are created (spelling stage)4. British English terms are translated into American
English terms and vice versa. For instance, the British English word analyser is converted
into analyzer. In the third stage (reverseform stage) active descriptions are transformed
into passive ones, and vice versa. For instance a novelty test is transformed into a test
of novelty. Further default target words are level, weight, interval, number, amount, . . . .
Again the user may submit more of such target words. The fourth stage (case stage) fixes
capitalization issues for the NER approach. In general, synonyms with capitalized first
character are added. The fifth stage (scoped stage) changes suffixes of words. For instance,
-thalamo is changed to -thalamic. Again the user may add further word pairs. Additionally,
this stage modifies words such that concatenated expressions are merged together. For
instance, IL-1 secretion is transformed into IL1 secretion. If a word ends on test or task,
the version with a delimiting - is retained. In the final stage, plural versions of the words
are added with a simple heuristic (plural stage). An s is appended if the word does not end
on an s. Words ending on y are transformed with -ies.

Structured Extraction One of the main advantages of the MORSED approach is the
ability to search by specific document sections. Hence, it is important to benchmark how
well the section classification works. In this framework, sections are classified as abstract,

3Csaba, Gergely. Personal Communication. 2015-2020.
4Using the Word list of UK and US spelling variants by Words Worldwide Lim-

ited https://web.archive.org/web/20101223230739/http://www.wordsworldwide.co.uk/docs/
Words-Worldwide-Word-list-UK-US-2009.doc.

https://github.com/mjoppich/CERMINE
https://web.archive.org/web/20101223230739/http://www.wordsworldwide.co.uk/docs/Words-Worldwide-Word-list-UK-US-2009.doc
https://web.archive.org/web/20101223230739/http://www.wordsworldwide.co.uk/docs/Words-Worldwide-Word-list-UK-US-2009.doc
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introduction, methods, results, discussion or reference. All other or unclassifiable sentences
for a document are assigned to the other section.

The classification of a document section to a text section is made using a keyword-match
approach. Whenever a section title matches one of the synonyms for a section, the similarity
is calculated using the token-sort- and partial-ratio (from the fuzzywuzzy5 python package).
A minimum similarity score of 75% must be achieved in order to directly classify a section.
In a post-processing step, two further sanity checks are performed. If several sections with
confidences below 90% are found between two matched sections, these lower-confidence
sections are assigned to the previous 100% match. This bases on the observation that
subsections sometimes are identified as main-section. However, this is only allowed if less
than 5 unmatched subsections lie in-between the matched ones, or less than 8, 000 characters
(which resembles a large introduction). The second check is applied only to the first section.
If this section is classified as other and is longer than 1, 000 characters, it is classified as
introduction. This is motivated by the observation, that frequently the introduction is not
correctly identified as a section.

These rules for classification have been benchmarked on one training set (19 random
documents from the pmc_athero collection), which was also used to fine-tune the above
rules. An additional test set of 15 random documents from the same collection was then
used to benchmark the final classification process.

The gold standard has been prepared in a way, such that for each sentence and each
found section title the matching section classification was annotated (manually, 1 annotator).
It was assessed whether the section title has been extracted in a way such that it is possible
to assign a valid classification. If, for instance, a section was not recognized at all during
text extraction, the classifier can not assign the correct section category based on the
section name. This, allows to benchmark the structured text extraction process as well: any
incorrectly extracted section is an error. Observed errors have been classified as sec_title
error, if the section has been identified correctly, but no title was determined. An error
is classified as sec_spell, if the section has been identified correctly, but the title contains
a spelling error. More severe are sec_struct errors, which occur if a section structure is
not identified correctly, e.g. a section is missed. The subsec error occurs, if a subsection is
identified as main section. Finally, an abstract error is identified, if the abstract has not
been detected correctly. The available section names and corresponding keywords are listed
in Table 2.1.

Data The main evaluation is performed on a set of 1 609 PubMed Central full-text PDFs
(pmc_athero). The texts of these PDFs were extracted using the modified structured
text extraction method based on CERMINE. The resulting sentences were text mined
on synonyms derived from the Gene Ontology (GO) [15, 47], the Measurement Method
Ontology (MMO) [280, 284] and the Evidence & Conclusion Ontology (ECO) [56].

A second set of documents containing 2 978 documents (related to animal welfare)
originated from an anticipated collaboration (allxml). These texts have been structurally

5https://github.com/seatgeek/fuzzywuzzy

https://github.com/seatgeek/fuzzywuzzy
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Table 2.1: MORSED section names and keywords used for the classification of section
titles.

Section Keywords

abstract abstract, title (assigned from text extraction)
introduction introduction
methods methods, materials, methodology, methodological
results results
discussion conclusion, future, discussion
references references, literature
other other

extracted using a different workflow, which is unknown to the author. This set has been
text mined for concepts from the Animal Trait Ontology for Livestock (ATOL) [107].

Code Availability The source code for this project, including a web-service and the
pdfAnnotate application, is available from https://github.com/mjoppich/pdfAnnotate.
Some methods are already integrated into miRExplore directly (Chapter 2.3) and are
available from https://github.com/mjoppich/miRExplore.

Results and Discussion

Named-entity recognition approach One of the specifics of any NER approach
compared to machine-learning or natural language processing (NLP) approaches is that
only known synonyms will be found. Therefore, it can not only be relied on the given
synonyms in the ontology. The therein contained synonyms may not reflect all possible
ways of expressing a respective term in a text. These have to be extended, or inflated, in
order to become findable. The advantage of the chosen explicit NER approach is, that if a
term is used in any text, and a matching synonym exists, it is likely found. Moreover, in
contrast to machine-learning approaches, no large sets of training data are required. While
there exist pre-trained machine-learning models, which contain the most common ontologies
[171], this is not the case for custom or less-known ontologies.

Finally, the here developed synonym creation method increases the amount of synonyms
approximately by factor 8 (Table 2.2), depending on the context/ontology (here: Gene
Ontology[47]), where the fourth (case) and the sixth (plurals) stage add most new synonyms.
The plural versions double the number of synonyms. Whether this has any impact can
be evaluated on the number of found concepts per document (Figure 2.1, for ECO). It
can be noticed that for most documents the number of actual hits is increased (about
50% on average). Because these mainly consist of plurals or capitalization, the number of
uniquely hit synonyms is important. An increase in the number of uniquely hit synonyms
(Figure 2.1b) of up to 100% is observed using the inflated synonyms. Having performed
this comparison on multiple synonym lists it was noticed that the paraphrasing from the

https://github.com/mjoppich/pdfAnnotate
https://github.com/mjoppich/miRExplore
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Table 2.2: Number of synonyms per stage for the Gene Ontology [47]. The first
stages only add few synonyms, while the latter, more general stages, add most synonyms.

Stage Synonym Count Rel. Increase (from original) Rel. Increase

original 120,264 1.00 1.00
replace 120,412 1.00 1.00
spelling 130,980 1.09 1.09
reverseform 132,886 1.10 1.01
case 298,480 2.48 2.25
scoped 534,480 4.44 1.79
plurals 967,811 8.05 1.81
overall 967,811 8.05 -

reverseform step was most useful. It was found that this step has less impact, for instance,
with the Gene Ontology [48, 105] or Disease Ontology [270] synonyms. This is because the
target words, e.g. test, level, temperature, etc., are manually curated lists of words. These
must possibly be adapted to the given synonyms for best results.

It arises the question, which stage improves the finding of synonyms most. Two cases are
distinguished: First those synonyms that were already found without inflation, and second,
those synonyms, which are found due to synonym inflation. The found ECO synonyms
in the pmc_athero dataset are discussed. Using the original synonyms, there are a total
of 44 947 hits, of which most are direct hits. This is reflected by the fact that these hits
are mostly (98%) explained by either the case, plurals or original category. Using the
inflated version, additional 14 726 hits can be found. Most new hits are found using the
case stage (67%) and the plurals stage (27%). Another 6% were found by synonyms added
in the scoped stage. The reverseform and spelling stage add the fewest new hits. For GO
synonyms in the pmc_athero test-set the inflation does not have that much effect. Only
few hits have been identified additionally (2 443). Apart from the case (55.8%) and plural
forms (32.3%), the reverseform (4.6%), scoped (4.3%) and spelling (2.9%) versions identify
some additional hits.

These results suggest that for the chosen NER approach, case-sensitivity and plural
forms are most important. In fact, the case-sensitivity is of particular importance, since
the chosen NER approach knows common language words which are only matched if the
word was matched perfectly. This becomes a problem, if the desired terms are common
words, like Cancer or Heart disease (Figure A.12).

From the above ECO results (Figure 2.1), as well as the ATOL result (Figure A.15), it
can be seen that inflating the synonym lists can increase the number of found synonyms up
to 100%. This effect, however, depends on the synonym list and thus is context-sensitive.

Section dependant analysis For many text mining applications only the abstracts of
articles are considered. However, the question arises, whether this is sufficient or whether
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(a) Number of NER hits per document with
the original and inflated ECO synonyms.

(b) Number of unique NER hits per docu-
ment with the original and inflated ECO
synonyms.

Figure 2.1: Comparison of using the original and inflated ECO synonyms The
amount of actual hits is increased by about 50%, the amount of uniquely hit synonyms can
be increased by about 100%.

the full texts contain more information. Moreover, it is interesting to know whether the
full text contains more recognized synonyms than the abstract and how much of these
synonyms are unique for the full-text. Additionally, it should be explored whether the
conclusion part of a scientific text contains the same synonyms as the methods and results
part. If the overlap is large, then a combined view would be appropriate, otherwise, the
conclusion part should be left out for analysis since this part might be too speculative.

As a first step, it needs to be checked whether the structure-aware extraction worked,
and whether these results allow a classification to the identified sections. In Figure 2.2
it can be seen that most sentences can be classified to a section. Similarly, it should be
explored how many complete documents can be found, and which parts are frequently
missing. From the 1, 607 documents in total more than 1, 119 documents were complete
(all sentences could be assigned to the 6 sections). About 252 documents have one section
missing. This is sufficient for the next analyses.

Evaluating the section classification Using the test set two tasks can be assessed. It
allows determining how well the structured text extraction worked, on a structural level.
This then allows identifying and rating errors regarding the classification of the sections.

The structured text extraction does not work optimally. About half of all documents
contain errors, in both the train and test dataset (Table 2.3). Taking a closer look at those
errors, it can be noted that only few sections per document are affected. Less than 10%
of all sections show unrecoverable errors. For instance, a missing section title can in most
cases be imputed by its location. Likewise, the main section of a subsection can frequently
be imputed during section classification. The extracted structure of the text, hence, is not
perfect, but useful for further work.
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Figure 2.2: PMC-athero-documents with recognized sections. Most documents
consist of all sections. Sometimes one section can not be determined. The number of
documents with two and more not recognized sections is comparably small.

Despite the short-comings of the text extraction, it is interesting to see how well the
section classification works in general. This analysis is evaluated on two levels, at the
sentence and at the section level. These results are summarized in Table 2.4. The extraction
and classification is able to assign nearly all sentences correctly, if there is no structural
extraction error prohibiting this. For all documents and sections which are extracted
correctly, the section classification works well.

Which section is important? In the further analysis only documents with at least
10 different synonyms in total are considered. This leads to a higher confidence with any
relative evaluation.

It was investigated whether the original synonyms behave differently than the inflated
ones. Therefore, it was checked which fraction of all synonyms in one document can be
explained by synonyms found in the methods and abstract part for each document (Figure
2.3, ECO). While there is only little difference between the original and inflated versions
of the ECO synonyms, it can be seen that the inflated synonyms improve the methods
fraction more than the abstract fraction. The methods fraction distribution stays more
or less constant, but the abstract fraction distribution is pushed towards lower fractions.
The abstract, hence, is less important than, for instance, the methods section. This can be
observed for the allxml dataset with ATOL (Figure A.16), too.

In a further analysis the section-unique synonyms distribution was looked at. These
are synonyms which are only found in a specific section (Figure 2.4, ECO). It can be
noticed that both ECO and MMO have more unique synonyms in the methods section
than any other section. This is understandable, because both contexts assesses the type
of measurement, which is less frequently discussed in abstract, introduction, results or
discussion.

In Figure 2.5 the abstract/methods and discussion/methods sections are compared
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Table 2.3: Number of structure extraction errors per document ID (DocID) and
section pair (DocID, Section) in each dataset. About 15-18% of all (DocID, section) pairs
show problems. Errors during structure extraction, which lead to unrecoverable errors in
section classification make up 3-7%.

Structure Error Training Data Testing Data

Total number of documents 20 13
Total number of documents with structure error 10 8
Total number of structure errors 12 12

Error: Subsection as section title 10 9
Error: Incorrect section structure extracted 4 1
Error: Section without title 2 3
Error: Spelling error in section 1 0
Error: Abstract incorrectly extracted 4 2

Total number of (DocID, Section) 132 90
Total number of erroneous (DocID, Section) 21 16
% affected (DocID, Section) 15.9 17.7
% unrecoverable errors 6.6 3.3

Table 2.4: Classification results on a per sentence and section basis Only few errors
are made, but some sections are not evaluated because of extraction errors which make a
classification impossible.

Count Training Data Testing Data

Correct Sentences 6 595 4 035
Incorrect Sentences 1 3
Sentences with Struct Error 109 39
Total Sections 356 239
Correct Sections 356 235
Incorrect Sections 0 2
Sections with Struct Error 13 4
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(a) Abstract versus methods synonyms for
the ECO context. More synonyms are found
in the methods part of a document.

(b) Abstract versus methods synonyms for
the inflated ECO context. More synonyms
are found in the methods part of a document.

Figure 2.3: Evaluation of section results (ECO) In (a) the original ECO context has
been evaluated. For many documents the methods synonyms make up more than 50% of
all document synonyms. Using the inflated synonyms (b), this effect manifests itself. As a
side effect, 271 more documents contain abstract and methods synonyms. The methods
part often contains 40%+ of all synonyms, while the abstract synonyms usually contribute
less than 30% of all synonyms.

(a) Fraction of found unique synonyms per
document and per section for the inflated
ECO context.

(b) Fraction of found unique synonyms per
document and per section for the inflated
MMO context.

Figure 2.4: Per section analysis of ECO context. In (a) the ECO context has
been evaluated. Abstracts have few unique synonyms, while the methods sections have a
considerable share in unique synonyms. (b) This effect becomes even stronger in the MMO
context which focuses on measurement synonyms.
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(a) Abstract versus methods synonyms for
the inflated ECO context. More synonyms
are found in the methods part of a document.

(b) Discussion versus methods synonyms for
the inflated ECO context. The discussion
rarely covers 30% or more of all document
synonyms. More synonyms are found in the
methods part of a document.

Figure 2.5: Comparison of abstract and discussion synonyms. Comparison of the
abstract (a) and discussion (b) synonyms against the methods synonyms.

regarding their share in the whole document. The synonyms found in abstracts only make
up 10-30% of all unique document hits, while the methods hits have a share of about 30%.
This also holds for the conclusion. These results suggest that the methods synonyms usually
make up at least 30% of all document synonyms, while abstract or conclusion synonyms
make up only roughly 30% of all document synonyms, seldom more. From this it can be
concluded that only using the abstract is not suitable for the identification of measurement
strategies. Again, this depends a lot on the underlying ontology. This observation is made
for the ATOL analysis (Figure A.17), too. However, such an effect can not be seen with
GO (Figure A.18). Here, the abstract contains more found terms than the methods section,
but less than the discussion, for instance. The synonyms from GO describe interpretations
of (molecular) results, in contrast to measurement techniques. This explains the observed
differences between the GO and ATOL, MMO or ECO results, which contain synonyms to
describe techniques.

Taking all this together, synonym inflation improves the NER results well, but depends
on the used ontology. Full texts should be used wherever possible: the remaining sections
contain further interesting synonyms, which are hidden otherwise, but specific synonyms
(e.g. ECO) are mostly not described in the abstract.
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Conclusion

The MORSED framework contains methods for ontology-based research in context- and
structure-sensitive extracted documents. It was demonstrated that in order to get a full
picture of the mentioned synonyms in scientific literature it is essential to include all
document parts. However, some sections, e.g. the methods section, are more important
depending on the context that is searched for.

It could be shown, that some synonyms are less likely to occur in the most common
considered part of a document: the abstract. Instead, it is important to search through the
methods section if the interest lies in the applied methods. Likewise, the conclusion is not
the place to look for such elements.

Additionally, an easy, rule-based classification of section titles is possible and works
considerably well. This approach is only hampered by incomplete or structurally invalid
extraction of text from PDFs.

When it comes to a NER approach, the list of synonyms is important. It could be shown,
that using the inflation strategy more synonyms can be identified, than without, at least
with the employed NER approach. In particular this was useful if the terms to be found
contain regular language words, because then exact hits (plural, case-sensitivity) can be used
to distinguish potentially false positive hits. But for some contexts also the paraphrasing of
terms appears to be useful. However, this approach is highly context-sensitive and must be
manually curated for each use-case.

Nonetheless, it can be concluded, that for a complete and comprehensive search in
literature, full texts should be favoured — particularly if the context, that is surrounding
terms from other synonyms, is of interest. It could be shown, that a section-aware search of
full texts is important to find and identify all relevant terms. Failing to do so results in the
loss of important information and incomplete scientific findings.

The MORSED app (Chapter A.3.1) allows extracting, query and show results from
multiple contexts. It is easy to use and can support any life scientist in his/her daily research.
The app itself is cross-platform compatible and allows researchers to easily navigate through
their downloaded publications. A web-based PDF extraction, section classification and
synonym search within the MORSED framework is implemented.

Taken all these findings together, it is evident that full texts provide more results and a
better picture than using only the abstract. The advantage of using full texts is context-
sensitive. For example, applied (measurement) techniques are less frequently mentioned
in abstracts, than in the methods section of full texts. Full texts and section-aware text
mining can thus improve finding the setting (or context) a specific document is about. Even
contexts, which are used to summarize results, such as the Gene Ontology (GO) or the
Disease Ontology (DO) [270], can profit from considering all sections of full texts and the
synonym inflation, which is part of MORSED.
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2.2 Context-Sensitive Text Mining for miRNA-gene In-
teractions (atheMir)

Context-sensitive text mining refers to the discovery of text mining results including their
respective context, allowing analyses within the specific context. This context might be the
mentioned organisms, cell types, diseases or processes. The challenge here is to correctly
identify certain cell types, diseases or processes. While there exist ontologies for these
data, e.g. Gene Ontology (GO) or the Disease Ontology (DO), the used NER text mining
platform relies on specific synonyms, which are efficiently searched for within texts. The text
extraction from biomedical resources or PDFs itself defines a further area of engagement,
which was addressed in the previous section (Chapter 2.1), and yielded methods for the
extraction of text as well as the usage of ontologies for NER.

In a first use-case study the developed text mining algorithm for finding miRNA-gene
interactions will be applied on specific literature that has been associated with cardio-
vascular diseases. This method was a first test of the anticipated context-sensitive text
mining approach. As such, the focus here was led on developing functional methods. Besides
runtime considerations, this is the reason why only PubMed abstracts were considered at
this stage.

With respect to the synonym lists needed for the NER approach, the implemented
approach not only uses the entity term from the respective ontology, but also enhances
these terms as presented in the previous section (Chapter 2.1). For instance, plural and
paraphrased synonym versions are built and used. For example, temperature difference
might be paraphrased as difference in temperature. Synonyms, which either resemble a
common word, e.g. and, or occur too frequently, are filtered to improve the specificity of
the NER approach.

With respect to miRNAs, a miRNA-parsing class has been developed, which allows
parsing miRNA string representations and tries to detect respective elements in the sys-
tematic representation of miRNAs. Using this representation of a miRNA then allows to
automatically generate all required and valid text representations for this miRNA (e.g.
miR-146∗, miR-146-3p). This step enables the use of a NER approach for miRNA-mining.

With the ability to enhance existing synonyms, and to match a string to a specific miRNA,
a first version of the anticipated context-sensitive miRNA-gene interaction mining approach
has been developed. This version of the interaction mining system has been evaluated on two
benchmark sets: existing reviews on miRNAs in atherosclerosis within a specific chemokine
context as well as a more general one on endothelial cell inflammation. The regulative
networks derived with the context-based approach of atheMir (atherosclerosis miRNAs)
were of similar quality compared to expert curated ones, in parts even more complete. This
does not devaluate the review’s authors, but shows the benefit of the atheMir approach: easy
access to context-sensitive data. Using the interactions determined by atheMir, combined
with information from causal biological networks [35], new regulative hypotheses could be
generated, like the roles of miRNA-124 and miRNA-126 in atherosclerosis [144].

Context-based text mining methods can massively influence and support reviews from
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domain experts. While the information in atheMir is certainly not complete, it might be a
good starting point for experts writing reviews, but also for researchers investigating highly
specific hypotheses in certain contexts. For both use cases, atheMir facilitates easy access
to individual and context-sensitive miRNA–gene interactions. Most importantly, it provides
supporting evidence for each reported interaction. The presented context-based resource
atheMir is a powerful method to explore miRNA-gene interaction hypotheses in athero-
sclerosis and beyond. The results have been published in [144]. The accepted publication
is available as open-access online article https://doi.org/10.1055/s-0039-1693165. The
author’s contributions are listed in Appendix A.3.2.

2.3 miRNA-gene Interaction Mining (miRExplore)

The existing knowledge in miRNA-gene interactions is overwhelming, not only by size, but
also by their origin. Various models for predicting miRNA-gene interactions exist [177, 224],
and likewise several databases listing miRNA-gene interactions from such predictions — some
of which combine predictions with experimentally verified interactions. Such experimentally
verified interactions may be manually curated, or automatically derived from matching
high-throughput experiments. Another vast number of miRNA-gene interactions has been
verified in small-scale experiments, validating the interaction of a specific miRNA-gene
combination in a specific experimental setting (context). Such results are likely only
described in literature and can only be retrieved from such.

In Chapter 2.2 a miRNA-gene interaction mining approach has already been applied
successfully to an atherosclerosis context. Now the focus is set on a broader methodology by
mining full texts, improving the miRNA-gene interaction detection and providing integrative
methods for using the text mining resource. The presented approach, miRExplore, collects
information from public databases, recent literature (PubMed abstracts, PMC open-access
full texts) and performs context-sensitive text mining on this literature. Curated sets of
synonyms derived from domain specific ontologies for genes, diseases, species, cell-types,
experimental contexts, functional classes, and pathways are used. For any found miRNA-
gene interaction within a sentence, a sentence’s structure, extracted using NLP methods, is
used to classify the interaction. Finally, the PubMed abstract’s, or the PMC document’s,
context is added to the found interactions. This enables users to search specifically for
miRNA-gene interactions in a context relevant to them. The miRExplore approach is
evaluated against the miRNA-gene interaction benchmark developed by Bagewadi et al.
[19], and compared to methods presented by them, as well as to miRTex [177].

The miRExplore version improves the atheMir version regarding two points: first,
it extends the (cardiovascular) disease context to a general context of all miRNA-gene
interactions, including interactions found in full texts. Second, it improves the interaction
detection and classification. Using a corpus of curated miRNA-gene relations [19], it
was found that some interactions were not identified with the atheMir approach. This
often occurred when the sentence structure has not been correctly determined, or because
miRNA-enumerations were not correctly resolved. miRExplore resolves these problems and

https://doi.org/10.1055/s-0039-1693165
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improves the text mining and miRNA-gene interaction detection to these regards. It makes
the found interactions available via a web-resource, for use with further applications by
providing a programmatic access, e.g. for integrative data analysis.

miRExplore: A generalized miRNA-gene Interaction Text
Mining Framework
More than 790 human and mouse miRNAs are currently known to be involved in diseases.
More than 26 000 miRNA-gene interactions are annotated in humans and mice. Most
of these interactions are canonical post-transcriptional regulations: miRNAs bind to the
mRNAs of transcribed genes and induce their degradation, thereby reducing the gene
expression of target genes. Thus, miRNAs are important regulators of complex human
diseases.

While there are many databases for miRNA-gene interactions, retrieved from computa-
tional predictions or imputed from specific high-throughput data, most interactions are
published in text form. Hence, retrieving (experimentally verified) miRNA-gene interac-
tions from literature, abstracts and full texts, is an extremely important and useful task.
miRExplore is a framework to mine miRNA-gene interactions, their regulatory direction
as well as to analyse these data. Its interaction mining method is evaluated against well
established benchmarks, and integrated analysis features are discussed.

The interaction between miRNAs and genes is extremely important in modern biomedical
research. It is thought that miRNAs are key regulators in various diseases [137, 144, 239,
264]. As such, these may serve as a novel class of therapeutics [26, 261]. Having a broad
understanding about the involved processes, and most importantly, the genes specific
miRNAs target, is important. Most findings are still published in text form, and extracting
such miRNA-gene interaction from published documents is of high importance in order to
gain a complete picture of the miRNA-gene interaction landscape. Here, the miRNA-gene
interaction extraction framework miRExplore is presented.

Introduction

miRNAs are small, non-protein coding, RNAs, which can post-transcriptionally regulate
genes. Ameres et al. reviewed their generation, assembly and context-sensitive functional
aspects [6]. The canonical mechanism works by binding to corresponding miRNA-binding
sites on the regulated mRNA, leading to a decay of that mRNA. Thus, miRNAs regulate
mRNA expression post-transcriptionally, potentially allowing a fine-tuned decay of specific
mRNAs. miRNAs are thought to be highly relevant in specific diseases, or even play an
important role in orchestrating these [264]. Because of this, miRNAs are discussed as
novel class of therapeutics [26, 261]. Nonetheless, it is well known that miRNAs play a
context-sensitive role [88], meaning that it depends on the specific circumstances (disease,
cell type, etc.), whether a miRNA is expressed, available, and possibly whether it binds to
certain (non-)canonical binding sites.
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The importance of miRNAs is already well known in the community. There are several
resources to explore the miRNA-gene-regulatory interactions known in many (model)
organisms. More than 15 databases exist, which all collect miRNA-gene interactions.
However, only one of these databases, miRTex [177], also considers contextual information
around these interactions, such as mentioned diseases, processes, etc. While this contextual
information is important, it is beneficial to regularly update such information. In 2019 alone,
more than 5500 papers related to miRNA-gene interactions have been published and are
available in PubMed (Figure A.21). The experimental databases, such as DIANA-TarBase
[149] or miRTarBase [58] are regularly updated, but for most text mining resources this is
unfortunately not true.

One requirement for text mining miRNA-gene interactions is that the actual text is
available in a machine-readable format. Luckily, this is true for many article abstracts and
full texts which are available from PubMed or PMC. For articles only available as PDF
a suitable text extraction method was already presented in Chapter 2.1. The remaining
challenge is the extraction of miRNA-gene interactions from the text. Finding biomedical
entities has become a quite robust task, which usually is performed either by NER, machine
learning (ML) approaches or more recently by applications of deep learning (which is a
specific form of ML).

Here, a new method for miRNA-gene interaction mining is presented, which relies on
pre-trained ML models for sentence dependency graph prediction, from which a NER-
and rule-based approach detects and classifies miRNA-gene interactions. Comprehens-
ible rules for both the retrieval of miRNA-gene interactions (mention-level) and their
putative regulatory direction are deduced. This resource then serves as input for further
integrative methods, including Timelines, miRNA regulatory prediction and set-based
over-representation analyses.

Existing miRNA-gene databases There exist many miRNA-gene-target-centered
databases. A list of such databases is compiled in Table 2.5. These can be generally
categorized into manually curated, predictive or experimental databases, judged by their
main content. Some formerly highly used databases have become unavailable, others
emerged. Most of these databases have in common, that there is no context information
available for the contained interactions. Even the single database, miRTex [177], which has
this information available in general, is unfortunately not kept up-to-date, does not allow
systematic queries by contexts and is not open source. Since miRNAs play a critical, but
context-sensitive [88], role in many complex human diseases, knowing the context in which
this role was observed is essential.

Materials and methods

Data Availability All source code is available from GitHub https://github.com/
mjoppich/miRExplore. The database, miRExploreWeb and the API, is accessible from
https://rest.bio.ifi.lmu.de/miRExplore/. miRExplore adheres to FAIR software prin-
ciples because it is findable, accessible from the web, and interoperable because it relies on

https://github.com/mjoppich/miRExplore
https://github.com/mjoppich/miRExplore
https://rest.bio.ifi.lmu.de/miRExplore/
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Figure 2.6: The miRExplore framework takes abstracts and full texts, identifies entities
from several dimensions, extracts miRNA-gene interactions and classifies them. All collected
information can then be queried in a database.
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common input formats for texts (JATS-formatted input from NCBI) or ontologies (OBO
format). The miRExplore implementation is reusable in the sense that it can be replicated
and used in different settings.

Finding named entities For the following miRNA-gene interaction detection it is
required that all miRNAs and genes are found in one sentence. Concepts of relevant
context-ontologies (e.g. GO) must be found in sentences of the same document. This is
achieved using a NER approach. An initial version of miRExplore used syngrep6 for this
task.

More recently, syngrep was reimplemented with python. This ensures FAIR principles,
and avoids problems due to invalid text encodings, because the handling of these is more
straight-forward in python. This reimplementation is compatible with syngrep regarding
the use of input and output formats. Like syngrep, an Aho-Corasick data structure7 is used
to store all synonyms. This enables a fast matching of synonyms within the query text
(sentences from PubMed abstracts or PMC full texts). In addition to the requirements of
NER, e.g. knowing all possible synonyms, inexact matching should be supported due to,
for instance, the use of hyphenation in texts. Inexact matching is not directly supported by
the Aho-Corasick data structure. It is thus implemented by transforming the input query
such that all desired manipulations, e.g. collapsing white spaces or capitalization (e.g. case-
sensitivity), are tested against the synonyms. Unlike the original syngrep implementation,
the python-based version does not yet implement rules for the handling of abbreviations.
The python implementation is parallelized using a fork-and-join pattern.

Dependency graph resolution The presented two-step approach relies on having
accurate dependency graphs for the examined sentences. Such dependency graphs are
predicted by specialized NLP frameworks such as spaCy8. The dependency graph is the
result of the Part-Of-Speech (POS) tagging after parsing and tokenizing a document or
sentence. For spaCy, this process is performed using specifically trained models. These
models then tag and label each word (or: token) of a sentence (or: document) with
(predictions for) several attributes, such as the POS tag and other tokens, on which the
token itself depends on. The latter relation can be used to derive a tree structure of the
analysed sentence, the dependency graph. A full description of all available features is
available online from the spaCy documentation9. The tagging and labelling is performed
by pre-trained models. Hence, this step is a prediction of attributes for a specific token.
Because the final result defines the dependency graph, this process will here be referred to
as dependency graph prediction. The effect of the distinct models has been evaluated on
the miRExplore method. For a productive setting, AllenAI’s scispaCy [227] sci-lg model is
best used for dependency graph prediction, in combination with scispaCy’s BioNLP model

6Csaba, Gergely. Personal communication. 2015-2020.
7https://github.com/WojciechMula/pyahocorasick/
8https://github.com/explosion/spaCy
9https://spacy.io/usage/linguistic-features

https://github.com/WojciechMula/pyahocorasick/
https://github.com/explosion/spaCy
https://spacy.io/usage/linguistic-features
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for entity classification in the respective rules. spaCy annotates tokens and their relations
using the universal dependency annotations described online10.

Finding micro-RNA-gene interactions Using the conjugation, shortest dependency
path (SDP), compartment, context and entity (interaction) rules on a sentence’s dependency
graph prediction, it is decided whether a miRNA-gene co-occurrence is a valid miRNA-gene
interaction (independent of the direction). The following rules are used for the miRNA-gene
interaction extraction.

Conjugation Rule (Interaction) The conjugation rule is used to determine whether
two entities are in the same conjugation, or not. Given a correct dependency graph, this is
generally the case if the two entities (or any of their related words) are connected via a conj
edge in the dependency graph. For all elements of conj edges, all related elements must
be considered. Hence, for any word connected by conj edges, all dependencies connected
by any of the following edge types are followed and collected: case, amod, nmod, dep, ap-
pos, acl, dobj, nummod, compound.

However, there are some conjugations which actually form an interaction and must not
be rejected. For instance (Figure 2.7), conjugations, like we observed a direct regulation
between miR-124a and Cxcr4, should be kept. Conjugations with proceeding between are
kept for this reason. It was observed that there are many interactions mentioned between a
miRNA or gene and a miRNA family or gene pathway. These are filtered out by checking
that a conjugation may not contain a [miRNA|gene] pathway mention.

Figure 2.7: Conjugation Rule Example miR-106b and TGF-β type II receptor are in
the same conjugation, resulting in no interaction.

SDP Rule (Interaction) The initial miRNA-gene interaction mining framework,
atheMir [144], already used a rule concentrating on the intersection between the paths
from entities to their respective root elements of the dependency graph. Indeed, using the

10https://spacy.io/api/annotation/

https://spacy.io/api/annotation/
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(shortest) path between two entities in the dependency graph has already proven to be
useful for general relation extraction [249], and has since then been particularly applied
to protein-protein interactions [127, 190]. This finding is used for miRExplore. The SDP
contains those words, which connect two entities. Hence, it contains the important concepts
between the two entities.

It is ensured that the SDP does not include a subject, which is not one of the two
observed entities. In the example (Figure 2.8), miR-17/92 and Shh are not in a valid
relation, because Shh is a child of the actual subject N-myc. Thus, the interaction here is
between Shh and N-myc, and N-myc and the miRNAs.

In order to exclude pathway related interactions no <verb> <noun> pathway is
allowed within the SDP.

Figure 2.8: SDP rule Example miR-17/92 and Shh are not in a valid relation, because
Shh is a child of the actual subject N-myc. The interaction is between Shh and N-myc, and
N-myc and the miRNAs.

Compartment Rule (Interaction) The compartment rule stems from the obser-
vation, that interactions between miRNAs and genes are commonly within a sentence or
clause, and are directly connected by a verb. For sentences consisting of multiple clauses,
it is quite uncommon that a valid interaction crosses or skips such a subclause. It is thus
checked whether both entities are within the same subclause. In order to do this, the
sentence is split into its subclauses, or compartments.

Given the following sentence, the four identified compartments are (listed directly
below):

<e1>miR-200a</e1> was found to directly target beta-catenin mRNA,
thereby inhibiting its translation and blocking Wnt/<e2>beta-catenin</e2>
signaling, which is frequently involved in cancer.

0 [miR-200a was found to directly target beta-catenin mRNA]
1 [thereby inhibiting its translation]
2 [blocking Wnt/beta-catenin signaling]
3 [which is frequently involved in cancer]

Before the actual check can be performed, all subclauses must be found from within the
dependency graph. Making use of the general English language flow, from left to right, the
easiest possibility to extract these compartments is to split the sentence upon the encounter
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of special words or dependencies. In general, a new compartment is formed at one of the
following dependencies: cconj, xconj, conj, ccomp, parataxis, advcl, xcomp. However, certain
compartments are too fine-grained for further relation extraction.

Depending on the observed token or dependency, further sub-rules are applied. Com-
partments may be separated by several tokens (particularly their POS or dependency). For
separation by VERB (or AUX ), the whole subtree will be considered subsequently. If the
subtree starts with because, through, or some connecting verbs, it is not considered as a
separate compartment. The same applies to compartments starting with nouns. If the
found VERB is connected by a conjugation, it is ensured that the full conjugation is within
the compartment. The compartment can be split by amod. For an amod dependency, the
sentence must be split by thereby, suggestive, while, etc. A VERB which has an acl:relcl
dependency must have split-words like whereby at the subtree start. Finally, a compartment
can also be split by a conj, if it starts with a splitting word like actually. Some compartments
unfortunately are not divided by verbs or conjugations. For any found compartment it is
checked whether it contains a semi-colon or not. If so, the compartment is additionally
split at the semi-colon.

After deriving all compartments, the final compartment check ensures that both miRNA
and gene are contained within the same compartment.

Context Rule (Interaction) There exist several words which make a miRNA or
gene entity not a target entity for the kind of relation that one is interested in. This rule is
probably the most heuristic one in this framework and may need to be adapted for other
use-cases, such as protein-protein interactions. For instance, the previously considered
sentence

<e1>miR-200a</e1> was found to directly target beta-catenin mRNA,
thereby inhibiting its translation and blocking Wnt/<e2>beta-catenin</e2>
signaling, which is frequently involved in cancer.

is not about the Wnt or beta-catenin genes, but the related signalling pathways. Effect-
ively, no direct miRNA-gene interaction is described here. In order to avoid the detection
of such co-occurrences, for both gene and miRNA, it is checked whether certain words (like
pathway, cells, family, mice, etc.) occur before or after the entity. If one of these words
is found, the interaction is rejected. Here, the checks against miRNA-gene complexes are
performed, as well as checks to determine whether the gene-entity is related to a cell or
knockout. In order to achieve this, the closure around the gene-entity (x words before the
entity and y words after it) is considered.

Entity Rule (Interaction) The entity rule is only active if an entity-aware model
is supplied. In the context of miRExplore it was observed that the scispaCy BIONLP
model performs well for biomedical entity detection. For each word of a document the
model predicts from which known entity type a word might stem from. The BioNLP model
contains by far the most biomedically relevant entity types of all scispaCy models, including
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cell types, organisms, chemicals or tissues. The entity rule asserts that both the miRNA
and gene entity of a suspected miRNA-gene pair are not confused with a cell type or an
organism. If the model predicts the entities to be of such a type, the interaction is rejected.

Determining miRNA-gene regulation Besides the actual interaction, the direction of
the interaction (be it miRNA regulates gene, or vice versa) as well as the direction of the
regulation (up-/down-regulated) is of interest, too.

In order to classify found interactions regarding the direction of the interaction and
regulation, again a rule-based approach is chosen. While it was heavily relied on the
dependency graph prediction for determining relations, it has been observed that this
prediction is incorrect in many details. Such details, however, might be essential for solving
the problem of determining in which direction a regulation occurs. It was decided to not use
the dependency graph as major analytical object of interest. Instead, this approach heavily
relies on one property of the English language: the scrambling of words is uncommon. While
many languages, such as German for instance, make heavy use of scrambling, in English
the use of a pragmatic word order is much more tightened. Most sentences follow the
Subject-Verb-Object scheme, mostly in this order [115]. Words, which associate with the
start of a sentence, are usually found at the beginning of the sentence, and not somewhere
else.

The following compartment, count, context-count, and final (regulation) rules thus
operate on the stems of certain word-groups, such as the stem up-regul for any word in this
family, like up-regulating or up-regulator. miRNA-gene interactions are classified by their
direction. A miRNA regulating a gene is denoted as MIR_GENE, and a gene regulating
a miRNA as GENE_MIR, respectively. The direction of a regulation may either be DOWN-
regulating, UP-regulating or undetermined (NEU). For instance, a miRNA regulating a gene
is classified as a NEUtral interaction, because no effect direction is directly given.

Compartment Rule (Regulation) The first check determines an interaction by
trying to find specific context descriptions. In the given example sentence (Figure 2.9),
first the compartment containing miRNA and gene is determined. Then it is searched for
specific keywords, such as negatively correlates or by targeting. Depending on the found
keywords and the order of miRNA and gene entity, the interaction direction is determined
(MIR_GENE) as well as the direction of the regulation (DOWN).

Figure 2.9: Regulation Compartment Rule Example The keyword by targeting has
both miRNA and gene within its boundaries. The interaction is accepted as a MIR_GENE,
DOWN relation between miR-326 and Ets-1.
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Count Rule (Regulation) If no direct associations are found, the focus has to be
led on the stem-based approach described above. Here, for both the miRNA and the gene
any stem within the proximity of the word is found, and its direction is counted. Neutral
stems are ignored at this stage. In the example given in Figure 2.10, the searched proximity
is marked in turquoise. For the miRNA one negatively associated stem is found (inhibition)
and for the gene a positively associated one (increase). Then it is checked, whether the
miRNA- and gene-stem counts point into opposing directions, that means miRNA negatively
associated, and gene positively, or vice versa. If this is the case, a MIR_GENE DOWN
regulation is predicted. Otherwise, the following context-count rule is considered.

On a side note: the red marked dependencies in Figure 2.10 show that the dependency
prediction can be problematic. For instance the conjugation around the miRNA is not
resolved correctly. While this does not hamper the interaction detection here (still same
compartment, not same conjugation, just longer SDP), the regulatory detection could
be influenced, because there is no relation between inhibition and miR-23a. This shows
exemplarily why for this task the stem-based approach is more suitable.

Figure 2.10: Regulation Counts Rule Example Within the boundaries of the miRNA
and the gene all interaction keywords are determined and counted. If negatively associated
action words are more prevalent, it is assumed that the respective miRNA or gene is
negatively regulated. Here, a MIR_GENE DOWN-regulation is detected.

Context-Count Rule (Regulation) For the context-count rule, neutral stems
are considered, too, and a proximity region around miRNA and gene (similar to the
previous rule). Within the example region (Figure 2.11) one negatively associated stem
(Downregulation) is observed. Given the order of the words, a GENE_MIR, DOWN-regulation
is assumed. However, the word by close to the miRNA suggests a passive clause and thus
a MIR_GENE interaction is reported in this case. The context-count rule not only counts
any found stems, but considers the context around the entities, too, including passive and
negated sentences.

Final Rule (Regulation) The final rule has to take care of any yet unassigned
interaction. For this rule, all stems which are between both entities are considered. The most-
frequently occurring stem direction is predicted. The interaction direction is determined by
the order of the entities, and whether a passive clause is detected or not. In the example
given in Figure 2.12, SRF stands before miR-143 in a non-passive sentence. Hence, the
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Figure 2.11: Regulation Context-Count Rule Example The principle is similar to the
Counts Rule, but additionally NEUtral stems are considered.

Figure 2.12: Regulation Final Rule Example The Final Rule is the last resort. All stems
between both entities are considered, and the most-frequently occurring stem direction is
predicted.

interaction direction is GENE_MIR. The found stem, regulate is neutral, because it is not
known whether an up- or down-regulation is meant. Therefore, the predicted interaction is
a GENE_MIR NEUtral interaction.

Benchmark For evaluating both proposed prediction methods, the benchmark provided
by Bagewadi et al. [19] is used. This benchmark allows to compare the proposed method
with other, already published methods, like miRTex [177]. The benchmark consists of a
training dataset (201 documents, 397 interactions) and a test dataset (100 documents, 232
interactions). For 24 interactions in the test set (see Chapter A.3.3) this gold standard was
adapted to reflect a common handling of gene or miRNA-pathway interactions, which will
be referred to as modified benchmark. This modified benchmark has been extended as
part of this work to enable the benchmarking of the interaction and regulation direction.
Directions of interactions are annotated as MIR_GENE if a miRNA interacts with a gene, or
GENE_MIR in the opposite case. The direction of the regulation may either be UP, DOWN or
NEU for an up-regulation, down-regulation or undetermined/neutral regulation, respectively.
General regulations (e.g. miRNA regulates gene) are annotated as neutral regulations,
because no clear direction is given.

In addition, miRExplore was evaluated on the test dataset developed by the miRTex
[177] authors.

The prediction results are compared to the gold standard. Predictions are classified
as true positive (TP) if the predicted result is positive and the true condition is positive.
Likewise, a true negative (TN) is a negative prediction for a true condition negative result.
A false positive (FP) is a positive prediction of a true condition negative interaction. A false
negative (FN) is a negative prediction of a true condition positive interaction, respectively.
This allows the calculation of precision as the positive prediction value

∑
TP∑

TP+FP
and
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recall/sensitivity as the true positive rate
∑

TP∑
TP+FN

. In order to combine both precision
and recall the F1-score = 2 · precision·recall

precision+recall is used.

Web-Portal There are two ways of accessing the found relations: miRExploreWeb
and an API. Through miRExploreWeb it is possible to query the miRNA-gene interac-
tions interactively and without programming skills. miRExploreWeb is developed using a
TypeScript11/React12/MaterialUI13-stack and has a python flask-app as backend. From
miRExploreWeb the user can query for specific miRNAs, genes or term names from all other
supported dimensions. Results are shown in a tabular fashion, where for each interaction
the user can retrieve all evidence, that is sentences for text mining, and related PubMed
articles for experimentally supported, integrated databases like miRTarBase or miRecords.
miRExploreWeb accesses the actual miRExplore web service via several HTTP POST
queries. These can be accessed from separate clients, e.g. python requests, and thus provide
an API for miRExplore. Most of the integrative features make use of this API. The server
for fulfilling API requests is built in python using the Flask framework14.

The web portal currently operates on data processed using the python-based syngrep
version. The PubMed abstracts were downloaded in June 2020, the PMC full texts in
September 2020. For both resources the JATS-formatted resources were utilized. Article
meta information were extracted (e.g. date of publication) along the article’s text. For
this purpose the medlineXMLtoStructure text mining script is used for PubMed, and
medlineXMLtoStructurePMC for PMC, respectively. Literature references are excluded
in full texts. With the PubMed input each JATS-formatted file may contain an update for
previously published articles, e.g. if articles are retracted or author details change. In such
cases duplicate entries are removed for the PubMed data.

The web portal contains miRNA-gene interactions retrieved via the presented text mining
approach. In addition, several public databases of experimentally validated interactions
are included (miRTarBase [128], miRecords (Validated Target dataset) [333]), but also the
DIANA-TarBase [149] resource with both, validated and predicted, interactions.

Timelines Using the additional meta-data from PubMed, such as publication date,
authors and journal, relevant text mining evidences can be visualized as a timeline. Timelines
can be created for any miRExplore result, and can thereby be filtered along the implemented
dimensions.

Integrative Network Analysis Given a network of miRNA-gene interactions and
differentially regulated genes (and possibly miRNAs), the integrative network analysis
method outlined here is designed to find putative miRNA-regulators within this network.

11https://www.typescriptlang.org
12https://reactjs.org/
13https://material-ui.com/
14https://flask.palletsprojects.com/en/1.1.x/

https://www.typescriptlang.org
https://reactjs.org/
https://material-ui.com/
https://flask.palletsprojects.com/en/1.1.x/
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Figure 2.13: miRNA-gene Regulation Prediction Given high-throughput experimental
data, miRNA regulation can be predicted under the assumption that all regulation is mainly
observed due to miRNAs down-regulating genes. Using rules 1-5, miRNAs are assigned
a fold-change (UP or DOWN regulation) such that the regulation of as many as possible
genes can be explained, while inducing the fewest possible inconsistencies (e.g. miRNA and
gene down-regulated).

This prediction of active miRNAs is performed in 5 steps (Figure 2.13). Using a greedy
approach, the amount of inconsistent regulations is tried to be minimized, while maximizing
the amount of explained canonical (consistent) miRNA-gene regulations.

In the first step, all measured regulations are annotated. This means, that edges are
annotated as consistent if the gene has the opposite regulation of the miRNA, otherwise the
edge is annotated as inconsistent — implying a non-canonical miRNA-gene regulation. In
the second step, any consistently regulated miRNAs are imputed. This means, if all targets
of a miRNA are regulated into the same direction, the miRNA regulation can be annotated
into the opposite direction. This does not induce any inconsistencies. In the third step, no
clear assignments (that means without inconsistencies) are left. Hence, assignments must
be made with a minimum of induced inconsistencies. Thus, miRNAs are imputed in the
same way as in step two, but genes, which already have an explaining regulation, are not
considered in the inconsistency count. All remaining unexplained targets must be regulated
into the same direction. The fourth step considers only miRNAs where all target genes have
another consistent regulation. Then the miRNA is imputed into the direction of the most
frequent regulation in order to not induce any inconsistencies. The fifth step has to keep
the balance between yet unexplained regulations, and the number of potentially induced
inconsistencies. It is imputed into the direction of most consistently regulated new targets,
thereby reducing the number of unexplained genes while adding the fewest inconsistencies.

In order to rank regulating miRNAs, the amount of consistently regulated mRNAs
is compared with the amount of possible targets of a miRNA. This is done using the
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hyper-geometric test, which is suitable for over-representation analyses [101]. Within this
framework the hypergeom.sf function by SciPy [317] is used. This function takes as input
the number of drawn successes x, the population size M , the number of successes in the
population n and the sample size N . As drawn successes x, the number of putatively
regulated target genes of a miRNA is used. The sample size N is the number of total
target genes of the specific miRNA within the given context. Finally, the successes in the
population n are all significantly regulated genes, and the population size M is determined
by all measured genes. The result of this over-representation analysis can be used to identify
miRNAs, which regulate more than the expected number of target genes. Such miRNAs
might be of high interest, because these could be key regulators in the analysed dataset.

Data Analysis A public RNA expression dataset on T cells [156] was downloaded
(GSE109735 (mRNA) and GSE109736 (miRNA)) and processed using the GEO2R approach
involving limma [255] for differential gene expression analysis. Data analysis and visual-
ization was done using EnhancedVolcano15. To determine differentially expressed genes,
an adjusted p-value cut-off of 0.05 was chosen. For these genes, an over-representation
analysis on the miRTarBase miRNA target sets has been performed (hyper-geometric test).
Likewise, these genes served as input for the integrative network analysis.

For comparing the overlap between the measured and predicted miRNAs (miRTarBase
and above network analysis), an adjusted p-value cut-off of 0.1 was used. miRNAs have
been compared at the precursor level, meaning that miRNA number and precursor must
match.

