Logo Logo
Help
Contact
Switch language to German
Prediction and control of nonlinear dynamical systems using machine learning
Prediction and control of nonlinear dynamical systems using machine learning
Künstliche Intelligenz und Machine Learning erfreuen sich in Folge der rapide gestiegenen Rechenleistung immer größerer Popularität. Sei es autonomes Fahren, Gesichtserkennung, bildgebende Diagnostik in der Medizin oder Robotik – die Anwendungsvielfalt scheint keine Grenzen zu kennen. Um jedoch systematischen Bias und irreführende Ergebnisse zu vermeiden, ist ein tiefes Verständnis der Methoden und ihrer Sensitivitäten von Nöten. Anhand der Vorhersage chaotischer Systeme mit Reservoir Computing – einem künstlichen rekurrenten neuronalem Netzwerk – wird im Rahmen dieser Dissertation beleuchtet, wie sich verschiedene Eigenschaften des Netzwerks auf die Vorhersagekraft und Robustheit auswirken. Es wird gezeigt, wie sich die Variabilität der Vorhersagen – sowohl was die exakte zukünftige Trajektorie betrifft als auch das statistische Langzeitverhalten (das "Klima") des Systems – mit geeigneter Parameterwahl signifikant reduzieren lässt. Die Nichtlinearität der Aktivierungsfunktion spielt hierbei eine besondere Rolle, weshalb ein Skalierungsparameter eingeführt wird, um diese zu kontrollieren. Des Weiteren werden differenzielle Eigenschaften des Netzwerkes untersucht und gezeigt, wie ein kontrolliertes Entfernen der "richtigen" Knoten im Netzwerk zu besseren Vorhersagen führt und die Größe des Netzwerkes stark reduziert werden kann bei gleichzeitig nur moderater Verschlechterung der Ergebnisse. Dies ist für Hardware Realisierungen von Reservoir Computing wie zum Beispiel Neuromorphic Computing relevant, wo möglichst kleine Netzwerke von Vorteil sind. Zusätzlich werden unterschiedliche Netzwerktopologien wie Small World Netzwerke und skalenfreie Netzwerke beleuchtet. Mit den daraus gewonnenen Erkenntnissen für bessere Vorhersagen von nichtlinearen dynamischen Systemen wird eine neue Kontrollmethode entworfen, die es ermöglicht, dynamische Systeme flexibel in verschiedenste Zielzustände zu lenken. Hierfür wird – anders als bei vielen bisherigen Ansätzen – keine Kenntnis der zugrundeliegenden Gleichungen des Systems erfordert. Ebenso wird nur eine begrenzte Datenmenge verlangt, um Reservoir Computing hinreichend zu trainieren. Zudem ist es nicht nur möglich, chaotisches Verhalten in einen periodischen Zustand zu zwingen, sondern auch eine Kontrolle auf komplexere Zielzustände wie intermittentes Verhalten oder ein spezifischer anderer chaotischer Zustand. Dies ermöglicht eine Vielzahl neuer potenzieller realer Anwendungen, von personalisierten Herzschrittmachern bis hin zu Kontrollvorrichtungen für Raketentriebwerke zur Unterbindung von kritischen Verbrennungsinstabilitäten. Als Schritt zur Weiterentwicklung von Reservoir Computing zu einem verbesserten hybriden System, das nicht nur rein datenbasiert arbeitet, sondern auch physikalische Zusammenhänge berücksichtigt, wird ein Ansatz vorgestellt, um lineare und nichtlinearen Kausalitätsstrukturen zu separieren. Dies kann verwendet werden, um Systemgleichungen oder Restriktionen für ein hybrides System zur Vorhersage oder Kontrolle abzuleiten., Artificial intelligence and machine learning are becoming increasingly popular as a result of the rapid increase in computing power. Be it autonomous driving, facial recognition, medical imaging diagnostics or robotics – the variety of applications seems to have no limits. However, to avoid systematic bias and misleading results, a deep understanding of the methods and their sensitivities is needed. Based on the prediction of chaotic systems with reservoir computing – an artificial recurrent neural network – this dissertation sheds light on how different properties of the network affect the predictive power and robustness. It is shown how the variability of the predictions – both in terms of the exact short-term predictions and the long-term statistical behaviour (the "climate") of the system – can be significantly reduced with appropriate parameter choices. The nonlinearity of the activation function plays a special role here, thus a scaling parameter is introduced to control it. Furthermore, differential properties of the network are investigated and it is shown how a controlled removal of the right nodes in the network leads to better predictions, whereas the size of the network can be greatly reduced while only moderately degrading the results. This is relevant for hardware realizations of reservoir computing such as neuromorphic computing, where networks that are as small as possible are advantageous. Additionally, different network topologies such as small world networks and scale-free networks are investigated. With the insights gained for better predictions of nonlinear dynamical systems, a new control method is designed that allows dynamical systems to be flexibly forced into a wide variety of dynamical target states. For this – unlike many previous approaches – no knowledge of the underlying equations of the system is required. Further, only a limited amount of data is needed to sufficiently train reservoir computing. Moreover, it is possible not only to force chaotic behavior to a periodic state, but also to control for more complex target states such as intermittent behavior or a specific different chaotic state. This enables a variety of new potential real-world applications, from personalized cardiac pacemakers to control devices for rocket engines to suppress critical combustion instabilities. As a step toward advancing reservoir computing to an improved hybrid system that is not only purely data-based but also takes into account physical relationships, an approach is presented to separate linear and nonlinear causality structures. This can be used to derive system equations or constraints for a hybrid prediction or control system.
Nonlinear dynamics, Prediction, Machine learning, Control, Reservoir computing
Haluszczynski, Alexander
2021
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Haluszczynski, Alexander (2021): Prediction and control of nonlinear dynamical systems using machine learning. Dissertation, LMU München: Faculty of Physics
[img]
Preview
PDF
Haluszczynski_Alexander.pdf

