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Zusammenfassung

Künstliche Intelligenz und Machine Learning erfreuen sich in Folge der rapide
gestiegenen Rechenleistung immer größerer Popularität. Sei es autonomes Fahren,
Gesichtserkennung, bildgebende Diagnostik in der Medizin oder Robotik – die An-
wendungsvielfalt scheint keine Grenzen zu kennen. Um jedoch systematischen Bias
und irreführende Ergebnisse zu vermeiden, ist ein tiefes Verständnis der Methoden
und ihrer Sensitivitäten von Nöten. Anhand der Vorhersage chaotischer Systeme mit
Reservoir Computing – einem künstlichen rekurrenten neuronalem Netzwerk – wird
im Rahmen dieser Dissertation beleuchtet, wie sich verschiedene Eigenschaften des
Netzwerks auf die Vorhersagekraft und Robustheit auswirken. Es wird gezeigt, wie
sich die Variabilität der Vorhersagen – sowohl was die exakte zukünftige Trajektorie
betrifft als auch das statistische Langzeitverhalten (das "Klima") des Systems –
mit geeigneter Parameterwahl signifikant reduzieren lässt. Die Nichtlinearität der
Aktivierungsfunktion spielt hierbei eine besondere Rolle, weshalb ein Skalierungspa-
rameter eingeführt wird, um diese zu kontrollieren. Des Weiteren werden differenzielle
Eigenschaften des Netzwerkes untersucht und gezeigt, wie ein kontrolliertes Entfer-
nen der "richtigen" Knoten im Netzwerk zu besseren Vorhersagen führt und die
Größe des Netzwerkes stark reduziert werden kann bei gleichzeitig nur moderater
Verschlechterung der Ergebnisse. Dies ist für Hardware Realisierungen von Reservoir
Computing wie zum Beispiel Neuromorphic Computing relevant, wo möglichst kleine
Netzwerke von Vorteil sind. Zusätzlich werden unterschiedliche Netzwerktopologien
wie Small World Netzwerke und skalenfreie Netzwerke beleuchtet.
Mit den daraus gewonnenen Erkenntnissen für bessere Vorhersagen von nichtlinearen
dynamischen Systemen wird eine neue Kontrollmethode entworfen, die es ermöglicht,
dynamische Systeme flexibel in verschiedenste Zielzustände zu lenken. Hierfür wird –
anders als bei vielen bisherigen Ansätzen – keine Kenntnis der zugrundeliegenden
Gleichungen des Systems erfordert. Ebenso wird nur eine begrenzte Datenmenge
verlangt, um Reservoir Computing hinreichend zu trainieren. Zudem ist es nicht nur
möglich, chaotisches Verhalten in einen periodischen Zustand zu zwingen, sondern
auch eine Kontrolle auf komplexere Zielzustände wie intermittentes Verhalten oder
ein spezifischer anderer chaotischer Zustand. Dies ermöglicht eine Vielzahl neuer
potenzieller realer Anwendungen, von personalisierten Herzschrittmachern bis hin
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zu Kontrollvorrichtungen für Raketentriebwerke zur Unterbindung von kritischen
Verbrennungsinstabilitäten.
Als Schritt zur Weiterentwicklung von Reservoir Computing zu einem verbesserten
hybriden System, das nicht nur rein datenbasiert arbeitet, sondern auch physikalis-
che Zusammenhänge berücksichtigt, wird ein Ansatz vorgestellt, um lineare und
nichtlinearen Kausalitätsstrukturen zu separieren. Dies kann verwendet werden, um
Systemgleichungen oder Restriktionen für ein hybrides System zur Vorhersage oder
Kontrolle abzuleiten.