Using the measured, differentially expressed miRNAs, as well as the regulating miRNAs
predicted from network analysis, over-representation analysis (hypergeometric test) was
performed on miRNAs associated with Gene Ontology and Disease Ontology terms. For
this, all context-relevant miRNA-gene interactions were retrieved for an ontology term, and
the hypergeometric test was applied to identify terms with enriched miRNA sets. For an
ontology term all children were retrieved. All documents containing any of these terms were
retrieved by miRExplore in order to identify therein contained miRNA. However, only terms
with less than 100 children were considered in the analysis, which excluded cancer-related
diseases. The context was either left to include all information, or was restricted to t cells
(cell ontology term ID: META:44).

Results and Discussion

The text mining method for the identification of miRNA-gene interaction employs a NER-
approach. The general principles of this approach are described in [114] and are omitted here.
The initial NER application, syngrep, was developed by Gergely Csaba16 in C++, making
it extremely efficient and enabling file-level parallelism. During the text mining of full texts
it became apparent that this implementation has problems with the full text inputs. The

15https://github.com/kevinblighe/EnhancedVolcano
16Csaba, Gergely. Personal communication. 2015-2020.

https://github.com/kevinblighe/EnhancedVolcano
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need for a more robust and yet similar efficient implementation arose. This need is satisfied
with a python-based re-implementation. The python version relies on the Aho-Corasick
data structure, too. The used library internally has a C++ back-end. This ensures that
performance is only affected slightly. This approach, however, does not (yet) implement
all rules of syngrep, particularly related to the detection of abbreviations. Since the focus
of miRExplore lies in the identification of miRNA-gene interactions, independent of the
employed text mining strategy, this limitation was accepted. For a uniform appearance and
processing of PubMed abstracts and PMC full texts, the web-server contains interactions
identified through miRExplore in combination with the python syngrep re-implementation.
The statistics are calculated with this version, too. The results presented for the timeline
functionality and miRNA-gene imputation base on earlier text mining results derived from
the initial syngrep version on PubMed abstracts only.

miRExplore is an integrative text mining framework for extracting miRNA-gene inter-
actions. It consists of multiple parts, as shown in Figure 2.14. Outgoing from input texts,
the (independent) NER phase delivers potential entity pairs for the interaction extraction
(e.g. is a miRNA-gene co-occurrence an interaction?), which are then analysed regarding
their regulation in the direction extraction. The found interactions, together with other
miRNA-gene interactions from external databases, can then be used for integrative analyses,
or be queried using a web-interface/API. All steps are modularized, enabling an interaction
and direction extraction independently of the employed NER or NLP strategy.

Web-based access miRExplore provides a web-based user interface for quick, yet in-
formative access. On this platform the user enters specific genes or miRNAs of interest
for which miRNA-gene interactions should be retrieved. By specifying context terms, the
displayed interactions can be filtered for evidences which are associated with the terms
(context). These context terms may stem from ontologies of the included dimensions
(currently: organism, cell type, gene ontology, disease). For all inputs, auto-completion is
enabled.

For programmatic access, miRExplore has a JSON-enabled API built-in. Users may
query the system along the same dimensions as mentioned above. Such requests must be
sent via POST and contain a JSON-object which specifies the selection for each dimension.
Because the retrieval of the textual evidence for many miRNA-gene interactions is slow,
the user may specify whether the textual evidence is displayed.

Evaluating miRNA-gene mention detection The miRNA-gene interaction detection
is a detection on the mention level (without any direction information). That means, that
in this step it is decided whether two entities form a valid miRNA-gene interaction or not.

In a previous study, atheMir [144], it was found that the therein employed NER and
rule-based approach works considerably well and performs as good or even better than field
experts do — also in a context-sensitive way. For that approach a three-rule approach was
used: for a valid interaction between two entities, both entities must not be within the
same conjugation, but they must be connected by a verb, and they must share at least
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Figure 2.14: miRExplore Text Mining Workflow Sentences are extracted from publicly
available literature. From specific resources, like the gene ontology, synonyms are created,
which are searched in the sentences. After this NER phase, sentences with both miRNA and
gene mention are processed. Such sentences are candidate sentences which might contain
miRNA-gene interactions. After finding these interactions in the Interaction Extraction
phase, the direction of the miRNA-gene interactions is determined in the Direction Extraction
phase. The found interactions can then be used in integrative applications during the
Integration phase, like the timeline module, or the network analysis.
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one element of the paths from the root to the respective entities in the dependency graph.
However, in some cases this approach did not deliver the desired results. While it was clear,
that the approach in general was sufficient, it was decided to improve this approach with
the rules described earlier. Using the training data from both benchmarks, five interaction
rules have been developed.

A first evaluation of miRExplore’s miRNA-gene interaction detection is performed on
the benchmark created by the miRTex [177] authors. For this benchmark, first the NER
approach needed to be executed on the relevant texts. Following this, an evaluation of the
found interactions could be conducted. Due to the need of executing the NER approach
an additional bias was introduced: not only the detection module would be benchmarked,
but also the text mining approach. All interactions were curated to keep only those 367
interactions from 1548 sentences of 150 documents where both entities were identified by the
text mining approach. For these interactions it was made sure that all relevant interactions
were contained, e.g. if ambiguous gene symbols were mentioned. With these modifications
the performance of the interaction detection was evaluated independent of the text mining
performance. The miRExplore approach achieves a precision of 0.916 and a recall of 0.926
which summarizes in an F1 score of 0.921. Unfortunately, there is no combined F1 score
reported for the whole benchmark set within the miRTex paper. By taking the fraction of
documents per reported class, a weighted F1 score of 0.915 for miRTex on the whole dataset
can be inferred. Thus, miRExplore performs better than miRTex, with the strong remark
that the original benchmark needed to be curated to fit the circumstances of this evaluation.
The reported F1 scores may not be directly comparable. But, these results suggest that the
performance of miRExplore is comparable to that of miRTex on this benchmark.

Using the modified Bagewadi et al. benchmark, the performance of miRExplore and
each combination of interaction detection rules has been evaluated on the training and test
dataset using the F1-score (Figures 2.15, A.22, Table A.1). Applying no rule (always accept)
performs bad, similar to some single rules (only one rule applied). It is interesting to note
that on the test set the SDP-only and entity-only predictions perform similarly bad, and
even worse than the other single rules. For the entity-only rule this can be explained as such,
that the rule alone does not make sense: it only checks whether the named entities are really
no abbreviations of, e.g., cell lines. The SDP-only rule taken alone has the disadvantage
that the dependency graph connects all words of a sentence, regardless whether they are
in one subclause, or in different ones. Only in combination with further rules, e.g. the
compartment rule, this check becomes more meaningful. The single rules are followed by
the double-rules, which are followed by the triple-rules. Finally, the use of all available rules
together delivers the best results. Hence, all rules are applicable and there is no single rule
which could outperform all others. This also suggests that the single problems provided by
the benchmark are considerably different.

It depends on the dependency prediction During the interaction extraction
phase, miRExplore makes particular use of the dependency graph generated by spaCy17.

17https://github.com/explosion/spaCy

https://github.com/explosion/spaCy
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Figure 2.15: miRExplore performance by rule (sci-lg model) Corresponding values
are shown in Table A.1. For each rule combination the miRExplore predictions are evaluated
on the modified benchmark’s test dataset. With more rules, results become better in both
precision and recall.

All applied rules rely on correct dependency predictions, particularly the SDP rule. The
entity rule depends on a correct prediction of the entity type. While the other rules rely
on the dependency graph for recognizing conjugations or compartments, the acceptance
of an interaction in the SDP rule directly depends on the dependency graph. Therefore,
the question arises, how much does the success of this rule depends on the dependency
prediction. Moreover, this might be an indicator on how much a ML approaches depend
on adequate training data: these are meant to learn rules for dependency prediction from
specific texts.

In the regular configuration, miRExplore uses the large scispaCy model (sci-lg) for
dependency prediction. But there also exists a special model trained on the BIONLP13CG
(BIONLP) corpus. Likewise, spaCy comes with a regular large model, trained on general
texts, like newspapers or general literature. These additional models were evaluated on the
test dataset (Figures 2.16, A.23, Tables A.2 and A.3).

The general observations made for the scispaCy large model remain valid for the other
models: the more rules are added/applied, the better the predictions get. However, one
specific observation for the SDP rule in the general spaCy-model is interesting: here the
SDP rule performs worse than no rule. More interestingly, the remaining rules perform
better if the SDP rule is not applied. This is not surprising: in the previous iteration of
this text mining framework, atheMir [144], it was noticed that several incorrect interactions
have been reported due to incorrectly resolved dependency graphs, particularly around
biomedical words. When using a model not trained for such entities, the dependency
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Figure 2.16: miRExplore performance by rule (spacy-lg model) Corresponding
values are shown in Table A.2. In contrast to the evaluation in Figure 2.15, the default
spaCy (large) model was used for dependency graph prediction. It can be seen that the
results are worse than for the specific sci-lg model. Moreover, the SDP-only rule performs
even worse than the always accept rule, at least in terms of F1 score.

prediction delivers uninterpretable results, and the SDP rule will not operate as intended.
Looking at the absolute F1 values it can be noticed that on choosing the wrong model,

but applying the same rules, the score varies from 0.95 for the scispaCy large model
(scientific texts) down to 0.78 with the spaCy large model (general texts). This highlights
the major impact the used model for dependency prediction has on even a rule-based
interaction detection approach. But moreover this highlights the need for well and correctly
pre-trained models, in order to perform an accurate dependency and entity type prediction.
Considering that the rule-based approach here resembles a fine-tuning of a pre-trained deep
learning model, it can be argued that a badly pre-trained main model (e.g. pre-trained on
different kind of text, not biomedical) can not be rescued by a good fine-tuning.

Comparing all methods While it could be seen that all rules combined perform
considerably well, the key question is to analyse how well this rule-based approach works in
comparison to other approaches and resources. Bagewadi et al. [19] provide a benchmark
for identifying miRNA-gene interactions. This benchmark was already used by the miRTex
authors [177] to compare their method as well as a re-implementation of the miRSel [224]
method. It is thus used to compare the performance of miRExplore with these tools. In
this benchmark, it was noticed that in the test set, 22 miRNA-gene co-occurrences were not
annotated as interaction, where an interaction actually is described. Likewise, 3 interactions
are reported, where only an interaction with a miRNA or gene family is reported, instead of
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a direct interaction. This was changed in the modified benchmark for reasons of stringency.
Moreover, this modified benchmark reflects better those interactions miRExplore is wanted
to find. Using only this modified benchmark for comparison would be unfair regarding the
other tools. Thus, the final miRExplore method was evaluated on both the original and the
modified benchmark. The already reported results [19, 177] on this benchmark have been
combined with the ones obtained for ReLeX and miRExplore (Figure 2.17, Table A.4). A
simple, co-occurrence based analysis achieves an F1 score of less than 0.5 [19], followed by the
(general) relation extraction tool ReLeX [96]. ReLeX has problems with specific sentences,
probably due to an incorrect dependency resolution, which builds upon old models of the
Stanford parser [204]. It achieves an F1 score of 0.6. The re-implementation of miRSel
achieves a high recall with low precision (F1 score of 0.71). The three-rule-based atheMir
performs slightly better with an F1 score of 0.75. miRTex (F1 = 0.87) is a strong competitor
outperforming all previous methods. Finally, the rule-based approach of miRExplore, using
the scispaCy model (sci-lg) for dependency prediction, outperforms miRTex with an F1-score
of 0.88 (miRExplore/sci-lg). On the modified benchmark, miRExplore with the regular
spaCy model (F1 = 0.78, miRExplore/spacy-lg (mod.)) and the smaller BIONLP model
(F1 = 0.82, miRExplore/BioNLP (mod.)) achieves similar results to atheMir. Strikingly,
miRExplore, using the sci-lg model, achieves an F1-score of 0.95 (miRExplore/sci-lg (mod.)),
delivering excellent performance on the miRNA-gene interaction detection task.

miRTex is rule-based, like miRExplore. But it shares a design decision with ReLeX: it
requires a trigger word for any miRNA-gene interaction. This was avoided in miRExplore.
Countably infinite suitable trigger words exist in literature, making it impossible to find and
enumerate them all (as the context rule shows, too). Instead, more use of the dependency
graph is made with miRExplore. While the dependency graph has problems of its own
(and thus should not be used for determining the direction of a regulation), it is good
enough to identify whether two entities are in some kind of relation or not. Particularly
the dependency graph can be used to reject entities which occur together in a conjugation,
or in separate sub-clauses. Thus, having a correct dependency graph is crucial. Modern
dependency predictions have become quite reliable, even on unknown sentences and words.
Being trained on actual biomedical literature improves their performance such that it can
be used reliably to derive interactions.

Evaluating miRNA-gene regulation detection After having identified suitable
miRNA-gene interactions, the question arises whether these interactions are outgoing
from the gene or the miRNA, and how the induced regulation is directed. Using the exten-
ded Bagewadi benchmark, the four rules presented in Section Determining miRNA-gene
regulation were designed according to the training data. These rules make use of two
observations: (1) while the dependency tree is able to identify whether miRNA and gene
are not interacting, it is too coarse to identify the direction of a regulation. (2) Scrambling
of words is very uncommon in the English language, making the determination of the
interaction direction possible using word stems where possible, instead of relying on the
dependency graph.
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Figure 2.17: miRExplore Performance Comparison on the Bagewadi et al. benchmark
(test set). All tools perform better than a simple co-occurrence approach (ProMiner).
miRSel and ReLeX perform well, but range behind miRExplore. miRExplore improves its
performance in contrast to atheMir, which can be explained by the usage of more suitable
rules. The performance of miRExplore is better than the one of miRTex. miRExplore using
the scispaCy large model (sci-lg) achieves an F1 score of 0.88 on the original benchmark.
On the modified benchmark miRExplore achieves an F1 score of 0.95 using the sci-lg model
(miRExplore/sci-lg (mod.)).

Again, the single rules and any combination of rules have been compared (Figure 2.18,
Table A.5). This comparison is performed on the modified Bagewadi et al. [19] benchmark,
which was extended to incorporate interaction and regulation directions. For the no-rule
case it is always predicted that the miRNA regulates the gene down. It is not unexpected
that the return rule alone performs worst: this rule is only applied if none of the other
rules was applied, other cases should have been handled by previously checked rules. In
contrast to the interaction detection, here the rules are incremental and cannot be seen
individually. Nonetheless, with more added rules, an improved F1 score can be observed.
Again, all rules taken together perform best with an F1 score of 0.93. For miRTex such a
detailed evaluation has not been performed.

Database of miRNA-gene interactions from text mining In the previous sections
two methods for interaction and direction extractions have been presented. These methods
were applied to all found entities in the PubMed abstracts and PMC full texts. Only
miRNA-gene interactions, which are described in the same sentence, are considered in
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Figure 2.18: miRExplore Interaction Direction Evaluation Corresponding values are
shown in Table A.5. The extended and modified Bagewadi benchmark is used to evaluate
the prediction of miRNA-gene interaction and direction predictions. While the previous
checks focused on detecting an interaction, here it is checked which entity is the regulator
into which direction. Using no rule (and always predicting MIR_GENE, DOWN), performs
quite well. Some rules, taken out of sequence, perform worse. In general, with more rules
the prediction results improve continuously.

this approach. All found interactions are saved in a text file and serve as input for the
miRExplore web service.

Using the miRExplore pipeline, many miRNA-gene interactions could be discovered. An
overview of all found interactions, their type and their source is given in Table 2.6. Because
miRExplore not only contains text mining results, but additionally includes experimentally
verified results from other major databases, such as miRTarBase [128], miRecords [333] and
partly DIANA-TarBase [149], a comparison at the precursor level between these resources
is possible. The result of this comparison is shown in Figure 2.19. The overlap between
the single databases is low. Particularly the large databases, which partially rely on
(computational) prediction or the automatic evaluation of high-throughput experiments,
like miRTarBase and DIANA-TarBase, have many unique hits, even though there are more
than 40 000 interactions common between miRTarBase and DIANA-TarBase. Unfortunately,
there are many unique text mining results for PubMed abstracts (miRExplore/PMID) and
PMC full texts (miRExplore/PMC). Both resources have a large overlap of more than
10 000 interactions, but a majority of hits remains unique. This can be explained by the
fact that not all PubMed articles with miRNA-gene interactions are available as full text
on the one hand. On the other hand, within the full text more information about other
relevant interactions may be named. While this explains the existence of unique PubMed
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Table 2.6: Overview of text mining-based miRNA-gene interactions More than
50 000 interactions are identified from text resources. However, certain interactions are
recorded as both neutral and repressing regulation and are counted twice.

Selection Abstracts Full texts

Total documents 31 091 532 677 520
Total documents with gene mention 8 373 762 674 582
Total documents with miRNA mention 59 471 13 078
Total documents with miRNA-gene interaction 34 466 10 152
Number of different genes 6 932 6 256
Number of different miRNAs (precursor level) 1 470 1 257
miRNA <> gene (interaction) 53 791 54 499
miRNA −‖ gene (gene repression) 23 936 18 501
miRNA − > gene (gene induction) 10 650 12 512
miRNA −− gene (interaction) 32 585 34 514
gene −‖ miRNA 5070 7 278
gene − > miRNA 4600 7 824
gene −− miRNA 12 684 16 792

Figure 2.19: miRNA-gene Interactions of Integrated Databases A comparison of the
in miRExplore integrated databases. Except miRecords, a manually curated database, most
miRNA-gene interactions are unique per database. The overlap between the predictive
databases (miRTarBase, DIANA-TarBase) is relatively small.

and PMC interactions, a further look into this issue may be needed. It is nice to see that
the smallest of all integrated databases, miRecords, achieves a very high overlap with all
other databases. This is anticipated, at least for literature-mined interactions, as only
validated interactions are contained within the miRecords data set. Such interactions can
be expected to be published in literature, too.
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Figure 2.20: Recorded miR-135a interactions in T cells over time A comparison of
the miRExplore interactions on miR-135a within T cells. Most interactions are recorded in
cancer, and other diseases, mainly in an inflammatory context, are listed.

Timelines For any miRNA-gene interaction it is interesting to know, in which contexts
this specific interaction has already been identified in. However, some researchers might be
more interested in all interactions of one specific miRNA, in a specific context, or which
interactions are already known for a specific gene. Using the Timelines module (Figure
2.20), it is possible to create graphical answers to these questions, e.g. in which context
the specific miRNA-gene interaction has already been looked into, and when. Results from
miRExplore are queried, interpreted and plotted. Due to its connection to miRExplore (via
its API), the Timeline feature can restrict the query such that only interactions within a
specific context are returned. As a result of the example query for miR-135a interactions
in T cells, it can be seen that the miRNA plays roles in cancer, inflammation and allergic
rhinitis.

Integrative Network Analysis The miRNA-gene interactions contained in miRExplore
are of high relevance, because the miRExplore system can be queried via its POST-API for
miRNA-gene interactions, with particular focus on the contextual information. This can
be useful in the interpretation of high-throughput experimental data, e.g. obtained from
RNA-seq or microarray analysis. If the context of such experiments is given, it can, for
instance, be predicted, which miRNAs might be active regulators.

With most high-throughput data, the problem is that short RNAs are not measured.
Particularly miRNA expression is seldom recorded. Hence, the challenge here is: given the
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effects, which miRNAs lead most probably to these effects? In this case the assumption is
made, that all regulation is outgoing from miRNAs. Whilst this assumption does not reflect
the truth, it is suitable enough for hypothesis generation and later experimental validation.

Through the integrative network analysis, which fetches context-sensitive miRNA-gene
interactions from miRExplore, hypotheses for likely regulation can be obtained. In general,
this relies on the assumption, that, if a miRNA is actively regulating mRNAs, many of
its targets will be regulated in a canonical way. This means, if more miRNA targets
are regulated into the same direction as expected, this gives a hint for an active miRNA
involvement. This hypothesis can be tested using the hypergeometric test.

Here, this method is applied to a dataset of T cells [156], which is publicly available
at GEO (GSE109735 (mRNA) and GSE109736 (miRNA)). Not only regular mRNA levels
have been measured, but also miRNA expression using microarray. The dataset consists of
antigen-naive CD4+ T cells from spleens of sham-treated mice, Th2 cells after polarization
and recruitment to the inflamed tissue (early Th2), and cells from chronic inflamed tissue
(stable Th2) which were isolated after an Ovalbumin-induced allergic airway inflammation
from long tissue. For this purpose, both mRNA and miRNA expression of the naive cells
were compared against the chronic inflamed tissue, stable Th2 cells. A total of 65 miRNAs
were significantly down-regulated, and 373 additional miRNAs were down-regulated. A total
of 9 miRNAs were significantly up-regulated, and 276 additional miRNAs were up-regulated.
A total of 245 mRNAs were significantly down-regulated, and 11, 598 additional mRNAs
were down-regulated. A total of 562 mRNAs were significantly up-regulated, and 18, 572
additional mRNAs being up-regulated.

In the miRTarBase miRNA target set over-representation analysis, seven miRNAs
(miR-124/155/1276/4766/7705/669k/669h∗) were enriched for up-regulated DE genes at an
adjusted p-value cut off at 0.1. These represent possibly down-regulated miRNAs. A total
of 10 miRNAs (miR-124/miR-155/miR-1/miR-218/miR-1276/miR-4766/miR-487a/miR-
669k/miR-669h∗) were enriched if both up- and down-regulated genes are considered.

Integrative network analysis was performed as described above. The context was
chosen to include only miRNA-target interactions, which have been found in documents
associated with t cells (META:44). From the integrative network analysis, a total of 6
miRNAs were predicted to be up-regulated (no significant prediction), compared to 96
down-regulated predictions. A total of 37 miRNAs were significantly (adjusted p-value
< 0.1) over-represented and predicted to be actively regulated. The results are summarized
in Table 2.7. From the 37 significant predicted miRNAs, 8 were found in the experimental
data (of which 95 miRNAs fulfilled the p-value cut-off at 0.1), too. The remaining predicted
miRNAs are either not recorded by the micro-array analysis or lack a specific precursor
in contrast to the micro-array data. The overlapping miRNAs are highlighted in bold in
Table 2.7.

While an overlap of only 8 miRNAs first seems a little low, the miRExplore resource
allows checking whether these 8 miRNAs at least describe the experimental outcome well.
Hence, it was analysed by an over-representation analysis whether this set of miRNAs (or
the thereby induced documents) describe a disease or process (in terms of GO) context.
For this, for each ontology term its related miRNAs were retrieved from miRExplore and
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Figure 2.21: miRNA Over-representation in DOID Terms. Enriched disease ontology
terms for the 8 overlapping miRNAs. Using the overlapping differentially regulated miRNAs,
it was possible to independently identify the experimental context of the data: (allergic)
asthma. The further significant diseases have in common that they frequently involve an
inflammatory response.

Figure 2.22: miRNA Over-representation in GO Terms Enriched GO terms for the
predicted miRNAs (T cell context). Since the experiment deals with chronic inflammation
due to allergic asthma, the immune-related GO terms are expected, matching with published
knowledge regarding the cell type of the experiment. Even the DNA repair mechanisms
match existing knowledge.
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used for the over-representation analysis (Figure 2.21). This analysis correctly identifies an
asthma disease as most enriched term for this set of overlapping miRNAs. It is noteworthy
that an association to hypersensitivity reaction type II disease (DOID:417) is significant.
Typically, allergic reactions are considered to be of type I hypersensitivity. However, atypic
allergic reactions are usually classified as a type II immune response [44].

The same analysis was performed for the measured and predicted miRNAs (Figure A.25)
separately. While the results are not this clear for both the predicted and measured miRNA
sets, both have asthma among the top 12 significant terms. In general, the terms enriched
for the miRExplore predicted miRNAs are more similar to the ones of the overlap miRNAs
than those of the measured miRNAs, which also do not include allergy related terms.

Making use of the context information available in miRExplore, the context was restricted
to T cell -related relations only. An enrichment on GO terms for all predicted active miRNAs
was performed (Figure 2.22). It is interesting to see that both Interleukin 4 and 10 receptor
binding GO terms are found. Both processes are known to be involved during a stable
allergic asthma inflammation (IL4 [345], IL10 [272]). Particularly, the IL4 activity is
interesting, as this is a key element of the anticipated type II immune response [85]. The
IL10 activity can be expected, as it is known to suppress the Th2 response. The further
associated GO terms match the experimental context, too. These are mostly related to
an immune response, suggesting, that the predicted miRNAs can modulate this response.
Both DNA repair associated GO terms seem to break this immunity pattern: however, it
has already been found that Th2 cells play an important role in repairing DNA damage
due to allergens in asthma [104]. Without the ability to focus on processes relevant in T
cells, the results are different and less relevant, as higher order GO terms (like base pairing)
are reported. Focusing on specific contexts is essential for hypothesis building, and also
reflects the nature of context-sensitive miRNA regulation.

Conclusion

In this section the miRNA-gene interaction framework miRExplore is introduced. The
miRExplore framework provides methods for extracting miRNA-gene interactions and
several integrated analyses. Moreover, it is possible to integrate further resources into
miRExplore, such as miRTarBase or miRecords, enhancing these resources with the addi-
tional context information, if evidence documents are provided.

The miRNA-gene interaction extraction has been benchmarked on a public benchmark
and thus is comparable to other existing methods. While the miRExplore interaction
mining outperforms all other methods, it becomes apparent that rule-based interaction
mining platforms stand and fall with accurate dependency graph predictions. When using
model-based methods for dependency graph creation, it is important to use a model trained
on the same type of text as used with the prediction: biomedical literature.

As part of the integrative methods within the miRExplore framework, the Timeline
module and the integrative miRNA-gene regulatory prediction are presented. Using the
Timelines module it is easy to explore the history of certain miRNA-gene interactions,
or interactions for specific genes or miRNA. It is easy to see in which specific contexts,
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Table 2.7: Integrative network analysis results. Predicted active miRNAs ordered by
significance value from the over-representation analysis on the context-sensitive (T cell)
set of target genes. Even though miR-155 has many targets, it has several inconsistently
regulated targets. miRNAs highlighted in bold were differentially expressed in the reference
miRNA dataset.

miRNA Pred. Direction Target Genes Inconsistent Targets Context Targets adj. P-value

miR-155 DOWN 21 4 191 5.12e-05
miR-15a DOWN 6 0 21 0.0015
miR-16 DOWN 7 0 36 0.0032
miR-7 DOWN 3 0 6 0.0102
miR-214 DOWN 6 1 35 0.0102
miR-135a DOWN 3 0 6 0.0102
miR-410 DOWN 2 0 2 0.0129
let-7e DOWN 3 0 8 0.0139
miR-146b DOWN 4 0 16 0.0139
miR-200c DOWN 3 0 8 0.0139
miR-125b DOWN 5 0 30 0.0165
miR-126 DOWN 4 0 18 0.0165
miR-1 DOWN 3 1 10 0.0185
miR-302c DOWN 2 0 3 0.0185
miR-181a DOWN 6 0 47 0.0185
miR-197 DOWN 2 0 3 0.0185
let-7a DOWN 3 0 11 0.0224
miR-212 DOWN 2 0 4 0.0288
miR-142 DOWN 3 0 16 0.0592
miR-27a DOWN 4 0 30 0.0592
miR-424 DOWN 2 0 6 0.0592
miR-150 DOWN 5 1 47 0.0630
miR-20a DOWN 3 0 19 0.0776
miR-22 DOWN 3 0 19 0.0776
miR-31 DOWN 3 0 20 0.0856
miR-4739 DOWN 1 0 1 0.0856
miR-340 DOWN 2 0 9 0.0856
miR-26a DOWN 3 0 21 0.0856
miR-1275 DOWN 1 0 1 0.0856
miR-4736 DOWN 1 0 1 0.0856
miR-95 DOWN 1 0 1 0.0856
miR-1248 DOWN 1 0 1 0.0856
miR-135 DOWN 1 0 1 0.0856
miR-337 DOWN 1 0 1 0.0856
miR-195 DOWN 2 0 10 0.0929
miR-27 DOWN 2 0 10 0.0929
let-7b DOWN 2 0 10 0.0929
miR-1246 UP 1 1 4 0.3548
miR-491 UP 1 0 3 0.3548
miR-30a UP 1 1 8 0.4451
miR-24 UP 1 4 14 0.5345
miR-223 UP 1 5 45 0.8898
miR-146a UP 1 9 70 0.8898
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such as disease, cell type, tissue or biological processes, a miRNA-gene-interaction is active.
Moreover, this feature allows checking whether a certain interaction within a specific context
is actually a new finding, or whether it was already reported by other publications.

Finally, the integrative network analysis allows the prediction of active miRNA-gene
regulations from mRNA transcriptome measurements only. Matching small RNA expression
data is not required. This is helpful, because there are many datasets publicly available,
where no miRNA expression was measured. In the presented use-case, it was possible
to identify the specific setting of the experiment, from only the predicted miRNA-gene
interactions. Key processes have been successfully reproduced.

The miRExplore framework is open-source, adheres the FAIR principles and is publicly
available on GitHub. There are several jupyter example notebooks showcasing analyses
which can be performed using miRExplore.

The miRNA-gene interaction field is emerging, with the number of miRNA-gene
interaction-related papers rapidly increasing every year. This framework contributes to
the highly innovative field of miRNA research by enabling scientists to validate miRNA
activity, and to relate own findings with existing knowledge.

2.4 Conclusion

In this chapter the extraction of useful, i.e. structured and context-sensitive, information
from unstructured (raw) test has been demonstrated. Methods for text extraction with
ontologies and PDFs are derived, applied and evaluated in the first part (Chapter 2.1). This
includes a technique for increasing the detection rate of synonyms, which were originally
extracted from ontologies. By inflating these synonyms, increasing the number of named
entities which are searched for by a factor of 8, more concepts could be found in the text
than otherwise. While these changes are partly needed specifically due to the employed
NER approach, some methods, like the reverseform or scoped modifications, are useful for
general NER approaches. It could be verified that the presented text extraction method
from PDF files works with satisfactory results, and that even a structured text extraction
works almost error free. Frequently only PubMed abstracts are considered for text mining
tasks. It could be seen that these abstracts, however, do not contain the full information,
with regard to found and identified terms, in contrast to full texts. Depending on the
ontology, the concepts are not distributed uniformly over all sections of a paper. This,
however, can often be explained by the topic of the ontology: measurements are more
frequently named in the methods sections than elsewhere. These findings are important for
the creation of the context-describing synonym lists used in both atheMir and miRExplore.

In the second section, the initial version for mining miRNA-gene interactions was
presented: atheMir (Chapter 2.2). Even though only PubMed abstracts were considered
for text mining, the results could be used to write a scientific review about miRNA-gene
interactions in the context of atherosclerosis [144]. Moreover, the found interactions were
more complete than those of domain expert reviews. Nonetheless, it was observed that the
established rules build a solid base for possible improvements, with the target to perform
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better miRNA-gene interaction mining than other state-of-the-art methods.
Improving the rules used for interaction mining, a new version of the miRNA-gene

interaction mining was developed: miRExplore (Chapter 2.3). miRExplore not only
improves the miRNA-gene interaction mining, but also contains several integrative features
for miRNA-gene relations. The miRExplore database makes it possible to generate Timelines
of specific miRNAs, genes or interactions. It can easily be checked whether there is already
an existing publication on the same miRNA, within the same context. While not directly
used within miRExplore, the PDF text extraction enables further potential use-cases for
this feature: fact checking new manuscripts. While this analysis is of interest for any
discipline, it obviously has the potential to raise discussions regarding first publication: it
is possible to see who reported a specific finding first, and in which context. Besides the
Timelines feature, miRExplore integrates with the robust differential expression pipeline
RoDE (Chapter 6.1). Based on DE results, miRExplore can predict actively regulating
miRNAs, using a greedy approach minimizing inconsistent regulations, within specific
contexts on a routine basis. From this context-sensitive prediction of either up- or down-
regulated miRNAs, it is possible to reconstruct the context of a specific dataset. The
processes identified through the predicted miRNAs were shown to describe the regulatory
activity on the gene level well, and thereby help to find possible hypotheses of regulated
mechanisms.

In the context of this thesis, the miRExplore resource provides the starting point for
integrative analyses, which can even lead to well funded hypothesis to follow up. The higher
precision and sensitivity of miRExplore over existing methods, as well as the integration
with context information, makes miRExplore a valuable resource for many analyses, like
Timelines or miRNA-gene regulatory predictions.



The purpose of computing is insight, not
numbers.

Richard W. Hamming

3
Accessibility and Interoperability in

Bioinformatics

Bioinformatics is one of the disciplines in science that relies massively on an interdiscip-
linary setting [97]. In 2013 the editorial of Briefings in Bioinformatics emphasized that
‘Bioinformatics is central to biology in the 21st century’ [267]. However, the topics of
accessibility, usability and interoperability only play a small role in bioinformatics methods
development, although these are the key for interdisciplinary research [30]. The problems of
accessibility and usability of bioinformatics software have been taken up in the first section
of this chapter (Chapter 3.1). The topic of interoperability is discussed at the example of a
benchmark of serialization techniques in the setting of a k-mer counting strategy (Chapter
3.2).

Improving the accessibility and computability of bioinformatics tools and workflows
(Figure 1.1), respectively, is highly important. Without access to bioinformatics resources, no
data analysis can be performed. Making bioinformatics accessible to more scientists makes
bioinformatics data analysis a more versatile and more widely employed tool. Likewise,
more efficient bioinformatics tools allow a higher throughput of data analyses, preferably
adhering to FAIR principles.

With the amount of bioinformatics analyses in the domain of sequencing experiments
continually increasing, the computability of results is brought into focus due to the sheer
amount of data to process. While the low-level performance analysis of certain programs or
libraries is not the key area of bioinformatics, many problems in bioinformatics can only
be tackled by understanding performance bottlenecks and improving these. For instance,
many bioinformatics programs, particularly in the area of genomics, rely on parallelism,
mostly in the form of shared-memory parallelism. With the advent of new sequencing
technologies, like Oxford Nanopore MinION sequencing, the interest in k-mer counting
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has risen again. k-mers are a useful ingredient to genome assembly [68, 160] and read
error correction [32, 143]. More recently k-mers were used for genome indexing tasks [155].
While commonly locks in the form of mutexes are used for serializing the access to certain
data, new hardware features are available. These are assessed in the second section of this
chapter (Chapter 3.2).

3.1 Accessibility of Bioinformatics Software (bioGUI)
The accessibility of bioinformatics applications, also by researcher from other domains, is an
important topic, because otherwise many researchers are limited in their choice of tools [97].
Unfortunately, the limited availability and accessibility of many bioinformatics resources
[152, 201] and the existence of many data formats does not improve the user-friendliness of
bioinformatics tools in general. Moreover, even for a single data format, like the FASTA
format, multiple definitions exist (see Appendix A.1). As a matter of fact, bioinformatics
becomes more and more important in every-day biological work. This is underlined by the
advance of the Oxford Nanopore Technology sequencing platform. Providing measures to
overcome the gap between usage of the portable sequencer and bioinformatics tools, the
shift from command-line (CL)-only application to graphical applications is important.

With bioGUI, an application for making command-line interface (CLI) applications
accessible via a graphical user interface (GUI) is presented [145]. bioGUI has two modes of
operation. First, by providing install modules it allows installing selected software in Linux,
macOS and Microsoft Windows. On Windows, bioGUI makes use of the Linux-environment
‘Windows Subsystem of Linux’, which emulates (almost) a full Linux on Windows. The
second mode of operation is the execution of CLI applications via the bioGUI, its GUI.
This works by providing an XML-based description of the graphical inputs for all necessary
arguments, such as file inputs, text or number inputs, combo-boxes, etc. From these inputs,
the command-line arguments are assembled using a Petri-net-like method. The general
workflow of bioGUI is shown in Figure 3.1. A list of all available (install) templates of
bioGUI is available in Table 3.1. Particularly for long read sequencing many modules exist,
with a focus on tools required for genomics (assembly). In addition, the analysis of RNA-seq
data is supported with the read aligner hisat2 [153] and the read quantification method
featureCounts from the subread package [184].

In a user-study it was evaluated, whether bioGUI improves the usability of bioinformatics
applications. Participants were asked to install a common bioinformatics tool, graphmap
[286], and use this tool to align reads to a given reference. It could be shown that using
bioGUI, the installation and usage of bioinformatics tools becomes (significantly) easier.

The accepted publication is available as open-access online article https://doi.org/
10.7717/peerj.8111. The author’s contributions are listed in Appendix A.4.1. bioGUI is
available from GitHub https://github.com/mjoppich/bioGUI.

https://doi.org/10.7717/peerj.8111
https://doi.org/10.7717/peerj.8111
https://github.com/mjoppich/bioGUI
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Table 3.1: bioGUI: Available Templates and Install Modules Install modules (starting
with Install in the module name column) allow an automatic installation of the software
by bioGUI on Windows (using Windows Subsystem for Linux(WSL)), Ubuntu or macOS.
Several applications relevant to NGS and TGS workflows are available, such as read
alignment, read quantification and assembly.

Install Module

Module Name Task WSL &
Ubuntu macOS

First Time macOS Setup Initialization - �

First Time Ubuntu/WSL/apt-get Setup Initialization � -
Install Ballgown v1.0.1 [240] NGS transcriptomics �

Install Bowtie1 [168] NGS �

Install Bowtie2 v2.2.9 [167] NGS � �

Install bwa v0.7.17 [178]) NGS � �

Install canu (github, [160] Assembly �

Install featureCounts [184] NGS transcriptomics � �

Install glimmer302b [67] Genome Annotation �

Install graphmap [286] Long Read Sequencing � �

Install albacore (pip wheel, ONT) Long Read Sequencing �

Install guppy (linux tar.gz, ONT) Long Read Sequencing �

Install hisat2 [153] NGS transcriptomics � �

Install hmmer-3.1b2 [326] Sequence Analysis �

Install jellyfish-2.2.6 [203] NGS �

Install minimap2/miniasm/racon Assembly (long-read) � �

Install MS-EmpiRe [7] NGS transcriptomics � �

Install PureSeqTM [320] Sequence Analysis �

Install rMATS-3.2.5 [279] NGS transcriptomics �

Install rnahybrid [251] Sequence Analysis � �

Install RSEM v1.3.0 [176] NGS transcriptomics �

Install samtools-1.3.1 [180] NGS � �

Install SPAdes v3.13.0 [21]) Assembly (hybrid) � �

Install StringTie v1.3.0 [240] NGS transcriptomics �

Install Top Monitor (ssh example) Technical Demo � �

Install Trimmomatic v0.36 [33] NGS �

Install wtdbg2 [260] Assembly (long-read) � x
Template Circlator [131] Assembly � �

Tools marked with � provide an install module for the operating system of the respective
column.
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Figure 3.1: bioGUI modes of operation Transitioning from the CLI to a GUI, bioGUI
provides install modules for the easy installation and usage of bioinformatics applications in
its bioGUI repository. From the respective user inputs, bioGUI assembles the command-line
arguments and runs the CLI application, visualizing the output again in the GUI.

3.2 Transactional Memory for Entity Counting (tsx-
Count)

K-mers are one of the smallest entities in any sequence-based analysis. They are frequently
used in the area of genomics as ingredient to genome assembly [68, 160] and read error
correction [32, 143], but also as an important ingredient to genome indexing [155]. Even
though the topic of k-mer counting is very old, it recently has observed attention by
researchers from Harvard University1 and Johns Hopkins University [155].

In principle, the task of k-mer counting is straight forward: for a sequence of letters, every
k-long subsequence is formed and counted. Every seen k-mer is counted by incrementing
the respective counter by one. In order to avoid the allocation of space for unseen k-mers,
for instance, a hash-map can be used. However, the problem about k-mers in reality is, that
they are not distributed uniformly, neither in transcriptomic or genomics reads, nor in the
genomes themselves. For reads of the S. cerevisiae transcriptome generated by a MinION
sequencing device it can be seen that most k-mers actually occur only a few times or once
(Figure 3.2). For larger datasets and higher values of k, even more k-mers which only occur
once would be found, while some k-mers appear more often. It is thus not practicable to
allocate the same amount of storage space for each k-mer, particularly for those occurring
only a few times, it would be a waste of memory.

Li et al.1 benchmark several counting strategies, e.g. hash-maps and distinct tools like
jellyfish [203]. It is known that k-mer counting tools can well profit from multi-threading in

1https://github.com/lh3/kmer-cnt/

https://github.com/lh3/kmer-cnt/
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Figure 3.2: k-mer histogram of all 14-
mers of the S. cerevisiae reads from ac-
cession SRR5989373.

Figure 3.3: tsxCount run-times for
the full dataset (SRR5989373). Ex-
perimental run-times for the Saccharo-
myces cerevisiae dataset (full dataset, 2x
Intel(R) Xeon(R) Silver 4214 CPU with
12 cores and 24 logical processors, each,
OMP_PROC_BIND=spread).

order to speed the counting up and achieve useful run-times. The particular long run-times
for counting k-mers stem from an effort to keep the amount of used memory small. However,
when running in parallel, serialization becomes an issue, as otherwise the result will not be
exact, or, the application will not terminate. Assessing which impact the serialization has,
and which serialization technique is most favourable for this task, was done in the tsxCount
project.

With tsxCount it is investigated how hardware transactional memory (TSX) can be
used as serialization technique for counting genomic entities, k-mers. The TSX strategy is
compared against no locks (SERIAL), pthread-mutex (PTHREAD), OpenMP-locks (OMP)
[65] and a compare-and-swap (CAS) implementation. The real-life-problem benchmark
is large enough for a significant workload and includes both biases introduced by the
sequencing technology (error rate), and the transcriptomic sample origin (poly-A ends at
reads, leading to high counts for few k-mers).

Given the differences between the PTHREAD and OMP implementations (Figure 3.3),
it can be noted that the hinted-lock implementation (OMP) is more performant, possibly
due to already using hardware transactions internally. However, the difference, in general,
is neglectable.

For our application, OMP (using speculative locks) and TSX serialization have been the
most performant implementations on few threads. With an increasing number of threads
TSX becomes advantageous compared to OMP locks, and CAS shows increasing efficiency,
which can be seen by its linear speed-up, even at a high number of threads.

Using only few threads, an OMP lock-based serialization technique can be preferred.
Not only because OMP is at least as fast as TSX, but the small advantage of TSX in
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time efficiency is considerably offset by the experienced difficulties during implementation,
debugging and its lower portability. If more threads are intended to be used, or if in general
a linear speed-up is required, TSX and CAS are useful choices. Of all tested serialization
techniques, CAS has the most constant speed-up. But having high initial costs, CAS only
pays out with more than 24 threads, and can not overtake TSX. However, TSX is not
available on all CPU platforms. The TSX implementation is not platform robust regarding
cache misses and heavily depends on the available caches of the processor. Hence, given
that the OMP-approach is much easier to implement and faster or as fast for fewer threads,
the OMP lock-based serialization wins also for reasons of interoperability and availability
on all platforms.

In summary, the main question one has to answer before choosing a serialization
technique, is on which platform the given software will be run. If an application can be
tailored for a specific computer architecture, which supports TSX, the TSX implementation
can be regarded as favourite, as it performs fast in general and can develop its full potential
through fine-tuning (which was not performed for this benchmark). For a general purpose
software, the usage of TSX is hardly possible, because only some Intel CPUs support TSX.
For software which is intended to be run with many threads, the CAS approach can be
useful, as it delivers an excellent speed-up, with very high initial costs though. If the target
is a regular workstation, with an average CPU and thread count, lock-based approaches
remain the favoured serialization technique, also being the most interoperable choice.

The results are currently submitted to a journal and are in revision. The full manuscript,
with detailed information on the employed methods, can be found in the Appendix A.4.2.

3.3 Conclusion

In this chapter two applications in the area of accessibility and computability of bioinform-
atics tools have been presented. In Chapter 3.1 bioGUI was introduced. The main focus of
bioGUI is the accessibility of bioinformatics software. There are many great bioinformatics
applications available, but any non-computer affine scientists can not, or only with a high
burden, access these applications, even though they are distributed at no cost. Instead,
many scientists rely on closed-source applications to perform their bioinformatics or stat-
istical analyses. With bioGUI a framework to make open-source software more accessible
was developed. Using bioGUI the task of installing and executing software becomes easier,
both for professionals and non-computer-affine scientists. In addition, bioGUI contributes
to FAIR bioinformatics. With bioGUI’s ability to make use of the ‘Windows Subsystem for
Linux’, Linux applications become available on a Windows host, increasing the accessibility
and interoperability of the software. By saving filled out bioGUI templates, repeatable
analyses are promoted.

In Chapter 3.2 tsxCount was presented, which benchmarks several serialization tech-
niques for parallel applications: a topic of interoperability and computability. tsxCount
compares several serialization techniques in the setting of a classical bioinformatics exercise,
counting k-mers. The results show that mutex/lock-based approaches clearly limit the
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scalability of such programs. While this can already be seen when using only few threads
(after 8 threads for OMP/PTHREAD), the TSX technology pushes the limit slightly further
to 16 threads. The only lock-free approach, CAS, achieves an ideal speed-up over all threads.
However, this achievement must be put into perspective: it still is the slowest method in
the observed setting. On the other hand, the fastest method, TSX, does not adhere to the
FAIR principle of interoperability, because specific Intel hardware is required. Using the
OpenMP locks hence seems to be a good trade-off between interoperability and speed, at
least as long as the application is not run on too many threads, generally.

The results presented in this chapter contribute to the accessibility and interoperability
of bioinformatics applications, and thereby to the FAIR principles. Since bioinformatics
not only has to care about new methods, but also about how to make efficient use of
hardware resource for such methods, both bioGUI and tsxCount contribute to this question
on different levels: bioGUI aims at the top layer of accessibility, the user, while tsxCount
focuses on interoperability on the machine level. With bioGUI, more scientists can use
actual bioinformatics software on any operating system. The results presented in the
tsxCount section focus at both the interoperability and parallelization from a developer’s
perspective. The results from the tsxCount project help a developer to better judge which
serialization method is suitable for a specific project, considering both the expected speed-up
and interoperability of his software.





I don’t know anything, but I do know
that everything is interesting if you go
into it deeply enough.

Richard P. Feynman

4
Single Cell Analysis and Imaging Mass

Spectrometry

In Chapter 2 information has been extracted from peer-reviewed journal articles. As
presented in the description of a general bioinformatics workflow (Figure 1.1), making data
sources available and using these to extract data, is a fundamental step for any data analysis
workflow. In this chapter work on extracting information from two different experimental
techniques is presented: single-cell RNA-seq (scRNA-seq) and imaging mass-spectrometry
(IMS). Even though these two experimental techniques are very different, with the first
measuring gene expression on the transcription level, and the other protein expression,
both have in common that they are emerging technologies, which are increasingly used in
biomedical experiments [12, 76, 83, 287]. Moreover, due to the underlying analysis methods,
both methods face the problem of missing data [166, 281]. Both techniques, however,
capture similarly large entities in many single measurements and can profit from many
replicates.

The first new data source, made accessible within the research unit bioinformatics, is
scRNA-seq, and is introduced in Chapter 4.1. The cell type prediction method cPred, which
was developed for the analysis of scRNA-seq data, is discussed in Chapter 4.2. The second
technique, MALDI IMS, is described in Chapter 4.3. The pIMZ framework for the analysis
of IMS data is introduced and applied in Chapter 4.4.
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4.1 Single Cell Analysis

Background

scRNA-seq experiments have emerged as an important type of sequencing experiments, and
are currently performed with many high-impact publications [186, 329]. The number of
performed and in GEO deposited scRNA-seq experiments is increasing each year (Figure
A.11). The scRNA-seq technique is on the verge to replace RNA-seq experiments, which
used to sequence many cells and their RNA together. The major advantage of scRNA-seq,
e.g. using the 10X Genomics1 protocol, is that it can deal with low amounts of input RNA
for sequencing, unlike traditional approaches, which require much more input RNA. This
ultimately enables sequencing of the RNA from only one cell. This creates new problems,
such as the missing value problematic: no detected reads for a specific gene may result
from no expression, non-abundant expression or even technical artefacts. However, the
advantages are major: the transcriptome of many single cells is detected, allowing to see
where the cells differ, and maybe draw conclusion of the composition of the sample. Each
cell, which behaves similar to other cells, could be seen as a replicate for this cell group.
With many replicates, statistical methods, e.g. for differential gene expression, can gain a
higher (statistical) power.

With the outbreak of the Coronavirus Disease 2019 (COVID-19) in early 2020, scRNA-
seq became an important measurement technique to understand this disease [9, 34, 248,
334]. Many experiments on a single cell level have been performed to understand the disease,
and the consequences of the actual virus infection, for instance for the immune system.
Particularly the possibility of scRNA-seq to detect the absence, or reduction of specific
cell types, or specific genes in specific cell populations, brought particular insight into the
progression of this disease [183, 238, 329].

In the following, the general workflow for single cell analysis is described, along with a
new method to identify the cell type of specific cell populations or clusters from differential
expression data. As part of this work, single cell analysis was established in the research unit
bioinformatics at the LMU, best practices were developed and several scRNA-seq datasets
were re-analysed to gain confidence with the analysis itself and the cell type prediction.
This resulted in the publication of a first scRNA-seq analysis paper [228], another one
currently in submission [238] as well as others currently in preparation.