8MB

Abstract

Künstliche Intelligenz und Machine Learning erfreuen sich in Folge der rapide gestiegenen Rechenleistung immer größerer Popularität. Sei es autonomes Fahren, Gesichtserkennung, bildgebende Diagnostik in der Medizin oder Robotik – die Anwendungsvielfalt scheint keine Grenzen zu kennen. Um jedoch systematischen Bias und irreführende Ergebnisse zu vermeiden, ist ein tiefes Verständnis der Methoden und ihrer Sensitivitäten von Nöten. Anhand der Vorhersage chaotischer Systeme mit Reservoir Computing – einem künstlichen rekurrenten neuronalem Netzwerk – wird im Rahmen dieser Dissertation beleuchtet, wie sich verschiedene Eigenschaften des Netzwerks auf die Vorhersagekraft und Robustheit auswirken. Es wird gezeigt, wie sich die Variabilität der Vorhersagen – sowohl was die exakte zukünftige Trajektorie betrifft als auch das statistische Langzeitverhalten (das "Klima") des Systems – mit geeigneter Parameterwahl signifikant reduzieren lässt. Die Nichtlinearität der Aktivierungsfunktion spielt hierbei eine besondere Rolle, weshalb ein Skalierungsparameter eingeführt wird, um diese zu kontrollieren. Des Weiteren werden differenzielle Eigenschaften des Netzwerkes untersucht und gezeigt, wie ein kontrolliertes Entfernen der "richtigen" Knoten im Netzwerk zu besseren Vorhersagen führt und die Größe des Netzwerkes stark reduziert werden kann bei gleichzeitig nur moderater Verschlechterung der Ergebnisse. Dies ist für Hardware Realisierungen von Reservoir Computing wie zum Beispiel Neuromorphic Computing relevant, wo möglichst kleine Netzwerke von Vorteil sind. Zusätzlich werden unterschiedliche Netzwerktopologien wie Small World Netzwerke und skalenfreie Netzwerke beleuchtet. Mit den daraus gewonnenen Erkenntnissen für bessere Vorhersagen von nichtlinearen dynamischen Systemen wird eine neue Kontrollmethode entworfen, die es ermöglicht, dynamische Systeme flexibel in verschiedenste Zielzustände zu lenken. Hierfür wird – anders als bei vielen bisherigen Ansätzen – keine Kenntnis der zugrundeliegenden Gleichungen des Systems erfordert. Ebenso wird nur eine begrenzte Datenmenge verlangt, um Reservoir Computing hinreichend zu trainieren. Zudem ist es nicht nur möglich, chaotisches Verhalten in einen periodischen Zustand zu zwingen, sondern auch eine Kontrolle auf komplexere Zielzustände wie intermittentes Verhalten oder ein spezifischer anderer chaotischer Zustand. Dies ermöglicht eine Vielzahl neuer potenzieller realer Anwendungen, von personalisierten Herzschrittmachern bis hin zu Kontrollvorrichtungen für Raketentriebwerke zur Unterbindung von kritischen Verbrennungsinstabilitäten. Als Schritt zur Weiterentwicklung von Reservoir Computing zu einem verbesserten hybriden System, das nicht nur rein datenbasiert arbeitet, sondern auch physikalische Zusammenhänge berücksichtigt, wird ein Ansatz vorgestellt, um lineare und nichtlinearen Kausalitätsstrukturen zu separieren. Dies kann verwendet werden, um Systemgleichungen oder Restriktionen für ein hybrides System zur Vorhersage oder Kontrolle abzuleiten.

Abstract

Artificial intelligence and machine learning are becoming increasingly popular as a result of the rapid increase in computing power. Be it autonomous driving, facial recognition, medical imaging diagnostics or robotics – the variety of applications seems to have no limits. However, to avoid systematic bias and misleading results, a deep understanding of the methods and their sensitivities is needed. Based on the prediction of chaotic systems with reservoir computing – an artificial recurrent neural network – this dissertation sheds light on how different properties of the network affect the predictive power and robustness. It is shown how the variability of the predictions – both in terms of the exact short-term predictions and the long-term statistical behaviour (the "climate") of the system – can be significantly reduced with appropriate parameter choices. The nonlinearity of the activation function plays a special role here, thus a scaling parameter is introduced to control it. Furthermore, differential properties of the network are investigated and it is shown how a controlled removal of the right nodes in the network leads to better predictions, whereas the size of the network can be greatly reduced while only moderately degrading the results. This is relevant for hardware realizations of reservoir computing such as neuromorphic computing, where networks that are as small as possible are advantageous. Additionally, different network topologies such as small world networks and scale-free networks are investigated. With the insights gained for better predictions of nonlinear dynamical systems, a new control method is designed that allows dynamical systems to be flexibly forced into a wide variety of dynamical target states. For this – unlike many previous approaches – no knowledge of the underlying equations of the system is required. Further, only a limited amount of data is needed to sufficiently train reservoir computing. Moreover, it is possible not only to force chaotic behavior to a periodic state, but also to control for more complex target states such as intermittent behavior or a specific different chaotic state. This enables a variety of new potential real-world applications, from personalized cardiac pacemakers to control devices for rocket engines to suppress critical combustion instabilities. As a step toward advancing reservoir computing to an improved hybrid system that is not only purely data-based but also takes into account physical relationships, an approach is presented to separate linear and nonlinear causality structures. This can be used to derive system equations or constraints for a hybrid prediction or control system.