Abstract

Artificial intelligence and machine learning are becoming increasingly popular as a
result of the rapid increase in computing power. Be it autonomous driving, facial
recognition, medical imaging diagnostics or robotics – the variety of applications
seems to have no limits. However, to avoid systematic bias and misleading results,
a deep understanding of the methods and their sensitivities is needed. Based on
the prediction of chaotic systems with reservoir computing – an artificial recurrent
neural network – this dissertation sheds light on how different properties of the
network affect the predictive power and robustness. It is shown how the variability
of the predictions – both in terms of the exact short-term predictions and the
long-term statistical behaviour (the "climate") of the system – can be significantly
reduced with appropriate parameter choices. The nonlinearity of the activation
function plays a special role here, thus a scaling parameter is introduced to control
it. Furthermore, differential properties of the network are investigated and it is
shown how a controlled removal of the right nodes in the network leads to better
predictions, whereas the size of the network can be greatly reduced while only
moderately degrading the results. This is relevant for hardware realizations of
reservoir computing such as neuromorphic computing, where networks that are as
small as possible are advantageous. Additionally, different network topologies such
as small world networks and scale-free networks are investigated.
With the insights gained for better predictions of nonlinear dynamical systems, a new
control method is designed that allows dynamical systems to be flexibly forced into a
wide variety of dynamical target states. For this – unlike many previous approaches
– no knowledge of the underlying equations of the system is required. Further, only a
limited amount of data is needed to sufficiently train reservoir computing. Moreover,
it is possible not only to force chaotic behavior to a periodic state, but also to control
for more complex target states such as intermittent behavior or a specific different
chaotic state. This enables a variety of new potential real-world applications, from
personalized cardiac pacemakers to control devices for rocket engines to suppress
critical combustion instabilities.
As a step toward advancing reservoir computing to an improved hybrid system that
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is not only purely data-based but also takes into account physical relationships, an
approach is presented to separate linear and nonlinear causality structures. This can
be used to derive system equations or constraints for a hybrid prediction or control
system.



Chapter 1

Introduction

Reality is usually not linear - rather, the dynamics and interrelationships in nature,
as well as in technical systems, are often complex, nonlinear and even chaotic. While
simplification and linearization are sufficient for many modeling tasks, real-world
applications typically require consideration and understanding of the full dynamics.
Physics has a long tradition of developing the right tools for this. While Newton
succeeded in solving the two-body problem in 1687, the extension to a three-body
problem made it impossible to find a general closed-form solution. The reason is that
the system exhibits sensitive dependence on initial conditions as shown by Henry
Poincaré in the 1890s leading to chaotic dynamics. Lacking analytical solutions
to most complex problems, physicists came up with approximate techniques and
topological approaches to understand and describe the dynamics of the system such as
the Poincaré map. However, with the advent of machine learning, it became possible
to capture and predict nonlinear dynamical systems in their entire complexity.

1.1 Prediction of nonlinear dynamical systems

For many practical applications, a good prediction of the system under consideration
is valuable. Without knowledge of the underlying equations, this is typically a
difficult task and requires a reasonable model. Most models are based on historical
observations of the system in the form of time series. A time series S = {x1, . . . ,xN}
describes the time evolution of a dynamical system, where xt denotes the respec-
tive state variable at time t. In classical statistics, various properties of the time
series are analyzed and inferred such as the distribution and its moments, sta-
tionarity or dynamical features such as autocorrelation. If multiple variables of the
same system are captured, also multivariate effects such as correlations are of interest.

1
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For numerous problems in science and applications it is very useful to be able to
generate predictions about the future development of the system under investigation.
In the following, the way from a naive model to a sophisticated nonlinear approach is
presented [1]. At first, the situation is investigated where there is no sequential order
or temporal structure in the data and thus S is strictly speaking not a time series
but a collection of data. The task is to create a model y = f(Sx) that is able to
predict the output of an variable Sy depending on another variable Sx given training
data {xj,yj}. This is called supervised machine learning and the easiest model is
simple linear regression

f(Sx) =
d∑

i=1

w(i)x(i) + w0 , (1.1)

where {w(i)} and w0 are determined via minimizing the error between f(Sx) and the
training data Sy. This can be achieved e.g. by solving the quadratic loss function

min
∑

j

(
d∑

i=1

wix
(i)
j − y

(i)
j )2 . (1.2)