Analysis Workflow

A typical scRNA-seq analysis workflow (Figure 4.1) starts with the molecular library
preparation2. Each cell is put into a droplet, in which gel beads-in-emulsion, so called

1https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/
what-is-cell-ranger

2https://assets.ctfassets.net/an68im79xiti/4UZmzpmHGn09BRRIIyagG2/
56766ac8e3488f9d66b0275c907751ac/CG000206_ChromiumNextGEMSingleCell3_v3.1_
CellSurfaceProtein_Rev_D.pdf

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://assets.ctfassets.net/an68im79xiti/4UZmzpmHGn09BRRIIyagG2/56766ac8e3488f9d66b0275c907751ac/CG000206_ChromiumNextGEMSingleCell3_v3.1_CellSurfaceProtein_Rev_D.pdf
https://assets.ctfassets.net/an68im79xiti/4UZmzpmHGn09BRRIIyagG2/56766ac8e3488f9d66b0275c907751ac/CG000206_ChromiumNextGEMSingleCell3_v3.1_CellSurfaceProtein_Rev_D.pdf
https://assets.ctfassets.net/an68im79xiti/4UZmzpmHGn09BRRIIyagG2/56766ac8e3488f9d66b0275c907751ac/CG000206_ChromiumNextGEMSingleCell3_v3.1_CellSurfaceProtein_Rev_D.pdf
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Figure 4.1: Typical scRNA-seq Analysis Workflow The typically performed steps
within a scRNA-seq experiment are listed, beginning with the retrieval of the cells and
finishing with the computational analysis. Typically, all steps on the molecular level and
the cellranger level are performed according to the 10X protocol, whilst computational
methods and method development start with the ready count matrices from cellranger.

GEMs, are contained. Each bead has multiple anchors, to which the mRNAs or antibodies,
which are contained in the cell, can bind. All beads within one droplet have the same
barcode sequence such that the cell can later be identified by this barcode. Each bead has
multiple anchors, which consist of the same barcode, to which a Unique Molecular Identifier
(UMI) is attached, which allows an identification of the specific mRNA which bound to
this anchor. This way it is clear how many distinct mRNA were originally detected. Each
bead also has multiple anchor types. There is one type which captures mRNA using a
poly(dT) tail, which binds to the poly-adenylated ends of mRNAs. Another anchor is
designed for specific RNA fragments on antibodies, which allow an additional hashing
of the cells. This is useful if several samples are sequenced in the same sequencing run.
After sequencing, the raw data from the Illumina sequencing device are interpreted by the
cellranger1 software suite, which performs the conversion of the raw data (BCL format) into
universally interpretable FASTQ format, following further counting steps. In the first step,
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three FASTQ files are created, one containing the cell barcode and UMI, one containing the
Illumina sample index, and a third one, containing the sequence which was bound to the
anchor. In the cellranger count stage, these three files are interpreted and count matrices
are created, where the number of different reads per cell and per gene is saved. During the
quality control (QC) stage, cellranger sorts out cells which do not have enough mRNA-reads
captured. Additionally, it evaluates several parameters from the read mapping step, for
instance the amount of reads mapping to the transcriptome.

A typical cellranger QC report is shown in Figure 4.2. First, the quality features (mostly
mapping related) are reported (Figure 4.2a). Using the graphics from the Barcode Rank
Plot, the number of detected and valid cells can be detected. The typical shape for this
figure is like a bent leg: first the drop over the y-values (UMI count) is low, then, at the
knee, the drop becomes quite deep, and recovers at the foot. This specific shape can be
used to tell whether there have been problems with the handling of the cells. For example,
if the drop, here at 10.000 cells, is not detectable, this may hint at burst droplets and
intermixed cells, which could render the whole experiment useless. Not shown here, and
depending on the protocol, this HTML QC report contains statistics on an additionally
executed antibody capture. In Figure 4.2b additional analyses are automatically performed.
The user can query and visualize the expression levels of specific cell clusters, which were
found using k-means clustering. Usually, the data are displayed using an additionally
performed t-SNE [311] visualization, whereas nowadays UMAP [210] is used in a productive
environment. As already mentioned, using the Barcode Rank Plot, it is possible to estimate
which barcodes represent valid cells, and which contain spurious information only, and
hence can be regarded as background. The output from cellranger provides all barcodes
and counts, as well as a filtered version, with only the valid barcodes, or cells, included. In
most cases, the filtered data is to be used for further analysis using the scRNA-seq analysis
framework of choice.

The general computational analysis workflow takes the expression matrix or matrices
from cellranger, undertakes additional filtering steps (e.g. for mitochondrial or ribosomal
fractions), integrates multiple datasets and finally scales and normalizes expression values.
On these, dimensionality reduction is performed using principal component analysis (PCA).
The principal components are used for clustering the cells and deriving a 2D-embedding for
visualization (e.g. using UMAP or t-SNE). After this step, more detailed analyses can be
executed, such as the identification of marker genes for each cluster, which can then be
used for cell type prediction. But also in-depth differential analyses of specific clusters are
often performed.
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(a)
(b)

Figure 4.2: Cellranger QC report of a scRNA-seq experiment. In (a) the mostly mapping
related quality features are reported. Using the graphics, the number of detected and valid
cells can be detected. This tells whether there have been problems with the handling of the
cells, e.g. if the drop, here at 10.000 cells, is not detectable. In (b) additional analyses are
automatically performed. By default, cellranger clusters cells by their expression values
using a k-means clustering or t-SNE.

4.2 Cell Type Prediction from Expression Data (cPred)

Introduction

Of major interest in any scRNA-seq analysis workflow is the identification of cell populations.
As part of a typical scRNA-seq analysis (see Figure 4.1), all identified cells are clustered. It
is then assumed, that all cells within a detected cluster belong to the same population of
cells, e.g. one cell type. In order to determine the cell type for such a cluster, it is necessary
to derive actively expressed genes, which describe the cluster, so-called marker genes. From
these marker genes, the cell type of a specific cluster can then be predicted. This can, for
instance, be done using gene signatures. Gene signatures are, in general, lists of genes. For
cell type prediction, for instance, this could be lists of genes present and (highly) expressed
in specific cell types. Using an over-representation analysis it can be checked for which
gene list, the marker genes are most over-represented [101]. The corresponding cell type of
this list is then predicted for the cluster.

In bioinformatics, there are two common tasks which are performed with respect to gene
signatures: (1) the creation of gene signatures [236], and (2) the usage of gene signatures
in applications, ranging from the detection of, for instance, specific cancer types [187],
over the prognosis of disease outcome [346] to the prediction of how effective a specific
treatment might be [49]. Over-representation analyses are commonly used for the evaluation
of such gene signatures. Using, for instance, the hypergeometric test, it can be checked
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whether selected genes are over-represented in a gene signature, compared to all measured
genes [46]. However, these approaches, which are also implemented by the DAVID web
service [69], STRING DB [212] or PathCase [87], have one problem in common: they
compare gene sets with gene sets and thus rely on thresholds which control both gene lists’
lengths. Common thresholds are applied to the absolute fold-changes, or the (adjusted)
p-value. These thresholds are of high importance, because it is known that the overlapping
probability depends on the length of a gene list [98]. Given ranked gene sets, a correlation
test (like Spearman’s correlation) can yield better results than the hypergeometric test
[242, 295]. Additionally, there are other statistical tests possible, or scoring-based analyses,
like DOSE [341] or GSEA [295]. The probably most famous database of gene (expression)
signatures is MSigDB [185, 295]. Here, signatures for specific processes, miRNA targets,
transcription factor targets, cancer or immunologic phenotypes are available. However, no
cell type specific signatures are contained in MSigDB. Gene signatures are commonly used
in cancer genomics. But the way they are applied, in the sense that sets of marker genes can
predict the survival rate of cancer, needs to be rethought. It was found that most random
gene expression signatures are significantly associated with breast cancer outcome [313].

Nonetheless, the use of gene signatures for the prediction of specific conditions receives a
revival with the advent of scRNA-seq techniques. During the analysis of such data, clusters
of cells are produced, in which all cells show a similar expression pattern. Hence, the
question is posed, what kind of cells are these? In order to answer this question, several
tools have been developed by the community. The Single-Cell Signature Explorer [243]
takes lists of genes (e.g. KEGG [148] or other gene signatures) as input and scores these
against all cells of the dataset, by putting the amount of marker gene UMI-counts into
relation with all expressed UMI counts of that cell. This way a cell type is assigned to each
cell. For a cluster of cells, the cell type can then be derived, e.g. by the most frequent cell
type within the cluster. In contrast to this approach, which takes existing gene signatures
to estimate how well a signature matches a specific cell, Torang et al. [308] present a
method to obtain new cell type signatures from scRNA-seq data. Using an elastic-net
logistic regression approach they identify gene signatures for immune cells. The particular
problem with immune cells is that even though they derive from a common progenitor cell,
the individual cells differentiate into distinct cell types. Due to their common ancestor,
it is extremely difficult to discriminate the individual cell types. The authors provide a
classifier and gene signatures which can be applied on custom data. Another method to
assign cell types to whole clusters within scRNA-seq analysis is presented by the authors
of PanglaoDB [94]. The authors build for each cluster and each possible cell type a score,
which consists of the expression of a marker gene, but also weights the specificity of the
gene for this cell type (derived from other experiments) and the frequency of this gene
appearing in cell type signatures. This, so called, down-weighting of overlapping genes [301]
is meant to improve gene set analysis. By applying their algorithm to a whole database of
(automatically evaluated) scRNA-seq experiments delivers also an incrementally updating
database of (possible) marker genes for specific cell types. Some are canonical, curated,
markers, others are predicted. Marker genes are listed by cell type and tissue, allowing
the identification of not only the cell type, but also the tissue the cells are from. The
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implementation of this method, however, is not available to the public. More recently the
SingleR method for cell type identification was published [13]. For each cell (or cluster)
the gene signature lists are ranked, compared with a reference and sorted out until only
two possible cell types remain. Instead of using all genes, genes are restricted to a set of
variable features between all cells. SingleR is similar to PanglaoDB in not relying on fixed
sets of markers, like those published in literature, or listed in text books. The authors rely
on reference datasets where cells were annotated manually. These reference datasets are
then compared to the actual data in order to assign cell types.

There are few databases which focus on the provision of marker genes for cell types.
Among these are, as already presented, PanglaoDB, and CellMarkerDB [343]. CellMarkerDB
lists marker genes, which were found for a particular cell type (which can be accessed
via an ontology) in a specific experiment. For each dataset it is annotated whether it
is from a cancer or normal tissue, which is useful and important. Finally, there exists a
commercial service, CellKB3, which integrates several experiments and makes them available
by organism, cell type, publications or even disease. This platform, however, does not offer
the possibility to download signatures without a paid subscription.

While there are multiple resources for obtaining cell type predictions for scRNA-seq data,
these methods rely on manually curated reference datasets, focus on a specific framework
to be used in or are limited to a specific experimental type. In this work a method for
scRNA-seq cell type prediction, cPred, is developed, which differs from existing tools. cPred
is independent of the used analysis framework, but integrates with Seurat [43], scanpy [330]
and pIMZ (Chapter 4.4). It integrates PanglaoDB and CellMarkerDB databases for marker
genes such that users must not first create or find own sets of cell type specific genes or
respective reference data sets. As such, it operates independently of the experimental type,
and works for both scRNA-seq marker gene lists, and for IMS marker masses lists. This
method was successfully applied in a recent publication Vascular neutrophilic inflammation
and immunothrombosis distinguish severe COVID-19 from influenza pneumonia [228] and
the submitted manuscript Protective immune trajectories in early viral containment of
non-pneumonic SARS-CoV-2 infection [238].

Methods

Extracting Marker Genes Marker genes are extracted for each cluster, for instance, in
scRNA-seq data using Seurat’s FindMarkers function, which compares all genes for all cells
of the active cluster with all other cells (background). The comparison test can be user
defined, but the t-test works generally well. All other arguments are set to their default
values (e.g. only test genes that are expressed in a minimum of 10% of cells, and have at
least a logarithmic fold change (logFC) difference of 0.25).

All identified marker genes (regardless of their p-value or expression level) are then
annotated with expression data. For each marker gene in each cluster the number of cells
within this cluster and the number of cells expressing this gene in this cluster are annotated.

3https://cellkb.combinatics.com

https://cellkb.combinatics.com
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For the gene expressing cells the five number summary (minimum, 0.25-quantile, median,
0.75-quantile, maximum) and the mean are calculated for the gene’s expression values. This
statistic is available both for the cluster cells and the background cells. The results for all
clusters are then merged into a single data frame which can be exported to a tab separated
file, which serves as input for the actual cell type prediction.

Data Sources and Features cPred can automatically retrieve cell type gene signatures
from two sources. The default choice is PanglaoDB [94], whose regularly updated gene
signatures for cell types are downloaded, decompressed, saved and read in, extracting all
required values. The other source is the CellMarkerDB [343], which can be used for the
cell type prediction using the –cellmarkerdb flag. In order to allow for reproducible
predictions, both databases are downloaded and stored, and will only be overwritten if the
user wishes to update the cell type gene signatures.

By default, the top 10 predictions for each cluster are printed. This number can be
adjusted by the needs of the user. In order to improve the usability, e.g. the –seurat
flag generates R code which can be used to annotate the found cell types directly in the R
scRNA-seq data analysis.

In order to restrict the prediction to organs or tissues of interest, the user can specify a
positive list of tissues or organs to consider exclusively.

Predicting Cell Types The prediction of the cell type for a specific cluster is achieved
using a weighted sum. For each cell type j, and for each expressed gene g in a cluster k,
which happens to be a marker gene (it will be named accepted gene), a gene score GSj,k,g

(Equation 4.1) is calculated. meanSensj,g refers to the sensitivity with which the gene g is
expressed in the cell type j, meanSpecj,g refers to the respective specificity. Contributing
to this score is also the prevalence of the gene in the cluster, CPk,g — a measure that is
deducted from the cluster annotation, namely the number of cells which express the gene
and the total cells in the cluster. The average expression avgExprg,k relates to the mean
expression of the specific gene in the cluster. The importance of the gene g in all reference
clusters is defined as impRCg =

1.0
1+log2(|{j|g∈MGj∀j}|) .

The gene score is summed up over each accepted gene of a cluster such that the
totalScorej,k (Equation 4.2) for all significant marker genes MGk of cluster k can be
determined.

GSj,k,g = meanSensj,g · avgExprg,k · CPk,g · (1−meanSpecj,g) · impRCg (4.1)

totalScorej,k =
∑

g∈MGk

GSj,k,g (4.2)

clusterScorej,k = totalScorej,k ·
accUniquej,k
allUniquej

· accGenesj,k
allGenesj

(4.3)

The final cluster score (Equation 4.3) expresses the score for cluster k being of cell type
j, where accUniquej,k refers to the accepted unique genes for cell type j in cluster k, and
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allUniquej to all unique genes of that specific cell type. Furthermore, accGenesj,k is the
number of accepted genes for cell type j in cluster k, and allGenesj is the number of all
marker genes for cell type j.

Datasets for Evaluation The cell type prediction of cPred is evaluated on four gene
expression tables from two experiments. The first scRNA-seq experiment originates from
human and mouse atherosclerotic aorta and can be accessed through NCBI GEO [22, 82]
accession GSE131780 [329]. The analysis was conducted for each species separately, as
well as using an integrated (combined) approach, resulting in three distinct expression
tables. The second experiment is within the COVID-19 context of immune cells isolated
from bronchoalveolar lavage fluid (BALF) and can be accessed through GEO accessions
GSE145926 [183] and GSE128033 [217].

All datasets were downloaded from GEO and processed with Seurat [43, 293]. After
integrating the single datasets (human and mouse for GSE131780, all patients for GSE145926
and GSE128033), the data were normalized and scaled with default parameters. After
PCA and neighbour-finding the results are visualized using UMAP [210]. Using the
described marker gene extraction method, marker genes were extracted and used for cell
type prediction.

While cPred can make use of several resources for cell type prediction, the primary
source is PanglaoDB, because cell types are annotated with their tissue residency, and with
their sensitivity and specificity of being a marker gene for each cell type in each tissue. The
presented results were calculated using the PanglaoDB cell markers retrieved in April 2020.
For the purpose of cell type prediction for the human/mouse atherosclerotic plaque dataset,
only cell types within expected tissue types Smooth muscle, Vasculature, Connective tissue,
Immune system, Heart, Epithelium were considered. Likewise, the context for the BALF
dataset consisted of Immune system and Lung cells.

For the comparison with SingleR (version 1.3.8, [13]), the celldex (version 0.99.1, [13])
dataset ImmGenData (IGDT, [120]) and HumanPrimaryCellAtlasData (HPCA, [191]) were
used. Particularly the ImmGenData reference set is specific to immune cells, while the
other reference set additionally contains more distant or (here) irrelevant cell types. Both
datasets were identified as the best matching ones, containing all expected cell types. Cell
type prediction with SingleR was conducted in both supported modes: per cluster and per
cell. Cluster-level predictions are derived by assigning the most frequently observed cell
type within a cluster.

Availability cPred is available from GitHub https://github.com/mjoppich/scrnaseq_
celltype_prediction including documentation. cPred adheres to the FAIR principles
because it is findable and easily accessible due to its documentation. The software is
interoperable because common tab-separated files serve as input. It is reusable because its
source code is publicly available and easily extendable.

https://github.com/mjoppich/scrnaseq_celltype_prediction
https://github.com/mjoppich/scrnaseq_celltype_prediction
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Results and Discussion

The presented scRNA-seq cell type prediction application (cPred) consists of two steps.
The first step generates expression data from a Seurat [43] or scanpy [330] scRNA-seq
object. The main objective here is to aggregate all relevant information and to condense
all necessary information into a single one. Specific focus was led on a fast computation.
Particularly for datasets with numerous cells the aggregation of the per gene statistics can
take some time, if the sparse, column indexed, expression matrix is not handled correctly.
With large datasets the transformation of the sparse expression matrix into a dense matrix
is no option due to memory restrictions. Hence, the matrix is transformed into a data frame
which allows fast filtering of gene expression values. In the second step, the actual cell type
prediction using the cPred method is made. The cPred method follows the general principles
of a weighted sum scheme, similar to the one presented by PanglaoDB [94]. However, there
are several differences in the way the weighted sum is calculated. In particular, the cPred
weighted sum approach makes more use of gene down-weighting [301] in the calculation of
the clusterScorej,k. The principle of gene down-weighting refers to designing gene weights
such that genes appearing in few gene sets are emphasized, while genes that appear in many
gene sets are penalized. In the cPred method, gene down-weighting is implemented in the
clusterScorej,k calculation by the two multiplied fractions for accepted unique marker genes,
and found marker genes. These fractions are multiplied with the totalScorej,k, because,
only a high overlap of unique marker genes, or only a high overlap of all marker genes, is
not sufficient for a cell type assignment. Both of these conditions should be met.

cPred is easy to use. For the creation of the gene expression per cluster predefined
functions are available. The expression values are arranged such that the following prediction
step can directly take place. Likewise, after the prediction, scripts are provided as output
such that the user can directly transfer the result of the prediction back into the Seurat
session. The actual prediction tool automatically downloads the required databases and
makes them accessible. The user does not have to first arrange files, nor does the user have
to care about finding or even creating databases or annotated reference datasets first. Cell
type prediction becomes a copy and paste endeavour.

The resulting cell type prediction for the joint human and mouse dataset of atherosclerotic
aorta is visualized in a UMAP (Figure A.34). In the following, the results from the presented
cell type prediction method cPred are compared to the gold standard (Table 4.1). The
assignment was made according to the published marker genes given in the original literature
[329]. For two clusters the original author did not provide a cell type (clusters 14 and
20). Cluster 14 is found to be CD68low and CD11c+ while also being positive for FLT3.
It can thus be assumed, that these cells represent dendritic cells [42]. However, given the
broad range and high similarities between macrophages and dendritic cells, the assignment
remains difficult. The other unnamed cluster is cluster 20, which is only present in the
human cells. This cluster expresses APOD, DCN and LUM. The latter two are identified
as fibroblast markers in heart tissue by Muhl et al. [220]. Tsukamoto et al. describe that
APOD may be part of a protective response of myocardium (e.g. fibroblasts) to vessel [309].
This cluster is thus assigned the fibroblast cell type. Comparing the cell type predictions
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of the combined dataset to the gold standard reveals two key results: the agreement with
the human and mouse datasets is high, and most cell types are correctly assigned. Cell
types are assigned correctly for 18 of the 24 clusters for the combined (human and mouse)
dataset. In one case (cluster 2), fibroblasts are predicted instead of smooth muscle cells. For
cluster 11, cPred predicts smooth muscle cells, where originally pericytes were annotated.
While pericytes are the secondary cell type prediction for that cluster, one notes an ACTA2
up-regulation in this cluster, which clearly hints at a vascular smooth muscle cell origin:
ACTA2 is a marker for smooth muscle cell differentiation [256]. The cell type of this
cluster thus may not be fully clear. Cluster 19 is originally annotated as neurons, however,
the cPred prediction of adipocytes seems plausible as well. Fibroblasts can migrate into
adipocytes [5, p. 1228], and it is known that adipocytes can exhibit fibroblast-like behaviour
[141]. For cluster 21 cPred predicts either NK cells or gamma delta T cells. Both are similar
to the originally annotated T cells. The epithelial cells in cluster 22 are not identified
correctly. Here, endothelial cells are predicted. The annotation for cluster 16 is of major
interest, since this is the cluster with the newly identified fibromyocytes, according to the
original authors. Fibromyocytes are cells which develop from a contractile smooth muscle
cell towards a fibroblast phenotype [329]. cPred predicts fibroblasts or chondrocytes for
this cluster. Indeed, chondrocytes are already known to occur in atherosclerotic lesions,
being involved in the calcification of atherosclerotic plaque [28]. Moreover, it is known that
fibroblasts can differentiate into chondrocytes and vice-versa [5, p. 1228]. Likewise, smooth
muscle cells can differentiate into chondrocytes [28, 124], too. With this information it does
not seem unlikely that chondrocytes can express characteristics of both, fibroblasts and
smooth muscle cells. The cell population the original authors describe as fibromyocytes
could well be chondrocytes, with smooth muscle cell origin. This would match with the GO
process the authors identified being up-regulated in this cell population, Osteoblasts/clasts
and chondrocytes in RA (rheumatoid arthritis). This brief literature research poses at least
the question, whether fibromyocytes are distinct cell types, or whether it only describes a
(trans-)differentiated cell of the connective tissue. Overall, the non-matching predictions at
least identify closely-related cell types, and the available data, combined with literature
research, does not rule out the predicted cell types.

A similar evaluation was performed for the single cell immune landscape of bronchoalve-
olar lavage fluid (BALF) of COVID-19 patients [183]. In contrast to the previous analysis,
fewer distinct cell types are expected, but mainly lymphoid or myeloid derived cells. The
UMAP representation of the data for the BALF dataset is shown in Figure 4.3, split by
disease stage.

For this evaluation the prediction results from cPred and SingleR are compared (Table
4.2). A prediction is classified as exact if the predicted cell type matches the observed one.
An approximative match is assigned if the predicted cell type does not match the actual
one exactly, but the prediction is somewhat plausible, e.g. if monocytes are predicted for a
macrophage cluster. Finally, more distant predictions are classified as incorrect.

In this benchmark the results from cPred with PanglaoDB gene markers are compared
against SingleR predictions on a per-cell and per-cluster basis using the HPCA and IGDT
reference datasets. Cluster-wise predictions in the per-cell prediction run were determined
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by majority-vote of all cluster cells.
In general, the cell type prediction with cPred shows useful results, both using the

context-sensitive version and the global one. The context-sensitive cPred prediction achieves
15 exact matches and thereby achieves a better result than SingleR. The (global) prediction
using no context definition assigns 14 clusters correctly, like the best SingleR prediction
using the IGDT reference on cluster-level predictions. Focusing on the context-sensitive
evaluation it must be noted that for 7 of the 13 inexact assignments, the cells were annotated
as macrophage in the original paper, but monocytes were predicted using the cell type
prediction. For these clusters macrophages were predicted as secondary prediction. In
clusters 10 and 24 gamma delta T cells are predicted instead of regular T cells. In cluster
16 neutrophils are predicted instead of macrophages. Two assignments were more severely
incorrect. In cluster 14 mast cells were predicted, which are annotated as ciliated epithelial
cells in the original dataset. In cluster 27 neutrophils were predicted, but plasma cells are
annotated. An analysis of the scoring shows that for instance for cluster 27, IGHG4 is
given as distinct marker for plasma cells. However, this gene is listed as marker for B cells
in Panglao DB, hence plasma cells were down-weighted. Particularly immune cells have
only few unique marker genes due to their ancestry. Then such a shared gene enhances
the effect of the down-weighting strategy. It is surprising though that the original paper
does not report any undifferentiated monocytes. Some predicted monocyte clusters could
thus actually be monocytes, considering that the assignment in the original paper was
performed using the CD68 antigen, which is expressed on all monocytes, macrophages,
neutrophils, basophils and large lymphocytes according to literature [222]. In depth analysis
of expressed marker genes suggests a monocytic origin for clusters 3-5: CD74+, CD81+
(4+5) or CD9+ (3+4). It is interesting to see differences between the cPred predictions with
and without context filtering. These results are an effect of down-weighting, because cPred
calculates cell type-specific marker genes on only the selected tissue types. Considering
approximative matches, both cPred predictions perform better than SingleR, achieving up
to 86% correctly assigned clusters. The context-sensitive cPred prediction performs best,
both for approximative matches and exact ones.

The results obtained through cPred are compared to one of the recent competitors,
SingleR [13]. In comparison with the results of SingleR, cPred predictions show a higher
variability in cell types, even among the quite similar cells of myeloid origin. For instance,
SingleR seems to have problems in distinguishing T cells from (differentiated) monocytes
in this setup, which has not been a problem for cPred. On the contrary: cPred predicted
various monocytic successor cell types for what should be macrophages. A total of 14 clusters
were assigned incorrectly by SingleR on the IGDT data set with per cluster predictions. This
is worse compared to cPred, but in a similar range. Taking also approximate matches into
consideration, cPred takes the lead with 24 approximatively correct assignments. The rather
poor performance of SingleR on this dataset might be explainable by biases induced due to
the use of other sequencing techniques in contrast to the reference datasets. Particularly
immune cells are rather hard to handle and to sequence, potentially inducing additional
biases to the data, ultimately making datasets not easily comparable. Because SingleR
relies on reference datasets, only therein contained cell types can be predicted. When
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using cPred it is possible to restrict the search space to cell types from specific tissues only,
allowing a context-sensitive prediction.

Therefore, cPred has several advantages compared to SingleR and other state-of-the-art
software. First, it does not require raw data for cell type prediction, but can be used
directly on derived expression data. The calculation of these data/gene lists is done for any
scRNA-seq experiment that is collected by PanglaoDB, and that output can directly be
used. No further compute-intensive steps are required, as compared to SingleR, for instance.
With cPred a context-aware exploration of the data can be performed, simply by defining
the context, e.g. in terms of tissue types to consider in the analysis. cPred does not require
specific reference data, but operates on gene lists, which are directly available from two
resources, Further resources can easily be integrated.

Conclusion

Cell type prediction is an important task within any scRNA-seq experiment. It gives
researchers a clue which cell types might be of interest, or behave abnormally. Still,
identifying cell types in general is not an easy problem. Most times abnormally small
p-values are calculated for marker genes, genes which define a specific cluster. Going
through these lists manually and searching for specific markers is extremely unwarranted
work. Working with predictions, which can be eventually checked much easier, helps a lot.
It is important to have a solid prediction tool available, which not only tries to predict the
correct cell type, but also delivers the reasoning. cPred has the ability to print the top
n predictions, and for each prediction the accepted unique or cell type-specific genes are
printed. This makes it easy to curate the predictions manually, helping with the decision on
whether a prediction is correct, or should be refused. For one analysed dataset, consisting of
about 60 000 cells and 28 clusters (BALF dataset), the prediction takes approximately one
minute and is bound on the number of clusters. With cPred an initial cell type prediction
is done fast. For both publications where cPred was already applied [228, 238], only little
manual curation at the progenitor level was needed.

The cPred predictions evaluated on both datasets matched well, with differences to the
GOLD standard usually being on the progenitor or successor level. cPred performs better
than SingleR on the BALF dataset. In fact, it could be learned that already differentiated
cells may change their differentiation again, but often keep genes associated with previous
differentiations expressed. This irritates prediction methods, but with cPred it can be
understood due to the open reasoning of the tool. However, even with manual curation
the cell type could not be clearly derived from expression data alone, and possibly only
additional histological analyses can shed light onto the actually observed cell type.

It is extremely important to note that cPred works on differentially expressed marker
genes for specific clusters. This opens new ways for using cPred, because it does not matter
where these marker genes came from, whether from a bulk RNA-seq experiment with
sorted cells, a scRNA-seq experiment, or possibly even proteomics data. The latter will be
exploited in the next section.
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4.3 MALDI Imaging Mass Spectrometry
Imaging mass-spectrometry (IMS) is an emerging sub-discipline of regular mass spectrometry
(MS). While IMS can not yet deliver the same throughput and resolution as currently
seen by regular LC-MS/MS, its advantage is the conservation of spatial information: it is
recorded at which location specific spectra have been recorded, and subsequently it can
be determined at which location specific peptides, lipids or proteins have been detected.
In general (see schematic in Figure 4.4), the to be measured, solid, sample is fixated on a
sample holder and coated with a matrix layer. This matrix aids in laser analyte desorption
and ionization [226]. The size of the measured pixels depends on the ablation area of the
laser beam as well as the distance between measurement points. The desorbed ionized
singly charged molecules are then reflected and guided to the mass analyser for recording
the spectrum.

While regular bulk-measurements do not provide spatial information, these data are
still important to complement the spatial resolution measurements. In fact, such bulk
measurements allow a deeper understanding of proteomic dynamics than IMS alone.

IMS is an emerging technology to capture both proteomic data and spatial information.
This combination allows the correlation and combination of imaging data (e.g. from
microscopic images) and spectral information. Hence, it is possible to draw conclusions on
the correlation of specific masses and cellular or tissue structures. IMS data are getting
used more frequently in a wide area of applications. Schulz et al. demonstrate the use of
this technique in drug development and pharmaceutical research [273]. More specifically,
Spraker et al. describe several ways how IMS can be used in natural product discovery
[287]. For instance, IMS helped to discover a novel bioactive lipopeptide produced by
the plant pathogenic bacterium Ralstonia solanacearum, which can cause morphological
shifts in fungi [288, 289]. On the topic of chemical heterogeneity across bacterial colonies,
Pessotti et al. used MALDI-IMS to visualize metabolites by small assemblages of bacterial
cells and could thus show how these can differentially produce metabolites in response
to local chemical gradients [241]. Similarly, Schleyer et al. showed that bloom-forming
algae perform a metabolic shift towards odd-chain fatty acid lipids during viral infection
[266]. Finally, Patterson et al. used IMS to produce a three-dimensional model of lipids in
atherosclerotic plaques. These examples show the broad area where IMS can be a useful
technique to resolve spatial processes.

While there are many areas where IMS can be applied to, toolboxes for the analysis
of MSI data are rare. There exist several stand-alone software like Mirion [234] or the
MATLAB-based MSiReader [29], which allow an analysis using specific applications with
a GUI. On the other hand there exists a predefined workflow for IMS analysis [92] for
the popular Galaxy server [102]. Bemis et al. presented an R package for the statistical
analysis of IMS data [23], and Veselkov et al. [315] implement a python-based analysis suite
for efficiently processing of hundreds of IMS datasets. Unfortunately this analysis suite
is not further maintained. Many of these toolboxes focus on the calculation of principal
components to perform any analysis on this reduced space. Such methods are collected by
Verbeeck et al., providing a collection of existing unsupervised learning methods [314].
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Figure 4.4: MALDI-TOF IMS schematic A laser beam hits the solid samples covered
with the matrix layer, desorbs ionized singly charged molecules and guides these to the
mass analyser for the measurement of the spectrum for the active pixel.

4.4 A Framework for Imaging Mass Spectrometry Data
Analysis (pIMZ)

Imaging mass-spectrometry (IMS) is a new technology in the area of proteomics, and is
increasingly used for broad biological and clinical applications. It allows the simultaneous
measurement of hundreds of analytes within a specific m/z range together with their spatial
distribution. Particularly the varying m/z range, which allows the measurement of analytes
such as lipids, peptides or whole proteins, makes it a versatile and powerful measurement
tool (the preparation of the sample may depend on the performed measurement). The most
common measurement technique for IMS, and the one applied in the context of this work,
is MALDI (matrix-assisted laser desorption/ionization) in combination with a time-of-flight
(TOF) mass analyser. Since IMS experiments characterize the chemical composition of
biological samples (e.g. tissues) at spatial resolution, their application area ranges from
botany samples [287], over clinical research [273] to forensic investigations [169, 170].

Two typical goals of the bioinformatics analysis of IMS data are image segmentation,
which partitions a tissue into regions of homogeneous spectral profiles, and image classifica-
tion, which assigns locations of the tissue to pre-defined classes, based on their spectral
profiles [23, 245]. Commonly these two tasks are combined: first the tissue is partitioned
into regions of homogeneous spectra, which are then assigned to pre-defined classes. How-
ever, this task sounds more simple than it is: due to the large and complex nature of the
datasets, but also due to the biological and more so technical variation, these tasks are
quite difficult. As with any spectrometry based method, particularly the variation in the
intensity of the measured spectra has to be taken care of. Frequently, measured spectra
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suffer from m/z shifts or require baseline correction in the preprocessing. While there
exist several closed-source commercial solutions for the analysis of IMS data, there is no
open-source package, which goes beyond this clustering step. Most packages finish with
the identification of specific masses, but do not allow comparing multiple IMS datasets, or
assess differential masses to detect the measured proteins. These, however, are important
for detecting differences in complex human disease contexts.

In order to overcome this challenge, pIMZ4 is presented: an open-source, python-based
framework for a fast, integrated and convenient analysis of IMS data. pIMZ differs from
existing software packages such that it is open-source, is not within the R universe but is
python-based and specifically designed for IMS analysis. In contrast to commercial tools,
such as SCiLS Lab (SCiLS5), flexImaging (Bruker6), HDI (Waters7) and TissueView (AB
Sciex (out of production)8), pIMZ is open-source. Regarding existing R packages for IMS
data analysis, like Cardinal [23], MALDIquant [103] or the recently published rMSIproc
[250], pIMZ is going further than spectral segmentation and classification, allowing a
comparative view within the spectra of one sample and between spectra from other samples
or measurements. It also integrates methods which create a better understanding of the
data, e.g. by annotating gene names to masses, or predicting cell types for identified clusters.
pIMZ differs from existing python packages like pyBASIS [315] in such that it promotes an
interactive, (jupyter) notebook-based analysis, similar to that of scRNA-seq frameworks
like Seurat [294] or scanpy [330]. It must be added that at the research unit bioinformatics
pyBASIS could not be started due to runtime exceptions.

Moreover, pIMZ allows the researcher to perform a high throughput analysis of the
data, but can additionally be used to explore the data in detail. This allows to explore the
researcher’s degree of freedom during the performed analysis. By providing these methods,
researchers can directly estimate the reliability of important single results and thus estimate
the robustness of the results, e.g. for developing further hypothesis or performing distinct
experiments.

pIMZ enables a python-based analysis of IMS data, outgoing from data in the imzML
format [269] and performing differential and integrative analyses of one or many regions.
The most important steps are shown in Figure 4.5. After IMS data extraction from the
imzML file, first the raw data must be normalized. With the normalized spectra, cluster
analysis can be performed. pIMZ offers both supervised and non-supervised methods to
create a clustering. In addition to classic approaches, pIMZ employs strategies known from
scRNA-seq analysis: dimensional reduction via UMAP [210] and clustering via HDBSCAN

4pIMZ stands for python-based Imaging Mass Spectrometry, where the latter is abbreviated by MZ,
which stands for m/z, the mass-to-charge ratio for which intensities are measured in mass spectrometry
experiments.

5https://scils.de/
6https://www.bruker.com/products/mass-spectrometry-and-separations/ms-software/fleximaging/

overview.html
7https://www.waters.com/waters/de_DE/HDI-Imaging-Software/nav.htm?locale=de_DE&cid=

134833914
8https://sciex.com/products/mass-spectrometers/tof/tof-systems/tof/tof-5800-system

https://scils.de/
https://www.bruker.com/products/mass-spectrometry-and-separations/ms-software/fleximaging/overview.html
https://www.bruker.com/products/mass-spectrometry-and-separations/ms-software/fleximaging/overview.html
https://www.waters.com/waters/de_DE/HDI-Imaging-Software/nav.htm?locale=de_DE&cid=134833914
https://www.waters.com/waters/de_DE/HDI-Imaging-Software/nav.htm?locale=de_DE&cid=134833914
https://sciex.com/products/mass-spectrometers/tof/tof-systems/tof/tof-5800-system
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Figure 4.5: pIMZ pipeline and analysis steps This flow chart displays the steps available
within pIMZ to get from the raw IMS data in imzML format to differential masses and
marker masses. On this path, multiple visualizations and comparisons of sub-results are
possible and supported by pIMZ.

[45]. Finally, pIMZ offers many visualization possibilities and means to explore single
masses. Using DE analysis, high-throughput analyses of many masses can be performed at
once.

Materials and methods

Nomenclature Within the following description a specific terminology is used. One
input imzML-file corresponds to a measured slide. If there are multiple, unconnected
areas of measurement on a slide, the single areas will be referred to as regions. In a
biomedical setting, there will be multiple sections on a slide, which correspond to these
regions, respectively. After clustering, the regions may be subdivided into clusters, of which
some can be classified as background. In general, the background cluster will be assigned
ID 0.

Data Input and Processing Wherever possible, the pIMZ framework relies on already
existing and maintained packages. A list of used packages is presented in Table 4.3.

Using the IMZMLExtract class imzML-files can be loaded and regions extracted. To
enable this, first all regions within an imzML-file must be identified, which is achieved
using the image labelling function provided by SciPy [317]. From this labelling it can be
determined which pixels belong to each region, as well as which dimensions each region
has. This is used to extract the region as a numpy [116] 3D array, with the m/z values in
the third dimension. The x,y coordinates refer to the position of the pixel in the measured
area. Any unmeasured pixel (e.g. because a non-rectangular area was measured) is replaced
by a 0-vector. For peak binning and peak calling, pIMZ relies on the capabilities of the
ms_peak_picker library.

9https://github.com/mobiusklein/ms_peak_picker
10https://www.globus.org/

https://github.com/mobiusklein/ms_peak_picker
https://www.globus.org/
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Table 4.3: List of libraries used in pIMZ pIMZ internally uses several already published
libraries for several purposes, like loading imzML-files, perform numeric operations or
statistical tests.

Library Purpose

pyimzml Load imzML-files [269].
skimage Imaging methods [312].
numpy Numeric operations [116].
ms_peak_picker Identify m/z peaks if no common m/z bins were used 9.
ctypes Include C++ library for parallel calculations (part of python).
matplotlib Visualize results [132].
biopython Calculate theoretical protein masses [61]
diffxpy Perform differential expression tests [330].
scipy Clustering algorithms [317].
umap Dimensionality reduction for clustering [210].
hdbscan Find clusters [209].
dabest Visualize detailed mass intensities per cluster [123].
globus_sdk Access to globus 10 enabled data storage, e.g. HuBMap [130].

Normalization Within the pIMZ toolbox several normalization methods are implemented:
(1) divide by maximal intensity within spectrum, (2) divide by maximal intensity within
region, (3) divide by maximal intensity within all regions and (4) by unit vector. More
sophisticated methods, which are mentioned as best-practice in the pyBASIS framework
[315], are supported by pIMZ, too. These are the (5) intra_median and (6) inter_median
normalization. For the intra_median normalization, the median fold change procedure
described by Veselkov et al.[315] is followed: ‘each mass spectrum is normalized to its
median fold change ion current by dividing each peak intensity within a mass spectrum by
the median fold change between all peak intensities of the same spectrum and the reference
spectrum, which typically is chosen to be median profile’. Likewise, the inter_median
normalization is implemented: ‘Each dataset is normalized to its median fold change ion
current by dividing each peak intensity of a dataset by the median fold change between the
peak intensities of the same dataset profile and reference dataset profile’ [315].

Clustering Currently, pIMZ supports 9 different unsupervised clustering techniques.
These include UPGMA, UPGMC, WPGMA, WPGMC, WARD and k-means clustering
methods (implemented by SciPy [317]), which take as input the pairwise similarity matrix
calculated via the pIMZ C++ module. The C++ module is integrated into python using the
ctypes package and operates on a numpy matrix. Using OpenMP [65] parallel for
shared-memory programming, all pairwise cosine similarities are calculated. There are other
clustering methods implemented, which do not rely on the similarity matrix, but perform a
dimensionality reduction using UMAP [210] first. The actual cluster-finding, e.g. using
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the density based clustering method HDBSCAN[45] or WARD, is then performed on this
reduced space.

Differential Expression analysis In order to generate a map from protein ID to
expected mass, first the genomic annotation is read using the gffutils package 11. Then,
for each transcript its RNA sequence is determined, which is translated using biopython
[61]. From the protein sequence, the molecular_weight function calculates the protein’s
mass once using the regular protein weights as well as using the monoisotopic weights. It is
free to the user which variant should be used for mass-to-protein assignments.

The differential expression analysis is conducted either via the methods provided by
diffxpy [330] or via nlEmpiRe12 and operates on the intensity values of the masses of the
compared regions.

Data Access Input data for pIMZ are usually provided in the imzML-format. Addition-
ally, pIMZ has a module to access data which is stored via Globus 13, a platform for the
storage of huge research data. Using the HubMAPDownloader data stored in Globus, e.g.
data provided by the HuBMAP consortium [130], can be accessed easily. Currently, there
are 13 different MALDI IMS data sets published with HuBMAP14.

Data The presented use-case data were obtained from the Soehnlein lab15. These data
stem from sectioned arteries of mice harvested at different time points. All mice underwent
the same high-fat diet and developed atherosclerosis.

The measurement of the slides was performed using MALDI-TOF with single charged
proteins (z = 1). Thus, the m/z value equals the protein mass in Dalton (Da) and is used
interchangeably here16.

Availability The pIMZ framework is available online github.com/mjoppich/pIMZ or via
the python package manager pip https://pypi.org/project/pIMZ/. By providing pIMZ
through these resources it becomes easily findable. Through it extensive documentation,
available online https://pimz.readthedocs.io/en/latest/, pIMZ becomes easily access-
ible. The framework is interoperable by using a common input file format, and providing
common outputs, which can serve as input for other tools, like cPred (Chapter 4.2). By
providing the source code and the documentation, pIMZ also becomes easily reusable and
extendable. pIMZ thus adheres to the FAIR principles.

11https://github.com/daler/gffutils
12Csaba, Gergely. Personal Communication. 2019.
13https://www.globus.org/
14Data Accessed 2021/02/07. https://portal.hubmapconsortium.org/search?mapped_data_types[0]

=MALDIIMSpositive&entity_type[0]=Dataset
15Söhnlein, Oliver. Personal Communication. 2020.
16Lahiri, Shibojyoti. Personal Communication. 2019.

github.com/mjoppich/pIMZ
https://pypi.org/project/pIMZ/
https://pimz.readthedocs.io/en/latest/
https://github.com/daler/gffutils
https://www.globus.org/
https://portal.hubmapconsortium.org/search?mapped_data_types[0]=MALDI IMS positive&entity_type[0]=Dataset
https://portal.hubmapconsortium.org/search?mapped_data_types[0]=MALDI IMS positive&entity_type[0]=Dataset
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Results and Discussion

First the general idea of the pIMZ framework is presented, together with the most important
features. In the second part of this section the functionality of pIMZ is demonstrated at
the example of the atherosclerotic mice arteries use-case.

Package Overview The pIMZ framework consists of four distinct functional parts. The
first part is the IMZMLExtract class, which implements any functionality related to the
input. This includes reading data from the imzML file, including the normalization of
the input data. The second part, implemented in the SpectraRegion class, provides
all operations on a single region, e.g. clustering and differential analysis. The third part
complements the second part: a C++ library which performs the similarity calculations in
parallel for performance reasons. The fourth and last part of functionality is the comparison
of multiple regions, which involves normalization and differential analysis methods, made
available through the CombinedSpectra class. All analysis steps are accompanied by
relevant plotting capabilities.

Data Input Using the IMZMLExtract class imzML-files can be loaded and regions
extracted. During the provision of the region spectra, the user can demand to recalibrate
the spectra to the null-line. This assures that the minimal measured intensity is 0.

In general, pIMZ assumes that all spectra have common m/z values. For data sets
where this is not true, a method to call peaks and bin m/z values is provided, which relies
on the ms_peak_picker library. Furthermore, there are means to shift the spectra on
the m/z-axis in order to achieve a better ‘alignment’ of the peaks. In order to support
lipid-data, pIMZ supports the subtraction of a mean or media spectra from all spectra of a
region. This might be useful if the used coating of the sample was measured in the spectra
itself.

In order to assess the quality of a dataset, as well as to gain a first overview of the
sample, the IMZMLExtract component allows to detect IMS regions, visualize detected
regions and extract spectra from these regions. In addition, IMZMLExtract provides
multiple spectra-wide plots like the total ion current.

Clustering Having the normalized spectra for a region obtained, further processing can
take place. This is performed by the SpectraRegion component of pIMZ. The SpectraRe-
gion provides means to calculate pair-wise spectra distances, cluster spectra using several
unsupervised methods or from supervised data, visualize and filter the obtained clusters,
calculate and visualize representative cluster spectra, intra- and inter-cluster differences as
well as plot the intensities for specific masses using DABEST plots [123]. In addition, the
SpectraRegion can orchestrate the calculation of differential comparisons.

After obtaining the initial clustering, it is important to fine-tune the results. Within
pIMZ, the cluster ID 0 is reserved for background clusters. Hence, using the SpectraRe-
gion component, clusters which are in the border regions, which only consist of a few pixels
(so-called singletons), or which are fully surrounded by other clusters (so-called islands), can
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be assigned to the background. Such filtering is particularly needed if the actual sample is
embedded in a specific tissue, e.g. liver.

Differential Expression Using a utility script pIMZ can calculate the theoretical masses
of all protein coding transcripts. These can be used by the ProteinWeights component,
which allows the mapping of masses to gene or protein names. A protein name is assigned
to a (differential) mass, if the distance between the marker mass and any available mass
of the protein is less than a given threshold. This threshold accounts for potential post-
translational modifications. The required protein to mass table can either be derived
from the gene annotation files on a purely computational base, or from experimental data
(LC-MS/MS).

Similar to the processing of scRNA-seq data, the SpectraRegion allows the calculation
of marker masses: masses of a cluster (or a set of clusters) which are differentially compared
to a specific background (e.g. all other spectra, or all but the embedding tissue). Using the
EmpiRe package17, a comparison of clusters using empirical distributions of the spectral
intensities can be performed. Even though this package is originally designed for bulk LC-
MS/MS measurements, it allows to consider each IMS pixel as a single replicate. Like with
single cell data, the major problem with these tests is the number of replicates (=pixels),
which slows computation down. The similarities between IMS and scRNA-seq data, a
high replicate count and missing values, allow the use of the python package diffxpy for
differential analysis, which was originally developed for scRNA-seq analysis within scanpy
[330]. It provides further differential tests, like a t-test or a rank sum test.

Multiple Data Comparison Usually multiple IMS measurements are performed at once.
Being able to compare these measurements thus is an important feature for pIMZ. With
the CombinedSpectra class pIMZ implements this possibility. This component arranges
several comparative visualizations, but most importantly makes several SpectraRegion
objects comparable: the distinct clusters from the SpectraRegion are aligned (e.g.
by similarity of the median spectra), and intensity values are normalized along multiple
measurements using the inter_median normalization as alread described. It additionally
provides means for differential expression between the single SpectraRegions.

Demonstration of the pIMZ framework at the example of atherosclerotic mouse
arteries: a use-case

The functionality and applicability of pIMZ is discussed alongside the use-case of an
atherosclerosis relevant data analysis. The histological microscopy images of the areas
analysed by IMS are shown in Figure 4.6. The only difference between the samples is the
time point at which the mice were harvested (8am vs. 12pm). Nonetheless, it can be seen
that regions 0 and 4 (Figure 4.6ab) show a higher similarity to each other than regions 1
and 5 do (Figure 4.6cd), which are, again, quite similar to each other. This matches the

17Csaba, Gergely. Personal Communication. 2019-2020.
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experimental layout: regions 0 and 4 stem from the same mouse and time point (8am),
and regions 1 and 5 likewise (12pm). Nonetheless, it can be observed that regions 0 and 4
(Figure 4.6ab) show more intimal thickening (a thicker artery wall) than the other regions,
which suggests a more advanced athero-progression in regions 0 and 4. Even though the
mice were treated in the same way, such high biological variance is not totally unexpected18.