By construction, this model can only learn linear dependency and thus will lead to
poor performance for more complex systems and real world applications. This is
because any nonlinearity in the system will deteriorate the predictive power of the
model. To tackle this problem, one has to introduce nonlinearity into the model.
However, it is not as straightforward to choose a nonlinear functional form that
represents the data well.
A possible solution to this is the use of an artificial neural network (ANN) to model
the complex and potentially nonlinear dependencies. The underlying idea of ANNs
came up first in the 1940s when researchers developed a mathematical model for
neurons in a biological brain [2] and theories for the process of learning [3]. It
consists of nodes (neurons) that are connected by edges (synapses). In the 1950s,
a computer was used to simulate such a network [4] followed by the invention of
the first ANN – the perceptron [5]. With the rise of computational power in the
previous decade, evolution in the area of ANNs led to groundbreaking advances
such as facial recognition and autonomous driving [6] or the dominance of ANNs in
the complex game Go [7]. Related to the time series prediction problem, the idea
is that the d-dimensional input data xj is fed into an artificial neural network A
with N nodes via an N × d dimensional input mapping Win. This is done using
an activation function σ(Winxj,A), which is typically a nonlinear function such as
tanh or sigmoid. This is important because depending on the network architecture,
the activation function is often the only part that introduces nonlinearity into the
model. A prediction yj can then be obtained by applying an output function Wout

such that
yj = Wout(σ(Winxj,A) . (1.3)
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Above simple architecture can be extended by concatenating a number of l multiple
layers

yj = Wout(σ(W l( ... σ(W 1σ(Winxj,A))) . (1.4)
This is then called a deep neural network. As stated initially, input data is fed
in not sequentially but simultaneously, which is typically the case for e.g. pattern
recognition tasks. For time series prediction, a temporal structure has to be imposed.
Data Sx is now a time series and the goal is to predict a future value yt+1 based on
past values of the time series {xj}tj=t−k, where k denotes the number of observations
taken into account. In this case, the simplest approach would be to set up a naive
model yt+1 = f(xt) = xt which assumes that the predicted next state yt+1 is equal
to the last observed state xt. An apparent extension is to not only base the forecast
on the last value, but on the weighted average of multiple past observations such
that

yt+1 = f({xj}tj=t−k) = c+
t∑

j=t−k

αjxj + εt , (1.5)

where αj are the weighting coefficients, εt is a random process generating noise and
c denotes a constant that regulates drift. This is referred to as an autoregressive
model. Analogous to the simple linear regression model in the non-temporal case,
this approach suffers from a lack of nonlinearity and thus fails to well describe more
complex dynamics. However, the above introduced ANN framework can be extended
to capture temporal structure. To do so, the input data has to be entered in a
sequential way and the ANN has to feed its past state back into the ANN in order
to allow for memory. This is then called a recurrent neural network, where the state
of the ANN r(t) evolves as

r(t+ 1) = σ(Winxt,A, r(t)) . (1.6)

Output is then generated by applying the output function to the current state
of the ANN such that y(t) = Wout(r(t)). The learning task is to find suitable
parameters forWin,Wout and A by minimizing the error between predictions {y(t)}
and training data {ȳ(t)}. A concrete architecture is presented in Section 2.1. As
for the non-temporal case, the layout can be extended to multiple layers to obtain a
deep recurrent neural network.

1.2 Chaos and control of nonlinear dynamical sys-
tems

Having invented chaos theory in 1963 [8], Lorenz summarized it later as "Chaos:
When the present determines the future, but the approximate present does not approx-
imately determine the future" [9]. He presented a finite system of ordinary nonlinear
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Figure 1.1: The left figure shows trajectories of the Lorenz system with standard parame-
ters for chaotic behavior σ = 10, β = 8/3 and ρ = 28. The blue trajectory corresponds to
initial conditions (-14.0, -20.0, 25.0), while the red trajectory starts slightly shifted at (-14.0,
-20.1, 25.0) corresponding to the black dot. The colored dots denote the end points of both
trajectories after 1000 simulated time steps with ∆t = 0.005. The right figure shows the
difference between the blue and red trajectory and the black represents the starting point.

differential equations modelling atmospheric convection and found that non-periodic
solutions are unstable with respect to small disturbances. This leads to the common
definition of chaos as sensitive dependence on initial conditions. As a consequence,
even tiny rounding or measurement errors of chaotic systems can lead to completely
different trajectories and thus chaotic behavior although the system is deterministic.
The equations of the Lorenz system read