Loading Data Upon receiving the required input files (imzML description and ibd
binary data file), the IMZMLExtract class can be used to load a measurement file and list
all regions. The whole measurement layout can be displayed to identify the single regions
with their respective IDs (Figure 4.7). As part of this use-case the four left regions (regions
0, 1, 4 and 5) are of interest. These correspond to the stained microscopy images shown in
Figure 4.6.

As part of a quality control, the maximum peak location (m/z value) may signal a
consistent shift in the data. For region 0 the maximal peak is usually around 4000m/z,
with the exception of a few pixels (Figure 4.8a). In order to see whether the correct region
has been measured, the total ion current, the sum over all intensities, can be helpful. The
density of high values is higher in the middle of the shown region, surrounded by a circle
of low intensity pixels (Figure 4.8b). This circle may show the boundary of the measured
artery.

Normalizing Data After confirming that the measured region contains an object of
interest, the processing of the input spectra continues with normalization. As a default
processing, first the spectra are normalized using the intra_median and inter_median
normalization technique. In the unnormalised data (Figure 4.9a) it can be seen that the
average fold changes in comparison to the region’s median spectra varies by pixel location.
After normalization, the median fold changes of all shown pixels are set to a fixed level
(Figure 4.9b). These normalization techniques were chosen because Veselkov et al. [315]
describe them as most robust. The pIMZ framework implements further normalization
techniques in addition.

Clustering a region After normalization, the input spectra can be used to build a
SpectraRegion. The SpectraRegion orchestrates the clustering and differential
analysis of a region and offers two ways of clustering: either from the UMAP-embedding
or using pair-wise cosine similarities. For any UMAP clustering first the 2D embedding is
calculated, on which clustering methods can be executed. This can either be a density-based
method (HDBSCAN) or a hierarchical clustering (WARD). Using pIMZ both the 2D-
embedding and the resulting clustering can be displayed (Figure 4.10ab). After the initial
clustering further fine-tuning should be applied in order to gain more physiologically relevant
structures (Listing 4.1). As a first step, background clusters can be merged. These clusters
are recognized by being in the corners of the measured region, here within the 5x5 corner
pixels. Then clusters which consist of only one pixel are removed (singletons), followed by

18Söhnlein, Oliver. Personal Communication. 2021.
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(a) Slide D, Region 0 (top left) (b) Slide D, Region 4 (top right)

(c) Slide D, Region 1 (bottom left) (d) Slide D, Region 5 (bottom right)

Figure 4.6: pIMZ HE stained test data The haematoxylin and eosin (HE)-stained
sections used for testing pIMZ. Differences in the atherosclerotic plaque between the top
slides (a and b) in contrast to the bottom ones (c and d) can be seen, particularly in the
vessel wall (outside).
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Figure 4.7: pIMZ loading data (slide layout) From the loaded imzML file all measured
regions are listed. The background is unmeasured, and for all measured regions their IDs
are shown within the region (0-6).

(a) Slide D, Region 0: Max Peak m/z (b) Slide D, Region 0: Total Ion Current
(TIC)

Figure 4.8: pIMZ loading data (maximum peak and TIC plots) From the maximum
peak’s position (a) it can be seen whether there is a systematic shift within the spectra.
Here, no such systematic shift can be observed. From the total ion current (TIC, sum over
intensities of all masses (b)) pixels with large signals can be identified. In the best case,
the shape of the analysed object becomes visible. For the artery it can be seen that the
inner parts have a high TIC, while the border/vessel wall shows a low TIC.
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(a) Slide D, Region 0: Unnormalized. (b) Slide D, Region 0: Inter-normalized

Figure 4.9: pIMZ loading data (normalization plot) For 5 points from within the
artery the m/z intensity fold-change against the median spectra of the whole region is
aggregated as box plot. It can be seen that without normalization (a) the points’ median
fold-change varies, whereas after inter-normalization (b) all fold-changes have a similar
median fold-change.

isolated regions (islands). Finally, cluster 10 is identified of likely being background and
thus manually added to the background (Figure 4.10bcd).

For the hierarchical clustering approach the calculation of all pairwise similarities is
needed. This is accomplished by the cIMZ C++ library for fast and parallel (OpenMP
[65]) calculation of all pair-wise cosine similarities. Using the OpenMP shared-memory
approach ensures a faster result than using numpy and allows for real multi-threaded
calculations. Using a hierarchical clustering like WARD ensures that exactly k (here: 15)
distinct clusters are formed (Figure 4.11a). After post-processing the clustering using the
same filtering techniques as described for UMAP (Listing 4.1), the final clustering is created
(Figure 4.11b). Differences between the UMAP and WARD clustering can easily be spotted,
however, the general structure resembles each other in both approaches.

For the remaining use-case, the WARD clustering results are used. After obtaining the
clustering results, the similarity of the single clusters can be calculated based on the median
spectra of each cluster. This similarity can be visualized using a regular heatmap (Figure
4.12a). Clusters 0 and 8 are the most unsimilar ones. This makes sense as the background
is liver tissue, in contrast to the artery sample. Cluster 8, in the centre of the artery, could
contain infiltrates from the blood, increasing the heterogeneity. The similarity between
clusters 13 and 15 is interesting, yet expected, as this seems to describe the wall of the
artery (but also includes some plaque area). The within cluster similarity (Figure 4.12b)
can be visualized by aggregating the similarities between all pixels of a cluster. Particularly
for all non-background clusters there is a high similarity between all cluster-pixels, with a
median similarity above 0.95.

Single Mass Analysis With pIMZ single masses can be analysed (Figure 4.13). This is
relevant, if the user is interested in one (or few) specific masses. As already noted, cluster 8
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Listing 4.1: Python commands for filtering clusters after initial clustering and for fine-tuning
the clustering.
#filtering clusters
spec.filter_clusters(method=’merge_background’, bg_x=5, bg_y=5)
spec.filter_clusters(method=’remove_singleton’)
spec.filter_clusters(method=’remove_islands’)
#setting cluster to background
spec.set_background(10)

(a) Slide D, Region 0: UMAP embedding. (b) Slide D, Region 0: HDBSCAN clustering

(c) Slide D, Region 0: Clustering after filters. (d) Slide D, Region 0: Final clustering

Figure 4.10: pIMZ clustering (UMAP clustering) pIMZ supports UMAP for dimensional
reduction and subsequent density-based clustering (a). The resulting segmentation within
the original region (b) can be plotted. Additional filtering steps can be used to remove
background clusters (c). Manual curation is supported. Here cluster 10 is assigned to the
background manually (d).
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(a) Slide D, Region 0: Hierarchical clustering
on pairwise similarity (WARD).

(b) Slide D, Region 0: Final clustering.

Figure 4.11: pIMZ clustering (hierarchical clustering) pIMZ supports several hierarch-
ical clustering methods. Using WARD clustering on the pairwise similarity values (a) a
first segmentation is calculated. Using several filters (Listing 4.1), background clusters are
identified and merged (b).

(a) Slide D, Region 0: Cluster similarity. (b) Slide D, Region 0: Within cluster simil-
arity.

Figure 4.12: pIMZ clustering (cluster similarity) pIMZ allows the calculation and
visualization of the similarity between clusters (a), based on the consensus similarity of the
median spectra per cluster. In order to understand whether the clusters contain similar
spectra, the within cluster similarity plots all pair-wise similarities per cluster (b).
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is of special interest, because it shows a high dissimilarity from the other artery-related
clusters.

From recent COVID-19 related research it is known that Ifitm3 plays an important role
in the immune response of peripheral blood mononuclear cells [275]. The Ifitm3 protein has
a mass of 14954.18Da. Upon looking at the mass heatmap of this specific mass (Figure
4.13b), it can be expected that Ifitm3 is found in cluster 8 of region 0 (Figure 4.13a). Using
the mass_dabest function the intensity values per cluster are plotted as boxplot (Figure
4.13c) and as DABEST plot (Figure 4.13d), which allows a better inspection of the actual
effect size. Indeed, the Ifitm3 prevalence is highly increased for cluster 8, but cluster 14
already shows a slightly increased Ifitm3 intensity. This matches the expectation.

Differential Expression Analysis With the existing methods it is possible to check
the intensity values for a specific mass. However, there are many genes which have multiple
associated masses due to multiple protein-coding transcript isoforms. Moreover, the user
might not be interested in just one mass, protein or gene, but in many. A mapping
from protein mass to gene is important for an efficient interpretation of any differential
results in high throughput IMS datasets. For pIMZ, the ProteinWeights class provides
such functionality. The ProteinWeights class takes either a tab-separated file with
protein-name, gene name and associated mass as input, or can also read SDF-formatted
files, which are particularly known in lipidomics. As already elaborated earlier, the reported
masses can either stem from measured experimental data, or from theoretical protein
mass predictions. Particularly in the latter case it might be possible that there exist
multiple proteins stemming from different genes with the same (or a similar) mass. The
ProteinWeights class thus contains a method to analyse such mass collisions (Listing
4.2). By default, and in this use-case, the mapping allows an error of 2m/z for each mass: for
each mass (or m/z-value), any gene having an associated protein within 2m/z of this mass,
is assigned to it. This threshold is meant to correct for post-translational modifications or
the use of isotopes, as well as machine accuracy. The mapping file contains masses for 7 280
distinct protein names within the measurement range from 2990m/z to 30012m/z. One
protein (name) can have multiple annotated masses due to multiple isoforms. With the
original threshold of 2m/z, a total of 6 316 these proteins has a mass collision with another
one. With a lower threshold (1m/z) the amount of affected proteins can be reduced to
4 881 proteins, and less than 2 collisions on average for all proteins. Yet one has to keep
this inaccuracy in mind when interpreting high-throughput results, because the differential
analysis is performed for each m/z value. Protein names are only assigned afterwards, based
on the potentially ambiguous mapping from expected masses. This ambiguity can only be
resolved by using experimental data, such that it is known which proteins are detectable in
the sample. Still, even this approach is not guaranteed to remove all ambiguities.

The calculation of all marker proteins is one of the key-features of pIMZ. With just
one single call pIMZ will calculate all marker proteins and masses for a specific Spec-
traRegion, similar to Seurat’s FindMarkers function [43]. A marker mass is similar to a
marker gene in scRNA-seq: a mass which is differentially regulated in a specific cluster in
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(a) Slide D, Region 0: Cluster 8 highlighted (b) Slide D, Region 0: Mass heatmap 14 954
m/z

(c) Slide D, Region 0: Box plot of intensities
for mass 14 954 m/z

(d) Slide D, Region 0: DABEST plot of in-
tensities for mass 14 954 m/z

Figure 4.13: pIMZ exploring data (single mass plots) (a) pIMZ can highlight a specific
cluster (here cluster 8) from the segmentation. (b) In the mass_heatmap a heatmap of
the per-pixel intensities of a mass is visualized. (c) Using the mass_dabest function,
a box plot of the per cluster intensities for a mass can be created, (d) together with a
DABEST plot for effect size estimation.
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Listing 4.2: Protein mass collisions for theoretically derived protein masses with 2m/z and
1m/z thresholds.

pw_theo.print_collisions(maxdist=2.0, print_proteins=False)
ProteinWeights INFO: Number of total proteins: 7280

4 ProteinWeights INFO: Number of total masses: 10181
ProteinWeights INFO: Number of proteins with collision: 6316
ProteinWeights INFO: Mean Number of collisions: 2.87
ProteinWeights INFO: Median Number of collisions: 2.0
ProteinWeights INFO: Proteins with collision: [(’Mbp’, 30), ...]

9
pw_theo.print_collisions(maxdist=1.0, print_proteins=False)
ProteinWeights INFO: Number of total proteins: 7280
ProteinWeights INFO: Number of total masses: 10181
ProteinWeights INFO: Number of proteins with collision: 4881

14 ProteinWeights INFO: Mean Number of collisions: 1.90
ProteinWeights INFO: Median Number of collisions: 2.0
ProteinWeights INFO: Proteins with collision: [(’Mbp’, 19), ...]

contrast to all other clusters. The user can decide whether the background cluster should
be considered for this calculation. For pIMZ this method can simply be called by using the
find_all_markers function. This function takes as input a ProteinWeights object
in order to annotate a gene symbol to each differential mass. Since pIMZ offers the use of
several statistical tests for the DE analysis, the user should also specify which tests should
be used. In this example only the t-test was used.

For easier screening of the DE results, and to enable easy sharing with collaborators,
the DE results can be exported as HTML-file using the export_deres function. This
creates one HTML-file for each performed comparison (e.g. for each cluster), which consists
of an overview of all regions (Figure 4.11b) as well as the selected regions (e.g. one cluster
for which the marker genes are calculated, Figure 4.14a). The differential expression results
are presented in a javascript-enabled table which allows sorting and filtering (by string
or numeric value) of all entries. The generated table can be exported to a tsv-formatted
file directly from the HTML web-page. Additionally, for each DE entry, a modified mass
heatmap is shown, which shows the boundaries of the selected background (blue line) as
well as the targeted pixels (green line), which here is cluster 12 (Figure 4.14b). It can
be clearly seen that the shown mass, 15.271m/z, which only matches with a protein of
the Il11 gene, is well up-regulated in cluster 12. Including these mass heatmaps in the
shareable report allows an easier assessment of the results, and enables the user to identify
false-positive results, e.g. stemming from the embedding or insufficient clustering.

After having calculated all marker proteins, the DE results are summarized in a single
data frame, which can also be exported in various formats. This allows the integration
of previously described methods, such as the cPred cell type prediction (Chapter 4.1).
The cell type prediction is an interesting analysis which can be performed on the marker
proteins. With the lower abundance of proteins, and the lower sensitivity of the MALDI
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(a) Slide D, Region 0, Cluster 12: Selected
pixels (yellow).

(b) Slide D, Region 0: Mass intensity
(15269.878m/z) per pixel with background
delimited by the blue line and selected region
by the green line.

Figure 4.14: pIMZ exploring data (DE analysis results) After performing the DE
analysis, pIMZ can export the results into an HTML table with sortable and filterable
columns. For each identified mass, its annotated gene, the direction of regulation, the
significance value as well as mean and median expression in the selected region and
background (here clusters 8-15, except 12) are shown. (a) For cluster 12, (b) Il11 is
upregulated (logFC 0.66) with an average intensity of 6.

IMS in contrast to scRNA-seq, the chance that cell type defining genes are detected is
lower than for scRNA-seq. However, such marker proteins, cell type defining proteins, are
expected to be highly expressed, which slightly increases the chance to be detected by IMS.
There are various possibilities available for cell type prediction. The marker proteins can
be calculated including or excluding background pixels. Cell types can be predicted via
cPred on all available cell types, or only on expected cell types (context-sensitive). For the
presented results (Table 4.4) the marker masses were calculated including the background,
but the context was set to immune system cell types, and particularly leaving out liver.
Liver tissue was only used as embedding of the aorta, and is not of interest for the further
analysis. Because proteins originating from the liver, like ApoC1 (originating from liver
and macrophages [95]) or ApoA2 (second most abundant protein of HDL, atheroprotective
[146, 73]), play a crucial role in atherosclerosis, these must not be evidence for liver cells.
Many liver-specific genes are lipid related and thus detectable in atherosclerotic plaque
regions, which by definition has a pathogenic lipid-content [134].

The HE staining (Figure 4.6) shows white areas in the inner part of the artery. Yet,
there are marker proteins for these regions found, and cell types predicted. This could be
an artefact in the samples, where the tissue broke during sample preparation, leaving a
protein smear on the slide. The predicted cell types for these regions (8, 9 and 14), could
match such a scenario: B cells could originate from the blood stream, smooth muscle cells
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and fibroblasts from the fibrous cap and basophils, adipocytes and macrophages from inside
the plaque area. Fibroblasts play a crucial role in wound healing [193] and can thus be well
expected at this location, too. Clusters 10 and 11 are adjacent to cluster 8, which explains
why remains of smooth muscle cells can be observed. The co-localization of dendritic cells
and adipocytes in the anticipated plaque area makes sense, as monocytes leave the blood,
infiltrate the plaque and differentiate into antigen-presenting dendritic cells [229]. The
cPred cell type prediction thus adds important information to the DE results and helps to
find an interpretation of the results.

Comparative Integration of Multiple Regions The integration of multiple single
data objects into one combined object, allowing inter-region comparisons is one of the key
analyses in pIMZ. This integration of multiple SpectraRegion is accomplished by the
CombinedSpectra class, which takes a dictionary or list of multiple regions as input.
These regions must first be processed as described in the paragraphs above, in order to
derive an initial clustering. Before any differential analyses on the combined spectra can
be performed, some preprocessing steps should be undertaken. These steps are shown in
Listing 4.3. A name for use in the combined object is assigned to the single region objects
in lines 1-6. After normalization (line 10), the combined object compares the single regions’
clusters (line 12), plots a heatmap of similarities (line 13) and derives 8 new clusters from
the original ones (line 15), which can be visualized (line 16, Figure 4.16).

As a first step of integration, the single regions are normalized using the previously
described inter_median normalization technique regarding the median (or mean) region
spectra. Since all regions stem from arteries embedded in liver, it was assumed that the liver
embedding does not change between the samples. Hence, the liver embedding is a suitable
cluster on which the normalization factor can be calculated. After this normalization, the
median fold-change between the region’s background reaches 1 (Figure 4.15).

After normalization, the regions’ clusters can be compared. As each region should
consist of one artery, at different disease stages, there should be physiological elements
which are in common, and where the clusters should be similar. The similarity comparison
is calculated via the cosine similarity on the clusters’ median spectra. The clustering
itself is performed via the WARD algorithm. The resulting dendrogram is dissected to
create 8 clusters (Figure 4.16). It can be seen that region 0 and 1 (slided_0 and slided_1)
show a high structural similarity, but regions 4 and 5 (slided_4 and slided_5) are more
heterogeneous. The background liver tissue clusters into the same new group (group 2),
which shows, that this embedding is similar across regions. The suspected plaque areas
in slides 4 and 5 are assigned the same new group (group 1). It is interesting to see that
even slide 1 has a small plaque area, while this can not be observed in slide 5. With the
inter-normalized intensity values, cross-region DE analyses can be performed.

Comparative: Whole Artery As a first comparison, the whole arteries from regions
0 and 1 are compared. This means that for all masses, all pixels from region 0 (Figure
A.35a, yellow area) are compared with all pixels from region 1 (Figure A.35b, yellow area).
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Figure 4.15: pIMZ comparative (inter sample normalization) Using the Combined-
Spectra object, multiple SpectraRegion objects can be combined. This requires a
normalization of the intensity levels, which is achieved using the inter_median normalization
on the regions’ backgrounds. After normalization, the median fold-changes between the
region and the reference region (here: slided_1) is 1.

Figure 4.16: pIMZ comparative (common segments) From the normalized data, the
consensus spectra for each region and cluster are calculated and compared pair-wise using
the cosine similarity. With the WARD algorithm, the region-cluster-pairs are clustered and
assigned new labels such that 8 new clusters are created. It can be seen that region 0 and 1
show a high structural similarity, but regions 4 and 5 have more heterogeneous clusters.
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Listing 4.3: Python commands required to create and normalize the CombinedSpectra
object for differential questions.

slided_0.name = "slided_0"
3 slided_1.name = "slided_1"

slided_4.name = "slided_4"
slided_5.name = "slided_5"

combSpec = CombinedSpectra({0: slided_0, 1: slided_1,
8 4: slided_4, 5: slided_5})

# normalize regions against each other
combSpec.get_internormed_regions(method="median")
# calculate common segments
combSpec.consensus_similarity()

13 combSpec.plot_consensus_similarity()

combSpec.cluster_concensus_spectra(number_of_clusters=8)
combSpec.plot_common_segments()

With the idea in mind that region 0 shows a late stage atherosclerotic artery, while region
1 shows an earlier stage, this comparison should give the difference between early and
late stage atherosclerosis. After performing the differential test (t-test), a total of 368
m/z-values are significantly (q-value < 0.05) regulated, with 62 masses being up-regulated
(higher intensities in region 1) and 306 masses down-regulated (higher intensities in region
0) (Figure 4.17a). Among the 264 DE proteins is Igf1, Insulin-like growth factor I, which
is more prevalent in regions 0 and 4, mostly in the suspected blood stream area, but also
within the suspected plaque areas a higher density of high intensities can be seen (Figure
4.17b). Indeed, this confirms the observations which Steffensen et al. [290] describe in their
review of Igf1 in atherosclerosis: Igf1 originates from the liver and is transported via blood,
from where Igf1 binds to the Igf-binding protein 3 to cross the endothelial cell barrier and
is kept in the interstitium of the artery wall.

Besides the Igf1 case, there are further interesting differential proteins. For instance
Anxa3 is more abundant around (but not within) cluster 8 of region 0, but not present in
region 1. In the context of this analysis, this area might correspond to scattered or ripped
plaque. The higher abundance in late-stage atherosclerotic plaque has, for instance, already
been found by Goicuria [106, Table 9]. The presence of Arhgap33 within the suspected
late-stage atherosclerotic plaques, but mostly not within regions 1 and 4, is of interest, too.
Little is known about Arhgap33 in literature, and particularly nothing about its connection
in atherosclerotic plaque. Arhgap33, however, is associated with vesicular trafficking within
the human insulin signalling pathway19 and thereby might be related to the Igf1 case.

19https://www.wikipathways.org/index.php/Pathway:WP481

https://www.wikipathways.org/index.php/Pathway:WP481
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(a) Slide D, Region 0 vs Region 1: Volcano
plot.

(b) Slide D, Regions 0,1,4,5: Igf1 intensity.

Figure 4.17: pIMZ comparative all clusters results (Region 0 vs Region 1) Using
pIMZ and the CombinedSpectra a differential analysis (t-test) between region 0 and
region 1 was performed. The resulting average log-fold-changes and (neg. log.) significance
values (q-value) are shown as volcano plot. (a) Several genes of interest are highlighted
due to their known interactions in atherosclerosis. (b) Among the differentially regulated
proteins is Igf1, which shows a down-regulation in region 1.

Comparative: Artery Wall After analysing both arteries in total, this second com-
parison looks into the difference of the artery walls of regions 0 and 1. Subsequently, the
clusters for region 0 (Figure 4.18a) and region 1 (Figure 4.18b) were chosen such that the
inner part of the artery remains unselected. Hence, the comparison is performed on the
actual vessel wall as well as possible plaque areas.

After performing the differential test (t-test), a total of 259 m/z-values are significantly
(q-value < 0.05) regulated, with 46 masses being up-regulated (higher intensities in region
1) and 213 masses down-regulated (higher intensities in region 0) (Figure 4.19a). Among
the 186 differentially regulated genes is Ccl4 (Figure 4.19b). The importance of Ccl4 in
atherosclerosis was recently assessed by Chang et al. [52]. The authors state that ‘in
ApoE knockout mice, CCL4 antibody treatment reduced circulating interleukin-6 (IL-6)
and tumor necrosis factor (TNF)-α levels and improved lipid profiles accompanied with
upregulation of the liver X receptor. CCL4 inhibition reduced the atheroma areas and
modified the progression of atheroma plaques, which consisted of a thicker fibrous cap with
a reduced macrophage content and lower matrix metalloproteinase-2 and -9 expressions,
suggesting the stabilization of atheroma plaques’. This observation fits the analysed data,
because regions 1 and 5 show less severe plaques. Another chemokine, Ccl6, shows a very
similar pattern, for which it is known to be a macrophage chemoattractant and to promote
immune cell activation and recruitment [62].

The Phospholipase A2 Group IIE (Pla2g2e) shows a similar pattern, however is addi-
tionally detectable in the regions 1 and 5, but to a smaller extent. The participation of
Pla2g2e in atherosclerosis is already suggested by the analysis of other phospholipases [265].
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(a) Slide D, Region 0: Selected pixels (yel-
low).

(b) Slide D, Region 1: Selected pixels (yel-
low).

Figure 4.18: pIMZ comparative wall clusters (Region 0 vs Region 1) Using pIMZ and
the CombinedSpectra a differential analysis across multiple SpectraRegion objects
is possible. Here, all non-background pixels (shown in yellow) of Region 0 (a) are compared
with Region 1 (b).

(a) Slide D, Region 0 vs Region 1: Volcano
plot.

(b) Slide D, Regions 0,1,4,5: Ccl4 intensity.

Figure 4.19: pIMZ comparative wall clusters results(Region 0 vs Region 1) Using
pIMZ and the CombinedSpectra a differential analysis (t-test) between region 0 and
region 1 was performed. The resulting average log-fold-changes and (neg. log.) significance
values (q-value) are shown as volcano plot. (a) Several genes of interest are highlighted
due to their known interactions in atherosclerosis. (b) Among the differentially regulated
proteins is Ccl4, which shows a down-regulation in region 1.

With respect to lipid-related proteins, Apoa5 shows a higher abundance in the suspected
plaque areas in contrast to the suspected early stage arteries. The relevance of Apoa5 in
atherosclerosis has recently been highlighted by Chow et al., who state that Apoa5 ‘helps
to deliver atherogenic particles to the arterial wall ’[60], suggesting a pro-atherogenic effect.
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Conclusion

The IMS analysis package pIMZ is presented and applied to a use-case from the atheroscler-
osis context. One advantage of pIMZ over other frameworks is its usability from within
python notebooks in a scRNA-seq-like fashion. pIMZ offers multiple ways of normalizing
the input spectra, and provides several means for clustering the pixels. The pair-wise pixel
similarities are calculated in parallel using the cosine similarity. A data-driven analysis can
be performed after clustering the spectra, like it has been demonstrated in the use-case.
User-specified clusterings, as a form of a supervised clustering approach, can be used
in pIMZ, besides several unsupervised methods. Another focus of the pIMZ framework
is an easy export of DE results. Together with the DE results, additional data which
allow a fast verification of the DE results, such as mean expression in the selected clusters
and the background, are exported. The results are easily sharable via interactive HTML
reports, and allow the export of the results into a tab-separated format. pIMZ follows FAIR
software principles. It is findable via GitHub and pip. Its accessibility is ensured through
continuous integration. A well documented API ensures a high interoperability, which is
further increased by providing a Docker image. pIMZ is reusable because it is citable and
archived via Zenodo, and analyses can easily be shared through jupyter notebooks.

Another feature of pIMZ is the ability to analyse multiple measured regions in an
integrated analysis using the CombinedSpectra class. After normalization of all regions,
a comparison between one or multiple regions is possible. As part of this analysis, a suspected
late-stage atherosclerotic artery is compared against a less severe atheroslerotic artery. The
DE results confirmed several known atherosclerosis related differentially regulated proteins,
like Igf1 and Ccl4. Less frequently studied targets could be revealed, like Anxa3, Pla2g2e
and Apoa5, where the latter are associated with lipid-related processes.

With pIMZ a new class of high-throughput data can be analysed. The interesting
feature of IMS is the spatial resolution, allowing conclusions about the localization of
specific proteins. This is of high interest for building a 3D model of atherosclerosis, which
is discussed in Chapter 6.2.

4.5 Conclusion

In this chapter two emerging measurement methods have been presented in combination
with respectively developed frameworks for comprehensive analyses. scRNA-seq is a single
cell resolved version of RNA-seq. This stands in contrast to bulk RNA-seq, which is a
technique to measure a mixture of cells, in one bulk measurement. For measuring protein
levels, the MALDI-TOF technique acquires IMS measurements: a pixel-wise capturing of
proteomic data. Both techniques, scRNA-seq and IMS, allow for a more detailed look into
the transcriptomics and proteomics of tissue than their traditional counter-parts would.

With scRNA-seq analysis a new paradigm in the analysis of sequencing data was
introduced: the analysis is typically conducted in interactive environments, where analysis
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code is executed in small chunks: using (so-called) notebook technology20. This allows the
inspection of the transformed data after almost every step. The use of this technology is
interestingly independent of the chosen analysis platform: Seurat in R and scanpy in python
follow this paradigm. In Chapter 4.1 the general analysis workflow for scRNA-seq data is
summarized. This thesis introduces a novel method for fast and context-sensitive prediction
of cell types from cluster expression values: cPred (Chapter 4.2). This method was evaluated
on two datasets. With the second dataset, the cPred prediction were additionally compared
to the recent competitor SingleR. The cPred cell type predictions are better than those of
the competitor, particularly using the context-sensitive query. cPred relies on a database of
known cell type specific marker genes. In contrast to SingleR this method has the advantage
that it can be used with a very large number of cell types simultaneously. Moreover, not
relying on expression patterns, it does not matter how the required expression values were
measured. Indeed, applying this method to IMS data yields reasonable results. With cPred
it becomes easy to generate an initial overview of the contained cell types in a new dataset.
This framework was successfully applied in two COVID-19 related projects [228, 238].

The MALDI-TOF measurement technique (Chapter 4.3) is often applied in the context
of IMS. This measurement technique is in such unique as it not only captures spectra of the
sample, but can keep track of the location where the spectra were taken. This allows for an
analysis of data not only on the spectra-level, but also on its spatial resolution. In contrast
to existing scientific packages, the developed pIMZ framework (Chapter 4.4) concentrates
on usability (a concept already highlighted in Chapter 3.1), while not restricting the user
in its freedom to analyse the data. The focus of pIMZ lies in providing a framework for an
in-depth DE analysis of IMS data, even from multiple samples at once. Samples from the
public domain can be very interesting, as these can often serve as an additional baseline.
In order to easily access such data, pIMZ can directly access data from the HuBMAP
consortium, which is meant to provide IMS data for many human organs, including lung
and vasculature [130]. At the use-case example of the atherosclerotic arteries it could
be seen how well the cPred cell type prediction method (Chapter 4.1) can be applied to
IMS data. Unlike most other IMS analysis frameworks, pIMZ focuses on the analysis of
multiple samples, allowing DE analyses within a single sample, or over multiple samples.
The pIMZ framework has been developed as part of this thesis and its usage and workflow
is demonstrated on samples with atherosclerotic plaque.

As shown above, a workflow for processing scRNA-seq data and cell type prediction was
presented, together with a framework for the analysis of spatial IMS data. The integration
of both scRNA-seq and IMS data will be further elaborated in Chapter 6.2. The future
will most likely see a combination of both approaches: the possibility to perform single cell
spatial transcriptomics and proteomics. Most recently, Stickels et al. claim to have ‘highly
sensitive spatial transcriptomics at near-cellular resolution’ established [291]. In fact, spatial
transcriptomics was awarded the method of the year 2020 by Nature methods [84]. Spatial
transcriptomics analyses can already be performed using commercially available protocols21,

20E.g. Jupyter notebooks https://jupyter.org/ or R Markdown https://rmarkdown.rstudio.com/
21https://www.10xgenomics.com/spatial-transcriptomics/

https://jupyter.org/
https://rmarkdown.rstudio.com/
https://www.10xgenomics.com/spatial-transcriptomics/
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and are becoming increasingly common for biomedical analyses [18, 25]. Likewise, IMS is
applied at even larger scale in order to generate more complete pictures of the proteomic
landscape of whole tissues, making use of integrative methods [246]. To these regards, pIMZ
offers a framework for the analysis of IMS data. For a multi-omics spatial analysis, the
pIMZ framework can be combined with the Aorta3D project, which is discussed in Chapter
6.2.





Perhaps thinking should be measured not
by what you do but by how you do it.

Richard W. Hamming

5
Third Generation Sequencing Data Analysis

Frameworks

Sequencing data are one of the primary resources for many bioinformatics tasks, as already
pointed out in the introduction (Chapter 1) to this work. In contrast to the older microarray
technique, increasing amounts of sequencing data are produced every year. Due to the
required handling, sequencing data are usually analysed in the domain of a bioinformatics
workflow. Several distinctions between sequencing data should be made. Foremost, the
sequenced material plays an important role. In general, one distinguishes between the
sequencing of genomic material, or transcriptomic material, respectively. While genomic
sequencing reveals information at the DNA level (e.g. new genomes, mutations, chromatin
binding), transcriptomic material reveals information at the RNA level, and hence allows
conclusions about how much of a specific sequence is present, and available for protein
translation. Another use-case at the DNA level is meta-genomics, where many DNA
fragments of (mostly) unknown origin are sequenced, for which it is then tried to identify
therein contained species and their genomes. The MinION sequencing technology developed
by Oxford Nanopore Technologies has been used to improve the accuracy of single nucleotide
polymorphism (SNP) genotyping in complex polyploid plant genomes, where even low-
coverage long-read sequencing achieves superior genome alignments [197].

In general, there are several sequencing technologies available. As already described
in Chapter 1, microarrays were frequently used for gene expression analysis at the RNA
level. However, with the advent of next-generation sequencing (NGS) (in contrast to
traditional Sanger sequencing), microarrays are deemed too inflexible. The most prominent
sequencing technology of the NGS era is the one provided by Illumina. In contrast to NGS
stands single-molecule real-time (SMRT) and nanopore sequencing. These technologies
form the third era of sequencing technology and are often referred to as third-generation
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sequencing (TGS) techniques. All sequencing technologies have their own specifics. Thus,
it is important to have specialized analysis platforms for these techniques.

It was possible to obtain sequencing data1 from an Oxford Nanopore MinION sequencing
device, which falls into the category of TGS. Early in the development of the MinION
device there were two different sequencing strategies: 1D and 2D reads. For 1D reads,
the molecule is read through the measurement pore once, 2D reads were processed such
that using a hairpin-connector at one end, the reverse complement was sequenced, too.
During basecalling, the information from both strands were then combined for a better
basecalling result. With newer sequencing kits the 2D-sequencing option, however, has
been discontinued, because read quality and identity improved in the 1D case. Nowadays,
the Oxford Nanopore devices only generate 1D reads at continuously improving error rates.
Due to the above-mentioned specifics and differences to NGS, mostly a higher error rate
and variable read length of the TGS technology, specific tools for the processing of TGS
and Oxford Nanopore reads are required.

In this chapter, the two developed frameworks for the analysis of TGS sequencing data are
discussed. The first framework, poreSTAT (Chapter 5.1), focuses on the usage of new data
sources and information extraction, but additionally performs reporting and visualization.
This framework mainly serves as a quality control tool, but provides interactive, javascript-
based, plots for reporting and visualization. The second framework, sequ-into (Chapter
5.2), spans the bridge between Information Extraction and reporting and visualization
by providing highly accessible means for generating a summarized data report, including
visualizations, from the actual sequencing data. The gene quantifications from poreSTAT
may serve as input for the RoDE pipeline (Chapter 6.1), which completes the general
analysis workflow with reporting and visualization and data integration and knowledge
discovery aspects. In terms of the general workflow of data analysis (Figure 1.1), these
frameworks cover almost the full analysis stage.

5.1 A Framework for MinION Sequence Analysis
(poreSTAT)

Sequencing a genome or transcriptome has become a standard procedure in wet-labs world-
wide. NGS techniques have revolutionized biological and biomedical research in many areas
and even lead to new treatment procedures such as personal genomics and personalized
medicine [216]. This is only possible due to competitive sequencing costs.

The advantage of NGS for sure is its cost: at costs of less than 1ct per base it is very
cheap. However, the downside of NGS is its inability to sequence long stretches of DNA (e.g.
more than 500bp) reliably. While this must not be bad for all applications, it was recently
shown that there exist genomic and transcriptomic areas which are relevant to specific
diseases, yet are usually not covered using Illumina NGS [81]. Here, TGS techniques based
on single-molecule real-time (SMRT) and nanopore sequencing come into game: using these

1Luisa F. Jiménez-Soto. Personal Communication. 2017.
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techniques it is possible to overcome the above-mentioned problems. These techniques allow
the sequencing of very long stretches of DNA, with recorded single sequences of up to 1
million bases [274]. With nanopore sequencing, a DNA strand is recorded while it transits
through a nanoscopic pore. The fluctuations in electric current at the pore are recorded
and later translated into sequences (so called basecalling).

With the Oxford Nanopore Technologies MinION the first commercially available device
using nanopores for sequencing single-stranded DNA molecules has been presented several
years ago. Nowadays, MinION sequencing is becoming more popular for several reasons.
The sequencing device is particularly cheap (just a few thousand dollars) and very mobile.
This allows the collection and sequencing of samples even at remote areas [51]. Especially
the information gain, for genomics, of long reads often pays off the slightly higher price
per base compared to Next-generation sequencing technologies like Illumina. Even the
downside of Nanopore sequencing, a relatively high error rate, improves with each release
of a new sequencer version, reporting up to around 95% read accuracy with current R9
release, and more than 99% accuracy with the newer R10 release2.

In contrast to Illumina sequencing, the MinION outputs the raw signals for each read,
in an open format. This allows to reprocess the measured signals at any time, and multiple
different methods for transforming these signals into read sequences (basecalling) exist.
Some examples are the MinION bundled albacore and guppy3, but there exist open-source
methods from within academia, like Chiron [305], too. However, the MinION delivered
tools for basecalling perform considerably perfect [327].

While the possibility to apply several methods on the raw data is unique to MinION
sequencing, it creates another level of noise and possible variability, in contrast to existing
sequencing technologies. Thus assessing and quality checking the received data is more
important than with, for example, Illumina sequencing. There exist several tools to assess
MinION sequencing datasets [194, 196]. Their main purpose is to expose the basecalled
sequences from FAST5 files (by read-type, for instance) as well as to assess the quality of
these reads per type. The R package poRe [322] has been published in 2014 and enables
researcher to access FAST5 files from the programming language R. It allows measuring
and plotting several statistics. Poretools [188] is one of the oldest tools and is implemented
in python. It generates static plots in png format and allows extracting reads from FAST5-
files. NanoOK [172] summarizes several statistics and plots into reports and can create
a PDF ouput for a dataset. However, these reports are not interactive and do not allow
a comparative view of multiple runs. Finally, HPG pore [302] is the most recent tool
for analysing FAST5 files. It is implemented in Java and uses Hadoop for an efficient
parallelization. However, the output is limited to a text report and static images. Except
NanoOK, all tools can be regarded as deprecated, because current multi-FASTQ files are
not supported any more.

Here, poreSTAT, a python-based framework for summarizing MinION sequencing
2https://nanoporetech.com/about-us/news/r103-newest-nanopore-high-accuracy-nanopore-

sequencing-now-available-store
3Both albacore and guppy are only available to ONT customers via their community site (https:

//community.nanoporetech.com).

https://nanoporetech.com/about-us/news/r103-newest-nanopore-high-accuracy-nanopore-sequencing-now-available-store
https://nanoporetech.com/about-us/news/r103-newest-nanopore-high-accuracy-nanopore-sequencing-now-available-store
https://community.nanoporetech.com
https://community.nanoporetech.com


118 5. Third Generation Sequencing Data Analysis Frameworks

experiments and creating interactive reports at each stage (after basecalling, alignment and
DE) is presented. As a main advantage over existing tools, poreSTAT combines a read
analysis of sequenced data, an alignment analysis and a DE analysis, all integrated into
one framework. For easy sharing of the reports, interactive HTML reports are provided.
poreSTAT is an efficient python framework which does not only extract read data from
FAST5 files, but also analyses the raw sequences and aligned sequences. An extension for
poreSTAT allows comparing multiple runs in a DE analysis (Chapter 6.1). By supporting
interactive reports, poreSTAT makes it easy to understand the results, and trace outliers.
poreSTAT finds its niche in-between existing tools particularly in its ability to create
interactive plots combined with its reporting system, and its extension for performing an
alignment analysis, read quantification and differential gene expression tasks.

The above-mentioned tools have been compared regarding their functionality by Tarraga
et al. [302]. The table has been extended, showing where poreSTAT innovates this field
(Table 5.1). While poreSTAT implements all essential features and statistics the other
tools provide, poreSTAT is the only tool to support modern multi-FAST5 files, prepare an
interactive report and to perform DE analysis right away.

Methods

Sequencing analysis For the analysis of Oxford Nanopore/MinION data, several steps
are required. However, all steps have in common that Oxford Nanopore FAST5 (see Chapter
A.1) files serve as input. The FAST5 files can either contain one or many sequenced reads.

Using several modules, information about the contained reads can be collected. These
modules are described in Table 5.2. The most important ones are seq for read extraction,
info to generate an information file for further analysis steps and summary to create a
summary report for all supplied read files. The summary module combines all single
analyses like the occupancy or yield plot.

All these modules implement a single interface. Thus, for the summary, each read
is handed to each of the modules only once. This ensures that the I/O is minimized by
loading and iterating through each read file only once. At the same time, the structure and
distribution of reads over multiple files allows a fork and join parallel scheme. This scheme
is explained in the Performance Considerations paragraph.

Alignment analysis The alignment analysis is less dependent on the original reads and
can purely be performed using a read alignment file, if read sequences and qualities are left
in the file. A read-type specific analysis can be performed if a read-information file from
the sequence analysis stage is available.

The alignment analysis exploits OpenMP parallelism using the task-paradigm4 [65]. By
a performance analysis of the alignment analysis library it was found that due to the high
amount of CIGAR elements per read, the analysis takes a lot of time. Particularly this
code was subsequently optimized.

4http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
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Table 5.1: Comparison of available MinION quality control tools. poreSTAT
is compared to HPG Pore [302], NanoOK [172], poRe [322] and poretools [188]. Initial
comparison by Tarraga et al. [302].

Feature poreSTAT HPG Pore NanoOK poRe poretools

Multi-FASTQ support X - X - -
Extract FASTQ X X X X X
Extract FASTA X X X X X
Organize FAST5 files into folders1 X - X X -
Create tar files of runs 1 - - - - X
Organize results into folders X X - X -
Plot yield X X X X X
Plot squiggle X X X X X
Extract run stats X X X X X
Read length histogram X X X X X
Read length (max., avg., min) X X X X X
Mean read quality X X - X -
Nucleotides content: count and % X X - X X
%GC X X - X -
Plot frequency- %GC X X - X -
Plot per base sequence content X X - X -
Read quality histogram - X - X -
Reads per channel histogram X2 X X X X2

Nucleotides per channel histogram X X X X -
Report X X X X -
Interactive figures in report X - - - -
Gene-level quantification X - - - -
Alignment analysis X (X)4 X - -
DE analysis3 X - - - -

1: This becomes obsolete with multi-read FAST5 files.
2: poreSTAT and poretools return the occupancy of pores, not the reads per channel.
3: As part of the RoDE pipeline discussed in Chapter 6.1.
4: Available only through the HPG Aligner [303].
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Table 5.2: poreSTAT sequencing analysis tools. poreSTAT has several sequencing run
analysis tools implemented. Most important are seq for read extraction, info to generate
an information file for further analysis steps and summary to create a summary report for
all supplied read files.

Tool Description

info Creates a read information file with important meta information for each read
expls∗ Prints a brief summary (number of reads, average length, ...) for each run.
occupancy∗ Plots the occupancy of all pores.
seq Extracts the read information from FAST5 format into FASTQ format.
timeline∗ Plots the sequencing yield for each time bin.
nucleotides∗ Plots the distribution of nucleotides for each run.
qual dist∗ Plots the quality distribution over all reads.
qual∗ Aggregates the quality per position over all reads.
histo∗ Length histogram of all reads per run.
yield∗ Plots a yield plot for each run.
demangle Distributes fast5-files into run-specific folders.
kmer∗ Prints top k-mers found in a run’s reads.
squiggle Creates a squiggle plot for specific reads.
summary Creates a summary report making use of the marked (∗) tools.

A crucial part in the alignment analysis module is the determination of read counts and
coverage per feature. This is done based upon the HTSeq GenomicArray data structure
[11], which is used to count reads per genomic position. To determine the read-count per
feature, the count for a feature is increased by one if the read overlaps the feature with
at least one base. In order to calculate the coverage per feature the number of reads per
position are summed up and divided by the feature length.

Interactive Reporting System poreSTAT allows to assess the quality of MinION
sequencing experiments similarly to other available tools (Table 5.1). One of the advantages
of poreSTAT is the creation of interactive plots with HTML output, while regular static
plots are supported in addition. A custom version of the mpld3 5 package is used to achieve
this. This modification was necessary to correctly visualize rotated tick labels, to allow
adjustments of the figure size, and to account for offline usage. This package converts
matplotlib plots to interactive plots in HTML using d3.js6. In addition, mpld3 supports
plugins, such that data displayed in the plot can be annotated with custom information
(e.g. general read information). Using mpld3 to transfer matplotlib plots to interactive
figures has the full advantage of the matplotlib stack: plots can be displayed directly by
matplotlib, extracted to several image formats via matplotlib or exported to HTML via

5https://github.com/mjoppich/mpld3
6https://d3js.org/

https://github.com/mjoppich/mpld3
https://d3js.org/


5.1 A Framework for MinION Sequence Analysis (poreSTAT) 121

mpld3. However, especially for generating reports, relying on d3 is a bottleneck, since
a sequencing experiment can have many reads. mpld3 uses d3 in SVG (scalable vector
graphics) mode, which adds each displayed data point (e.g. a read) as a single Document
Object Model (DOM) element in the browser. Plots with many single data points create
many DOM elements, pushing the browser’s rendering capabilities to the limits. This can,
for instance, occur if many reads are analyzed. Hence, the poreSTAT package uses plots
based on kernel density estimation where suitable, e.g. if many entries are possible (Figures
5.8 and 5.9).

Performance Considerations The poreSTAT sequencing analysis tools all implement
the ParallelPSTReportableInterface class. This ensures that all tools work in the same way,
enabling the use of a fork-and-join pattern for the summary report: chunks of multiple
reads are read in, processed, and the master process aggregates all results. The summary
tool only needs to forward the chunks to all included tool-process functions, and finally
aggregate the results from all tools for all chunks.

For alignment statistics, a C++ library was implemented, which collects all necessary
information in parallel (OpenMP [65]) and transfers this information back to python for
visualization. The C++ library directly reads the alignment file via htslib/samtools [180],
and distributes chunks of alignments to worker threads using the OpenMP task construct7
[65]. For each primary read alignment, statistical descriptors such as read length, histograms
of CIGAR-codes, etc. are collected. The C++ library is embedded into poreSTAT using
the ctypes module.

Data The poreSTAT sequencing and alignment analysis is demonstrated on a recent
dataset, which analyses the green monkey transcriptome after infection with the SARS-
CoV-2 virus (SRR11350376). The analysis was conducted using the NCBI SARS-CoV-2
reference genome with assembly ASM985889v3, as this taxonomic ID was linked with the
sequencing data. This dataset allows to explore all features of poreSTAT, and is used in
the sequ-into case study (Chapter 5.2), too.

Results and Discussion

poreSTAT Performance Considerations Even though python natively supports
threading, only one thread can manipulate data at a time, which does not improve the
runtime of an application much. This is, because true multithreading in python is not
possible due to the global interpreter lock (GIL)8. This lock must be acquired by a thread
in order to operate on any python object. The only way to overcome this restriction is
to fork the current process, and work then in parallel: a multi-process architecture. This,
however, comes at the cost of a high inter-process communication (IPC), since objects reside
in the memory of one python interpreter process and need to, at last at the end, be merged

7http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
8https://en.wikipedia.org/wiki/Global_interpreter_lock

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://en.wikipedia.org/wiki/Global_interpreter_lock
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in order to obtain the final results. Depending on the task performed, this merge-step
involves large data, and thus a lot of IPC. Forking, however, requires all subprocesses to
load all required information (such as text databases, etc.). Due to the GIL, python does
not implement the concept of shared-memory processing, like it is known from OpenMP
[65].

Nonetheless, the tools implemented for the poreSTAT sequencing analysis make use
of a fork-and-join pattern, by implementing the ParallelPSTReportableInterface
class. While this comes at the above described costs, it becomes feasible because the
sequencing analysis tools require little to no external data (no databases, etc.), and the
single, incremental results are rather small in memory size and well serializable, reducing
IPC costs. Using the parallel library interface, the runtime behaviour of the poreSTAT
sequencing tasks is well improved.

For the input-chunk creation, two levels of parallelism are implemented: the folder-level
parallelism is most suitable to older MinION runs, where single-read FAST5 files are stored
in folders of 1, 000 reads. For multi-read files, each file contains about 4, 000 reads. Hence,
one file is the perfect level of granularity needed for efficient parallelization.

For the alignment analysis, an alignment file, possibly several gigabytes large, must be
processed. Within the alignment file, all alignments are processed in the same way. Using
the previously described parallel python library has the disadvantage, that all alignments
must be loaded by one process, and are then serialized in order to transfer these to the
other processes. Finally, the results must be serialized again, and be transferred back into
the main process. This involves substantial serialization costs for IPC, and thus should not
be used. In order to circumvent the multi-threading limitations of python, C/C++ libraries,
which can easily share data with python, can be used. For data sharing, multiple python
modules are available, of which the ctypes module was used here (because it is integrated
directly into python). In short, on the python side it requires C/C++-compatible data
objects (e.g. lists, numpy-arrays, etc.), which can be accessed via pointers on the C/C++
side. For poreSTAT, the C++ library should already handle the data read-in, hence only
a list of file-paths needs to be made accessible. This C++ library was implemented to
calculate all required alignment statistics in parallel (OpenMP [65]). The result is then
transferred back to python for visualization. The C++ library has to rely on data structures
(vectors of structs, for instance) which can be interpreted by python. Since all data
reside in the memory of the main python interpreter process, no IPC is required. Only
specific memory locations must be interpreted correctly, which is known from C/C++ as
casting. The results are organized in the poreSTAT alignment analysis tool such that these
become available to the summary creation and plotting.

poreSTAT Sequencing Analysis The sequencing analysis is used to get a first overview
of the sequencing data. While the wet lab scientist can rely on the (live) output from
MinKNOW during sequencing, the bioinformatician needs to assess all relevant information
at a different time. Moreover, it became common practice to re-basecall the FAST5 files in
order to gain better accuracy, or to use more reads. A re-assessment of all reads is required
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Figure 5.1: poreSTAT basecalling summary showing the number of reads sequenced
per experiment, divided into the specific read-types. For each read, the highest ranked
read-type is reported. Only BASECALL_1D and BASECALL_2D reads have basecalled
sequences. A mouse-over overlay shows the summary per experiment.

before any analysis should take place. The poreSTAT sequencing analysis performs such a
re-assessment.