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz ,

(1.7)

where σ, ρ and β are parameters that determine whether the system exhibits periodic,
intermittent or chaotic behavior and ẋ denotes the time derivative of the variable
x. Figure 1.1 shows the sensitive dependence on initial conditions. By only slightly
shifting the y-coordinate of the starting point from −20.0 to −20.1 the resulting
trajectories quickly separate and end up on different sides of the attractor as denoted
by the blue and red dots, respectively. The typical chaotic pattern of the single
coordinates of the trajectory can be seen in Fig. 1.2. Concerning numerous real
application systems, the question therefore arises whether it is possible to eliminate
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Figure 1.2: The top plots show the x, y and z coordinates of the Lorenz system with
standard parameters for chaotic behavior σ = 10, β = 8/3 and ρ = 28 and initial conditions
(-14.0, -20.0, 25.0), while the lower plots correspond to slightly shifted initial conditions at
(-14.0, -20.1, 25.0). The trajectories are simulated for 5000 time steps with ∆t = 0.005.

this irregularity and force the system into a periodic state. Chaos control relies
on the idea that unstable periodic orbits can be stabilized by small perturbations
of the system, which are achieved by applying an external force. Among several
approaches there are two basic methods for this: OGY control [10] and Pyragas’
[11] time delayed feedback control. The former relies on the Poincaré map, which is
a useful tool for the study of dynamical systems [12]. Consider an n-dimensional
dynamical system ẋ = f(x) – with n = 3 in the case of Lorenz – where S is an n− 1
dimensional surface of section transverse to the flow. Then the Poincaré map P is
the mapping that describes where a trajectory crossing S will intersect S the next
time such that

xk+1 = P (xk, p) , (1.8)

where xk denotes the k -th intersection with S and p is a controllable parameter of
the system. If x∗ is a fixed point of P, then it follows P (x∗) = x∗. Therefore, a
trajectory starting at x∗ returns to x∗ after some time and thus results in a periodic
orbit. Analyzing the behavior of P near the fixed point exhibits then the stability of
the periodic orbit. The idea is now to apply a small feedback by changing p if the
trajectory is close to a fixed point x∗ of P. When this is the case, the system can be
linearized around the fixed point

xk+1 − x∗ = A(xk − x∗) +B(p− p̄) , (1.9)
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Figure 1.3: The left plot shows the Lorenz system with standard parameters for chaotic
behavior σ = 10, β = 8/3 and ρ = 28. The blue trajectory represents the original attractor,
while the red trajectory shows the attractor after time delayed feedback control has been
switched on in timestep t = 1000. The right plot shows the x coordinate, accordingly. Time
resolution is ∆t = 0.005.

where A is the Jacobian of the Poincaré Map, B describes the sensitivities with
respect to changing the parameter p and p̄ denotes the original parameter value:

A =
∂P

∂x
(x∗, p̄) , B =

∂P

∂p
(x∗, p̄) . (1.10)

Then the linear feedback is

p− p̄ = −K(xk − x∗) , (1.11)

where K is yet to be determined. By substituting Eq. 1.11 into the equation for the
linearized dynamics around x∗ Eq. 1.9 one obtains

xk+1 − x∗ = (A−BK)(xk − x∗) , (1.12)

where stability depends on the eigenvalues of (A−BK) and the system is stable if
| eig(A−BK) | < 1. The task is therefore to chose K such that this condition holds.
This can be done using the pole placement approach [13], where the unstable poles
are set to zero and the stable poles remain unchanged. The difficulty in practice,
however, is to evaluate A and B which typically requires large amounts of data for a
sufficiently accurate state space reconstruction.
In contrast to the OGY control, the time delayed feedback control by Pyragas [11]
gives a continuous feedback into the system. The underlying idea is that using the
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concept of delay coordinates, a large number of unstable periodic orbits can be
obtained from a measured scalar signal of the attractor [14, 15], where y(t) = y(t+τ)
and τ is the period of the unstable periodic orbit. Then, a feedback force can be
applied which is defined as

F = K(x(t+ τ)− x(t)) , (1.13)

where K > 0 is an adjustable parameter. The force is then continuously applied to
the system such that