The first analysis of the sequencing analysis is a report on the identified read types
(Figure 5.1). With earlier Oxford Nanopore products, besides 1D reads, there were 2D
reads. While these are mostly deprecated nowadays, at the time poreSTAT was developed,
these provided better accuracy. With advances in the basecalling strategy, fewer reads with
no basecalled result exist or are sorted out earlier.

The following topics are discussed at the example of the previously mentioned transcrip-
tomic sequencing experiment on an SARS-CoV-2 infected green monkey (SRR11350376).
It should be noted that due to the nature of mRNAs, no (ultra-)long reads are expected.
The majority of the reads should be in the 2000nts range.

As already shown (Figure 5.1), poreSTAT first reports the found read types for each
processed sample. These might be 1D, 2D, 1D2 or Barcoding (Figure 5.1). To further
evaluate the sequencing process, the number of reads and their length per pore are evaluated
(Figure 5.2). This allows the user to find out whether following sequencing runs can be
performed using the same chip again, or not. Air bubbles on the chip can be detected using
this plot: wherever an air bubble was, no or only few reads have been sequenced. The
implication for future runs would then be that the chip is damaged at that location and
may not generate any further reads at these pores.
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Figure 5.2: Interactive pore layout plot For each pore on the MinION device, the
amount of reads as well as their average length and median length are shown as a dot plot.
The colour of a dot (each representing a pore) shows the average read length, the width of
the circle symbolizes the number of reads gained through this pore.
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Figure 5.3: poreSTAT yield plot The cu-
mulative histogram of sequenced bases over
time is an important measure. It can be used
to find out whether the input amount of DNA
or RNA was a limiting factor, or whether the
sequencing should have been continued for
more reads.

Figure 5.4: The read length distribu-
tion plot can be used to determine whether
the size selection before sequencing worked.
This may be used to determine whether
(prokaryotic) RNA was correctly processed:
if too much DNA was contained, the mean
or median sequencing are longer.

Another interesting statistic is the total yield or yield per read-type, which is shown in a
plot of time against yield (in bp) (Figure 5.3). Using this plot it can be determined whether
and when a significant drop in sequenced bases or reads occurred. In future sequencing
runs such a drop could then be avoided by either taking more input material right away, or
by reloading the chip after a specific time (which is possible with MinION sequencing, in
contrast to NGS). Important for both transcriptomic and genomic sequencing is the read
length distribution, which is evaluated by poreSTAT (Figure 5.4). This distribution gives
information about observed read lengths. In experiments with known expected read lengths,
this statistics evaluates the library preparation and size selection phase. Very long reads in
a transcriptomic sequencing project might, for instance, stem from DNA contamination.
Particularly for genomic sequencing, the read length distribution is already an estimator of
the quality: a high fragmentation will make any assembly process much harder.

In addition to the mentioned plots and analyses, poreSTAT can evaluate the quality
distribution, the average quality by position and the k-mer distribution. The latter is, again,
interesting particularly for genome sequencing, as this is an estimator of genome coverage
[125]. With respect to the performance of k-mer counting, several serialization techniques
for this task were evaluated in Chapter 3.2.

poreSTAT Alignment Analysis With the reads exported into the FASTQ format, ad-
ditional analysis steps can follow. These may range from genome assembly over (differential)
gene expression analysis. While genome assembly is performed to derive a new reference, for
(differential) gene expression the reads (which stem from transcriptomic mRNA) are often



126 5. Third Generation Sequencing Data Analysis Frameworks

(a)

(b)

(c)

Figure 5.5: poreSTAT alignment overview (a) reporting how many reads aligned, did
not align or were not considered for alignment (e.g. with no sequence), (b) reporting several
quality control metrics. (c) poreSTAT can report to which genomic features the reads were
aligned.
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aligned against a reference genome, in a splice-aware manner. This alignment is performed
using specific tools, like graphmap [286] or minimap2 [179].

After aligning the reads to a reference, the poreSTAT alignment report (Figure 5.5) can
help to understand how good the retrieved reads match the reference sequence. Besides
alignment rates and general alignment statistics (Figure 5.5b), it contains an analysis of
the covered feature types (if a gene annotation was given, Figure 5.5c). This information is
very interesting for transcriptome sequencing as it shows how many genes are detected. It
is particularly helpful to quickly determine whether all regions of the genome have been
sequenced, or for transcriptomic data to see whether polyA-selection or rRNA depletion
worked. In the shown example (Figure 5.5), about 98% of the reference sequence is a
transcriptomic feature. Of these 98%, about 80% are covered by reads, suggesting that
indeed mostly transcriptomic data was obtained.

The substitution statistics (Figure 5.6) is helpful for identifying methylation effects [282].
Such methylations are detected by a careful analysis of the electrical current signals measured
by nanopore-based sequencing devices. If regular basecalling is performed only, modified
bases, such as methylated ones, will be incorrectly basecalled and create a substitution
pattern in this report. Therefore, a table to spot such single nucleotide polymorphisms
is of interest for the user. Here, this analysis reveals that the basecalling produced many
undetermined bases (N), suggesting to re-do the basecalling.

Finally, a length distribution of all CIGAR codes over all reads helps to identify the
mismatch rate (Figure 5.7). For transcriptomics it would be interesting to check for clipping
effects. The latter information are further enriched by a k-mer analysis of the sequences
before mismatches, insertions or deletions (data not shown). In this example, Insertions
and Deletions are quite low, while Matched regions are about 20 nucleotides long. Strikingly,
Soft-clipping removes in average several hundred nucleotides per read. Such a behaviour
should not occur and must be looked into further.

The GC content, the fraction of guanins and cytosines (GC), is often an important
measure, as it varies among genomes of different species (e.g. S. cerevisiae 38%, A. thaliana
36%, P. falciparum 20%). Thus, the GC content of aligned reads is of interest and is reported
as part of the alignment statistics (Figure 5.5b). For the studied SARS-CoV-2-genome,
the expected transcriptomic GC content is about 38%, however, an average GC content of
47% is reported. This may point at a bias regarding a specific transcriptomic region, or
incorrectly aligned reads of other origin. Relating the GC content to the read length thus
may already give first insight whether the long reads originate from the expected organism,
or are spurious alignments (Figure 5.8).

The alignment identity ( exact matches
reference length) tells how well the aligned reads match the reference

(Figure 5.9). For this example it can be seen that for short reads (less than 1500bp) the
alignment identity is less than for longer reads. In fact, the alignment identity remains
highest for reads ranging from about 1500bp to 8000bp. An alignment identity of about
58% suggests that 42% of the reference sequence are not identical with the read (e.g. due
to deletions in the read, clipping or mismatches).

There are further alignment quality measures implemented. These mostly focus on more
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Figure 5.6: poreSTAT substitution statistics shows how frequently particular substitu-
tions occurred in the alignment. This information is used to see whether there is a general
bias in substitutions.

Figure 5.7: poreSTAT CIGAR evaluation plot shows for all CIGAR elements the
respective length distributions (in bp). The reads were soft-clipped (code S) about 300bp in
average. The general aligned regions (Matches) show a similar distribution like the special
CIGAR code E (exact matches). Within the aligned regions, the distribution of inexact
matches (Z) indicates that few errors are made in any matching region.
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Figure 5.8: poreSTAT read length vs.
GC content plot The aligned long se-
quences have a GC content of roughly
46.8%. This information can be useful to
judge any GC bias or whether the reads
stem from the desired organism.

Figure 5.9: poreSTAT read identity
quality vs. length plot against the
read length. The accuracy can be eval-
uated by checking how well particularly
the long reads align.

specific concepts than the just mentioned measures. For instance, the relation of Read
Identity vs. Read Length is similar to the presented Alignment Identity vs. Read Length,
but may not be as helpful to identify cases of clipping. Several measures make use of the
alignment quality as reported by the mapping tool, or the sequence quality (reported from
the sequencer).

poreSTAT Differential Expression Besides the sequencing and alignment analysis,
poreSTAT can be used for DE comparisons. The poreSTAT DE pipeline RoDE, which is
also useful for bulk RNA-seq in general, will be introduced in Chapter 6.1.

Most DE tools rely on read counts, which is a concept from NGS platforms, where the
reads have a fixed length. Reads from TGS techniques are of variable length, but their
analysis often is still forced into the fixed-length scheme to make use of bioinformatics
methods developed for DE analysis from NGS data. poreSTAT thus supports the counting
of reads per feature, e.g. per transcript. With the example data presented here, an
odd distribution of feature counts can be observed, where one transcript gained the
majority of read counts (Figure 5.10). The massively expressed transcript, the nucleocapsid
phosphoprotein of the virus (ENSSASG00005000005), is known to be abundantly expressed
in coronavirus in general[296], however, the lack of reads for all other transcripts seems
surprising.

Strikingly, this observation explains the GC content discrepancy, because the highly
expressed transcript has a GC-content of 47.22%, which comes close to the reported GC
content of all aligned sequences. Still, this result warrants a closer look at the alignment
(Figure 5.11). It can be seen that many reads of the abundantly expressed region end
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Figure 5.10: poreSTAT Read Counts for the discussed example data. One transcript
(ENSSASG00005000005) has massively more reads than all other transcripts.

abruptly, which is a phenomenon of clipping. This may suggest that the strain linked with
the sequencing data may not be the actual strain which was used for infection. This will be
further analysed in Chapter 5.2.
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Figure 5.11: Tablet alignment visualization for the discussed example data. One tran-
script (at the end of the sequence) has massively more reads than all other transcripts. The
sharp boundary of the rightmost covered region is surprising compared to the characteristics
on the leftmost area. This area might correspond to the high soft-clipping activity observed.

Conclusion

In this section the poreSTAT analysis framework for TGS data (Oxford Nanopore MinION)
was presented. With poreSTAT, both the exploration of read-level quality metrics, and
alignment-level analyses are possible. Using poreSTAT it is possible to prepare the data for
down-stream analyses.

The advantage of poreSTAT over other existing software is its compatibility with
current multi-FAST5 read files, its analysis of read-level and alignment-level data as well
as its interactive plotting ability. The poreSTAT read counts can directly be used by the
integrative DE pipeline presented in Chapter 6.1.

With the presented analysis first the general sequencing run can be evaluated. With
the pore layout plot, any bias from the pores, e.g. air bubbles, can be identified. Using the
yield plots, it can be further checked whether more input material (DNA or RNA) is needed
for better usage of the sequencing chip. The alignment-level analysis shows how well the
sequenced reads match the anticipated organism. Coverage for multiple feature types can
be assessed, besides more general alignment statistics. With the help of these metrics it
was possible to find out early in the analysis, that not the whole sequenced virus genome
is equally well covered. Using the correct virus genome for alignment, the key alignment
statistics are improved considerably (Appendix A.6.1).
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5.2 Online-Analysis of MinION Sequencing Data (sequ-
into)

The MinION sequencer by Oxford Nanopore Technologies turns DNA and RNA sequencing
into a routine task in biology laboratories or in field research. For down-stream analysis
it is often required to have a sufficient amount of target reads. Especially prokaryotic,
bacteriophagic or viral sequencing samples can contain a significant amount of off-target
sequences in the processed sample, stemming from human DNA/RNA contamination,
insufficient rRNA depletion, or remaining DNA/RNA from other organisms (e.g. host
organism from bacteriophage cultivation). Such impurity, contamination and off-targets
(ICOs) block read capacity, require to sequence deeper and longer. In comparison to NGS,
MinION sequencing allows to reuse its chip after a (partial) run. This allows further usage
of the same chip with more samples, even after adjusting the library preparation to reduce
ICOs. The earlier the ICOs of a sample are detected, the better the sequencing chip can
thus be conserved for future use. sequ-into requires few resources and is a user-friendly
cross-platform tool to detect ICO sequences from a predefined ICO database in samples
early during a MinION sequencing run. The data provided by sequ-into empowers the user
to quickly take action to preserve sample material and chip capacity.

sequ-into was initially developed in the course of the iGEM 2018 competition by the
iGEM Team Munich 2018. Active development of the base application was performed by
Margaritha Olenchuk and Julia Mayer under the supervision of this thesis’ author. After
the competition, sequ-into received several important changes to fit into the framework of
this thesis: the analysis and reporting works in an incremental, online fashion such that
only new data must be processed. In contrast to the original application, this required
a redesign of the whole backend. Instead of relying on the result from an asynchronous
system call, like in the initial version, an asynchronous HTTP request to a locally spawned
server has to take place. This implicates that routines for the active polling of the server’s
state must be included. After the alignment, the application plots new figures: an UpSet
[175] plot (Figure 5.12), showing which reads become aligned to which reference sequences,
as well as a summary pie chart visualizing the overall alignment results.

With the recent events regarding the outbreak of SARS-CoV-2, it is interesting to
see whether sequ-into can be used to detect reads originating from the virus which is
responsible for the current pandemic. Using the publicly available dataset SRR11178051
from NCBI SRA, this ability can be tested. The whole genome sequencing of samples
from COVID-19 patients was performed using an Oxford Nanopore MinION device. For
the analysis using sequ-into, one genome per identified genus was added to the sequ-into
reference genomes. The reference genome for each genus was determined to be the first
actual species mentioned in the respective Wikipedia9 entries. For SARS-CoV-2 the NCBI
reference genome with assembly ASM985889v3 was used. The reads were then loaded
into sequ-into for processing. From the UpSet-plot (Figure 5.12) it can be seen that reads
stemming from SARS-CoV-2 are the majority of the reads, more than 35%. Since the

9https://www.wikipedia.org/

https://www.wikipedia.org/
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Figure 5.12: UpSet-plot of uniquely aligned sequences in SRR11178051 The
full visualization contains all set combinations, which are omitted here for space reasons.
Specifically the genomes with low unique counts share sequences with other genomes.

UpSet-plot reveals all other combinations of multi-mapped reads, it can be seen that
about 120.000 reads align simultaneously to at least 3 distinct genomes (Pasteurella m.,
Haemophilus i. and Aggregatibacter a.; data not shown). Unaligned reads are a category of
its own, because there is a difference between a read being aligned to a specific off-target,
or being unaligned to any supplied reference. Particularly with MinION reads it is quite
frequent that reads are generated, which do not match any (known) genome. Even blasting
these reads against the database of all known nucleotide sequences does not yield any result.
Such reads probably are an artefact of blocked pores, or incorrect basecalling. Nonetheless,
even though such reads are no on-target reads, they are also no off-target ones: they are
just not aligned, and hence displayed as such.

With the previous analysis working well, another publicly available experiment, SRR11350376,
was analysed. This experiment analyses the (viral) RNA taken from a SARS-CoV-2-infected
Chlorocebus sabaeus (green monkey). Again sequ-into was set up to consider SARS-CoV-2,
SARS-CoV-2 transcripts (NCBI reference genome ASM985889v3) as well as the green
monkey transcriptome. With the alignment results from Chapter 5.1 in mind, the SARS-
CoV-2/Australia/VIC01 genome (NCBI accession MT007544.1) was added, as this strain
is mentioned in the sample data’s title (but not annotated as (sequenced) organism). The
green monkey can be regarded as off-target sequence, because particularly viral RNA was
targeted by the experiment. From the pie chart (Figure 5.13) it can be seen that of the
680 347 reads, 199 175 reads align to on-target sequences: the SARS-CoV-2 genome or
transcriptome. There are 473 ambiguous reads which align to both on- and off-target
sequences. About 20% of the reads remain unaligned. In total, 49.2% are off-target reads,
originating from the host organism itself. With this information it can easily be determined
whether the sequencing run can be considered a success or not. More interesting is the
upset plot (Figure 5.14). Using the information from this plot, it can be seen that most
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Figure 5.13: Pie-Plot of ICO sequences in SRR11350376 It can be seen that a
majority of the reads align to the off-target sequences of the green monkey transcriptome.
About one third of the reads aligns to any of the on-target SARS-CoV-2 sequences, and
about 20% remain unalignable.

Figure 5.14: UpSet-plot of aligned sequences in SRR11350376. Of all on-target
reads, most reads align to all SARS-CoV-2 sequences. About 13, 000 reads only align with
the full genomic data, which is not unexpected due to the nature of viral genomes.

viral reads align to the genomic and to the transcriptomic sequence. Only few reads align
only to the genomic virus references (ASM985889v3_genomic.fasta and MT007544.1.fasta).

Given the FAST5-files of the experiment, even more information can be extracted
using sequ-into: a timeline analysis of the off-target rate can be calculated, because the
FAST5-files also contain timestamps for the reads’ sequencing time. Hence, the aligned
ratio to the reference viral transcriptome can be analysed over time (or, as shown here, over
the number of sequenced reads; Figure 5.15). It is interesting to see that throughout the
sequencing run the viral ratio increases from initially 23% to more than 27% in the end,
meaning that there originate more reads from the virus towards the end.
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Figure 5.15: Ratio of viral sequences in SRR11350376. It can be noticed that the
fraction of sequences aligning to the reference virus genome increases in time with the
number of sequenced reads.

Taking up the results from the poreSTAT analysis, a difference between the two
SARS-CoV-2 genomes (ASM985889v3_genomic.fasta and MT007544.1.fasta) can be seen.
The reference genome has about 123kb less aligned in contrast to the specific strain
(MT007544.1.fasta). The bad performance of the sample in the discussion of the poreSTAT
alignment analysis (Chapter 5.1) could stem from alignments against an unsuitable reference.
Upon using the correct reference genome, the alignment statistics and read counts improve
to expected levels (Figure A.36).

These two analyses show that sequ-into can not only deliver insights into the relevance
of the sequenced material for scientific questions, but may suit as quality control tool within
a clinical setting, quantifying specific pathogenic sequences — using an online algorithm,
and directly while sequencing. It is not necessary to wait until the data is acquired and
analysed, but the analysis can take place directly while sequencing, allowing for shorter
turn-around times in case of problematic results, e.g. low on-target rates.

The accepted publication is available as open-access online article https://doi.org/
10.1016/j.csbj.2020.05.014. The author’s contributions are listed in Appendix A.6.2.

5.3 Conclusion

In this chapter the poreSTAT data analysis framework for TGS data has been introduced.
Particularly TGS profits from a number of unique analyses in order to understand the
sequencing quality. With the poreSTAT sequencing analysis the sequencing quality can be
assessed. The focus is set on whether the sequencing run delivered useful and interpretable
output. The sequencing quality can be evaluated during the experiment, also allowing
conclusions on whether the initial basecalling performed by the sequencing software is

https://doi.org/10.1016/j.csbj.2020.05.014
https://doi.org/10.1016/j.csbj.2020.05.014
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sufficiently well. In the poreSTAT Alignment Analysis a more in-depth look into the
alignment to specific reference sequences can be made. Not only is the alignment evaluated
on a feature level, but additionally on a sequence level, too, considering substitutions and
GC contents. Using this information, it was possible to note and correct irregularities in
the initial analysis of the presented use-case.

Using the sequ-into approach, the observation of the incorrect reference genome in the
poreSTAT Sequencing Analysis use-case could be manifested. With sequ-into an online and
incremental analysis of Oxford Nanopore reads, even at sequencing-time, can be conducted.
This analysis can be started and controlled using an interactive GUI which is cross-platform
compatible. This GUI controls the underlying application server which itself supervises the
analysis. Particularly for bacterial genomes sequ-into can be run even on regular laptop
computers. On more powerful computers even the human genome is unproblematic. The
focus of sequ-into is to determine which organisms are contained in the sequenced sample,
with the requirement that the target organism (or a close relative) must be supplied. With
this information sequ-into can be used to understand how many reads match each organism.

In this chapter two methods and applications for the analysis of TGS data have been
presented and discussed in the context of SARS-CoV-2. They build the fundament for
further downstream analyses, like the RoDE pipeline (Chapter 6.1). The presented methods
in this chapter are another outcome of this thesis, which contributes with methods to assess
the sequencing and alignment quality in a user-friendly and interactive way, here, for TGS
data. These results pave the road to robust DE analyses.
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6
Integrative Data Analysis in Complex Human

Disease Contexts

Integrative Bioinformatics is a subdiscipline of bioinformatics, which focuses on the data
integration for the life sciences. Data integration involves combining data residing in
different sources and providing users with a combined, an integrated, view of these [174].

In Chapter 6.1 the robust DE analysis pipeline RoDE (robust DE) is introduced.
RoDE builds upon the quantification results from the poreSTAT framework (Chapter
5.1), but can also be used with any count matrices, e.g. gene-level quantifications from
bulk RNA-seq experiments. The RoDE pipeline contributes to the stages of reporting and
visualization, but also to the data integration and knowledge discovery stage in the general
bioinformatics workflow model (Figure 1.1). High-throughput count data are first assessed
regarding their quality and replicate consistency, and then used for subsequent DE analyses
to derive DE genes robustly. These results then serve as input for set enrichment-based
evaluations (e.g. which pathways are up-regulated?), or for the miRNA-gene regulatory
prediction (Chapter 2.3). Using these resources, both NGS and TGS data can be evaluated,
processed and used for robust DE analyses. The use-case of hypothesis generation is
promoted by both the emphasis on using robust results for regular set enrichment methods,
and the integration of the miRNA-gene regulatory predictions. The latter combines the
DE results obtained from high-throughput experiments, and combines these with results
obtained from text mining methods (Chapter 2).

In the last section of this thesis, the data integrative project Aorta3D is presented.
The previously presented methods were already data integrative, like the cPred cell type
prediction (Chapter 4.2) using marker gene databases, pIMZ allowing the use of multiple
datasets (Chapter 4.4), and the robust DE pipeline RoDE (Chapter 6.1) making use of
several processing techniques. The Aorta3D project integrates results from these methods
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into one project. With respect to the general workflow of data analysis (Figure 1.1),
Aorta3D integrates the various frameworks already presented into one resource to obtain
an integrative view on a specific context (e.g. atherosclerosis). Such a view allows an easier
evaluation of the acquired results, connects multiple data sources, and hence promotes
knowledge discovery through data integration.

6.1 A Robust Differential Expression Pipeline (RoDE )

Bioinformatics data analysis is a rewarding and yet sometimes frustrating experience: using
bioinformatics data analysis existing hypotheses can be verified, or new ones can be reasoned,
eventually leading to striking discoveries. However, many bioinformatics data analyses are
neither replicable nor reproducible, making it hard to understand many analysis results,
despite replicability and reproducibility being values of utmost importance in science [231,
237]. Scientific results are called reproducible if the same data and same analysis executed
by different scientists yields the same results. If different data, but the same analysis, lead
to the same results, this is called replicability. Robustness refers analysing the same data,
with different analyses, leading to the same result. And finally, a result is generalizable, if
different data and different analysis lead to the same result. This connection is displayed in
Figure 6.1.

The analysis of RNA-seq data with respect to finding which genes’ expression differs
between multiple conditions is a common task practised on a routine basis [63]. However,
most frequently the acquired data is analysed following a very strict analysis path: one tool
and setting is used for aligning the reads with the genome, one tool and setting is used
to quantify gene expression and a further tool and setting is used to evaluate whether a
specific gene is significantly differential between two conditions or not. Such a sequence of
tools with given settings is often called a pipeline or workflow, as data is fed into the first
step, intermediate results serve as input for the following step, creating a complete analysis
with the last step.

Due to the sheer amount of data analyses executed in bioinformatics, these practices have
become a problem in bioinformatics and biomedical analyses, but also beyond: many results
are neither reproducible nor replicable. 80% of all questioned researchers acknowledged a
reproducibility crisis in their respective fields [20]. By just using one pipeline, and one result
per step, as described above, many analyses are neither robust nor generalizable. While the
use of just one specific software for each step is common practice and acceptable, using a
combination of multiple instances of tools and settings can deliver better performance. This
multitude of results can then be used to eliminate the variance of the different methodological
approaches. Accepting only DE results found by all methods, may reduce the output (e.g.
differentially expressed genes), but also increases the reliability of the found results. A
pipeline, which uses several analysis methods on the same input data, and combines these
results instead of choosing just one result to continue with, is named a robust pipeline.
Here, the robust pipeline for DE analysis of RNA-seq data, RoDE, is presented.
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Figure 6.1: Reproducibility, replicability, robustness and generalisability ex-
plained Often repeatability is named as an additional important factor, which can have
two meanings: reproducibility or replicability. Image created by Scriberia1.
1 https://zenodo.org/record/3695300

Introduction

RNA-seq has become a regular analysis method in biomedical research. With sequencing
costs per base still going down1, and numbers of RNA-seq experiments still rising, methods
for the stream-lined analysis of RNA-seq data are needed.

There are many approaches to stream-line analyses. The bioinformatics community puts
a lot of research and effort into workflow systems. One of the biggest workflow systems in
bioinformatics is the Galaxy project [1, 102], which integrates not only specific workflows,
but additionally offers to generate plots and to analyse data in detail. The nextflow
workflow system [74] is a more general workflow system, but has many applications in the
bioinformatics domain. Despite these rather general workflow systems, more specific ones
exist. The Maser platform [154] is specialised in NGS-data analysis, from RNA-seq to ChiP-
seq. But there are further RNA-seq analysis pipelines available like RAP [64], NARWHAL
[38] or CSI NGS [8]. While each of these pipelines focuses on a specific new part, like
data integration from cloud resources, running in the cloud, or preparing data for following
steps, all of these follow the one-step-one-tool-one-setting approach. There exist predefined
pipelines for RNA-seq data analysis in nextflow from the DolphinNext framework [342].

1https://www.genome.gov/sequencingcostsdata

https://zenodo.org/record/3695300
https://www.genome.gov/sequencingcostsdata


140 6. Integrative Data Analysis in Complex Human Disease Contexts

This includes an RNA-seq module running multiple aligners and quantification methods.
However, this workflow stops with the provision of multiple quantifications, and does
not provide a robustly combined result. In addition to real workflow system, there exist
python-based RNA-seq DE pipelines, like pySeqRNA[79], which was recently presented at
ISMB2020. At that time, the pipeline was not (yet) publicly available, hence it is unknown
how pySeqRNA relates to RoDE. The authors of pySeqRNA do not mention a robust view
on the input data on their poster, but they focus on the analysis of different read counting
strategies, such as uniquely mapped reads or multi-mapped ones.

The here introduced robust DE analysis pipeline RoDE starts exactly after the gene-
expression quantifications, and applies multiple DE tools to the single results, combines these
and allows adding further DE results, derived elsewhere, for a robust combination. With
RoDE it becomes possible to create a robust DE workflow, which allows generalizing gained
information by combining further differential results. A use-case, which compares RNA-
levels of stable and unstable human atherosclerotic plaque sections, serves for discussing
the RoDE pipeline.

Methods

The robust DE pipeline RoDE consists of multiple steps which are summarized in Table
6.1 and Figure 6.2. Each of the pipeline’s steps, starting with DE analysis, adds specific
analyses to the output report. The first steps are of general interest as these perform a
quality control of the obtained samples. Most steps of the DE analysis are performed for
each input count matrix, e.g. from different aligners or gene quantification methods. The
step deriving robust DE results from the different DE methods is the core part of this
robust pipeline. The output from this step serves as input for the enrichment analysis,
where, again, the effects of the different possible robustly combined results can be analysed.

In this section, first the input data are described, followed by the used workflow
mechanisms. Finally, the method to robustly combine multiple results is described.

Data The use-case data are publicly available from NCBI SRA [173] as accession
PRJNA493259. The project consists of eight human samples, runs SRR7905615 to
SRR7905622. These samples, from fresh human carotid plaques obtained at carotid
endarterectomy in 4 symptomatic patients were dissected in stable and unstable regions
based on macroscopic appearance. The unstable regions were characterized as visible zones
of plaque rupture. For these samples total RNA was extracted and sequenced (paired-end,
unstranded).

Data Preparation The data was downloaded from SRA via EMBL ENA and trimmed
using bbduk (Version 38.872). Following trimming the samples were mapped using STAR
(v2.7.6a [75]) and HISAT2 (v2.1.0 [153]) against the human reference genomes obtained
from Ensembl [336] (release 101). Gene expression was quantified on the primary gene

2https://sourceforge.net/projects/bbmap/

https://sourceforge.net/projects/bbmap/
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Figure 6.2: The workflow of the robust DE pipeline RoDE. The pipeline starts with
the count matrices and first performs DE tests while annotating the count matrices with
gene information and normalized counts. Following this, a count-level quality control
is performed, before the DE results are examined for robustness. The final step is an
enrichment analysis, which compares the given results from all inputs as well as the robust
solutions. Dots at the edges’ ends symbolize multiple in- or outputs.
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Table 6.1: Pipeline Tools for Robust Differential Analysis The RoDE pipeline uses
well established DE methods like DESeq2, edgeR or limma. New methods can easily
be added. Likewise, the enrichment analysis bases upon well established packages like
clusterProfiler, or miRNA-target gene sets from miRTarBase.

Pipeline Step Method Reference

DE Analysis
Methods

DESeq
DirectDESeq
DirectDESeq2Paired
msEmpiRe
nlEmpiRe
limma
edgeR

EnrichmentBrowser [99]
DESeq2 [189]
DESeq2 [189]
MS-EmpiRe [7]
nlEmpiRe∗
limma [255]
edgeR [208, 257]

Enrichment Analysis KEGG, GO
Reactome
miRTarBase

clusterProfiler [340]
ReactomePA [339],
miRTarBase [128]

Integrative miRNA Analysis miRExplore (Chapter 2.3)
∗ Csaba, Gergely. Personal Communication. 2019.

annotation file (with scaffolds; without patches or haplotypes) using featureCounts (v1.6.3
[184]) with reads being assigned to all overlapping meta-features, but counting only read
pairs with both ends aligned to the same chromosome on the same strand and delivering
fragment counts (instead of read counts). Sample names in the output matrices were
renamed into a human-interpretable format, naming the samples stable_patient1 to
unstable_patient4.

Workflow The analysis workflow can roughly be divided into five steps (Table 6.2). Each
step builds upon the results from the previous steps, but can also be executed independently.
The gene counts, which were quantified through the STAR mapping, will be referred to as
STAR counts and those from the HISAT2 mapping as HISAT2 counts, respectively.

The first step in the workflow maps Ensembl gene IDs to gene symbols [336] and adds
gene lengths to the input count matrices. Particularly the gene lengths are required for
the calculation of FPKM [218] and TPM [318] values (Equation 6.1). For the FPKM and
TPM calculation, the fragments_mappedgene refer to the number of fragments used for the
quantification of a specific gene (e.g. the count reported by gene quantification methods).
The gene length of a gene lengthgene is assumed to be reported in base pairs (bp). The
scaling factor 103 transforms this input into kilobases. In the case of paired-end sequencing,
the fragment is a read-pair. For single-end sequencing, one can consider one fragment to be
one read. In this case, the FPKM is identical to the often used RPKM (reads per kilobase
million) value.
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Table 6.2: Pipeline Steps for Robust Differential Analysis For each pipeline step
the included analyses and visualization are listed.

Pipeline Step Purpose

Foldchanges Perform DE Analysis using specific methods

Counts Analysis FeatureCount summary visualization

Replicate comparison (un-/norm. counts)

LogFC distribution between replicates (un-/norm. counts)

LogFC distribution between all samples (un-/norm. counts)

Read count histograms & Count heatmap

Count frequency per replicate

Counts per biotype per replicate

Input Comparison per replicate (raw, TPM, RPKM)

DE Analysis Overview (UpSet, Volcano)

(per DE method) Count frequency per replicate (w/ gene symbols)

Cluster expression values of replicates (UNTF∗)
heatmap, PCA, UMAP

Heatmap of top 100 DE genes (UNTF∗)

TPM/FPKM count histograms & frequency

Combined DE Analysis Overview (UpSet, Volcano)

DE gene rank comparison

Cluster expression values of replicates (UNTF∗)
heatmap, PCA, UMAP

Heatmap of top 100 DE genes (UNTF∗)

DE gene overlap within DE method for top DE genes
by adj. p-value, log2FC, log2FC (of sign. genes)

Robustness Check Overlap (UpSet) of top DE genes
by adj. p-value, log2FC, log2FC (of sign. genes)

Enrichment Analysis ORA for KEGG, Reactome, GeneOntology (each domain)
for each method, prefix, combined and robust.

Comparison of results (sorted by q-value)
Enrichment Analysis ORA for miRTarBase, Epi-Genetic Gene-Sets
Custom gene sets for each method, prefix, combined and robust.

Comparison of results (sorted by q-value)
∗ un-normalized (raw) counts, library-size normalized counts, TPM, FPKM (performed for
each count type)
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FPKMgene =
fragments_mappedgene · 103 · 106

fragments_mappedtotal · lengthgene

TPMgene = Agene ·
106∑

i∈genesAi

Agene =
total_fragments_mappedgene · 103

lengthgene

(6.1)

The annotated count matrices are used as input for the DE analysis using at least one
of the DE methods listed in Table 6.1. Each input matrix yields one output matrix with
annotated log-Fold-Changes (logFCs) and (adjusted) significance values (PVAL.ADJ) for
the performed comparison. This output then is used as input for the count-level quality
control step from the Counts Analysis. Within this analysis multiple count-level statistics
are calculated and visualized. Among these are replicate comparisons (scatter plot of counts)
as well as count frequencies per gene and biotype for each replicate.

The DE analysis step evaluates the results of the DE analysis performed in the fold
changes step. At this stage, the results of the different DE methods are compared, and
the specific results are visualized using a volcano and upset plot. The replicates are
clustered regarding their gene expression results on the differential genes. These analyses
are repeated for the combined results, where the robust result is derived from all input
matrices. Additionally, overlapping DE genes are compared by method and mapper as
well as the combined result. With this robustness check the overlap of the differentially
expressed genes for all samples are evaluated.

The last stage is the enrichment analysis of common gene sets like KEGG, Reactome
or GeneOntology, as well as custom gene sets, like epi-genetically relevant gene-sets or
miRNA-target gene sets taken from miRTarBase and miRExplore (Chapter 2.3). The
found significant sets (q-value < 0.1) are compared among all input variants as well as the
combined and robust variant. The combined variant robustly combines all results processed
by this pipeline (robustness), while the robust variant combines additional user-supplied
DE results (e.g. additional micro-array experiments) with the results from all DE methods
executed as part of this pipeline (generalizability).

All pipeline steps and outputs are summarized in Table 6.2.

User Interface The pipeline requires the user to specify the input for the differential
analysis. This input consists of count matrices with associated sample (column) names.
The user must specify a location where the output report with figures is stored, as well as
a directory where data associated with the count-matrices is stored in. For down-stream
analyses the user must name the organism of the samples as well as files which map the gene
name from the count matrices to their respective length and gene symbol. This is required
for calculating normalized expression values like RPKM and TPM (Equation 6.1), but
also has practical relevance: the output should be interpretable by non-bioinformaticians,
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which are used to gene symbols, instead of Entrez [195] or Ensembl [336] gene IDs. Finally,
the input requires the user to define the conditions to compare, which is done from the
column names of the input count matrices. If the user does not specify the DE methods to
be used, results for all possible combinations of the available DE methods are calculated.
For practical reasons, like run-time or amount of produced data, only required methods
should be specified. Likewise, the user should specify for which results (of the DE method
combinations) an enrichment analysis should be performed for.

Robust Combination The robust combination of multiple DE results is a key operation
for a robust data analysis. This combination takes the robust DE result (which again might
be a combination of results from one or more DE methods) of all input DE results and
calculates a robust result. For genes with a common direction of the log-fold-change (that
means all methods consistently show an up- or down-regulation), the robust result for a
gene is defined as the lowest absolute log-fold-change and the maximal adjusted p-value.
Genes, for which some methods predict a down- and other methods an up-regulation, or
the other way around, are assigned a log-fold-change of 0 and an (adjusted) p-value of 1.
Such genes would not be reliable.

Enrichment Analysis Custom gene-sets are processed using scripts written as part of
this pipeline. For the over-representation analysis the hypergeometric test is used [101]. P-
values are adjusted for multiple testing correction using the Benjamini-Hochberg procedure
[24].

Availability The robust DE pipeline RoDE is part of the poreSTAT framework which is
available through GitHub https://github.com/mjoppich/poreSTAT/. A RoDE Docker im-
age (https://hub.docker.com/repository/docker/mjoppich/porestat_de) is available.
Using this Docker image, all required python module and R library dependencies are already
in place.

RoDE adheres to the FAIR principles. It is findable from GitHub and Docker. At
both locations instructions for accessing the software are given. By using common genome
annotation files for creating enhancement files, and relying on gene quantification output
from common software like featureCounts [184], the pipeline is also interoperable. Finally,
the pipeline is easily extendable and thus reusable.

Results and Discussion

Performing a DE analysis starts with the evaluation of the quantified gene expression values
using a specified DE method. In this use-case a robust DE analysis should be conducted
to see, whether the applied DE tools deviate from each other on both the DE gene level,
and on down-stream analyses, like GO enrichment analysis. This robust DE analysis is
discussed at the example of a biomedical experiment, where the differential gene expression
between stable and unstable human plaque is studied. This is of high interest in order

https://github.com/mjoppich/poreSTAT/
https://hub.docker.com/repository/docker/mjoppich/porestat_de
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to understand the final stage of atherosclerosis, where stable plaque becomes unstable,
ruptures, and leads into the fabrication of a thrombus. It is thus important to understand
the processes involved in this final stage of atheroprogression. It must be avoided that
the results concluded from the bioinformatics analysis are artefacts of the bioinformatics
pipeline. The results should be genuine observations in the biological samples. In order
to ensure that observations are actually true, each DE method applies checks to adjust
against the multiple-testing problematic (the chance that there is a false-positive due to
the many genes tested), but most importantly each method makes distinct assumptions
regarding how to decide whether a gene is differentially regulated. Because each method
makes certain assumptions, e.g. on the distribution of gene counts, results from the various
methods may differ. These assumptions must not reflect the actual truth, though. Hence,
the idea behind robust DE analysis is to assume that at least those DE genes, which are
found by multiple methods, are actually differentially regulated. At least these DE genes
are not only significant due to a statistical assumption made by just one method. Obviously
this may drastically influence how many and which genes are left over and will depict a
rather conservative, yet robust, image of the data. Such differences between the single
methods and the robust view on the data are assessed by the robust DE pipeline RoDE.

Pipeline Within the pipeline, each step is executed separately and independently. The
created output filenames follow a specific pattern. Thus, by checking the existence of a file,
it is possible to determine whether a specific step has already been done or still needs to be
executed. This design decision has one disadvantage. Each sub-step operates independently,
and therefore has to read in all needed inputs. With count matrices easily becoming very
large (100MB range), this might induce a bottleneck for future operations. However, this
ensures that every step is self-contained and introduces a certain resilience to the whole
workflow: upon an error, the workflow can be continued.

Pipeline Invocation Given the input count matrices, the DifferentialAnalysis.py
script can execute the analysis workflow fully, or in parts. For the use-case presented in
this chapter, the command is shown in Listing 6.1. This command specifies the input count
matrices –counts, the respective short names –prefixes (here: STAR or HISAT2) as
well as the location to store count-related information –diffreg. The –name specifies the
prefix of all DE analysis output files. With the organism information –organism as well as
with the enhance- and lengths-files (–enhance and –lengths) the entities from the count
matrices can be converted into human-interpretable gene symbols. These files are needed
to annotate gene lengths required for absolute expression value calculation. The organism
name is essential for the set enrichment methods, because some require a mapping to Entrez
gene IDs. With the –report flag the location of the output HTML report can be set, while
all other output files are saved in the –save folder. The –de_methods flag allows the
user to set specific (combinations of) methods which will be used to derive fold-changes and
significance values between conditions. The conditions themselves (the columns used from
the count matrices) are specified with the –cond1 and –cond2 flags. The order must be
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the same as for the count matrices. Here, the first set of condition names is used for the star
counts, the second set for the HISAT2 counts, respectively. With the –enrich-methods
flag the methods for which an enrichment analysis is performed can be restricted. By
default, this is done for all specified de_methods. The enrich_methods must be a
subset of the de_methods. Finally, the specific miRNA-related enrichment analyses are
demanded with the –mirnas flag. Using the –mir_disease "DOID:2349" flag, the
miRExplore query can be filtered. By specifying the disease context (DOID:2349), only
miRNA-gene interactions, which are related to this ontology term or children thereof are
queried from miRExplore. The term ID DOID:2349 refers to the term arteriosclerosis,
which has atherosclerosis (DOID:1936) as child.

Counts Analysis The initial counts analysis aims to investigate whether the acquired
data are useful and of sufficient quality for further analysis. As such, the first evaluation
is performed on the feautureCount [184] outputs, analysing the mapping and counting
efficiency. This is evaluated per replicate and input (here: quantifications of the STAR
and HISAT2 alignments). For this evaluation, the number of total alignments is visualized
(Figure 6.3). Using the assigned categories (e.g. Assigned, Unassigned_MultiMapping) the
user can easily spot what the problem of unassigned alignments was and why these were not
counted. This categorization is supplied by featureCounts from the gene quantification step.
On this data, a large fraction of reads (about 80%) remains unassigned, independent of the
used mapper. Only about 20% of all alignments could be used succesfully for quantification.
This might indicate a problem during library preparation, but does not seem to be a
problem of the alignment. Most assigned reads align to protein coding genes, but also to
several non-coding RNAs such as lncRNAs (Figure 6.4). This, however, is expected as
total RNA was isolated for the sequencing. This analysis is provided for every replicate
and input matrix with both absolute or relative values shown. Again, no major difference
between the input matrices from both aligners can be observed.

After evaluating the single replicates, the input counts from all replicates (all stable
and all unstable) are compared in pairwise scatter plots (Figure 6.5). From these it can
be concluded that the replicates are similar. For genes with lower counts the variability is
larger than for the highly expressed genes. Yet, for both inputs and all shown replicates,
the data points are triangularly shaped, indicating good agreement between the replicates.
Still, a more narrow distribution would be better, ideally showing a line if perfectly similar.

The input replicates are compared using scatter plots (Figure A.38b), where a high sim-
ilarity between the STAR and HISAT2 alignments can be seen. This purely computational
variability is much smaller than the biological variance observed earlier.

For each input, the expression values of the several replicates are compared in a heatmap
(Figure A.38a, showing only genes with at least t = 10 counts). The unstable_patient4
replicate behaves different compared to the other unstable sample, at least on a count level.

These results suggest that despite the low assignment-rate of alignments, mainly protein-
coding genes were measured and that the replicates are mostly consistent and show similar
patterns. The differences of the mapping strategy are quite small, but some outliers show a
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Listing 6.1: Command used to start the DifferentialAnalysis script for the presented use-case.
python3 porestat/DEtools/DifferentialAnalysis.py \
--counts \
counts/trim.star.prim.O.5.counts \

4 counts/trim.hisat2.prim.O.5.counts \
--diffreg \
diffregs/stable_vs_unstable.star.trimmed.diffreg/ \
diffregs/stable_vs_unstable.hisat.trimmed.diffreg/ \
--prefixes \

9 star \
hisat \
--name \
stable_vs_unstable \
--organism \

14 hsa \
--enhance \
ensembl.grch38.human.101.gtfout.list \
--lengths \
ensembl.grch38.human.101.gtfout.length.list \

19 --report \
./reports/stable_vs_unstable.html \
--save \
reports \
--fold_changes --stats --counts_analysis --enrichment \

24 --prefix-counts \
--de_methods \
"msEmpiRe" \
"DirectDESeq2" \
"msEmpiRe;DirectDESeq2" \

29 --enrich-methods "DirectDESeq2" "msEmpiRe;DirectDESeq2" \
--cond1 \
stable_patient1 stable_patient2 stable_patient3 stable_patient4 \
--cond1 \
stable_patient1 stable_patient2 stable_patient3 stable_patient4 \

34 --cond2 unstable_patient1 unstable_patient2 \
unstable_patient3 unstable_patient4 \
--cond2 unstable_patient1 unstable_patient2 \
unstable_patient3 unstable_patient4 \
--condition-no-path --synthetic-names --update \

39 --mirnas --mir_disease "DOID:2349"
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(a) STAR (b) HISAT2

Figure 6.3: RoDE featureCounts summary It is assessed how many alignments could be
used for quantifying gene expression. Only about 20% of all alignments could be used, with
a majority of alignments dropping out due to multi-mapping reads. This visualization is
prepared per replicate and input.
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(a) STAR

(b) HISAT2

Figure 6.4: RoDE biotype assignment The biotype assignment is important for checking
whether the expected biological entities were extracted and sequenced. A majority of counts
is assigned to protein coding genes. It can be noted that non-coding RNAs are counted,
which is expected due to the total RNA-seq approach.
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Figure 6.5: RoDE replicate consistency The consistency of replicates answers the question
of how similar the replicates are. This can be checked by using pairwise scatter plots for all
replicates within one condition (here: HISAT2 counts). In these data, the typical conical
shape is observed indicating that the single replicates match. The wide scatter in the
lower-count areas indicates a high variability in the low-expressed genes.
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(a) UpSet plot of DE genes using the two DE
methods (msEmpiRe and DirectDESeq2) for
STAR input

(b) Volcano Plot of DE analysis using Dir-
ectDESeq2 on STAR input

Figure 6.6: RoDE DE overview Using the UpSet-plot (a) the two applied methods can
easily be compared. The volcano plot (b) allows a fast assessment of the observed meaningful
changes. A total of 3028 genes show a significant (adj. p-value < 0.05) absolute logFC ≥ 1.

higher deviation. Yet, on a raw count level, differences between stable and unstable can
easily be spotted by eye in the corresponding heatmap.

DE Analysis The DE analysis is the core part of the robust pipeline. The initial overview
is performed for each input matrix and DE method, showing the overlaps of the different
DE methods’ results (Figure 6.6a). Additionally, a volcano plot is presented to get a fast
impression of the observed changes between the compared conditions (Figure 6.6b). These
two results are plotted side by side for each input for an easy comparison. In this analysis,
approximately 3000 DE-method-robust DE genes are found by both applied methods
(msEmpiRe and DirectDESeq2).

The report continues with more detailed analyses of the replicate consistency per input.
Using a heatmap, the distance between replicates is assessed for both inputs. Using all
DE genes for this visualization (Figure 6.7), the stable replicates show a high similarity
between each other (top left). For the unstable replicates, a higher heterogeneity in the
samples can be noticed. This effect, however, vanishes after filtering for the top 500 up- and
down-regulated genes (data not shown). The similarity of the stable replicates increases,
and the unstable replicates show a higher similarity. This suggests that the top DE results
divide the samples considerably well.

Another way to look into the similarity of the replicates is to consider the technique of
dimensionality reduction. A traditional technique for this task is the use of Principal Com-
ponent Analysis (PCA) on the input matrix (which might be counts, library-size normalized
counts, RPKMs or TPMs). More recently, the use of UMAP [210] is recommended for
this task, which is particularly suitable to visualize groups of data points while preserving
relative proximities. UMAP was used to produce 2D embeddings of both the STAR and
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Figure 6.7: RoDE DE replicate comparison Using heatmaps, the distance (on DE gene
counts) between replicates can be assessed (here: STAR counts; all DirectDESeq2 DE
genes). Ideally, all samples of the same group show a small distance (e.g. dark). This
expected pattern can be observed for the stable replicates, the unstable ones show a higher
heterogeneity.
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HISAT2 inputs (data not shown). For both inputs, the stable samples appear closer to each
other than the unstable ones. This was already observed in the heatmaps. In both UMAP
embeddings the unstable patient 4 sample seems to be more separated from the remaining
unstable samples. Considering only the significantly regulated genes, all replicates show
a high similarity and a high separation by condition (Figure A.39a). This matches the
increased similarity observed in the heatmap.

As part of the included visualizations, the pipeline plots a clustermap of the top 50
up- and down-regulated genes. Visualized are the column-wise z-scores of the library-size
normalized, z-scaled and logarithmic raw expression values. This clustermap visualization
is important for the experimentalists: it helps to get a first glance at the data, and thus is
included in most publications. Furthermore, it helps to judge whether the replicates cluster
together for the selected genes.

DE Robustness After preparing the results for all DE methods, the combined dataset
from all inputs is created. The combined dataset contains the gene expression values from
all inputs, and robustly combined DE results. Similar checks as for the regular DE results
are conducted.

The most important checks are regarding the replicate consistency among all inputs.
Hence, the UMAP embedding is calculated for all replicates from both inputs. Initially it
can be observed that the UMAP embedding separates the samples by alignment method,
underlining substantial differences between the alignment methods, because the gene
quantification strategy for both aligners was the same. Considering only the DE genes
(Figure 6.8a), the replicates are embedded at similar locations. This effect is stronger for
the stable replicates than for the unstable ones. This suggests that there are differences
between the aligners, but that the used DE genes divide the conditions well, while leaving
aligner-specific differences particularly in the unstable samples. This observation is backed
by the clustermap on the top 50 up- and down-regulated genes (Figure 6.8b), where the
high similarity between the inputs can be seen.

The UpSet plot of the differentially regulated genes (Figure 6.9) shows that the majority
of identified DE genes is robust. There are about 20% method-specific DE genes (844 for
DESeq2 or 716 for msEmpiRe), which is by far more than the 57 HISAT2-specific genes,
or the 23 STAR-specific ones. Overall this overview gives a good idea of the method- and
aligner-specific DE genes, which can be identified by this robust approach.

The robust results can be compared in more detail. Checking the overlap between the
top 250 DE genes (sorted by adjusted p-value, Figure 6.10a), compared with the overlap
of the top 250 genes sorted by absolute logFC (Figure 6.10b) it must be noted that the
overlap of the p-value sorted list is larger than the overlap of the fold-change sorted one,
even if only significantly regulated genes are considerd (Figure 6.10c). This can also be
observed on the gene rank-plot (Figure A.41), where the p-value ranked comparison shows
only few differences. This suggests that there exist genes, which benefit from reads, which
were unassignable (e.g. unmapped, mapped elsewhere) in the one aligner, but led to
assignments in the other. However, the vast majority of DE genes does not show aligner
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(a) Combined UMAP (all up/down-regulated
DE genes) (b) Combined clustermap top 100 DE genes

Figure 6.8: RoDE combined dataset UMAP and clustermap evaluation The dimen-
sional reductions and clustering of expression values are repeated on the combined input
samples. This allows a comparison on the different input methods, e.g. STAR and HISAT2.
It can be noted that the stable replicates show no input-specific bias, while the unstable
replicates do (a). This bias can not be observed in the clustermap of the top 50 up- and
down-regulated genes (b).
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Figure 6.9: RoDE replicate consistency and (robust) DE result comparison The
UpSet plot of all DE genes shows that there are differences between aligners and DE
methods. However, the majority of the DE genes is common to all methods. There are
some DE genes which are specific to the DE method. Few are specific to one aligner.
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(a) Overlap for robust adj. p-
value sorting

(b) Overlap for robust log2FC
sorting

(c) Overlap for robust log2FC
SIG sorting

Figure 6.10: RoDE comparison of DE results from all DE methods and robust
combination As part of the robustness analysis poreSTAT calculates the overlap of the
top differential genes, for three distinct ways of sorting the data. The overlaps for the
top 250 DE genes (DESeq2) are shown, sorted by adjusted p-Value (a), absolute logFC
(b) and absolute logFC of significant gene only (c). Green is the STAR input, blue the
HISAT2 input and yellow is the robust combination of both. For all comparisons (which
only differ in the order) it can be seen that a majority of reported DE genes is common.
The significance estimation of the tools is more similar than the estimated logFCs ((a) has
higher overlap between all results than (b) and (c)).

specific differences.

Enrichment Analysis The enrichment analysis is the final step of the pipeline. This
step is subdivided into three parts: the enrichment analysis on general gene sets, such as
KEGG, GO or Reactome, the enrichment analysis on custom gene sets and the miRExplore
integration. For the former kind of analysis specific R-scripts are used, which perform the
analysis using established R libraries (clusterProfiler [340] and ReactomePA [339]), while
the custom gene sets are processed directly in python. The robustness evaluation on the
results equals for both parts.

The significant gene sets (logFC > 1.0 and adj. p-value < 0.5) are annotated with
matched genes by the respective R libraries. The output is saved in tabulator-separated
files, which allows an easy computational processing and import into any spreadsheet office
solution. The user can access these files via links from within the final report. For each
gene set 3 distinct results are shown: one result considering all differential genes as input,
and one result each for only considering up- or down-regulated genes. This feature was
requested from multiple users, as this allows conclusions on whether a gene set is up- or
down-regulated without performing the (often) more conservative significance testing of
gene-set enrichment analysis (which would be the more trustful test, though) [295].
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As part of the result presentation, the top enriched gene sets of all gene sets are visualized
by bar plots (Figure A.40). This allows a fast and easy comparison between the different
robust results. These plots show distinct bars for using all genes, and only the subset
of all up- and down-regulated genes, respectively. The reported gene sets are sorted to
maximize the difference between the UP and DOWN results, under the condition that both
UP and DOWN results are significant. Using the miRTarBase [128] miRNA target sets for
over-representation analysis, miR-297b, miR-146a and miR-410 are among the top ranking
miRNAs and are thus potentially playing an important role in the transition from stable to
unstable atherosclerotic plaque.

In order to ease the evaluation of the enrichment analysis results (distinct inputs,
combined or robust analysis), Venn diagrams are used to display the gene-set overlaps.
A majority of the results is robust (Figure 6.11). However, there is some fraction that is
unique to the combined or robust analysis. Particularly these differences occur with the
robust comparison input, as here significant genes are taken away, leading to missing results
(in contrast to the other inputs) or a different ordering. Yet the vast majority of results
(about 80%) are robust, which matches the minor differences observed in the DE genes.
The difference in the used aligner (STAR or HISAT2) is marginal, but the highest with the
Reactome Pathways.

For the GO (Biological Process domain) over-representation enrichment (Figure 6.11a)
all input-unique enriched gene-sets are found in the other inputs, yet at higher ranks.
This suggests that there is a difference in ordering, and also a difference in DE genes,
but this does not yield highly different gene set enrichments. However, this does not
seem to be generalizable: for the Reactome pathways (Figure 6.11c), there are pathways
which are only found by using the HISAT2 input. Among the HISAT2-only pathways are
methylation related ones (DNA methylation; PRC2 methylates histones and DNA; RMTs
methylate histone arginines) as well as a acetylation related pathway (HDACs deacetylate
histones). It is already known that epigenetic plays an important role in atheroprogression,
but particularly histone and DNA methylation are known to be ‘altered in atherosclerosis,
suggesting a possible contribution of epigenetics in disease development’ [108]. More recently,
the contribution of histone deacetylases (HDACs) was brought into focus of regulating
vascular cell homeostasis and thereby atherosclerosis [54]. There are further HISAT2-only
pathways which support an epigenetic activity in atherosclerosis. These are missed when
relying on STAR for alignments or the robust results. This shows, that in certain cases the
choice of the aligner can make a difference, and that robust results may hide interesting
and relevant observations. However, for a vast majority of results, the robust view on the
data gives additional evidence and support. With the help of the robust DE pipeline it is
possible to identify such differences, making it possible to rate the differences.

As part of the DE pipeline, an analysis of possible regulating miRNAs can be performed
on interactions retrieved from miRExplore (Chapter 2.3). The results, which are discussed
here, are from the method- and alignment-robust variant. Within the report, regulating
miRNAs are made available in a table as well as in a network visualization (Figure 6.12).
Strikingly, the performed over-representation analysis identified method-robust significantly
regulating miRNAs (adj. p-value < 0.05) with three or more targets. These miRNAs
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(a) Overlap GeneOntology
Biological Process (ORA)

(b) Overlap GeneOntology
Biological Process (GSEA) (c) Overlap Reactome

Figure 6.11: RoDE evaluation of enrichment robustness Similar to the DE gene
overlap comparison (Figure 6.10), these overlaps are also calculated for the q-value sorted
enrichments (of both the general gene sets and custom one). Again, a majority of the
top 100 reported gene sets does not differ between the inputs and the robust result (using
different DE methods). The results determined by gene set enrichment analysis (b) seem
to be more robust than those of the over-representation analysis (a).

are miR-155, miR-20a and miR-590, which are predicted to be less prevalent in unstable
plaque. Other interesting and interacting miRNAs are miR-467b, which shares its targets
with miR-590, and miR-181a, which shares targets with miR-20a. All these miRNAs
(except for miR-467b) are also significantly enriched in the miRTarBase over-representation
analysis (considering up-regulated DE genes). However, these miRNAs are not among the
top enriched ones. Using the context-sensitive approach of the miRExplore integration,
miRNAs, which are only significant because not context-relevant interactions are considered,
are sorted out. With miRExplore, a focus on known and context-relevant miRNA regulators
in arteriosclerosis (DOID:2349) is set.

It is already known that miR-155 participates in the atherogenesis. Therefore, it is
an interesting target for clinical research regarding the resolution of atherosclerosis [39].
Particularly its role in macrophages, which are one of the many compounds of plaque, is
of interest. The interaction with CSF1R has already been investigated further [323]. The
miR-155 interactions with ADAM10 and FLT1 are verified by the miRTarBase resource
[128] in accessions MIRT021045 and MIRT020776. The interaction of miR-155 with CD68
[344] is interesting, because CD68 is expressed by cells of the monocyte lineage (e.g.
macrophages). CD68 is already known to be upregulated in unstable plaques [253]. The
miR-155 interaction with CXCL8 is interesting due to controversy reports regarding the
direction of regulation: there are reports that miR-155 overexpression reduces CXCL8
(also known as IL-8) production [298] in Helicobacter pylori -induced inflammation, or
that silencing miR-155 in lipoprotein-stimulated macrophages promoted the release of
CXCL8 [129]. Yet there are other reports which found (in chronic immune-mediated
inflammatory dermatosis) that miR-155 overexpression increases CXCL8 prediction [319].
The presented data suggest that a lack of miR-155 increases CXCL8 production (in a
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canonical way), which is a chemokine produced by macrophages or endothelial cells, thereby
promoting angiogenesis [214], a key process in atherosclerosis. Because stable and unstable
atherosclerotic plaques are compared, this found involvement of miR-155 is reassuring.

Another miRNA which was highlighted by the miRExplore analysis is miR-20a, which
regulates PYCARD (ASC), but also TXNIP and NLRP3 [182]. While these interactions
were explored in fibroblast-like synoviocytes, it is known that these cells play a crucial
role in the pathogenesis of chronic inflammatory diseases, like rheuomatoid arthritis. The
link between fibroblast-like synoviocytes, rheuomatoid arthritis and atherosclerosis was
established by Bernhagen et al. [215]. The incorrect annotation of IL-18, due to text mining
errors, does not affect the significance of miR-20a.

The presence of miR-590 in this comparison is not unsurprising: it was already found
in the previous atheMir evaluation (Chapter 2.2), and regulates CCL2 expression in
macrophages. Indeed, miR-590 targets CD68 and LPL directly [119] and thereby decreases
plasma levels of pro-inflammatory cytokines. The interaction of miR-590 with IL-18 is also
relevant for atheroprogression, indicating an involvement in angiogenesis [181].

Another interesting interaction is miR-467b targeting LPL, which was found to be
related with an onset and development of cardiovascular disease [316]. Regarding the
annotation of the miR-467b interaction with IL-18, this is due to the same text mining
error as above. NLRP3 and IL18 are already discussed targets of miR-181a [285].

With the miRExplore extension, the robust DE results from earlier pipeline steps are
used to predict regulating miRNAs. All discussed miRNAs are known to be relevant
to the progression of atherosclerosis. The targeted genes were confirmed to play central
roles in distinguishing stable plaques from unstable ones. The identified miRNAs are thus
interesting targets for preventing atheroprogression in its late stage.

Conclusion

In this section the concept of a robust DE analysis has been demonstrated in a consequent
way for an analysis in the context of atherosclerosis. RoDE makes the comparison of different
input strategies (e.g. aligners or gene quantification), and differently processed DE results
possible. Using the provided visualizations it can be analysed whether the replicates are of
the required quality and sufficiently similar, and thus justify a further analysis. Particularly
by diverse overlap comparisons, several DE methods can be compared and combined, such
that differences in DE genes are highlighted. Furthermore, the effects of the different
approaches on the enrichment analysis results are elaborated. This is important because
differences on the DE gene-level could be meaningless for downstream analyses. However,
if these difference on the gene-level induce changes in the significant functional pathways,
these differences might still be of importance. In the presented analysis it could be seen
that the choice of the methods (be it for alignment, quantification or DE) matters. The
input-specific Reactome pathways were shown to be highly relevant for the use-case setting
in atherosclerosis. This makes the point for RoDE: with this pipeline it is easy to spot such
occurrences. If alignment or method-specific gene-sets are found, further research into these
can be conducted. RoDE integrates with the miRNA-regulatory prediction introduced in
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Figure 6.12: RoDE miRNA-gene regulatory prediction using miRExplore Ex-
cerpts from the miRExplore predicted miRNA regulatory network (robust, Direct-
DESeq2+msEmpiRe). Significant regulators (p < 0.05) in terms of overrepresented targets
are miRNAs miR-155/20a/590, which are suspected to be down-regulated in unstable
plaque.

this thesis with miRExplore (Chapter 2.3). The identified regulating miRNAs, identified
from robust DE results, could be confirmed regarding their relevance in atherosclerosis.

RoDE is particularly suitable for preliminary experiments, which serve for hypothesis
generation. By comparing and combining several analysis strategies the most can be retrieved
from the data. This pipeline was applied in still ongoing projects. These projects are within
the atherosclerosis context (yet unpublished) and within the SARS-CoV-2/COVID-19
context [238].

6.2 Building a Multi-modal Model of Atherosclerosis
(Aorta3D)

Within research groups, or collaborative research centres, huge amounts of omics-data
are acquired. While every group looks into a specific process of the research topics, there
are similarities in the experiments, such as a common disease of interest. Moreover, the
experimental outcomes could serve as comparison data for future experiments. Additionally,
many non-omics-data and non-high-throughput data are generated, like microscopy images.
While these are, in general, not comparable with high-throughput data, e.g. from sequencing
or proteomics, recent advances in transcriptomics and proteomics make this possible. Using
spatial transcriptomics and spatial proteomics, microscopy images with several staining can
be brought in relation with such high-throughput data. Indeed, spatial transcriptomics has
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been awarded Method of the year 2020 by Nature Methods [84], and spatial transcriptomics
has already been discussed in this thesis at the example of MALDI-TOF IMS (Chapter 4.4).
But even without spatial transcriptomics, the availability of cell-type specific transcriptomics
data, or IMS data, warrants an integrative analysis of these data types in a complex human
disease context.

Introduction

In Chapter 4.4 methods for the analysis of IMS data have been presented. IMS enables the
measurement of hundreds to thousands different masses and proteins within their biological
topology. This ensures that little to no additional noise or contamination is introduced
into the system, e.g. due to sample processing steps. Such measurements have been the
domain of microscopy, combined with antibody staining. This, however, only allows the
measurement of a few proteins (via antibodies) at a time, at high costs.

Any IMS method aims at providing an image of a sample while being able to resolve
active analytes (proteins, peptides, lipids, etc.) at a higher rate than antibody staining.
Typically, after performing the mass spectrometry, the sample is intact such that at least a
stained microscopy image can (and should) still be acquired. There are even reports which
claim that antibody staining is still possible [246].

Several possibilities exist to use IMS as base level analysis for an integrative setting.
Prade et al. describe a multi-modal approach in which IMS data are integrated with
additional microscopy data after antibody treatment [246]. Neumann et al. describe the
use of multimodal IMS as the future for analysing medical and biological systems [226],
specifically referring to the application of different IMS methods to the same sample,
combined with traditional microscopy data. The rationale behind the usage of multiple of
such methods is that each method has specific properties [226]: with matrix-assisted laser
desorption/ionization (MALDI) IMS a high spatial resolution of typically around 5− 20µm
can be achieved, at a regular extraction rate. Using secondary ion mass spectrometry
(SIMS) much higher primary ion doses and beam currents can be reached, allowing depth
profiling and three-dimensional imaging (without the need of slicing the sample). Desorption
electrospray ionization (DESI) is a minimally destructive technique, which can even be
used in a clinical or surgical setting. Using the SPACiAL framework Prade et al. [246] are
able to (manually) align multiple samples, e.g. from multiplexed immuno-stainings, and
combine these with an IMS lipid measurement. This enables co-localization analyses, and
cell-specific analyses.

With Aorta3D a similar idea is followed. Aorta3D is meant to suit as a 3D-data index
for atherosclerosis related measurements integrating different measurement techniques and
stages of the disease. Data is to be accessed either from a table, or via a graphical model of
the disease. Upon selection of a disease element, e.g. a late-stage vessel with plaque, related
experiments are shown, from which the user can select a relevant one. For this experiment,
specific experimental results are displayed. Included experiments range from scRNA-seq
experiments, over IMS data up to related imaging data. The latter two are aligned where
possible, enabling an integrated analysis. Particularly the integration of cell type-specific
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results, e.g. via scRNA-seq experiments or cell type predictions for IMS data (Chapters 4.1,
4.4), is a novel feature allowing integrative insights into the disease.

Methods

This section presents the methods applied in Aorta3D. The Aorta3D project is structured
into three almost independent tasks. With a focus on IMS data, the interaction between the
IMS data analysis framework pIMZ (Chapter 4.4) and Aorta3D is important, and a specific
interface has been implemented. In order to align different images, such as microscopy
images with the IMS results, or the IMS results within each other, specific alignment
technology was implemented as part of the Bachelor thesis of Margaritha Olenchuk [232],
which was supervised by this thesis’ author. Finally, the web-platform for browsing all
contained data was developed specifically for Aorta3D.

pIMZ integration The integration of Aorta3D with pIMZ (Chapter 4.4) is achieved via
a common output format. All data is shared via json-formatted configuration files. The
main configuration files contain information about the region-name, as well as links to
files describing the identified segments (as image, pixel-coordinates and numpy-matrix),
their marker masses, as well as to a hdf5 file containing m/z intensities required for data
presentation.

Image Alignment The alignment of images and IMS data needs as input a json-file
(Chapter A.1) containing links to the segmented image (as image and numpy-matrix [116]).
Using the segmented image from the numpy-matrix and all pixels associated with non-
background clusters, the boundaries of the measured object are calculated. These boundary
images are then transferred into the registration pipeline, which extracts key features via
the BRIEF algorithm implemented in scikit image [312]. With these features, the warp
algorithm from scikit image can then calculate the transformation, which maps the measured
area onto a reference (which is defined as the sample, which is most similar to all others).

From the aligned images, 3D representations of the sections are calculated. This is done
using a python implementation of the SurfaceNets algorithm3. These 3D representations
are referenced in the configuration file for easy access through Aorta3D. The workflow for
aligning microscopy images has been implemented as part of Olenchuk’s Bachelor thesis
and therefore is not presented as part of this thesis [232].

Data presentation The Aorta3D web framework is made up from two components:
the python-based flask4 application and the TypeScript5/React6/MaterialUI7-based web-
frontend. The server backend is responsible for delivering all required data. As such, it

3https://github.com/mjoppich/surfacenet_python/
4https://flask.palletsprojects.com/en/1.1.x/
5https://www.typescriptlang.org
6https://reactjs.org/
7https://material-ui.com/

https://github.com/mjoppich/surfacenet_python/
https://flask.palletsprojects.com/en/1.1.x/
https://www.typescriptlang.org
https://reactjs.org/
https://material-ui.com/
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is capable of reading and handling the json-configurations created from pIMZ and the
image alignment stage. The server provides several routes from which the frontend can
demand experimental data (e.g. expression data), images or descriptions. The frontend
orchestrates the display of all relevant information and consists of multiple distinct com-
ponents which were specifically created for Aorta3D. The Aorta3DRenderer can display
and render objects in 3D, e.g. the aligned 3D models of IMS measured regions. The
Aorta3DClickableMap allows user interactions on images and shows specific element in-
formation in the Aorta3DElemInfo component. The Aorta3DRelatedExpsViewer
is designed to show related experiments, which might be pre-filtered on the selected
structures (e.g. plaque) or even on the gene-level, when the selection is made in the
Aorta3DExpAnalyser component, which displays expression data from either IMS or
scRNA-seq experiments.

Results and Discussion

pIMZ and scRNA-seq integration The integration of Aorta3D with pIMZ (Chapter
4.4) and scRNA-seq analysis (Chapter 4.2) shows the high interoperability between these
parts in an integrative setting. The integration with scRNA-seq is particularly easy, because
the cell type prediction receives all relevant data as input: the marker genes per clusters.
The cell type predictions are the regular output of the method. With pIMZ, the workflow
is similar. In addition, pIMZ creates additional config files with both cell type information
and information about the several clusters. This information is needed for the alignment
of these regions. As part of the region alignment 3D models for each region are created,
which can be visualized (Figure 6.13).

Data presentation The functionality of Aorta3D is described using the input data from
the IMS project pIMZ presented in Chapter 4.4 (Slide D, regions 0, 1, 4, and 5, Figure
4.6). These data are accompanied by the single cell RNA-seq data of human and mouse
atherosclerotic tissue, which were already described in Chapter 4.2.

After loading the Aorta3D website, the user is shown a summary statistics of all included
experimental data. For each experiment type, the number of recorded experiments is listed.
In addition, the annotated cell types or tissue regions are listed per experiment type. The
main analysis page shows the 3D representation of an atherosclerotic blood vessel, including
schematic elements like the vessel walls or some schematic sections (Figure 6.14). This view
can contain a 3D representation of experimental IMS data. Using the 3D representation,
data can easily be selected by disease stage or region. Schematic representations of specific
cell types could be thought of as more general selectors.

On selecting a schematic representation of a section, this representation is loaded into
the element info object (Figure 6.15a). The left part of this view gives general information
about the element, and the right part features a ClickableMap. A ClickableMap object is a
visualization, which can be used to select an element from an image. Here, the ClickableMap
only serves as image display. Of higher interest is the list of related experiments which
is shown below (Figure 6.15b). All experiments, which relate to the selected element in
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Figure 6.13: Aorta3D region alignment The 3D representation of the aligned regions 0,
1, 4 and 5 from slide D (Chapter 4.4, Figure 4.6).

the element info, are shown. This relation is defined by the experiment details which are
annotated to both the selected element and the single experiments. The shown section
features aorta (vessel) and plaque. Hence, all experiments which are related to these features
are displayed in the Related Experiments. The related experiments list is searchable and
filterable. Furthermore, detailed information for each experiment can be shown by clicking
the Details button. Using the Blend slider, multiple images can be drawn over each other.
By clicking on the detail button for the second experiment, a further experiment info is
displayed (Figure 6.16a).

As already highlighted earlier, the image shown on an experiment info is a ClickableMap
object (Figure 6.16a). A ClickableMap object allows the selection of a specific pixel on an
image. More precisely, a click on a ClickableMap will select all pixels of that specific colour.
For instance, clicking on any pixel of the central cluster on this image, sets this pixel as
the selected pixel (Figure 6.16b) and shows the cluster selection in red for all pixels of the
same cluster. The ClickableMap then queries the server for further information on this
pixel, e.g. the pixel annotation, which here is aorta. In the case of spatial high-throughput
data, like IMS data, DE Analysis Results for this region are displayed. For IMS and
scRNA-seq the shown data are the marker masses and genes, respectively. With these data
the user can easily spot genes or proteins which are relevant for the selected region. For
the central cluster it can be seen that Ccl27a is highly up-regulated in this area. With
only the cluster representation visible (like in Figure 6.16a), the user can hardly relate
this finding. Thus, further imaging data can be blended into this image. This is done by
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Figure 6.14: Aorta3D visualization The measured regions (Figure 6.13) are shown in
the Aorta3D selector at the levels the user provided. Together with the actually measured
samples, schematic objects show an atherosclerotic vessel.

selecting the slider in the Blend column of the related experiment viewer. The element
info shows how many images are currently blended in. The interactive volcano plot is part
of the DE Analysis Results view, which allows to explore the marker masses or genes by
significance or fold-change. The ClickableMap is only shown for data with associated
images, like IMS, but not scRNA-seq results.

From within the DE Analysis Results view the result list has a Details column with
a button element. Upon clicking this button, the related experiments list will filter for
experiments where the selected gene is among the marker genes.

Conclusion

With Aorta3D regular RNA-seq or scRNA-seq data can be combined with spatially resolved
data, like IMS, or spatial scRNA-seq data. Using the 3D-interface, Aorta3D allows a fast
browsing of all data along the progression of atherosclerosis. The 2D-ClickableMap-interface
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(a) Selected schematic element in the element info object.

(b) List of related experiments for the selected element (a).

Figure 6.15: Aorta3D single element information and related experiments browser
Upon hovering over a specific element in the 3D browser (Figure 6.14), a detailed element
information can be displayed. When selecting a schematic section, this section is shown as
a clickable map (a). Relevant experiments are displayed in the related experiments view
(b). Selecting an element therein shows additional information about this experiment.
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(a) Experiment Info: Selected Slide D Region 0

(b) Selected Slide D Region 0 with blended image and cluster 1 selected

Figure 6.16: Aorta3D blended image and cluster selection module via Click-
ableMap Upon selecting Slide D region 0 from the related experiments the experiment info
for this data is presented. Using the blend function, images from other experiments can be
visualized in the current experiment info as well (a). Using the clickable map functionality,
specific clusters on this image are shown. Clicking on the inner part of the shown artery
selects all pixels of the same cluster and highlights these in red (b). Below the experiment
info a Differential Analysis Results view is shown if such information is available. Here,
this view contains all marker masses for the selected cluster identified by pIMZ.
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then allows a quick selection of the actual region of interest. In the presented use-case,
these were the clusters as determined by pIMZ, but images from microscopy are equally
usable to identify cell types, for instance.

Last but not least, by integrating the many data types into one resource, Aorta3D suits
as a 3D-index for multi-omics data. All datasets can be browsed simultaneously, which
makes the identification of relevant data possible.

6.3 Conclusion
The robust DE pipeline RoDE takes count matrices, generated from the output of different
read aligners or quantification methods, in order to produce a robust analysis of RNA-seq
samples. Using RoDE assures not only reproducibility and replicability, but also creates a
robust result. With the possibility to add further DE results into the analysis, a feature for
more generalizability is implemented. During the pipeline’s stages a focus is set on replicate
consistency on different levels. First the robustness is evaluated on a gene level: for each
(combination of) DE method(s) and all inputs. After the enrichment analysis, these robust
comparisons are repeated on a gene-set level. Using such comparisons it is possible to spot
irregularities and input-specific results which warrant further research: with the use-case
data highly disease-relevant gene-sets were identified using just one specific combination.
With a regular RNA-seq pipeline this would not have been identified as such, or even been
missed, because the relevant combination of input and methods wouly maybe not have been
performed. With the robust DE pipeline, not only robust results can be generated, but also
method-specific results can be discovered. Finally, RoDE integrates the miRNA-regulatory
prediction presented with miRExplore in Chapter 2.3.

With Aorta3D the results obtained from scRNA-seq analyses (Chapter 4.1) and pIMZ
(Chapter 4.4) are combined. Aorta3D is a method to index atherosclerosis relevant data in
3D. By connecting both IMS and scRNA-seq, together with spatial information from IMS
or microscopy, relevant data can be accessed by gene or protein name, spatial location, or,
given annotated data, by cell type.

With the currently available data, Aorta3D can already serve as a frontend to pIMZ
results and as an atherosclerotic experiment data index. However, given microscopy data
which fits the IMS data, co-localization analyses could be performed using the already
provided means of blended images, for instance. The accessibility of expression data from
a 3D index, and the availability of DE analysis data from a spatial-2D view is a new
way of accessing disease-related high-throughput data. It can be expected that such a
framework makes the analysis of high-throughput data more intuitive and allows an easier
discovery of interesting connections from both high-throughput IMS and scRNA-seq data,
in combination with regular imaging experiments.





I think it’s much more interesting to live
not knowing than to have answers which
might be wrong.

Richard Feynman

7
Perspectives for Future Research

The contributions of this thesis to the scientific community were lined out in the respective
chapters. In general, the presented methods and frameworks were applied to a very specific
context only. How these can be improved further in future research, e.g. by applying
them to broader scientific contexts, is discussed in this chapter. Additionally, a transfer
of the developed methods to other scientific questions could be rewarding. Finally, the
contributions of this thesis are set into context with ongoing trends in research.

Text-mining miRNA-gene interactions (Chapter 2) The miRNA-gene interaction
extraction relies on the NER of biomedical entities, including genes and miRNAs, in order
to identify miRNA-gene co-occurrences. This process is followed by a two-pass interaction
classification, first deciding whether a miRNA-gene interaction can be accepted, before the
interaction direction is then predicted. Both classification tasks are rule-based classifications.

During the development of miRExplore it has been found that the NER software
syngrep1 does not find all gene symbols in certain circumstances, which could be explained
with the hardcoded rules of syngrep. This problem particularly occurs in conditions where,
for instance, nested gene symbols exist. Using the python-based re-implementation of
syngrep, which performs the NER without such specific rules, the above behaviour can
be circumvented. This, however, leads to a decrease in recall and precision of the NER,
because some abbreviations are currently not correctly recognized (recall), and ambiguous
abbreviations are not ruled out (precision). An improved version of syngrep for the gene-
and miRNA-recognition, and with a correct abbreviation detection, might be beneficial.
Another strategy for improving the detection rate of syngrep-identified miRNA-gene co-
occurrences is the use of NLP to classify the entity type of found miRNA or gene entities. If

1Csaba, Gergely. Personal Communication. 2019.
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a classification does not match the class gene or miRNA, the co-occurrence is rejected. This
resembles a robust, NLP-assisted NER approach. Given the performance improvements
of current hardware, NLP- and NER-methods, such a dual approach is computationally
feasible.

In addition, it was noticed that for the rule-based miRNA-gene interaction classification
missing context words were problematic. In some cases a specific rule was not triggered,
because a fixed phrase introducing an interaction was not found. After adding the newly
identified context word to the list of known context words, the interaction in question
is identified correctly. This shows that the context rule in general is useful and working,
but relies on additional lists of context words. These lists, however, are hard to create
oneself, and the nature of language almost guarantees that the list will never be complete.
Instead of manually curating this list, as well as other lists and rules, a supervised learning
approach could learn these keywords. The current state-of-the-art software usually relies on
a rule-based relation extraction. With the advent of novel deep-learning based models for
text mining, and in particular relation extraction (like BERT [72]), also in the domain of
biomedical text mining [171], the use of such technology for this task should be looked into.
For regular relations such tasks have already been benchmarked with good results, even on
document-level relation extraction [112], which is a harder problem than the sentence-level
detection performed with miRExplore. Indeed, by manually curating the lists of context
words for the rule-based approach, a manually supervised learning is performed. Adding
words to the lists can be interpreted as adding more rules to the system. Hence, these rules
and words could be learned in a supervised manner, leading to even better results. However,
the down-side of this approach would be the requirement of adequately sized annotated
training and test data. However, relying on pre-trained models like BioBERT, reduces the
amount of required training data. In fact, the existing miRExplore database can be used as
training data: even though the training data may not be 100% correct, it is sufficiently
well to improve the pre-trained model. If the errors, which occur in the training data from
miRExplore, are seldom enough, and thus appear not systematically, the chance is high
that the fine-tuning will not learn these errors.

Finally, this thesis presents the interaction detection in the setting of miRNA-gene
interactions. It could be shown that the presented approach achieves a reasonably well
specificity and sensitivity, expressed by a F1 score of about 0.95. But there are further
biomolecular entities which can interact with each other, such as transcription-factor
(TF)-gene interactions. There are no other regulation directions in this case, but the
canonical regulation would be TF-gene UP. It would be interesting to apply the presented
interaction classification to the TF-gene interaction problem. Having a database of both,
miRNA-gene and TF-gene interactions would allow the construction of more complete gene
regulatory networks, containing both repressors (miRNAs) and activators (TFs). This,
hopefully, would allow for a better modelling and simulation of active regulators on DE
analysis results.
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bioGUI usability and tsxCount interoperability (Chapter 3) With the bioGUI
framework, existing bioinformatics software is made available to users, even if they are not
computer experts. Currently bioGUI does not rely on any repositories like conda2, bioconda
[66] or Chocolatey3. Providing install modules for any package available in bioconda, and
automatically extracting the GUI template from the main script, or at least from python
scripts, could massively boost the number of available software through bioGUI, and thereby
contribute to a more user-friendly scientific domain. With the already existing tools this
step would be possible with a considerable amount of work.

The performance of serialization techniques for bioinformatics problems, at the example
of k-mer counting, has been benchmarked with tsxCount. Serialization is an important
construct for any parallel application. However, many bioinformatics programs can not
profit from serialization because the major scripting languages (R and python) only support
the execution of one thread at a time. Providing an easy-to-use framework for parallelization
could be a step towards supporting easy parallelization of R or python frameworks. Such a
parallelization framework could profit from the presented benchmark, and may even choose
the serialization technique dynamically during runtime, depending on the used hardware.

scRNA-seq and IMS data analysis (Chapter 4) In the discussion of the cell type
prediction method cPred, it was observed that the prediction of the various differentiation
stages of, for instance, monocytes is a challenge. While working with collaborators from the
biomedical domain on still ongoing projects, it was noticed that several unique marker genes
were missing from the databases. In fact, the databases had no specifically unique marker
genes listed: marker genes, that if expressed and present, identify a cell type certainly.
Providing a database of such cell type specific markers could resolve ambiguities, particularly
for very similar cell types. Such a category of marker genes could be easily incorporated
into the prediction model. It reflects a further category of cell type specific marker genes,
with a specifically high weight. Additionally, such an incorporation of specifically unique
marker genes adheres to the principles of the applied down-weighting scheme.

Regarding the analysis of IMS data, pIMZ was presented as an integrative framework.
Unfortunately, only few public IMS datasets exist, even though large consortia like HuBMAP
promise to release many IMS datasets in due time. However, such datasets are required in
order to benchmark the multiple normalization techniques properly. Currently, pIMZ makes
use of two differential testing methods taken from the diffxpy-package [330], and nlEmpiRe4.
Particularly the ideas of the nlEmpiRe package, which were already applied to proteomic
data [7], suit IMS data very well. The current implementation has runtime problems with
large numbers of replicates, which can go into the hundreds with IMS data. The same
reason prevents the application of the package to scRNA-seq data, even though the general
ideas are applicable to such kinds of data, too. Taking the ideas of nlEmpiRe, transforming
them to be applicable to high-replicate experiments, such as IMS and scRNA-seq, would be

2https://conda.io
3https://chocolatey.org/
4Csaba, Gergely. Personal Communication. 2020.

https://conda.io
https://chocolatey.org/
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highly rewarding for more sensitive DE analyses. Particularly IMS data analyses would
benefit from the prospected increase in sensitivity of the nlEmpiRe5 approach, because the
noise signal in the spectra can be quite intensive. Having a sensitive method, which can
maintain the desired false discovery rate, could yield more genuinely differentially regulated
masses or genes, even with these noisy measurement techniques. Such an implementation
could be also well applicable to the DE analysis of scRNA-seq data, as the problems in this
area are very similar. The current trend in analysis software goes into even more integrated
analysis environments. As such, integrating set based enrichment methods into the pIMZ
framework could be beneficial for the user experience. Hence, a combination of the robust
DE pipeline with pIMZ could be rewarding, allowing the identification and elimination of
computationally introduced results by performing the analysis for several normalization
techniques and differential methods at the same time.

TGS data analysis (Chapter 5) Currently, the poreSTAT framework and sequ-into
focus on the application in genomics projects. However, with the possibility of directly
sequencing RNA using the Oxford Nanopore MinION device, the framework could be
extended to provide distinct analyses for transcriptomics. Particularly with long reads, the
identification of gene-fusions or alternative splicing events becomes easy. But also epigenetic
regulations, like m5C (5-methylcytosine), or the m6A (N6-methyladenine) modification
on the RNA-level, can easily be detected using this sequencing strategy [335]. Providing
quality reports for such events would increase the applicability of poreSTAT.

Robust Differential Expression Analysis (Chapter 6.1) The analysis of DE genes
is the most common analysis of RNA-seq data. It is the starting point for many, more
focused, analyses of expression level data. Understanding the results of the DE analysis is
important for understanding the implications of this analysis on the subsequent analyses.
For the robust DE analysis pipeline several additions can be sought of. The design decision
of independent analysis scripts should be overthought for performance reasons. Even if this
design is kept, using a workflow management system for orchestrating all required analyses
seems plausible, as the current analysis script becomes unhandy at more than 2000 lines of
code. While the poreSTAT analysis framework can use interactive javascript-enabled figures
within the reports, these have not yet been deployed to the robust pipeline. Particularly
scatter plots (e.g. replicate consistency or volcano plots) would profit, as this would ease
the identification of serious outliers. In general, the focus of the framework should include
further analyses which aim at accessing problematic findings. For example, method-specific,
or input-specific DE genes should be made directly available to the user, so that it can be
decided how severe the differences are.

Aorta3D (Chapter 6.2) Providing a resource for accessing large amounts of data in
a complicated setting, like complex human diseases, is challenging. Integrating multiple
different experimental techniques, of both, low- and high-throughput nature, is even more

5Csaba, Gergely. Personal Communication. 2020.
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challenging, because inherently heterogeneous data must be handled. With Aorta3D, this
problem is tackled by using descriptions in an unstructured json-data format. Another
feature of clinical research is, that many human diseases are explored at the example of
animal models, like mouse models for atherosclerosis. This project would benefit from
further integration of both mouse and human data. It is not fully understood what the
differences in human and mouse atherosclerosis are, and where the mouse model reaches
its limits. Using spatial information, together with proteomic and single cell evidence, the
comparison of human and mouse atherosclerosis can be conducted. Having the Aorta3D
framework available for this task is beneficial, as this framework allows the side-by-side
comparison of multi-modal, cross-species data.





The question of whether machines can
think, a question of which we now know
that it is about as relevant as the ques-
tion of whether submarines can swim.

Edsger W. Dijkstra

8
Conclusion

In the early 2000s, high-throughput experiments for measuring expression profiles were
applied routinely in the form of microarray experiments. The amount of generated data,
which needed to be pre-processed and analysed, required efficient analysis methods in order
to cope with the amount of data and down-stream analyses. Nowadays, the microarray
technique is displaced by sequencing experiments, as public repositories of experimental
data show. But it is replaced with the even more computationally demanding analysis of
sequencing data (Figure 1.2). The general workflow for analysing sequencing data differs
from microarray measurement techniques. These differences are mainly located in the
(pre-processing) steps required to quantify experimental outcomes, such as gene expression.
The down-stream steps in the analysis of microarray and sequencing data are comparable.
Such steps may, however, profit from the increasing amount of gained knowledge in specific
contexts, e.g. processes involved in specific diseases. This prior knowledge can be used in the
form of context knowledge about the system of interest, which allows for specifically tailored
methodological approaches, particularly suitable for down-stream analyses. Advances in the
development of computational resources and experimental techniques offer new opportunities
for methodological improvements. These improvements in available knowledge, in available
data sources and computational resources motivate a new focus on integrative methods in
complex human disease contexts.

Efficient, context-sensitive, robust, user-friendly and easily interpretable analyses are
required to cope with the massive amount of sequencing data available. The adequacy
of a method for this purpose can be measured regarding its computational efficiency, for
instance, its runtime, and by the ability to consider already existing knowledge (of the
observed system). The latter requires specifically tailored-methods, e.g. methods deriving
a context for data, or making use of context-sensitive data. Any performed analysis
should be robust regarding the input data, but it should also be robust regarding the
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applied methods, ensuring that genuine results are reported. With the observed increase in
sequencing data, and sequencing methods, which become routine assays in laboratories,
many non-bioinformaticians are performing bioinformatics analyses. By providing user-
friendly methods and easily interpretable results, bioinformatics methods can be applied by a
broader audience, which finally supports the interdisciplinary environment of bioinformatics.

In many cases, knowledge on specific contexts, such as disease-contexts, is available.
Ignoring this knowledge leads to an immense loss in information. Being able to exploit
this information for all reported findings makes it possible to trace the reasoning of results.
Moreover, with this information, newly derived results can be set into context. In addition,
context-sensitivity allows methods to focus on already known and thus relevant results,
and better justified hypotheses. Context-sensitivity can be achieved by either performing a
preselection, e.g. by using specific texts only, or by providing contextual meta-information
for data, e.g. the context of the discussed miRNA-gene interactions.

By focusing on the user-friendliness of a method, its correct application can be supported.
This also promotes that the user can make efficient use of the method and its results. Easily
interpretable results make a method more valuable, because more users can apply the
method, no relevant information is missed, while at the same time, the results are not
over-interpreted by the users.

There exist many protocols to measure transcriptomic expression using sequencing
technologies. With bulk RNA-seq the analysis pipeline differs between mRNA and miRNA
expression: for miRNA expression specific genome annotations are used, but most im-
portantly, the quantification strategy should follow more strict assumptions. Likewise,
for long non-coding RNA sequencing, where not much is known about long non-coding
RNA isoforms, the quantification strategy should reflect this. But even for regular mRNA
transcriptomics, there is a major difference in the processing of bulk and scRNA-seq data.
This highlights the requirement for new methods specialized for specific measurement
techniques. But this also applies to computer scientific methods. For example, in the
domain of text mining many building blocks, like the dependency graph prediction or entity
classification, improved a lot, enabling new opportunities for consecutive methods.

As already pointed out, modern bioinformatics is driven by the many advances in
gained knowledge, experimental techniques and computational methods. These advances
motivate the need for new methods on a data extraction, (pre-)processing and down-stream
analysis level, and, moreover, offer new opportunities for an integrated data analysis in the
context of complex human diseases. This thesis addresses several of the above-mentioned
opportunities. The contributions of this work focus on computational resources such
as accessibility, usability and interoperability (Chapter 3), or on improving the analysis
of (high-throughput) data on a methodological level, also by making new experimental
techniques available (Chapters 2, 4, 5 and 6).

Chapter 3 describes methods for improving the accessibility and usability of bioinform-
atics software in general, and evaluates methods for interoperable and efficient parallel
computation. bioGUI [145] (Chapter 3.1) enables users to perform bioinformatics analyses
without any CL knowledge. Particularly for non-bioinformaticians this is a big step towards
running bioinformatics analyses independently. It was found that bioGUI makes the use
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of bioinformatics applications easier, compared to relying on a CLI. This finally increases
the accessibility of bioinformatics software. With the tsxCount application (Chapter 3.2)
several serialization methods were benchmarked at the example of k-mer counting. With
only little performance differences between a highly specific serialization technique (TSX),
and a broadly available one (OpenMP locks, OMP), interoperability considerations must be
made when evaluating which method to choose. Such considerations, however, may have
effects on the efficiency of the developed software. It is thus of high importance to have a
clear understanding of the performance of the employed technology, but also of the targeted
hardware and the problem at hand, in order to achieve an efficient implementation. The
results from the tsxCount benchmark can be used for reference in real-life settings and
thereby enable exploiting the underlying hardware in the best possible way.

With the results from bioGUI and tsxCount computational resources are made available
and are efficiently exploited. The following chapters focus on a methodological level
for providing new pre-processing methods for modern experimental techniques and data
integrative methods for down-stream analysis.

In Chapter 2 text mining is employed to create a context-sensitive database of miRNA-
gene interactions from public texts. For this purpose, several aspects regarding the use of
text mining for biomedical knowledge discovery are addressed. With MORSED, methods for
ontology-based research in structure extracted documents (Chapter 2.1) are implemented.
Using these methods, ontologies are converted into synonym lists for the employed NER
approach. Furthermore, structured text extraction from scientific literature in PDF format
is achieved, together with the automatic assignment of therein contained paragraphs to
their corresponding section. It was found that, depending on the topic of the synonyms
and ontologies, different text sections, e.g. the methods section, contain more relevant
information than other sections. For instance, a large fraction of experimental technique
related named entities are only found in the methods section. In most cases, the abstract
was not enough to cover all relevant named entities, which highlights the importance of
using publicly available full texts, if possible. The applied PDF text extraction works well,
and the developed section categorization works almost perfectly, if unrecoverable errors
from the pdf text extraction are left out. Using the given NER approach, the programmatic
extension of synonyms increases the amount of found named entities and hence helps
to extract an as complete as possible context. Taken together, these methods build the
foundation for (PDF-based) full text analysis using NER with synonyms derived from
ontologies.

In a pilot study of a context-sensitive miRNA-gene interaction mining framework,
atheMir [144] (Chapter 2.2), the rule-based extraction of miRNA-gene interactions is
established. Going through all PubMed abstracts with such an approach to detect miRNA-
gene interactions, creates a database of context-sensitive interactions complete and correct
enough to suit as a base for writing a data-driven review on miRNA-gene interactions in
atherosclerosis [144].

The atheMir framework was further improved to be robust and fast enough to cope with
PMC full texts, while additionally improving over state-of-the-art miRNA-gene interaction
detection methods. This is accomplished by the miRExplore framework (Chapter 2.3),
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which includes methods for mining miRNA-gene interactions and storing these with context
information in a database. The miRExplore framework provides additional means to
assess when, and in which other contexts, specific miRNA-gene interactions were already
observed, or whether a specific observation is genuinely new (Timeline feature). This
sets new findings into the correct context. miRExplore connects with the presented DE
gene expression pipeline RoDE (Chapter 6.1) with a greedy approach for identifying the
most likely miRNA-regulators. This approach uses the identified DE genes, and predicts
likely regulators by minimizing inconsistently regulated miRNA-gene pairs. Both these
use-cases are not yet provided by existing frameworks. Due to the context-sensitive resource,
already published interactions, e.g. from a broader context, can serve as an additional
evidence for hypothesis generation. Taking DE results from RNA-seq experiments, and
deriving a regulatory miRNA-gene network from the miRExplore database, enables an
automatic, miRNA-centered interpretation of DE data. From this regulatory network,
active miRNAs can be predicted. Moreover, applying this method to robust DE results,
method-independent, and thus likely, miRNA-gene regulations are predicted. Finally, the
integrative character of this framework and the presented analyses is emphasized.

In Chapters 4, 5 and 6, key challenges in modern bioinformatics analyses due to the
increasing diversity of molecular possibilities and the resulting increase in experimental
measurement methods are addressed. Methods for using data from three different sequencing
methods (scRNA-seq, ONT MinION/TGS and bulk RNA-seq) are presented. All these
methods require specific analysis steps, and have distinct properties, requiring distinct
methods for data evaluation. This phenomenon is not restricted to sequencing techniques
only, but holds true for proteomics and mass spectrometry techniques, like IMS, for spatially
resolved measurements of the proteome.

In Chapter 4.2 the cPred method for cell type prediction is developed. Cell type
prediction is an important task in any scRNA-seq analysis, because differences in the cell
type composition of a sample can define different conditions. Hence, the identification of cell
types in scRNA-seq datasets is of high importance. At the beginning of this thesis, no such
methods were readily available, creating the need for a cell type prediction method. The
cPred method is, in contrast to other state-of-the-art software, quite versatile: the input
(expression) values can be derived from RNA-seq experiments and proteomic measurements
alike. Only the presence and abundance of specific marker genes (or protein masses) is
relevant. The cPred method relies on existing lists or databases of cell type-specific marker
genes and thus is easily extendable. cPred could already be successfully applied within
two COVID-19 related projects [228, 238]. In contrast to other methods, which rely on
cell-level expression reference inputs, the use of a weighted-sum on averaged cluster-level
expression values is more robust and less dependent on the measurement technique of the
reference data. Contrary to other approaches, the weighted-sum approach only requires lists
of marker genes, but no pre-processed scRNA-seq data with known cell type annotations as
a reference. The cPred predictions are thus independent of the measurement technique.

In Chapter 4.4 the pIMZ framework for the analysis of MALDI-TOF IMS data is
introduced. One of the main features of pIMZ is the focus on using python-based jupyter
notebooks for data analysis, which is supported through respective examples and plotting
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facilities. By using notebooks, analyses can be shared more easily, and reproducible
analyses are promoted. Additionally, it enables a more informed and interactive analysis.
With the pIMZ package the analysis of spatial mass spectrometry data becomes as usable
and as streamlined as the analysis of scRNA-seq data. The analysis of single samples is
possible, starting with typical pre-processing steps, like spectra extraction and normalization,
and leading to down-stream analyses. pIMZ implements multiple clustering strategies and
integrates several methods for marker mass identification. In addition, comparative analyses,
integrative analyses of multiple samples at once, are supported. Moreover, data from
large consortia, like the HuBMAP consortium, are made available through an integrated
downloader. The pIMZ IMS analysis integrates cPred for cell type prediction, allowing
the identification of cell types in specific regions of a tissue. This enables integrated
visualizations of IMS data.

In Chapter 5 TGS techniques are made available by the poreSTAT framework and
the sequ-into application. In the early 2010s sequencing was already applied routinely
in biomedical research. One of the problems of the then used NGS methods is that only
short, fixed-length fragments could be sequenced. With the advent of TGS techniques,
whole DNA and RNA molecules can be sequenced, generating so-called long reads. These
long reads offer new possibilities, particularly in genomics. However, they also require
new pre-processing methods and also a different understanding in down-stream analyses.
The methods presented in Chapters 5.1 and 5.2 are designed to work with these kinds of
sequencing data. Both methods, poreSTAT and sequ-into, support the new input data
format (FAST5), which may contain multiple reads at once, in contrast to other frameworks.
The general workflow for analysing data starts with a quality control on the reads, before
further down-stream tasks, like read-mapping or assembly, should be performed. At this
stage, quality control checks can identify problems with the library preparation, which,
if not detected, may endanger the sequencing and, thus, possibly render the acquired
data unusable. If an alignment of the reads to a reference was performed, this alignment
can subsequently be analysed in order to check whether the intended organism or correct
molecules (e.g. mRNA vs. rRNA) are sequenced. All checks at the read- and alignment-
level can be performed using the poreSTAT analysis framework presented in Chapter 5.1.
An HTML-based report contains easily interpretable and shareable results, which can be
explored in detail through interactive plots.

Chapter 5.2 introduces the sequ-into application [142]. sequ-into makes use of one of the
advantages of the Oxford Nanopore MinION sequencer over regular NGS techniques: the
analysis of reads directly during the sequencing process. Reads, which are processed live
during sequencing, can be checked and analysed for certain properties during the sequencing
run. This enables the fast identification of possible inconsistencies, contaminations or
off-target sequences. With the sequ-into application this analysis is implemented using
an incremental online analysis server. sequ-into combines the online analysis with an
easy-to-use GUI. While sequ-into was originally designed for the analysis of prokaryotic
samples, it works well for mammalian-sized genomes, even on regular laptop or desktop
computers. In the discussed use-case, SarS-COV-2 sequences could be identified from a
meta-genomic sample, including further bacterial genomes.
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In Chapter 6.1, the robust DE pipeline RoDE for processing bulk RNA-seq data is
presented. When several alignment methods, quantification strategies, differential testing
methods and enrichment analyses create many combinations of applicable methods, it is
almost impossible to keep track of the single results. However, in many cases researchers
are only interested in genuine changes. But under any circumstances, the reporting of
changes, which only originate from the use of a specific computational method, should
be avoided. Using the presented robust DE pipeline RoDE, a DE analysis is performed
with a specific focus on the question: which changes can be seen independently of the
applied methods? Such robust changes, which most likely do not result from computational
biases, are identified using the RoDE pipeline. It is also possible to investigate the opposite
question: Are there changes which are only discovered by a specific way of processing
the data? Regarding the discussed analysis using RoDE, it was possible to detect that
certain disease-relevant results could only be discovered using one specific processing path.
RoDE yields a method-robust result of the DE analysis. Its HTML report, which includes
brief explanations of the performed analysis steps, supports the idea of the FAIR principles,
with a focus on usability (Docker image) and interpretability (HTML report). This pipeline
has been successfully applied in a complex human disease context [238].

In Chapter 6.2, the Aorta3D project provides an integrative 3D index of atherosclerosis-
relevant data. Combining multi-omics data sources in one data model, and making this
combined data accessible, is the key feature of Aorta3D. Given the many sequencing and
analysis techniques, the need for a common index of relevant data is created. Through
Aorta3D, users can access experimental data via several access vectors: via a 3D model of
the disease progression, from spatial representations (e.g. images), or via reported DE genes.
It supports filtering of experiments based on the analysed region, cell type and contained DE
genes. In addition, the Aorta3D framework allows stacking of multiple experiments, such
that these images are displayed on top of each other. This enables the selection of regions
of interest, e.g. from IMS data, based on external imaging data, e.g. the antibody staining
of specific cell types. Aorta3D serves as a 3D accessible index of atherosclerosis-relevant
data. It provides a solid base for transferring knowledge obtained from model organisms to
actual complex human diseases contexts.

This thesis contributes to current topics in bioinformatics research at each stage of a
typical bioinformatics analysis workflow, during both pre-processing steps and down-stream
analyses (Figure 1.1). The developed methods and frameworks are discussed at the example
of complex human diseases, with an integrative view on biomedical data in mind. Using a
rule-based text-mining approach, context-sensitive miRNA-gene interactions are extracted
at high precision and recall. These can be used to check novel miRNA-gene interaction
findings, or to predict likely miRNA regulators for gene expression analysis results. In
the context of differential gene expression, the RoDE pipeline for robust DE analysis, also
integrating the miRExplore miRNA-gene interaction database, has been developed and
successfully applied. The cell type prediction method cPred, which has been applied to
scRNA-seq data and IMS results, enables a multi-modal analysis of disease-related datasets.
Using the cell type predictions researchers can evaluate which cells behave different in
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a disease context, or how the cell composition changes in samples (of different disease
stages). The pIMZ framework allows for the (differential) analysis of IMS data, which can
be combined with scRNA-seq data using the 3D- and spatial index Aorta3D. Aorta3D
organizes experiments not on a single entity (e.g. genes), but also inter-connects them
through identified cell types, even on a spatial level. With the poreSTAT framework and
sequ-into a further sequencing technology can be exploited: TGS, which is able to produce
arbitrarily long-reads, thus requiring different analyses than NGS data. These topics are
consolidated in the topics of usability and interoperability, which was a particular focus of
the bioGUI and tsxCount projects.

All the discussed topics are applied to problems relating to complex human diseases,
like the chronic inflammatory disease atherosclerosis, or the pandemic SARS-CoV-2 virus
infection.





The nice thing about standards is that
you have so many to choose from.

Andrew S. Tanenbaum

A
Appendix

A.1 Common Bioinformatics Data Formats

Here commonly used data types are introduced. A full coverage of further common data
types is given by Griffin et al. [109].

Sequencing Data: FASTA/FASTQ Both, the FASTA and the FASTQ file format are
intended to store sequences. While the FASTA format is stores one sequence per entry, the
FASTQ format allows to store an additional per-base annotation for each sequence.

The FASTA format (Figure A.1) starts an entry with the > sign immediately followed by
the entry name until the first space. After the entry, a multitude of additional annotations
may follow. However, there is no standardization of these additional annotations. The
sequence itself is often formatted such that each line is at most 80 characters wide. However,
the FASTA format also allows to store the whole sequence in one line.

The FASTQ format (Figure A.2) starts an entry with the @ sign immediately followed
by the entry name until the first space. Any further information are annotations which
might be ignored when reading the FASTQ file. One FASTQ entry always consists of 4
lines. The first line starts with the @ sign, followed by the sequence identifier or name. The
second line contains the actual sequence. The third line only consists of the + as delimiter
of the sequence and annotation line. The fourth line must have the same length as the
second line. The x-th character of the fourth line is the quality score for the x-th base
of the second line. The quality score is a machine estimate of how good or reliable the
sequencing information at that position is.
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Figure A.1: The FASTA format is meant to store sequence information. For each entry
it contains one sequence.

Oxford Nanopore MinION FAST5 format The FAST5 format (Figure A.3) stores
sequences from Oxford Nanopore sequencing devices. One FAST5 file can contain one or
more sequences, each with an own entry in the top-level hierarchy. All reads have a defined
structure such that it can be derived what kind of read it is (1D or 2D read technology)
and whether it is basecalled or not. Additionally, several meta information are available. In
contrast to FASTQ files, FAST5 reads also contain the measured raw signals, which can be
interpreted to re-basecall the read at a later time after further progress in the basecalling
process was made. The advantage of the FAST5 format over FASTQ format is that more
information can be retrieved for a specific read in a standardized way. FAST5 reads can
not be accessed using a regular text editor, but on every operating system a free viewer
is available. FAST5 files are specifically formatted HDF5 files, which is a standardized
container format, for which every programming language also provides libraries for file
access. While the Oxford Nanopore sequencing software MinKNOW used to write one read
per file, nowadays the default behaviour is to collect a multitude of reads per FAST5 file.
This has the advantage that no more several hundreds of thousands files are created, which
stress any kind of (journaling) file system. A complete list of useful applications for ONT
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Figure A.2: The FASTQ format stores sequence information. For each entry it contains
one sequence and an additional per-base annotation.

sequencing has recently been published [196].

Sequencing Data: genome feature format The gff or gtf file format (Figure A.4) is
meant to store information about where genomic features are located on a genome. Apart
from human-readable information at the beginning of the file (denoted with #), both gff and
gtf file format are tab-based. The difference between gff and gtf basically is the formatting
of the annotations, and how relations between features in different lines are represented.
In general, both formats define one feature per line. For each feature, its source, location
(sequence, type, start, stop, strand) and annotation (e.g. ID, notes, etc.) are given.

Sequencing Data: bam/sam The SAM and BAM file format are both alignment
formats. These files describe the alignment of sequences (e.g. reads from sequencing) onto
other sequences (the reference, e.g. genome). Therefore, for each entry the sequence it
aligns to, the starting position and various other information are stored. While the SAM
file format is uncompressed and can thus be read in any text viewer, the BAM format is
compressed. Further information regarding this file format is already published [180].

For each alignment, a sequence of CIGAR (Concise Idiosyncratic Gapped Alignment
Report) codes is available. A sequence 76H130M tells that there are 76 bases with CIGAR
code H (hard clipping), which are followed by 130 bases with CIGAR code M, which stands
for matches. It should be noted, that these matching bases must not be exact matches
(CIGAR code =), but mismatches can also be contained in a matching region. The full list
of available CIGAR codes is available in [180].
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IMS Data: imzML The imzML format (Figure A.5) is an XML-based format for storing
spatial resolution mass spectrometry data. Within the imzML file there is one spectrum
entry per stored spectrum. This entry stores the coordinates of the measurement, together
with some meta information (like maximum, minimum intensity), as well as an offset in the
binary storage file where all intensities of the spectrum are stored. This binary storage file
accompanies every imzML file and usually has an ibd file ending.

Text mining: JATS-format The JATS-format1 (Figure A.6) is used to store PMC full
texts and PubMed abstracts in a machine-readable format. It is a specifically designed
XML-based format. For each article, a front- and a body-group exist. The front-part
contains all relevant meta information, such as PubMed/PMC-ID, journal, authors and
affiliations. The body-part contains the respective text, partially structured in case of
PMC full texts. Using specific XPaths and queries, as well as an XML-Tree-Parser, these
JATS-formatted texts can be extracted and brought into a format which can be used for
text mining.

Text mining: sentence, synonyms, ontologies The text mining applications in this
work rely massively on the file formats already present in the working group of Prof. Zimmer.
Since it was a prerequisite to use syngrep, the NER text mining tool previously developed
in the group, all other work had to be brought in-line with data formats understood by
syngrep. The synonym files and text input files (sentences) thus had to be formatted such
that they are compatible.

For syngrep the sentence file (Figure A.7) is a tab-separated file format where the first
column contains the sentence identifier, and the second column the text to search. Even
though this information is not used in the way syngrep is called throughout this work, the
sentence identifier also follows a specific semantic: separated by dots, the first entry is the
document ID, the second entry defines the section and the last entry the sentence within
this paragraph. The suffix-ID .1.1 hence defines the title of a document. Further sections
are the abstract (.2), the body (.3) as well as references and, where available, MeSH
terms.

Frequently ontologies, like Gene Ontology, serve as input for the creation of synonyms.
These ontologies and synonyms are the named entities that are searched in the literature-
extracted sentences in order to derive the context of the found relations. An ontology file
(Figure A.8) is a file which consists of multiple TERM entries. Each entry has an ID, which
is used by other terms as reference. A human-readable name describes the term. A term
may have a namespace, which provides information about which domain the term is part
of. The definition defines the actual term, but often is quite lengthy. Hence, it can not
be used as a synonym (or it should not). One of the key features of an ontology is that it
forms a directed acyclic graph (DAG). Hence, each term defines also its parents using the
is_a relation. Further keywords like the intersection_of or relationship define
further relations, but are seldom relevant for NER. An ontology term may also propose

1https://www.niso.org/publications/z3996-2019-jats

https://www.niso.org/publications/z3996-2019-jats
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multiple additional synonyms using the synonym keyword. Modifiers at the end suggest
whether this is an exact synonym, or a broad one.

The synonym file format (Figure A.9) is a custom format used by the syngrep NER
application [114]. One line represents one synonym. The primary synonym name is delimited
by the : character, which must not be contained in the word. Any following synonyms are
delimited by the pipe | character.

The syngrep index format (Figure A.10) contains all entities found by syngrep. For
each found entity the following information are recorded: the sentence ID, which synonym
was found (synonym file and line, and text), at which position and how long the match was.
Additionally, the word which matched in the text is written out as well as an information
whether this is a perfect hit or not.

Unstructured Data Format: JSON JSON is the JavaScript Object Notation format,
which is published as part of the javascript programming language standard2. JSON itself
is built on two structures: a collection of key-value-pairs and ordered lists of values. As
such JSON is ideal for working with unstructured data, where some keys might be missing
or where the value-data for a specific key may change at run-time. For a productive use it
also becomes handy that the python programming language supports json directly by its
dictionary object. Contrary to tables, json has the advantage that it can store arbitrary
data, and that missing or additional keys pose no problem.

2https://www.ecma-international.org/ecma-262/9.0/

https://www.ecma-international.org/ecma-262/9.0/
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Figure A.3: The FAST5 format stores sequences from Oxford Nanopore sequencing
devices. One FAST5 file can contain one or more sequences, each with an own entry in the
top-level hierarchy. Each read has a defined structure such that it can be derived what kind
of read it is (1D or 2D read technology) and whether it is basecalled or not. Additionally,
several metadata are available. Only FAST5 reads also contain the measured raw signal,
which can be interpreted to re-basecall the read at a later time after further progress in the
basecalling process was made.
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Figure A.4: The GFF/GTF format is meant to store genomic annotations. One feature
is defined per line. For each feature it is annotated on which sequence it is located, where
it was defined, what kind of feature it is and where it is located on the sequence. The last
column defines the annotation of the feature as well as possible children or parents.

Figure A.5: The imzML format is XML-based format for storing spatial resolution mass
spectrometry data.
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Figure A.6: The JATS format is XML-based format for storing full text information
together with several meta information.

Figure A.7: The syngrep sentence format is a tab separated file. The first column
contains the sentence ID, the second column the actual sentence.
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Figure A.8: The ontology obo format stores an ontology in text format using defined
entries.

Figure A.9: The synonym file format is a custom format used by the syngrep NER
application [114]. One line represents one synonym. The primary synonym name is delimited
by the : character (which must not be contained in any word). Any following synonyms
are delimited by the pipe | character.

Figure A.10: The syngrep index format contains all entities found by syngrep. For each
found entity the sentence ID is recorded, which synonym was found (by synonym file, line,
and text), at which position and how long the match was. Additionally, the text word is
written out as well as an information whether this is a perfect hit or not.
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A.2 Chapter 1
For extracting the number of datasets in GEO the biopython [61] Entrez module was used
with the database argument set to gds. The queries were performed per year:

• Total number of experiments {year}[Publication Date]
• Total number of array experiments (expression profiling) {year}[Publication Date] AND

"expression profiling by array"[DataSet Type]

• Total number of sequencing experiments (expression profiling) {year}[Publication Date]

AND "expression profiling by high throughput sequencing"[DataSet Type]

• Total number of scRNA-seq experiments (expression profiling) {year}[Publication Date]

AND scRNA-seq AND "expression profiling by high throughput sequencing"[DataSet Type]
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(a) Number of high throughput sequencing
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(c) Number of experiments in GEO per year
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(d) Number of array experiments in GEO
per year

Figure A.11: Number of expression profiling experiments (GEO) (a) The number
of sequencing experiments for expression profiling is continually increasing. (b) Each year
rising numbers of scRNA-seq experiments are deposited in GEO. (c) Each year increasing
numbers of experiments are deposited in the GEO. (d) Until 2013, rising numbers array
experiments for expression profiling were deposited in GEO. Now, the number of yearly
array experiments decreases.
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A.3 Chapter 2

A.3.1 MORSED

Figure A.12: Diff on the text mining results between original (left) and inflated
(right) synonyms. It can be seen that the inflated version detects previously unknown
synonyms, such as vascular disease or atherosclerosis.

MORSED provides an app and a website to access the presented methods. The MORSED
methods use a PDF extraction tool which performs a structure-aware extraction of text
from a pdf (Figure A.13). Thus, in addition to the actual text, also the section head-lines
are available. Using this, occurrences of the targeted named entities can be filtered by
section, allowing a more fine-grained search.

In order to provide the developed methods to a broad public, a cross-platform application
was developed. The advantage of this application is that it works for any kind of organized
keywords. The use-case focuses on terms on scientific evidence within the biological research
domain. But the application could also be used on animal welfare research topics.

Using Electron as a starting point for the application allows a deployment on any
Desktop computer (Windows, macOS, Linux). The application further relies on the Angular
web technology.

Since the application itself does not perform the text-mining directly, a server framework
is used to extract the text from the input PDF, NER is performed, and found synonyms
and their location are returned to the application. This server also has a basic front-end to
perform the above tasks on a specified set of contexts.

The ontology used in the text mining approach is created or provided by the user.
The user can remove or add nodes in the ontology (Figure A.14). For each node, specific
synonyms can be added. By default, the corresponding ontology term name is used as
synonym. In contrast to a normal ontology, MORSED is restricted to only handle tree-like
ontologies, which resemble a regular mind map — a concept most users would understand
more easily than a complex ontology.

The user supplied ontology is sent to the web service for search of hits in specific pdf
files. For this purpose the ontology is translated into a synonym file which contains for all
ontology nodes the entities to look for.
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Figure A.13: Screenshot of ontology selection in the MORSED app. In the ontology
view the user can select a root node which he/she wants to explore. This node is used for
the initial filter and thus documents.

Figure A.14: Screenshot of MORSED ontology creation. Here the node name can be
changed, as well as the registered synonyms. Further down in the menu, the (child) nodes
can be manipulated (added or removed).
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It is important to be able to filter hits efficiently. Especially in the context of the
Evidence and Conclusion Ontology (ECO) or the Measurement Method Ontology (MMO)
[280], the focus is on what to measure and how.

MORSED allows multiple filtering options. First, it can search for any synonym of a
given node only, or also include hits of children. Additionally, not only single nodes may be
searched for, but also any node containing a specific keyword as sub-string.

Several filters can be combined into a filter group. For each filter group, one filter has
to evaluate true on a certain hit, in order to accept this hit (disjunction). If there exist
multiple filter groups, each of the groups must evaluate true in order to accept the hit
(conjunction).

For all filter groups, hits can be either searched in all identified sections, or, since the
PDF is extracted aware of its structure, in specific sections.

Additional Analyses

(a) Number of NER hits per document with
the original ATOL synonyms and the inflated
variant.

(b) Number of unique NER hits per docu-
ment with the original ATOL synonyms and
the inflated variant.

Figure A.15: Comparison of original and inflated synonyms for ATOL on the test
corpus. While the amount of actual hits is increased by 150%, the amount of uniquely hit
synonyms can be inflated by about 50%.



198 A. Appendix

(a) Abstract versus methods synonyms for
the ATOL context.

(b) Abstract versus methods synonyms for
the inflated ATOL context.

Figure A.16: Comparison of abstract and methods hits (ATOL) In (a) the original
ATOL context has been evaluated on the allxml dataset. In most documents, the methods
synonyms make up 30% and more of all document synonyms. Using the inflated context
(b), this effect can be seen even stronger. For most documents the fraction of abstract
synonyms is less than 20%. Using the inflated context (b), about twice as many documents
have more than 10 synonyms in both sections and hence are included in this overview.

(a) Abstract versus methods synonyms for
the inflated ATOL context. It can be seen
that more synonyms are found in the meth-
ods part of a document.

(b) Conclusion versus methods synonyms for
the inflated ATOL context. The discussion
rarely covers 30% or more of all document
synonyms. More synonyms are found in the
methods part of a document. The synonyms
found in the conclusion rarely make up 50%
of the document synonyms.

Figure A.17: Comparison of abstract and conclusion hits (ATOL) Comparison of
the abstract (a) and conclusion (b) synonyms against the methods synonyms.
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(a) Abstract versus methods synonyms for
the inflated GO context. More synonyms are
found in the methods part of a document.

(b) Conclusion versus methods synonyms for
the inflated GO context. The conclusion
rarely covers 30% or more of all document
synonyms. More synonyms are found in the
methods part of a document. The synonyms
found in the conclusion rarely make up 50%
of the document synonyms.

Figure A.18: Comparison of abstract and conclusion hits (GO) Comparison of the
synonyms found in the abstract (a) and conclusion (b) against the synonyms identified in
the methods section of the atherosclerosis documents.

(a) (b)

Figure A.19: Comparison of abstract and introduction versus methods hits
(ATOL) The abstract synonyms overlap only by about 50% with the methods synonyms,
while the methods synonyms make up 60% or more of all document synonyms (a). This
holds also true for the introduction synonyms (b).
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(a) (b)

Figure A.20: Comparison of methods versus abstract and conclusion hits (GO)
The GO abstract synonyms overlap only by about 50% with the methods synonyms, while
the methods synonyms make up 60% or more of all document synonyms (a). This holds
also true for the conclusion synonyms (b).

A.3.2 atheMir

The atheMir software has been implemented by Markus Joppich and is available as re-
lease from https://github.com/mjoppich/miRExplore/releases/tag/athemir. The ma-
nuscript has been prepared by Markus Joppich. Ralf Zimmer contributed to the evaluation
of the found interaction, the introduction of the manuscript and with general suggestions
regarding text and figures. Christian Weber contributed with textual aspects as well as
suggestions to improve figures. The accepted publication is available as open-access online
article https://doi.org/10.1055/s-0039-1693165.

A.3.3 miRExplore

https://github.com/mjoppich/miRExplore/releases/tag/athemir
https://doi.org/10.1055/s-0039-1693165


A.3 Chapter 2 201

Figure A.21: Number of PubMed articles relevant to miRNA-gene interactions A
cumulative histogram of published articles in PubMed with found miRNA-gene interactions.
It can be seen that the number of miRNA-gene interactions per year still rises.

Figure A.22: Detailed miRExplore performance (scispaCy sci-lg) for miRNA-gene
interaction prediction using the scispaCy model on the modified training data.
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Table A.1: Performance of miRExplore (interaction, scispaCy sci-lg model)
Interaction prediction is performed using the scispaCy sci-lg model on the modified test
dataset.

Rules enabled Precision Recall F1

1.000 0.595 0.746
conj 0.957 0.673 0.790
sdp 1.000 0.605 0.754
compartment 0.986 0.743 0.847
context 0.978 0.652 0.783
entity 1.000 0.595 0.746
conj;sdp 0.957 0.688 0.800
conj;compartment 0.949 0.873 0.910
conj;context 0.935 0.729 0.819
conj;entity 0.957 0.673 0.790
sdp;compartment 0.986 0.751 0.853
sdp;context 0.978 0.665 0.792
sdp;entity 1.000 0.605 0.754
compartment;context 0.964 0.821 0.887
compartment;entity 0.986 0.743 0.847
context;entity 0.978 0.652 0.783
conj;sdp;compartment 0.949 0.885 0.916
conj;sdp;context 0.935 0.746 0.830
conj;sdp;entity 0.957 0.688 0.800
conj;compartment;context 0.928 0.948 0.938
conj;compartment;entity 0.949 0.873 0.910
conj;context;entity 0.935 0.729 0.819
sdp;compartment;context 0.964 0.831 0.893
sdp;compartment;entity 0.986 0.751 0.853
sdp;context;entity 0.978 0.665 0.792
compartment;context;entity 0.964 0.821 0.887
conj;sdp;compartment;context 0.928 0.962 0.945
conj;sdp;compartment;entity 0.949 0.885 0.916
conj;sdp;context;entity 0.935 0.746 0.830
conj;compartment;context;entity 0.928 0.948 0.938
sdp;compartment;context;entity 0.964 0.831 0.893
conj;sdp;compartment;context;entity 0.928 0.962 0.945
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Table A.2: Performance of miRExplore (interaction, spaCy spacy-lg model)
Interaction prediction is performed using the spaCy spacy-lg model on the modified test
dataset.

Rules enabled Precision Recall F1

1.000 0.595 0.746
conj 0.986 0.624 0.764
sdp 0.891 0.586 0.707
compartment 0.855 0.698 0.769
context 0.986 0.642 0.777
entity 1.000 0.595 0.746
conj;sdp 0.877 0.617 0.725
conj;compartment 0.841 0.748 0.792
conj;context 0.971 0.673 0.795
conj;entity 0.986 0.624 0.764
sdp;compartment 0.768 0.679 0.721
sdp;context 0.877 0.634 0.736
sdp;entity 0.891 0.586 0.707
compartment;context 0.848 0.770 0.807
compartment;entity 0.855 0.698 0.769
context;entity 0.986 0.642 0.777
conj;sdp;compartment 0.754 0.732 0.743
conj;sdp;context 0.862 0.669 0.753
conj;sdp;entity 0.877 0.617 0.725
conj;compartment;context 0.833 0.827 0.830
conj;compartment;entity 0.841 0.748 0.792
conj;context;entity 0.971 0.673 0.795
sdp;compartment;context 0.761 0.750 0.755
sdp;compartment;entity 0.768 0.679 0.721
sdp;context;entity 0.877 0.634 0.736
compartment;context;entity 0.848 0.770 0.807
conj;sdp;compartment;context 0.746 0.811 0.777
conj;sdp;compartment;entity 0.754 0.732 0.743
conj;sdp;context;entity 0.862 0.669 0.753
conj;compartment;context;entity 0.833 0.827 0.830
sdp;compartment;context;entity 0.761 0.750 0.755
conj;sdp;compartment;context;entity 0.746 0.811 0.777
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Table A.3: Performance of miRExplore (interaction, spaCy BIONLP13CG model)
Interaction prediction is performed using the spaCy BIONLP13CG model on the modified
test dataset.

Rules enabled Precision Recall F1

1.000 0.595 0.746
conj 0.913 0.624 0.741
sdp 1.000 0.608 0.756
compartment 0.906 0.706 0.794
context 0.978 0.649 0.780
entity 1.000 0.595 0.746
conj;sdp 0.913 0.640 0.752
conj;compartment 0.826 0.765 0.794
conj;context 0.891 0.672 0.766
conj;entity 0.913 0.624 0.741
sdp;compartment 0.906 0.714 0.799
sdp;context 0.978 0.662 0.789
sdp;entity 1.000 0.608 0.756
compartment;context 0.884 0.772 0.824
compartment;entity 0.906 0.706 0.794
context;entity 0.978 0.649 0.780
conj;sdp;compartment 0.826 0.776 0.800
conj;sdp;context 0.891 0.687 0.776
conj;sdp;entity 0.913 0.640 0.752
conj;compartment;context 0.804 0.822 0.813
conj;compartment;entity 0.826 0.765 0.794
conj;context;entity 0.891 0.672 0.766
sdp;compartment;context 0.884 0.782 0.830
sdp;compartment;entity 0.906 0.714 0.799
sdp;context;entity 0.978 0.662 0.789
compartment;context;entity 0.884 0.772 0.824
conj;sdp;compartment;context 0.804 0.835 0.819
conj;sdp;compartment;entity 0.826 0.776 0.800
conj;sdp;context;entity 0.891 0.687 0.776
conj;compartment;context;entity 0.804 0.822 0.813
sdp;compartment;context;entity 0.884 0.782 0.830
conj;sdp;compartment;context;entity 0.804 0.835 0.819
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Table A.4: Comparison of miRExplore with other miRNA-gene mining approaches
Results are obtained on the original Bagewadi [19] benchmark or on the modified version
(annotated with mod.).

Rules enabled Precision Recall F1

miRExplore/atheMir 0.720 0.770 0.744
miRExplore/BioNLP (mod.) 0.804 0.835 0.819
miRExplore/sci-lg 0.920 0.850 0.884
miRExplore/sci-lg (mod.) 0.928 0.962 0.945
miRExplore/spacy-lg (mod.) 0.746 0.811 0.777
miRSel 0.550 1.000 0.710
miRTex 0.920 0.820 0.867
ProMiner 0.410 0.450 0.429
ReLeX 0.480 0.790 0.597

Table A.5: Performance of miRExplore (regulation, scispacy sci-lg model) Inter-
action and regulation prediction is performed using the scispacy sci-lg model on the test
dataset.

Rules enabled Precision Recall F1

0.740 0.449 0.559
compartment 0.774 0.616 0.686
between 0.720 0.507 0.595
counts 0.846 0.797 0.821
return 0.369 0.594 0.455
compartment;between 0.766 0.645 0.700
compartment;counts 0.896 0.848 0.871
compartment;return 0.681 0.623 0.651
between;counts 0.889 0.855 0.871
between;return 0.767 0.652 0.705
counts;return 0.892 0.848 0.870
compartment;between;counts 0.894 0.870 0.882
compartment;between;return 0.767 0.652 0.705
compartment;counts;return 0.938 0.899 0.918
between;counts;return 0.933 0.906 0.919
compartment;between;counts;return 0.938 0.920 0.929
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Figure A.23: Detailed miRExplore performance (scispaCy BioNLP) for miRNA-
gene interaction prediction using the scispaCy (BioNLP) model on the modified test data

(a) (b)

Figure A.24: miRExplore: Detailed view of active miRNA imputation (a) Most
miRNAs are imputed by the last step (imputed4), particularly also those miRNAs with a
high degree. (b) Only rarely a miRNA has more imputed inconsistencies (unexpected) than
consistently regulated edges (expected). The inconsistencies occur because the algorithm
tries to assign yet missing miRNAs. The induced inconsistencies do not induce more
unexplained miRNAs.
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(a) Enriched disease ontology terms for the
predicted miRNAs

(b) Enriched disease ontology terms for the
measured miRNAs

Figure A.25: miRExplore: miRNA over-representation in DOID terms Both the
predicted and imputed miRNA targets are enriched for genes associated with asthma.
Strikingly, for the predicted miRNAs mostly auto-immune diseases are listed.

Benchmark Changes

In general the published benchmark from Bagewadi et al. [19] was used. However, it was
noticed that for few interactions the benchmark contains arguable annotations.

These have been changed for the final benchmark used in this thesis.

Document 19941032
<sentence id="miRNA-corp.d1.s1" origId="19941032.s4" text="Addition of exogenous miRNA-128 to

CRL-1690 and CRL-2610 GBM cell lines (a) restored ’homeostatic’ ARP5 (ANGPTL6), Bmi-1
and E2F-3a expression, and (b) significantly decreased the proliferation of CRL-1690 and
CRL-2610 cell lines. ">

<entity charOffset="22-30" id="miRNA-corp.d1.s1.e0" text="miRNA-128" type="Specific_miRNAs"/>
<entity charOffset="99-102" id="miRNA-corp.d1.s1.e1" text="ARP5" type="Genes/Proteins"/>
<entity charOffset="105-111" id="miRNA-corp.d1.s1.e2" text="ANGPTL6" type="Genes/Proteins"/>
<entity charOffset="115-119" id="miRNA-corp.d1.s1.e3" text="Bmi-1" type="Genes/Proteins"/>
<entity charOffset="152-174" id="miRNA-corp.d1.s1.e4" text="significantly decreased" type="

Relation_Trigger"/>
<pair e1="miRNA-corp.d1.s1.e0" e2="miRNA-corp.d1.s1.e1" id="miRNA-corp.d1.s1.p0" interaction

="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d1.s1.e0" e2="miRNA-corp.d1.s1.e2" id="miRNA-corp.d1.s1.p1" interaction

="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d1.s1.e0" e2="miRNA-corp.d1.s1.e3" id="miRNA-corp.d1.s1.p2" interaction

="True" type="Specific_miRNAs-Genes/Proteins"/>
</sentence>

Document 18262516

<sentence id="miRNA-corp.d11.s1" origId="18262516.s9" text="Moreover, the levels of the apl-1
transcription are modulated by the activity of let-7 family microRNAs. ">

<entity charOffset="28-32" id="miRNA-corp.d11.s1.e0" text="apl-1" type="Genes/Proteins"/>
<entity charOffset="52-60" id="miRNA-corp.d11.s1.e1" text="modulated" type="Relation_Trigger

"/>
<entity charOffset="81-85" id="miRNA-corp.d11.s1.e2" text="let-7" type="Specific_miRNAs"/>
<entity charOffset="94-102" id="miRNA-corp.d11.s1.e3" text="microRNAs" type="Non-

Specific_miRNAs"/>
<pair e1="miRNA-corp.d11.s1.e2" e2="miRNA-corp.d11.s1.e0" id="miRNA-corp.d11.s1.p0"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
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<pair e1="miRNA-corp.d11.s1.e3" e2="miRNA-corp.d11.s1.e0" id="miRNA-corp.d11.s1.p1"
interaction="True" type="Non-Specific_miRNAs-Genes/Proteins"/>

</sentence>

Document 19424584

<sentence id="miRNA-corp.d48.s1" origId="19424584.s5" text="Consistently, miR-221/222 knocked-
down through antisense 2’-OME-oligonucleotides increased p27Kip1 in U251 glioma
subcutaneous mice and strongly reduced tumor growth in vivo through up regulation of
p27Kip1. ">

<entity charOffset="14-24" id="miRNA-corp.d48.s1.e0" text="miR-221/222" type="Specific_miRNAs
"/>

<entity charOffset="91-97" id="miRNA-corp.d48.s1.e1" text="p27Kip1" type="Genes/Proteins"/>
<entity charOffset="107-112" id="miRNA-corp.d48.s1.e2" text="glioma" type="Diseases"/>
<entity charOffset="127-130" id="miRNA-corp.d48.s1.e3" text="mice" type="Species"/>
<entity charOffset="153-157" id="miRNA-corp.d48.s1.e4" text="tumor" type="Diseases"/>
<entity charOffset="182-194" id="miRNA-corp.d48.s1.e5" text="up regulation" type="

Relation_Trigger"/>
<entity charOffset="199-205" id="miRNA-corp.d48.s1.e6" text="p27Kip1" type="Genes/Proteins"/>
<pair e1="miRNA-corp.d48.s1.e0" e2="miRNA-corp.d48.s1.e1" id="miRNA-corp.d48.s1.p0"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d48.s1.e0" e2="miRNA-corp.d48.s1.e2" id="miRNA-corp.d48.s1.p1"

interaction="False" type="Specific_miRNAs-Diseases"/>
<pair e1="miRNA-corp.d48.s1.e0" e2="miRNA-corp.d48.s1.e4" id="miRNA-corp.d48.s1.p2"

interaction="False" type="Specific_miRNAs-Diseases"/>
<pair e1="miRNA-corp.d48.s1.e0" e2="miRNA-corp.d48.s1.e6" id="miRNA-corp.d48.s1.p3"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
</sentence>

Document 20479936

<sentence id="miRNA-corp.d53.s6" origId="20479936.s4" text="miR-29b downregulates the
expression of luciferase through hPGRN or mouse PGRN (mPGRN) 3’UTRs, and the regulation was
abolished by mutations in the miR-29b binding site. ">

<entity charOffset="156-167" id="miRNA-corp.d53.s6.e0" text="binding site" type="
Relation_Trigger"/>

<entity charOffset="0-6" id="miRNA-corp.d53.s6.e1" text="miR-29b" type="Specific_miRNAs"/>
<entity charOffset="8-35" id="miRNA-corp.d53.s6.e2" text="downregulates the expression" type

="Relation_Trigger"/>
<entity charOffset="68-72" id="miRNA-corp.d53.s6.e3" text="mouse" type="Species"/>
<entity charOffset="74-77" id="miRNA-corp.d53.s6.e4" text="PGRN" type="Genes/Proteins"/>
<entity charOffset="103-112" id="miRNA-corp.d53.s6.e5" text="regulation" type="

Relation_Trigger"/>
<entity charOffset="148-154" id="miRNA-corp.d53.s6.e6" text="miR-29b" type="Specific_miRNAs

"/>
<pair e1="miRNA-corp.d53.s6.e1" e2="miRNA-corp.d53.s6.e4" id="miRNA-corp.d53.s6.p0"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d53.s6.e6" e2="miRNA-corp.d53.s6.e4" id="miRNA-corp.d53.s6.p1"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
</sentence>

Document 20479936

<sentence id="miRNA-corp.d54.s9" origId="20840605.s9" text="Our data indicate that
overexpression of miR-21 protects against ischemic neuronal death, and that downregulation
of FASLG, a tumor necrosis
factor-a family member and an important cell death-inducing ligand whose gene is targeted
by miR-21, probably mediates the neuroprotective effect. ">
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<entity charOffset="126-149" id="miRNA-corp.d54.s9.e0" text="tumor necrosis factor-a" type="
Genes/Proteins"/>

<entity charOffset="23-36" id="miRNA-corp.d54.s9.e1" text="overexpression" type="
Relation_Trigger"/>

<entity charOffset="41-46" id="miRNA-corp.d54.s9.e2" text="miR-21" type="Specific_miRNAs"/>
<entity charOffset="99-112" id="miRNA-corp.d54.s9.e3" text="downregulation" type="

Relation_Trigger"/>
<entity charOffset="117-121" id="miRNA-corp.d54.s9.e4" text="FASLG" type="Genes/Proteins"/>
<entity charOffset="222-229" id="miRNA-corp.d54.s9.e5" text="targeted" type="Relation_Trigger

"/>
<entity charOffset="234-239" id="miRNA-corp.d54.s9.e6" text="miR-21" type="Specific_miRNAs"/>
<pair e1="miRNA-corp.d54.s9.e2" e2="miRNA-corp.d54.s9.e4" id="miRNA-corp.d54.s9.p0"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d54.s9.e2" e2="miRNA-corp.d54.s9.e0" id="miRNA-corp.d54.s9.p1"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d54.s9.e6" e2="miRNA-corp.d54.s9.e4" id="miRNA-corp.d54.s9.p2"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d54.s9.e6" e2="miRNA-corp.d54.s9.e0" id="miRNA-corp.d54.s9.p3"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
</sentence>
<sentence id="miRNA-corp.d54.s10" origId="20840605.s8" text="Moreover, overexpression of miR-21

in neurons significantly reduced FASLG levels, and introduction of an miR-21 mimic into
293-HEK cells substantially reduced luciferase activity in a reporter system containing the
3’-UTR of Faslg. ">

<entity charOffset="225-229" id="miRNA-corp.d54.s10.e0" text="Faslg" type="Genes/Proteins"/>
<entity charOffset="46-66" id="miRNA-corp.d54.s10.e1" text="significantly reduced" type="

Relation_Trigger"/>
<entity charOffset="10-23" id="miRNA-corp.d54.s10.e2" text="overexpression" type="

Relation_Trigger"/>
<entity charOffset="28-33" id="miRNA-corp.d54.s10.e3" text="miR-21" type="Specific_miRNAs"/>
<entity charOffset="60-79" id="miRNA-corp.d54.s10.e4" text="reduced FASLG levels" type="

Relation_Trigger"/>
<entity charOffset="68-72" id="miRNA-corp.d54.s10.e5" text="FASLG" type="Genes/Proteins"/>
<entity charOffset="105-110" id="miRNA-corp.d54.s10.e6" text="miR-21" type="Specific_miRNAs

"/>
<pair e1="miRNA-corp.d54.s10.e3" e2="miRNA-corp.d54.s10.e0" id="miRNA-corp.d54.s10.p0"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d54.s10.e3" e2="miRNA-corp.d54.s10.e5" id="miRNA-corp.d54.s10.p1"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d54.s10.e6" e2="miRNA-corp.d54.s10.e0" id="miRNA-corp.d54.s10.p2"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d54.s10.e6" e2="miRNA-corp.d54.s10.e5" id="miRNA-corp.d54.s10.p3"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
</sentence>

Document 20378606

<sentence id="miRNA-corp.d66.s4" origId="20378606.s3" text="To test our hypothesis, a predicted
microRNA-binding site was found in the 3’-UTR of angiopoietin-1 using bioinformatics;
variant rs2507800 was identified to be located in the miR-211-binding site of angiopoietin-
1. ">

<entity charOffset="36-43" id="miRNA-corp.d66.s4.e0" text="microRNA" type="Non-
Specific_miRNAs"/>

<entity charOffset="85-98" id="miRNA-corp.d66.s4.e1" text="angiopoietin-1" type="Genes/
Proteins"/>

<entity charOffset="176-182" id="miRNA-corp.d66.s4.e2" text="miR-211" type="Specific_miRNAs
"/>

<entity charOffset="200-213" id="miRNA-corp.d66.s4.e3" text="angiopoietin-1" type="Genes/
Proteins"/>

<pair e1="miRNA-corp.d66.s4.e2" e2="miRNA-corp.d66.s4.e3" id="miRNA-corp.d66.s4.p0"
interaction="True" type="Specific_miRNAs-Genes/Proteins"/>

<pair e1="miRNA-corp.d66.s4.e2" e2="miRNA-corp.d66.s4.e1" id="miRNA-corp.d66.s4.p1"
interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
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<pair e1="miRNA-corp.d66.s4.e0" e2="miRNA-corp.d66.s4.e3" id="miRNA-corp.d66.s4.p2"
interaction="False" type="Non-Specific_miRNAs-Genes/Proteins"/>

<pair e1="miRNA-corp.d66.s4.e0" e2="miRNA-corp.d66.s4.e1" id="miRNA-corp.d66.s4.p3"
interaction="False" type="Non-Specific_miRNAs-Genes/Proteins"/>

</sentence>
<sentence id="miRNA-corp.d66.s8" origId="20378606.s0" text="A functional variant in the 3’-UTR

of angiopoietin-1 might reduce stroke risk by interfering with the binding efficiency of
microRNA
211. ">

<entity charOffset="38-51" id="miRNA-corp.d66.s8.e0" text="angiopoietin-1" type="Genes/Proteins
"/>

<entity charOffset="66-71" id="miRNA-corp.d66.s8.e1" text="stroke" type="Diseases"/>
<entity charOffset="124-135" id="miRNA-corp.d66.s8.e2" text="microRNA 211" type="

Specific_miRNAs"/>
<entity charOffset="102-108" id="miRNA-corp.d66.s8.e3" text="binding" type="Relation_Trigger"/>
<pair e1="miRNA-corp.d66.s8.e2" e2="miRNA-corp.d66.s8.e0" id="miRNA-corp.d66.s8.p0" interaction

="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d66.s8.e2" e2="miRNA-corp.d66.s8.e1" id="miRNA-corp.d66.s8.p1" interaction

="False" type="Specific_miRNAs-Diseases"/>
</sentence>

Document 20489155

<sentence id="miRNA-corp.d69.s5" origId="20489155.s5" text="miR-107 has been implicated in
Alzheimer’s disease pathogenesis, and sequence elements in the open reading frame-rather
than the 3’ untranslated region-of GRN mRNA are recognized by miR-107 and are highly
conserved among vertebrate species. ">

<entity charOffset="31-49" id="miRNA-corp.d69.s5.e0" text="Alzheimer’s disease" type="
Diseases"/>

<entity charOffset="0-6" id="miRNA-corp.d69.s5.e1" text="miR-107" type="Specific_miRNAs"/>
<entity charOffset="155-157" id="miRNA-corp.d69.s5.e2" text="GRN" type="Genes/Proteins"/>
<entity charOffset="182-188" id="miRNA-corp.d69.s5.e3" text="miR-107" type="Specific_miRNAs

"/>
<pair e1="miRNA-corp.d69.s5.e1" e2="miRNA-corp.d69.s5.e0" id="miRNA-corp.d69.s5.p0"

interaction="False" type="Specific_miRNAs-Diseases"/>
<pair e1="miRNA-corp.d69.s5.e1" e2="miRNA-corp.d69.s5.e2" id="miRNA-corp.d69.s5.p1"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d69.s5.e3" e2="miRNA-corp.d69.s5.e0" id="miRNA-corp.d69.s5.p2"

interaction="False" type="Specific_miRNAs-Diseases"/>
<pair e1="miRNA-corp.d69.s5.e3" e2="miRNA-corp.d69.s5.e2" id="miRNA-corp.d69.s5.p3"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
</sentence>

Document 20633539 The Bax/Bcl-2 ratio can be decreased by either decreasing only
Bax (interaction) or both, or by increasing Bcl-2. In any case, an interaction between
miR-21 and both Bax and Bcl-2 is recorded (the latter being arguable).

<sentence id="miRNA-corp.d70.s1" origId="20633539.s0" text="MiR-21 protected human
glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by
decreasing Bax/Bcl-2 ratio and caspase-3 activity. ">

<entity charOffset="0-5" id="miRNA-corp.d70.s1.e0" text="MiR-21" type="Specific_miRNAs"/>
<entity charOffset="17-34" id="miRNA-corp.d70.s1.e1" text="human glioblastoma" type="Diseases

"/>
<entity charOffset="17-21" id="miRNA-corp.d70.s1.e2" text="human" type="Species"/>
<entity charOffset="120-122" id="miRNA-corp.d70.s1.e3" text="Bax" type="Genes/Proteins"/>
<entity charOffset="124-128" id="miRNA-corp.d70.s1.e4" text="Bcl-2" type="Genes/Proteins"/>
<entity charOffset="140-148" id="miRNA-corp.d70.s1.e5" text="caspase-3" type="Genes/Proteins

"/>
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<pair e1="miRNA-corp.d70.s1.e0" e2="miRNA-corp.d70.s1.e5" id="miRNA-corp.d70.s1.p0"
interaction="True" type="Specific_miRNAs-Genes/Proteins"/>

<pair e1="miRNA-corp.d70.s1.e0" e2="miRNA-corp.d70.s1.e1" id="miRNA-corp.d70.s1.p1"
interaction="False" type="Specific_miRNAs-Diseases"/>

<pair e1="miRNA-corp.d70.s1.e0" e2="miRNA-corp.d70.s1.e3" id="miRNA-corp.d70.s1.p2"
interaction="True" type="Specific_miRNAs-Genes/Proteins"/>

<pair e1="miRNA-corp.d70.s1.e0" e2="miRNA-corp.d70.s1.e4" id="miRNA-corp.d70.s1.p3"
interaction="True" type="Specific_miRNAs-Genes/Proteins"/>

</sentence>

<sentence id="miRNA-corp.d70.s12" origId="20633539.s14" text="However, such effect was partly
prevented by treatment of cells with miR-21 overexpression before, which appeared to
downregulate the Bax expression, upregulate the Bcl-2 expression and decrease caspase-3
activity. ">

<entity charOffset="76-89" id="miRNA-corp.d70.s12.e0" text="overexpression" type="
Relation_Trigger"/>

<entity charOffset="69-74" id="miRNA-corp.d70.s12.e1" text="miR-21" type="Specific_miRNAs"/>
<entity charOffset="117-147" id="miRNA-corp.d70.s12.e2" text="downregulate the Bax expression"

type="Relation_Trigger"/>
<entity charOffset="134-136" id="miRNA-corp.d70.s12.e3" text="Bax" type="Genes/Proteins"/>
<entity charOffset="150-180" id="miRNA-corp.d70.s12.e4" text="upregulate the Bcl-2 expression"

type="Relation_Trigger"/>
<entity charOffset="165-169" id="miRNA-corp.d70.s12.e5" text="Bcl-2" type="Genes/Proteins"/>
<entity charOffset="195-203" id="miRNA-corp.d70.s12.e6" text="caspase-3" type="Genes/Proteins

"/>
<pair e1="miRNA-corp.d70.s12.e1" e2="miRNA-corp.d70.s12.e3" id="miRNA-corp.d70.s12.p0"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d70.s12.e1" e2="miRNA-corp.d70.s12.e5" id="miRNA-corp.d70.s12.p1"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d70.s12.e1" e2="miRNA-corp.d70.s12.e6" id="miRNA-corp.d70.s12.p2"

interaction="False" type="Specific_miRNAs-Genes/Proteins"/>
</sentence>

Document 18607543

<sentence id="miRNA-corp.d80.s5" origId="18607543.s5" text="We identified putative miR sites
in the CDK6 including microRNA
124a, a brain enriched microRNA. ">

<entity charOffset="23-25" id="miRNA-corp.d80.s5.e0" text="miR" type="Non-Specific_miRNAs"/>
<entity charOffset="40-43" id="miRNA-corp.d80.s5.e1" text="CDK6" type="Genes/Proteins"/>
<entity charOffset="55-67" id="miRNA-corp.d80.s5.e2" text="microRNA 124a" type="

Specific_miRNAs"/>
<entity charOffset="87-94" id="miRNA-corp.d80.s5.e3" text="microRNA" type="Non-

Specific_miRNAs"/>
<pair e1="miRNA-corp.d80.s5.e0" e2="miRNA-corp.d80.s5.e1" id="miRNA-corp.d80.s5.p0"

interaction="False" type="Non-Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d80.s5.e2" e2="miRNA-corp.d80.s5.e1" id="miRNA-corp.d80.s5.p1"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d80.s5.e3" e2="miRNA-corp.d80.s5.e1" id="miRNA-corp.d80.s5.p2"

interaction="False" type="Non-Specific_miRNAs-Genes/Proteins"/>
</sentence>

Document 19228967

<sentence id="miRNA-corp.d87.s9" origId="19228967.s8" text="BAG2 levels in cells are under
the physiological control of the microRNA miR-128a, which can tune paired helical
filament Tau levels in neurons. ">

<entity charOffset="64-71" id="miRNA-corp.d87.s9.e0" text="microRNA" type="Non-
Specific_miRNAs"/>

<entity charOffset="73-80" id="miRNA-corp.d87.s9.e1" text="miR-128a" type="Specific_miRNAs"/>
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<entity charOffset="122-124" id="miRNA-corp.d87.s9.e2" text="Tau" type="Genes/Proteins"/>
<entity charOffset="0-3" id="miRNA-corp.d87.s9.e3" text="BAG2" type="Genes/Proteins"/>
<pair e1="miRNA-corp.d87.s9.e0" e2="miRNA-corp.d87.s9.e2" id="miRNA-corp.d87.s9.p0"

interaction="False" type="Non-Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d87.s9.e0" e2="miRNA-corp.d87.s9.e3" id="miRNA-corp.d87.s9.p1"

interaction="False" type="Non-Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d87.s9.e1" e2="miRNA-corp.d87.s9.e2" id="miRNA-corp.d87.s9.p2"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d87.s9.e1" e2="miRNA-corp.d87.s9.e3" id="miRNA-corp.d87.s9.p3"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
</sentence>

Document 15648093

<sentence id="miRNA-corp.d88.s8" origId="15648093.s3" text="An inverse correlation has been
shown in B cell chronic lymphocytic leukemia (B-CLL) between miR-15a and miR-16-1
expression and the expression levels of arginyl-tRNA synthetase
(RARS), an enzyme which associates with the cofactor p43 in the aminoacyl-tRNA synthetase
complex. ">

<entity charOffset="3-21" id="miRNA-corp.d88.s8.e0" text="inverse correlation" type="
Relation_Trigger"/>

<entity charOffset="41-75" id="miRNA-corp.d88.s8.e1" text="B cell chronic lymphocytic
leukemia" type="Diseases"/>

<entity charOffset="78-82" id="miRNA-corp.d88.s8.e2" text="B-CLL" type="Diseases"/>
<entity charOffset="93-99" id="miRNA-corp.d88.s8.e3" text="miR-15a" type="Specific_miRNAs"/>
<entity charOffset="105-112" id="miRNA-corp.d88.s8.e4" text="miR-16-1" type="Specific_miRNAs

"/>
<entity charOffset="202-211" id="miRNA-corp.d88.s8.e5" text="associates" type="

Relation_Trigger"/>
<entity charOffset="154-176" id="miRNA-corp.d88.s8.e6" text="arginyl-tRNA synthetase" type="

Genes/Proteins"/>
<entity charOffset="179-182" id="miRNA-corp.d88.s8.e7" text="RARS" type="Genes/Proteins"/>
<entity charOffset="133-149" id="miRNA-corp.d88.s8.e8" text="expression levels" type="

Relation_Trigger"/>
<pair e1="miRNA-corp.d88.s8.e3" e2="miRNA-corp.d88.s8.e1" id="miRNA-corp.d88.s8.p0"

interaction="True" type="Specific_miRNAs-Diseases"/>
<pair e1="miRNA-corp.d88.s8.e3" e2="miRNA-corp.d88.s8.e2" id="miRNA-corp.d88.s8.p1"

interaction="True" type="Specific_miRNAs-Diseases"/>
<pair e1="miRNA-corp.d88.s8.e3" e2="miRNA-corp.d88.s8.e6" id="miRNA-corp.d88.s8.p2"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d88.s8.e3" e2="miRNA-corp.d88.s8.e7" id="miRNA-corp.d88.s8.p3"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d88.s8.e4" e2="miRNA-corp.d88.s8.e1" id="miRNA-corp.d88.s8.p4"

interaction="True" type="Specific_miRNAs-Diseases"/>
<pair e1="miRNA-corp.d88.s8.e4" e2="miRNA-corp.d88.s8.e2" id="miRNA-corp.d88.s8.p5"

interaction="True" type="Specific_miRNAs-Diseases"/>
<pair e1="miRNA-corp.d88.s8.e4" e2="miRNA-corp.d88.s8.e6" id="miRNA-corp.d88.s8.p6"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
<pair e1="miRNA-corp.d88.s8.e4" e2="miRNA-corp.d88.s8.e7" id="miRNA-corp.d88.s8.p7"

interaction="True" type="Specific_miRNAs-Genes/Proteins"/>
</sentence>

A.4 Chapter 3

A.4.1 bioGUI

The publication was created by Markus Joppich and supervised by Ralf Zimmer. The
software was implemented by Markus Joppich, and most of the manuscript was written by
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Markus Joppich. Ralf Zimmer contributed with several improvements to the manuscript.
The accepted publication is available as open-access online article https://doi.org/10.
7717/peerj.8111.

A.4.2 tsxCount

The software has been implemented by Markus Joppich. The manuscript has been prepared
by Markus Joppich, with several suggestions by Wolfgang Joppich. Ralf Zimmer contributed
with general suggestions regarding text and figures. This manuscript is currently under
revision at PeerJ Computer Science.

Hardware Transactional Memory for multi-threaded k-
mer counting
A prominent example of genomic entity counting is the counting of k -long substrings
(k-mers). It is of particular importance in the process of genome assembly, error correction
(of sequenced reads) as well as for further sequence feature related tasks. Novel sequencing
methods, like the Oxford Nanopore MinION, generate noisy reads, increasing the number
of almost unique k-mers. Hence, using regular integers to count such k-mers is a waste of
memory, particularly for large datasets. A sparse counting implementation can leverage
this problem and deliver memory-efficient implementations.

When implementing such a sparse counting data structure in a multi-threaded envir-
onment, it must be ensured that no two threads try to write to the same location at the
same time, as then results will be incorrect. Hence, the update-access to a specific field
must be serialized. Four different serialization methods in the context of k-mer counting
using a sparse representation have been implemented. The application framework can
either use regular mutex-based locks (PTHREAD), OpenMP locks (OMP), an atomic
compare-and-swap (CAS) and hardware transactional memory (TSX) serialization. In
our example application it can be seen that the CAS approach performs worse than the
lock-based approaches, but shows a high efficiency with more threads. Our results show
that the TSX approach is the fastest explored technique for a larger number of threads,
directly followed by OMP. The gap between TSX and OMP is quite narrow, but OMP is
more convenient to implement.

Introduction

Counting genomic entities is a frequent task in many bioinformatics workflows. For instance,
counting k -long substrings (k-mers) is important in the process of genome assembly [68,
160] and read error correction [32, 143], but also is an important ingredient to genome
indexing [155]. Further use-cases of k-mer -based approaches can be found in the area of
metagenomics, using the Kraken tools, like KrakenUniq [37]. Several genome assemblers,
like Celera [223] or Canu [160], rely on building a graph-based structure upon k-mers.

https://doi.org/10.7717/peerj.8111
https://doi.org/10.7717/peerj.8111
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It is thus not surprising that researchers are also interested in determining the k-mer
frequency using stand-alone k-mer counters like KMC2/3 [71, 158] or KCMBT [198]. Even
computational frameworks for k-mer -based analysis are developed [202].

Still, k-mer counting is set into focus, as continuing benchmarks of k-mer counters show.
While Manekar et al. focus on different published tools [199] in their benchmark, Li et al.
prepared a micro-benchmark to compare multiple k-mer counting strategies3. Hence, k-mer
counting is a prominent task in genomics. But particularly with new sequencing methods,
like the Oxford Nanopore MinION, noisy reads are generated, increasing the amount of
almost unique k-mers. Simple, non-memory optimized k-mer counters which use the same
number of storage bits for each k-mer, e.g. 32-bit unsigned integer, then waste a lot of
memory for low-count k-mers, which most likely originate from sequencing errors and occur
only few times. A sparse counting implementation can leverage this problem and deliver
memory-efficient implementations.

[203] introduced such a sparse implementation with Jellyfish, but highlighted an import-
ant problem when counting in parallel: only a single thread may write to an array entry
at a time. Therefore, in any multi-threaded environment it must be ensured that no two
threads try to write to the same memory location at the same time, as then results will be
incorrect. Hence, the update-access to a specific field must be serialized.

As already mentioned, several benchmarks compare different k-mer counters or counting
strategies. However, none of these benchmarks focuses on the serialization method. While
there are benchmarks which compare or systematically evaluate such serialization methods
and TSX in particular [277, 337, 192], the task solved within the protected areas are not
too complex.

In Jellyfish [203] employ a specific method to avoid locking of the fields writing into the
fields by using an atomic compare-and-swap operation. In general, mutex- or lock-based
approaches are used for serialization. Transactional memory is an alternative serialization
approach which shows promising results [159, 247]. Here we want to take advantage of
the algorithmic idea from [203], in order to explore and benchmark serialization methods:
regular serialization via a global mutex (PTHREAD) and transactional mutexes (OMP),
C++ atomic compare and swap (CAS) and hardware transactional memory (TSX).

Understanding the advantages or short-comings of these methods in the context of k-mer
counting delivers insights on whether, or not, these techniques are useful for bioinformatics
applications. Moreover, our hash map implementation allows storing arbitrary (bit-encoded)
data, such that it could not only be used for k-mers, but any other data which has similar
characteristics as well.

The following sections explain the algorithm, the implemented modifications with respect
to [203] and also introduce the different serialization methods. Finally, the results of the
benchmarking are discussed.

3https://github.com/lh3/kmer-cnt/

https://github.com/lh3/kmer-cnt/
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Methods

Code Availability

The tsxCount source code with analysis scripts is available from GitHub https://github.
com/mjoppich/tsxCount.

Correctness

The used datasets are regular MinION direct RNA-seq samples. Hence, exact results could
be counted using any other k-mer counter or even simple python scripts. The aggregated
results are shown in Table A.6. It has been asserted that the counts reported by these
scripts and the presented counter implementation are identical. For the time measurements,
this check has been disabled, however.

Used Hardware

All experiments have been performed on three machines. One (laptop) computer is equipped
with 32 GB RAM and an Intel(R) Core(TM) i7-7820HQ CPU with 4 cores and 8 logical
processors. GCC 7.4 was used to compile the application. The execution here runs within
the Windows Subsystem for Linux environment. The processor provides 256 KB L1-cache,
and 1 MB and 8 MB L2/3 cache, respectively. Another (xeon server) computer is equipped
with 128 GB RAM and an Intel(R) Xeon(R) W-2145 CPU with 8 cores and 16 logical
processors. GCC 7.5 was used to compile the application. The processor provides 512 KB
L1-cache, and 8 MB and 11 MB L2/3 cache, respectively. A further (silver server) computer
with two sockets (each equipped with an Intel(R) Xeon(R) Silver 4214 CPU with 12 cores
and 24 logical processors) and 96 GB of RAM was used. Each CPU has 768kb L1-cache, 12
MB L2-cache and 16.5 MB L3-cache. The application here was compiled using clang++
5.0.1.

The input was read from local SSDs on the laptop and the xeon server. The silver server
is connected to a NFS system. For performance measurements, the project was built with
cmake [205] build type RELWITHDEBINFO (-O2 -g). Unless otherwise noted, no OMP
proc bind was used. Wall-clock time evaluation and memory consumption analysis has
been performed using /usr/bin/time --verbose.

In addition, a performance analysis using Intel vTune Amplifier4 has been conducted.
For the profiling, the different implementations have to read in FASTQ files with (long)

reads and count the occurring k-mers. All implementations use the same I/O and counting
framework. The reported run times are averaged over three distinct runs.

Test Dataset

In order to test the implementations on a real dataset, a direct RNA-seq dataset from
SRA with accession ID SRR5989373 was used. The dataset has been sub-divided into

4https://software.intel.com/en-us/vtune

https://github.com/mjoppich/tsxCount
https://github.com/mjoppich/tsxCount
https://software.intel.com/en-us/vtune
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Table A.6: tsxCount overview of test datasets Overview of the SCER dataset and its
subsets. The full dataset contains 241 446 transcriptomic reads obtained through MinION
long-read sequencing. The original dataset is available from NCBI SRA under accession
SRR5989373.

Dataset name Number of reads Number of distinct 14-mers
SCER.6_25 15.090 9.473.626
SCER.12_5 30.181 16.203.616

SCER.25 60.362 27.186.456
SCER.50 120.723 42.447.595
SCER.100 241.446 66.266.341

multiple parts using a fraction of reads. Using transcriptomic reads from direct RNA-seq is
of particular interest, as two important features are given: the MinION sequencing typically
has a sequence identity/correctness of roughly 15%, generating many almost singleton
k-mers. Additionally, poly-A tails may yield very high counts if these are sequenced as well.
Thus, this test set is expected to create a very bi-modal distribution of k-mer counts.

For this benchmark, the task has been set to count 14-mers. The parameter l for the
hash map has been set to 26 creating 226 storage fields of size 32 bits. The field size, meaning
the data type the big integer class uses internally for storage is 8 bit (uint8_t). Hence,
each big integer uses an array of 4 unsigned integers to store data in. The characteristics
of all datasets is given in Table A.6. Using only 14-mers has the advantage that exact
counting could be performed using a python script to generate comparison data and ensure
that all implementations deliver correct results.

Evaluation

The purpose of this paper is not to have a new, fast k-mer counting tool. Here we want
to compare multiple ways to implement a sparse memory entity counter, which essentially
differs only in the serialization technique used. It is thus not intended to compare with
specific k-mer counting tools, instead, the different serialization techniques are benchmarked
against each other.

Algorithmic Framework

Hash Map implementation

The hash map implementation used here follows the ideas presented by [203]. While Marcais
et al. store key and value in two different arrays, here (key, value) pairs are stored in a
contiguous array. The key part is used to store the k-mer information, and the value part
stores the number of observations for the specific k-mer. Using a specific bijective hashing
function (like Marcais et al.) for the k-mer, the upper bits of the k-mer are encoded in the
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Figure A.26: tsxCount bit representation of a key-value pair The upper 12 bits
(grey+orange) represent the k-mer information and also encode for the actual k-mer. The
lower 4 bits are the value bits (blue). The upper 2 bits (orange) are not needed in case
of a secondary entry for a k-mer and can be used as additional storage then (func-part).
The grey bits contain the hash value from the bijective hashing function and determine,
together with the k-mer ’s position, the k-mer itself. In the case of a secondary entry for a
k-mer (overflow), the dark grey fields store the number of reprobes needed to reach this
element, and the light grey fields store the number of reprobes from the last element.

position the k-mer is stored in. These bits can then be used for further purposes. The
structure of such a key-value-pair is shown in Figure A.26.

The difference to the original implementation [203] is when storing an additional field for
a specific k-mer after an overflow of the initial storage part has occurred. Given 4 storage
bits, this is the case if the k-mer is counted 24 = 16 times or more. Similar to Marcais
et al., a secondary field is created for this k-mer and the number of reprobes needed to
reach this field is stored in the key-part. This requires fewer bits than the key is long —
for a hash map with 2l entries, at most l fields. The remaining bits (2 ∗ k − l) may serve as
additional value fields and will be referred to as the func-part of the key. During evaluation
of our implementation it has been noticed that this is not working, at least not with the
reprobe-function from the original paper reprobe(i) = i ∗ (i+ 1)/2 for the i-th retry. It can
be shown that two different k-mers can be positioned at the same location within the hash
map, with the same number of reprobes back to the previous element (Table A.10). This
leads to incorrect counts. In order to avoid this, the bits reserved for storing the reprobe
count are divided. The lower bits store the number of reprobes from the last element, while
the upper bits store the number of reprobes needed to reach this element. This combination
will only match for exactly the same element, but obviously limits the number of allowed
reprobes to 22∗k−l−1, which did not pose a problem in our tests.

UBigInt Implementation

Our approach is designed to count arbitrarily large k-mer, in contrast to many other
implementations which require storing the k-mer in a single integer. This however has the
drawback, that particularly for large values of k, e.g. k = 128 requiring 256bit (2bit per
base), no suitable data type is available. In order to accomplish this, multiple base fields of
a specific bit-size (e.g. 8bit) are concatenated to derive the actually desired value. Using
this, however, implicates that atomic operations can hardly be used, and an overhead for
copying over multiple fields is introduced.
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General Implementation

The general idea for the counter implementation was taken from [203]. In order to compare
the different serialization methods, the same function body has been used for all serialization
techniques, with exception to the CAS implementation, for reasons explained in section
15. When adding a k-mer to the counter (Code Example 1), first possible positions are
calculated. Then it is checked whether a matching k-mer entry is found at these positions.
If not, this k-mer was not entered into the counter before and the first empty field is used
as initial storage. If the field was already occupied, it is checked whether the key of this
field matches the k-mer and if so, the contained value is incremented.

Code Example 1: add k-mer in hash-map
Input :A k-mer as TSX::kmer
Output : true if add was successful, false otherwise

1 function addKmer (kmer);
2 i=0;
3 for i ≤ allowedRetries do
4 pos = getPosition(kmer, i);
5 lock(pos); // lock current position for increment
6 if empty(pos) then
7 map[pos] = makeKeyVal(kmer, i, 1) ; // empty field; insert

count 1
8 unlock(pos); // unlock current position after increment
9 break;

10 else
11 if kmer(map[pos]) == kmer then ; // field matches kmer
12

13 hasOverflow = increment(kmer, pos, i) ; // increment count
14 unlock(pos); // unlock current position after increment
15 if hasOverflow then
16 handleOverflow(kmer, pos, i) ; // handle overflow - will

lock next positions
17 end
18 break;
19 else
20 ++i ; // position does not match, try next position
21 unlock(pos); // unlock current position for retry
22 end
23 end
24 return added
25 end
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The increment function (Code Example 2) has to handle two cases. The first case is
the most common case: the value in the storage bits of an entry has to be incremented. If
this was successful, again two cases must be considered. First, if no overflow occurred, the
operation completed successfully and may return. If an overflow occurred, and if this was
not a secondary position, then the overflow must be handled. Hence, the increment function
returns 2, signalling that the calling function must care about the overflow. Otherwise, if
this was a secondary position, it is tried to increment the func-part of the key, hoping to
prevent an overflow. Only if there happens an overflow again, the calling function must
take care for handling the overflow.

The handleOverflow function (Supplemental Material, Code Example 4) is similar
to the addkmer function (Code Example 1). A matching position must be found. If the
algorithm finds an empty field, a new overflow location is created (value 1, with reprobes
set back to the original element). Otherwise, it checks whether the number of reprobes to
the initial position and the number of reprobes to the last position match. If so, this field
is incremented using the function described in Code Example 2.

Running the application

All implemented serialization techniques share a common data processing function (Code
Example 3). This function controls the streaming of reads from a FASTQ file and feeds the
reads into the counter. This procedure is implemented using OpenMP [53, 65] tasks for easy
parallelization later on. The I/O is always handled by the OpenMP master thread. The
number of reads per task of course also influences the performance. Here, the number of
reads per task was set to 40 for all comparisons. After creating the chunk of 40 reads, first
all k-mers are computed within the task, before each k-mer is added to the final counter.

Locking implementation

Two different serialization techniques using locks have been implemented: first a version
using regular mutexes (PTHREAD) and second a version using OpenMP omp_lock_-
hint_speculative with omp_init_lock_with_hint (OMP). The speculative hint
refers to the circumstance that the programmer suggests that the operation should be
implemented using speculative techniques, such as transactional memory, according to the
OpenMP 5.0 API specification5. These two variants work similarly, but differ in their
implementation. The OpenMP lock variant makes use of hardware transactional memory
(if possible), while the PTHREAD version uses regular mechanisms.

In general, both versions make a hash map position exclusive for a specific thread. If a
position is already assigned to a different thread, the lock can not be acquired. Otherwise, the
lock is assigned to the specific thread. Such a procedure can, for instance, be implemented
using a vector of assigned positions per thread. All operations to this vector then must be
protected by a specific lock, allowing only one thread to pass at a time.

5https://www.openmp.org/spec-html/5.0/openmp.html

https://www.openmp.org/spec-html/5.0/openmp.html


220 A. Appendix

Code Example 2: increment k-mer in hash-map
Input :A k-mer as TSX::kmer, the position to increment, and the retry count i
Output : true if add was successful, false otherwise

1 function increment (kmer, pos, i);
2 handleFuncOverflow = false;
3 while not incremented do
4 state = incrementKeyValue(kmer, position, rets)
5 if error(state) then
6 continue ; // retry on error
7 else
8 if overflow(state) then ; // Overflow occurred
9

10 if funcIsValue then // Try to increment func-part first
11 handleFuncOverflow = true;
12 else
13 return 2 ; // Overflow not contained, must be

handled
14 end
15 else
16 return 1 ; // added with no overflow
17 end
18 end
19 end
20 if handleFuncOverflow then
21 while not incremented do
22 state = incrementFunc(kmer, position, rets) ; // increment func part
23 if error(state) then
24 continue ; // retry on error
25 else
26 if overflow(state) then // func-part overflow
27 handleOverflow(kmer, position, rets) ; // handles overflow
28 end
29 return 1 ;
30 end
31 end
32 end

Unlocking a position requires to lock the list of locked positions per thread, remove a
specific position from the thread list, and unlock the list of locked positions.

In the SERIAL implementation, the calls to acquire, lock and unlock a position are
empty function bodies.
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Code Example 3: Process of reading FASTQ-file and adding k-mer to counter
Input :A FASTQ file sFilename
Output :A Counter with all k-mers counted.

1 function processFASTQ (sF ilename);
2 tsxMap = TSXHashMap(options)
3 fastqReader = FASTQReader(sFilename)
// initialize OpenMP

4 #pragma omp parallel num_threads(threads)
// only executed by one/master thread

5 #pragma omp master
6 while pReader.hasNext() do

// new task for each chunk of reads
7 #pragma omp task firstprivate(pEntries) shared(iPosOfInterest)
8 std::vector<FASTQEntry> oEntries = pReader.getEntries(40);
9 for entry in oEntries do

10 allKmers = getKmersForEntry(entry); // calculate all
k-mers

11 for kmer in allKmers do
12 tsxMap.addKmer(kmer); // increment for each

k-mer
13 end
14 end
15 end

CAS implementation

The CAS operation is an atomic compare and swap operation, which atomically compares
the content of two memory locations and inserts a new value, if the previous comparison
was positive.

Instead of directly copying the incremented key-value-pair into the hash map, this
approach first fetches the current key-value-pair, stores a copy of it, then calculates the
incremented version, recognizes overflows, and then calls a specific version of the copy-to-
memory function, which performs this operation using the CAS operation. In contrast to
the other serialization techniques, a further copy of the array position before the increment
must be maintained.

TSX implementation

TSX refers to a hardware transactional memory implementation built into many Intel
CPUs. It allows starting transactions, which are only committed if no other transaction
has interfered with the initial transaction. If a conflict occurs, all changes are reverted and
a user-defined resolution strategy must be executed. Here we follow the following strategy:
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in case of a regular abort, e.g. due to conflicts, the transaction is repeated.
The locking implementation can be used for this serialization method, in general, but

before fetching the original value from the hash map, the transaction must be started using
the _xbegin () directive. The transaction is to be finished if the incremented key-value
pair was stored back into the hash map. This is done by calling the _xend() directive. If
the value could not be stored (e.g. field not empty), the transaction is aborted, and the
resolution strategy is applied.

For TSX is it important to have all required values already in cache, as the transaction will
otherwise fail/abort. Hence, before starting the transaction, the required data is prefetched.
The destination memory location also has to be prefetched, however in write-mode, which
here is achieved by calling the __atomic_store(pPos+i, pPos+i, __ATOMIC_-
RELAXED) directive. This directive reads the memory at position pPos+i and writes the
same value back at that position. Being an atomic operation, no serialization is required.

Results

In order to identify the advantages or disadvantages of the different serialization techniques,
performance evaluations using several fractions of a publicly available transcriptomic
sequencing dataset have been conducted (Table A.6). The measurements show, that in
general, the different serialization techniques perform well (Figures A.27-A.29) and all show
a considerable speed-up with more threads (Tables A.7-A.9).

Summary

Laptop computer (Table A.7) SERIAL is the fastest implementation on a single thread.
OMP and CAS show super-linear speed-up on real cores. PTHREAD and OMP are less
sensitive for hyper-threading. TSX is the fastest implementation on the maximum number
of threads.

Xeon Server (Table A.8) Super-linear speed-up can be seen on real cores for all parallel
implementations. Using 16 hyper-threads TSX still reaches an efficiency of more than
70%, but has not yet reached the times of OMP. The SERIAL method is the fastest
implementation on a single thread.

Silver Server (Tables A.9, A.11, A.12) On a single thread PTHREAD is the fastest of
all the parallel implementations, but TSX and OMP are within a range of less than 8%.
CAS is almost four times slower.

At 12 threads (real cores of a single socket) this changes considerably. Due to excellent
efficiency TSX is the fastest implementation now. Because of super-linear speed-up CAS
is already faster than PTHREAD and only about 6% slower than OMP. The lock-based
implementations have efficiencies of only 50% and less (OMP, PTHREAD).

Exploiting the twelve additional real cores of the second socket does not yield advantages.
TSX with 24 threads is about 20 seconds or 9% faster. CAS improves by about 45%, whereas
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PTHREAD and OMP slow down. Using hyper-threading on every core (48 threads) shows
again that there is only a small gain for TSX (less than 10%) and CAS (about 16%). The
slow-down for PTHREAD and OMP is dramatically.

Detailed Results

On the laptop computer some difference between the OMP and PTHREAD implementation
can be seen for an increasing number of threads, although both use a mutex lock imple-
mentation. However, the OMP implementation internally may use transactional memory
for the locking. It is also interesting to note that the compare-and-swap (CAS) method
is significantly slower than the other serialization techniques. This might have multiple
reasons: unlike the jellyfish implementation [203], our CAS implementation has not been
specifically optimized and does not use SSE/AVX optimized CAS operations (simple GNU
version). Surprisingly, the more threads are used, the better the CAS version performs.
Particularly for the CAS version, the achieved speed-up is (super-)linear up to 48 threads
on the silver server (Table A.9). The speed-up of the lock-based implementations (OMP,
PTHREAD) stagnates with more than 12 threads on the silver server, both CAS and TSX
show a higher speed-up. While the TSX implementation is considerably faster, it can be
seen that only the CAS implementation scales perfectly up to 48 threads, which was also
reported by [203].

The main finding can be seen most clearly with the large dataset on the silver server
with 48 threads (Figure A.29). Here it is observed that for a low number of threads the
lock-based approaches have an advantage over TSX. With more threads this advantage
becomes smaller, and TSX overtakes the lock based versions already at 6 threads on the
silver server (Figure A.29, Table A.9). On the xeon server this can not be seen this early,
and also not this clear. At 16 threads the PTHREAD implementation slows down and
TSX catches up with the OMP implementation – which is also observed on the laptop.
The observed behaviour on the silver server does not depend on the possible options for
binding the threads to the cores (OMP_PROC_BIND, Figures A.29, A.32, A.33). It should
be noted that without binding threads to a specific core (Figure A.33, Table A.12) the CAS
implementation even overtakes TSX. This is not surprising, since TSX will require many
cache transfers, even across socket boundaries, which the CAS version does not require.
However, in absolute values the bound versions are faster than the unbound setting (Tables
A.9, A.11 and A.12).

The CAS implementation is the most time-consuming one. It is, however, noteworthy,
that the speed-up achieved by CAS is comparable to the other serialization techniques, and
remains linear with more threads. The SERIAL method is the fastest implementation on a
single thread. OMP, PTHREAD and TSX vary in time within a range of less than 10%.
Nevertheless, as long as the number of threads is smaller or equal to the number of physical
cores super-linear speed-up for all parallel implementations can be observed on the xeon
server. On the silver server this is similar for the threads on the first socket. This is likely
due to the better cache behaviour when using more physical cores, which have their own
local cache.
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Table A.7: tsxCount runtimes (SCER.6_25, laptop) With more threads, the TSX
implementation improves, overtaking the OMP implementation at 8 threads.

Method/Threads 1 2 4 8
CAS [s] 411.53 172.31 100.70 81.86
Speed-up 1.00 2.39 4.09 5.03
Efficiency 1.00 1.19 1.02 0.63
SERIAL [s] 168.76 - - -
Speed-up 1.00 - - -
Efficiency 1.00 - - -
OMP [s] 218.70 80.40 47.79 35.39
Speed-up 1.00 2.72 4.58 6.18
Efficiency 1.00 1.36 1.14 0.77
TSX [s] 174.42 81.70 55.25 31.42
Speed-up 1.00 2.13 3.16 5.55
Efficiency 1.00 1.07 0.79 0.69
PTHREAD [s] 203.97 102.07 56.24 49.09
Speed-up 1.00 2.00 3.63 4.16
Efficiency 1.00 1.00 0.91 0.52

Table A.8: tsxCount runtimes (SCER.100, xeon server) The OMP and PTHREAD
implementations perform similarly well on few threads. On 16 threads the TSX imple-
mentation catches up with the OMP one. The SERIAL implementation does not protect
memory accesses and thus may yield incorrect results, but shows the overhead involved for
serialization.

Method/Threads 1 2 4 8 16
CAS [s] 10689.00 4732.67 1756.80 838.79 650.02
Speed-up 1.00 2.26 6.08 12.74 16.44
Efficiency 1.00 1.13 1.52 1.59 1.03
OMP [s] 3091.63 1239.50 610.97 368.68 281.65
Speed-up 1.00 2.49 5.06 8.39 10.98
Efficiency 1.00 1.25 1.27 1.05 0.69
PTHREAD [s] 3014.45 1225.92 616.46 381.87 319.00
Speed-up 1.00 2.46 4.89 7.89 9.45
Efficiency 1.00 1.23 1.22 0.99 0.59
TSX [s] 3208.22 1289.70 793.97 408.40 284.63
Speed-up 1.00 2.49 4.04 7.86 11.27
Efficiency 1.00 1.24 1.01 0.98 0.70
SERIAL/NOLOCK1 [s] 3000.77 1169.83 690.77 278.01 247.33
Speed-up 1.00 2.57 4.34 10.79 12.13
Efficiency 1.00 1.28 1.09 1.35 0.76

1: The parallelized SERIAL method has been measured on more than one thread only once.
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Figure A.27: tsxCount runtimes (SCER.6_25, laptop) With more threads, the TSX
implementation improves, overtaking the OMP implementation at 8 threads.

On the laptop OMP and PTHREAD with four threads and four cores show no super-
linear speed-up, but the efficiency is still above 90%. This is likely caused by the smaller
cache on the laptop CPU in comparison to the server CPUs (see Tables A.7 and A.8).

The speed-up decreases as soon as the number of threads exceeds the number of cores.
Nevertheless, still efficiencies of more than 70% with 8 threads on 4 cores can be seen
on the laptop. On the xeon server (16 threads on 8 cores) a higher drop in efficiency for
PTHREAD can be noticed, whereas CAS, OMP and TSX still show satisfying speed-up
and efficiencies of more than 70% (Table A.8).

On the xeon server, the SERIAL implementation was also executed in parallel (SERI-
AL/NOLOCK). It must be noted that the parallel execution of SERIAL/NOLOCK does not
yield correct results, because no serialization is employed. However, it can be regarded as a
baseline for an ideal serialization, which allows a rough estimation of the overhead induced
by the serialization techniques. Not using any serialization, most executions with multiple
threads do not terminate properly or abort. Hence, the parallel SERIAL implementation
was only executed once.

Performance Evaluation

In order to compare the behaviour of TSX (Figure A.30) and OMP (Figure A.31) imple-
mentations the Intel vTune Amplifier was used. In the TSX results it can clearly be seen
that two threads (cpu_0 and cpu_1) report higher abort cycles than all others. These are
the threads on the core with the OpenMP master thread which is responsible for IO.
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Figure A.28: tsxCount runtimes (SCER.100, xeon server) The OMP and PTHREAD
implementations perform similarly well on few threads. On 16 threads the TSX imple-
mentation catches up with the OMP one. The SERIAL implementation does not protect
memory accesses and thus may yield incorrect results, but shows the overhead involved for
serialization.

Figure A.29: tsxCount runtimes (SCER.100, silver server, OMP_PROC_-
BIND=spread) With few threads the performance of OMP and TSX is similar. With
a larger number of threads the performance of TSX becomes best. Strikingly the CAS
implementation scales well and outperforms the lock-based variants at 16 threads.
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Figure A.30: tsxCount TSX profiling with Intel vTune Amplifier Transactional
profiling of SCER.25 sample with Intel vTune Amplifier using tsx-exploration. Higher abort
rates (brown area) can be noticed towards the end of the run.

Furthermore, an increase of abort cycles over time can be observed, not only in the
master threads. This is plausible: more fields in the hash map are filled, hence more retries
are needed. Also overflows occur more frequently towards the end, requiring more count
operations which again create more transactions which could abort.

The OMP analysis looks as expected. Most of the time all threads are very busy. In
contrast to TSX, the spin and overhead time is constant over the time. This is also as
expected, since each increment will only acquire one lock at a time.

Discussion

The results demonstrate that hardware transactional memory is a useful and fast serializa-
tion technique, however, lacking interoperability. While the computational and software
engineering overhead is quite large compared to lock-based serialization techniques, this
pays out at a larger number of threads. This is, most likely, due to a significant increase in
locking-activities for multiple threads: more threads need to lock hash map positions, and
the query for locked positions takes more time. On the other hand, if more threads have
more distinct elements to count, only few transactions will be in conflict. Hence, a slightly
larger overhead for hardware transactions is taking less work than the locking overhead.

Using the bioinformatics problem of counting k-mers using a hash map, which uses a
memory-efficient representation of k-mer counts, requiring large protected operations, is
a well-suited benchmark for several serialization techniques. It allows the comparison of
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Figure A.31: tsxCount OMP profiling with Intel vTune Amplifier Transactional
profiling of SCER.25 sample with Intel vTune Amplifier using Hotspot analysis. The waiting
time for locks (red area) can be noticed throughout the run.

several techniques far away from pure numerics or simple increments. Moreover, the k-mer
counting problem can be applied to arbitrarily large datasets, hence allowing the use of as
many threads as possible.

In contrast to existing studies by [277, 247, 121], here we perform a significant workload
on the data within the (lock/TSX-)protected areas. The benchmark is conducted on a real
world problem and compares the different serialization techniques on the same problem. For
the k-mer increment task, first a hash map position has to be retrieved, parsed, compared,
incremented, and re-assembled. In particular, the retrieved values represent a bit-encoded
data-structure on their own, which needs to be maintained. This requires more operations
within the transactions than only the increment of an array position, for instance. Here, five
different implementations can be compared: Lock-based methods (SERIAL, PTHREAD,
OMP), TSX and CAS.

Very surprising have been the results obtained for the CAS implementation. CAS is
the most different and special technique to implement, because existing code from the
lock-based approaches needs to make sure that a before-changes copy is created, maintained
and used to compare when writing the manipulated data. In this study it performed slowest,
which is not surprising, requiring at least twice as much memory read/write operations.
However, with many threads, the CAS implementation overtakes the lock-based approaches
and performs almost as good as the TSX implementation. Only using the default CAS
operation, without making use of SSE or AVX, this is possibly not the limit of the CAS
approach (as shown by [203]). However, since all other implementations also do not make
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use of such additional features, this comparison is as fair as possible. Nonetheless, the
recorded linear speed-up up to 48 threads is astonishing enough compared to the other
methods.

Of special interest is the comparison of the lock-based and TSX versions. For any lock-
based method, the same building blocks and interface could be used. OMP and PTHREAD
methods only differ in the locking mechanism, hence in the underlying implementation.
The SERIAL version always acquires a virtual lock automatically. It thus uses the same
implementation as versions with locks. It is interesting to see that there is a performance
difference in using the PTHREAD-lock approach in comparison to the guided-lock version
from OMP, which internally might use hardware transactional memory. Particularly with
many threads, the OMP variant is more efficient than the PTHREAD version (Figure A.28,
8 vs. 16 threads), even though this depends on the platform (Figure A.29). Since the OMP
implementation may use transactional locks internally (user-independent runtime decision),
this could be a result from different hardware, compilers and libraries or computers. Even
though the TSX implementation only performs better than the lock-based methods for 9 or
more threads on the silver server, its performance with fewer threads is not significantly
slower than OMP, for instance. Compared to the lock-based methods, TSX shows a linear
speed-up for more threads used, but eventually stagnates after 16 threads. This stagnation
can have multiple reasons, e.g. a saturation of memory IO or an increase in the transaction
abort rate. In all experiments it can, however, be seen that with more threads, TSX
becomes faster and achieves a better speed-up than the lock-based approaches.

Using hardware transactional memory as serialization techniques is quite new. There are
no common patterns available, neither are distinct examples nor best practices. While a lock
can protect an arbitrarily large code area, hardware transactions are limited in their size.
A transaction is aborted if it exceeds its capacity or if not all required memory locations
are cached. Both of these limitations likewise depend on the used hardware, compiler and
implementation. In addition, transactions might be aborted due to a debugger operating
within transactional regions, or if transactions are nested. During the implementation phase
we found cache misses being the main reason for aborted transactions. Prefetching the
necessary data (both for read and write) resolved this problem. The need for having data
within the cache limits the applicability of transactions in general. This forces the user
to keep the code within a transaction as small as possible. We have seen that on devices
with smaller caches (like the laptop computer here), more prefetching is required to avoid
cache misses and aborted transactions. With more prefetching of data, the implementation
however gets less performant. Apart from the platform specificity of TSX (Intel), this
makes the TSX implementation less portable and interoperable, because for each platform
it has to be evaluated which level of prefetching is required.

Besides the pure computational efficiency, also the time required to implement the
serialization techniques must be considered. The usage of locks has been very straight
forward and easy to implement and to debug. The different locking mechanisms only
demand a different lock initialization, and maybe a slightly different syntax for acquiring or
releasing a lock. Finally, the overall time and resources needed to make a code threadsafe
using locks is small, which is the opposite experience to using TSX.
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Conclusion

In this paper we investigated how hardware transactional memory can be used as serial-
ization technique for counting genomic entities, k-mers. We compared the TSX strategy
against no locks (SERIAL), pthread-mutex (PTHREAD), omp-locks (OMP) and a CAS
implementation. The real-live benchmark is large enough for a significant workload and
includes both biases introduced by the sequencing technology (error rate), and the transcrip-
tomic sample origin (poly-A ends at reads, leading to high counts for view k-mers). The
obtained results can be used to make an informed decision on which serialization technique
suits the respective environment better.

Given the differences between the PTHREAD and OMP implementations, it can be
noted that the hinted-lock implementation (OMP) is more performant, possibly due to
using hardware transactions internally. However, the difference, in general, is neglectable.

For our application, OMP (using speculative locks) and TSX serialization have been
the most performant implementations on few threads. With an increasing number of
threads TSX becomes advantageous compared to OpenMP locks, and CAS shows increasing
efficiency, which can be seen by its linear speed-up, even at a high number of threads. Using
only few threads, an OMP lock-based serialization technique can be preferred. Not only
because OMP is at least as fast as TSX, but the small advantage of TSX in time efficiency
is considerably offset by the experienced difficulties during implementation, debugging and
its lower platform-robustness. If more threads are intended to be used, or if in general a
linear speed-up is required, TSX and CAS are useful choices. In our benchmark CAS has
the most constant speed-up, but having high initial costs, this only pays out with more
than 24 threads, in our example, and can not overtake TSX. However, TSX is not available
on all CPU platforms. The TSX implementation is also not platform robust regarding
cache misses by heavily depending on the available caches of the processor. Hence, given
that the OMP-approach is much easier to implement and faster or as fast for fewer threads,
the OMP lock-based serialization wins also for reasons of interoperability and availability
on all platforms.

In summary, the main question one has to answer before choosing a serialization
technique, is on which platform the given software will be run. For a general purpose
software, the usage of TSX is hardly possible, because only some Intel CPUs support TSX.
For software which is intended to be run with many threads, the CAS approach can be
useful, as it delivers an excellent speed-up with very high initial costs. If the target is a
regular workstation, with an average CPU and thread count, lock-based approaches remain
the favoured serialization technique, also being the most interoperable choice.

Supplemental Material

Reprobe Problem

An example for the reprobe problem mentioned in Section A.4.2 is given in Table A.10. In
this example, positions 823, 828 and 830 are already blocked by other k-mers. Further,
assume that first k-mer X is incremented, requiring an overflow. Since position 830 is
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Supplemental Material, Table A.10: Double-match scenario for the same position (same
number of reprobes).

Position Reprobes Reprobes from last insert Description
k-mer X
829 0 initial
830 1 1 blocked
832 2 2 overflow

Position Reprobes Reprobes from last insert
k-mer Y
822 0 Initial
823 1 1 blocked
825 2 2 overflow
828 3 1 blocked

832 4 2 overflow; Incorrect Increment!

blocked, the second retry finds an empty field at position 832 (determined by the hashing
function). The number of reprobes required from the last position is 2, which is encoded
in the (key, value)-entry. A second k-mer Y has an initial entry at position 822. This
k-mer already had an overflow, which is stored in field 825. Given that field 828 is already
occupied, the next overflow will be stored in field 832. This is 2 reprobes away from the last
entry for this k −mer. Hence, the encoded reprobes of 2, which were stored by k-mer X,
match, and the overflow of k-mer Y increments a field of k-mer X. This can be circumvented
by storing both the total number of reprobes as well as the number of reprobes from the
last field.

Code Examples

The pseudo-code for the handling of overflows during the increment operation is shown in
Supplemental Material, Code Example 4.

Additional Experimental Results

Additional experimental results for the full dataset on the silver server using OMP_PROC_-
BIND=close (Figure A.32, Table A.11) and OMP_PROC_BIND=false (Figure A.33,
Table A.12).
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Supplemental Material, Figure A.32: tsxCount runtimes (SCER.100, silver server,
OMP_PROC_BIND=close) With few threads the performance of OMP and TSX is similar.
With a larger number of threads the performance of TSX becomes best. Strikingly the
CAS implementation scales well and outperforms the lock-based variants at 24 threads.
The performance of all implementations is similar to using OMP_PROC_BIND=spread.

Supplemental Material, Figure A.33: tsxCount runtimes (SCER.100, silver server,
OMP_PROC_BIND=FALSE) With few threads the performance of OMP and TSX is similar.
With a larger number of threads the performance of TSX becomes best. Strikingly, the CAS
implementation scales well and outperforms the TSX and lock-based variants at 24 threads.
The absolute run-times in this mode are higher than using OMP_PROC_BIND=spread.
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Supplemental Material, Code Example 4: Handle overflow during k-mer
increment
Input :A k-mer as TSX::kmer, the position to increment, and the retry count i
Output : true if add was successful, false otherwise

1 function handleOverflow (kmer, pos, i);
2 rets=0;
3 while rets ≤ allowedRetries do
4 pos = getPosition(kmer, rets)
5 lock(pos); // lock current position for increment
6 if empty(pos) then
7 map[pos] = makeKeyVal(kmer, rets, 1); // new secondary field
8 unlock(pos); // unlock current position after increment
9 break

10 else
11 if kmer matches position then
12 hasOverflow = increment(kmer, pos, rets); // increment

secondary field
13 unlock(pos); // unlock current position after increment
14 if hasOverflow then // further overflow
15 handleOverflow(kmer, pos, rets);
16 end
17 break
18 else
19 ++rets;
20 unlock(pos); // unlock current position, retry at next

position
21 end
22 end
23 end
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Supplemental Material, Table A.11: tsxCount runtimes (SCER.100, silver server,
OMP_PROC_BIND=close) With few threads the performance of OMP and TSX is similar.
With a larger number of threads the performance of TSX becomes best. Strikingly the
CAS implementation scales well and outperforms the lock-based variants at 24 threads.
The performance of all implementations is similar to using OMP_PROC_BIND=spread.

Method/
Threads

1 2 6 12 24 36 42 48

CAS [s] 12324.67 3568.14 1379.34 545.64 304.69 319.21 275.78 253.24
Speed-up 1.00 3.45 8.94 22.59 40.45 38.61 44.69 48.67
Efficiency 1.00 1.73 1.49 1.88 1.69 1.07 1.06 1.01
OMP [s] 3348.43 1125.84 393.04 232.26 748.84 846.91 797.11 877.19
Speed-up 1.00 2.97 8.52 14.42 4.47 3.95 4.20 3.82
Efficiency 1.00 1.49 1.42 1.20 0.19 0.11 0.10 0.08
TSX [s] 3558.31 1163.92 410.36 208.96 243.34 295.86 214.25 218.42
Speed-up 1.00 3.06 8.67 17.03 14.62 12.03 16.61 16.29
Efficiency 1.00 1.53 1.45 1.42 0.61 0.33 0.40 0.34
PTHREAD [s] 3320.98 1110.12 387.69 269.29 643.60 732.45 757.09 789.51
Speed-up 1.00 2.99 8.57 12.33 5.16 4.53 4.39 4.21
Efficiency 1.00 1.50 1.43 1.03 0.22 0.13 0.10 0.09

Supplemental Material, Table A.12: tsxCount runtimes (SCER.100, silver server,
OMP_PROC_BIND=FALSE) With few threads the performance of OMP and TSX is similar.
With a larger number of threads the performance of TSX becomes best. Strikingly, the CAS
implementation scales well and outperforms the TSX and lock-based variants at 24 threads.
The absolute run-times in this mode are higher than using OMP_PROC_BIND=spread.

Method/Threads 2 6 12 24 48
CAS [s] 10624.67 1788.53 596.18 341.68 287.76
Speed-up 1.00 5.94 17.82 31.10 36.92
Efficiency 1.00 0.99 1.49 1.30 0.77
OMP [s] 1347.23 519.19 564.77 815.36 963.44
Speed-up 1.00 2.59 2.39 1.65 1.40
Efficiency 1.00 0.43 0.20 0.07 0.03
PTHREAD [s] 1338.51 659.69 621.23 682.34 834.29
Speed-up 1.00 2.03 2.15 1.96 1.60
Efficiency 1.00 0.34 0.18 0.08 0.03
TSX [s] 1326.87 504.17 465.45 350.14 347.36
Speed-up 1.00 2.63 2.85 3.79 3.82
Efficiency 1.00 0.44 0.24 0.16 0.08
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A.5 Chapter 4

A.5.2 cPred
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Figure A.34: UMAP representation of GSE131780 dataset (scRNA-seq analysis
of human/mouse plaque). The top UMAP shows the clustering of the human dataset
only, the bottom one the mouse dataset, respectively. In the middle the integrated, human
and mouse dataset is shown.

A.5.4 pIMZ

(a) Slide D, Region 0: Selected pixels (yel-
low).

(b) Slide D, Region 1: Selected pixels (yel-
low).

Figure A.35: pIMZ comparing all clusters (Region 0 vs Region 1) An analysis over
multiple SpectraRegion objects is possible using the CombinedSpectra. All non-background
pixels (shown in yellow) of Region 0 (a) are compared with Region 1 (b).
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A.6 Chapter 5

A.6.1 poreSTAT

Using the correct SARS-CoV-2 genome with accession number MT007544.1, the poreSTAT
read alignment analysis yields better results compared to the initial analysis discussed in
Chapter 5.1 (Figure A.36). Both, the alignment identity and the read identity improve,
suggesting that the reads fit the reference genome better. A read identity of 75% is in scope
for the used version 9.4.1 read chemistry. The counts per feature are better distributed,
with the nucleocapsid phosphoprotein (gene-N) being the most abundant transcript.

(a) (b)

(c)

Figure A.36: poreSTAT improved alignment overview (a) reporting read length versus
alignment identity, (b) reporting read length vs. read identity and (c) feature counts for
the Australian virus genome (accession MT007544.1).
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A.6.2 sequ-into

sequ-into was initially developed in the course of the iGEM 2018 competition by the
iGEM Team Munich 2018. Active development of the base application was performed by
Margaritha Olenchuk and Julia Mayer under the supervision of Markus Joppich. After the
competition, sequ-into received several important changes implemented by Markus Joppich:
the analysis and reporting works in an incremental, online fashion such that only new data
must be processed. In contrast to the original application, this required a redesign of the
whole backend. Instead of relying on the result from an asynchronous system call, as in
the initial version, an asynchronous HTTP request to a locally spawned server has to take
place. The manuscript has been prepared by Markus Joppich, with several suggestions
by Margaritha Olenchuk and Julia Mayer. Ralf Zimmer, Quirin Emslander and Luisa
Jimenez-Soto contributed with general suggestions regarding text and figures. The accepted
publication is available as open-access online article https://doi.org/10.1016/j.csbj.
2020.05.014.

A.7 Chapter 6

A.7.1 Robust Differential Expression

Figure A.37: RoDE workflow in detail The workflow of the RoDE pipeline in more detail.
In each of the five stages (yellow), several analyses (rectangles) are performed of specified
inputs (ellipses). Using the output of the previous stage as input for the next stage nicely
demonstrates the pipeline character of RoDE .

https://doi.org/10.1016/j.csbj.2020.05.014
https://doi.org/10.1016/j.csbj.2020.05.014


240 A. Appendix

(a) Count Heatmap (STAR) (b) Input Read Count Comparison

Figure A.38: RoDE robust pipeline (count comparisons) (a) The count heatmap
(library-size normalized ×10000, filtered for genes with > 10 expression, log2 with pseudo-
count 1) can be used to verify how similar the single samples are. It must be noted, that
one unstable sample 4 differs from the other unstable samples. (b) The Comparison of the
input counts reveals that these are very similar, with some differences in the low-expressed
genes.
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(a) STAR UMAP all DE (b) STAR clustermap top 100 DE genes

Figure A.39: RoDE UMAP and clustermap evaluation on DE genes After performing
DE, the dimensional reduction can also be done only on the differential genes (a). The two
groups form distinct clusters of high similarity, which can be expected if the DE analysis
was performed correctly. Using a clustermap (b), the top 50 up- and down-regulated genes
can be displayed. This again shows that these genes divide the two groups properly.

Figure A.40: RoDE miRTarBase target gene enrichments The top enriched gene sets
of the custom gene sets are visualized by bar plots. These plots differentiate between
considering all genes, all up- or all down-regulated genes. Reported gene sets are sorted
such that either UP or DOWN sets are significant.
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Figure A.41: RoDE robust pipeline rank plot The rank plot is a parallel coordinate plot
with the logFCs on the outer axes and the rank of the p-value on the inner ones. This plot
gives a fast overview of how different the results from to DE results are.
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