ẋ = f(x) + F (t, τ) . (1.14)

Figure 1.3 shows the Pyragas control on the example of the Lorenz system being
controlled from a chaotic state into a periodic state. For the time delay, τ = 120
is used, while the coupling parameter has been empirically set to K = 0.3. After
the control force is turned on in timestep t = 1000, the system is kept in a periodic
behavior as denoted by the red trajectory. In contrast, the uncontrolled trajectory
exhibits chaotic behavior. While there are several extensions of the above introduced
classical control schemes, most approaches require either knowledge about the
underlying equations or large amounts of data as they rely on phase space methods.

1.3 Aim of this thesis

The aim of this thesis is a step towards de-blackboxing recurrent neural network
based predictions of nonlinear dynamical systems. While there have been great
successes like the prediction of chaotic dynamics, it is not sufficiently understood
which features or topological aspects of the recurrent neural networks lead to good or
bad predictions. In the first step, a statistical approach is taken in order to evaluate
variability of the outcomes depending on key parameters of the network as well as
different network topologies. Here, the goal is to find a way to reduce variability and
make forecasts more stable in terms of their dynamical properties called climate in
the following. Furthermore, the question of whether exact short-term predictions
coincide with a good reproduction of the long-term statistical climate of the system
and vice versa is illuminated. Based on these findings, the next step is to gain an
understanding how differential properties of the system are related to the goodness
of the prediction. These include direct manipulations of the network by taking out
certain nodes. In addition, the influence of nonlinearity in the activation function
is investigated. These insights lead to the ability of producing reliable predictions
of chaotic system, which are then used to develop a flexible novel control scheme.
By applying an external feedback to the system, it can be forced from its original
state into into another dynamical target state. Since previous approaches either rely
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on the knowledge of the underlying equations – which for most real world systems
are unknown – or on large amounts of data, the idea is to develop a new machine
learning based approach with only moderate data requirements. Furthermore, a
greater flexibility regarding the dynamical target state is aimed for as most existing
techniques can only control the system into simple dynamics or rather unspecified
complex dynamics. To gain a better understanding of the dynamics of a given system,
also the causality structure is analyzed. The aim is to separate linear and nonlinear
contributions to the system causality, which could be useful to build hybrid machine
learning models to further improve prediction quality.



Chapter 2

Methods

2.1 Reservoir Computing

Reservoir computing (RC) [16–18] is an artificial recurrent neural network (RNN)
based method relying on a static internal network called reservoir. The term static
means that – unlike other RNN approaches – the reservoir is kept fixed once the
network has been initially constructed. The same holds for the input function Win

and therefore the RC system is computationally very efficient as the training process
only involves optimizing the output layer. As a result, fast training and high model
dimensionality is computationally feasible making the model well suited for complex
real-world applications.
Typically, the reservoir A is constructed as a sparse Erdös-Renyi random network
[19] with dimensionality and thus number of nodes Dr, which are connected with
a probability p leading to an average unweighted degree of d. Initially, the weights
of the edges are randomly drawn from an uniform distribution within the interval
[−1, 1]. The scaling of the weights affects one of the key hyperparameters of RC
being the spectral radius ρ of the reservoir A. It is defined as its largest absolute
eigenvalue

ρ(A) = max{|λ1|, ..., |λDr |} , (2.1)

and reflects the average degree of the network. By its very definition, the eigenvalues
of a matrix can be rescaled by applying a scalar factor to the reservoir A

A∗ =
A
ρ(A)

ρ∗ , (2.2)

where ρ∗ is the targeted spectral radius. To feed the D dimensional input data u(t)
into the reservoir A, a Dr ×D input mapping matrix Win is set up, which defines

9
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Figure 2.1: Schematic illustration of the evolution of reservoir states r(t).

how strongly each input dimension influences every single node. The elements of Win

are chosen to be uniformly distributed random numbers within the interval [−ω, ω].
In general, nodes can be fed by multiple input dimensions. However, throughout this
thesis we construct Win such that every node has only one nonzero entry among the
D input dimensions. The dynamics of the RC system are contained in its Dr × 1
dimensional reservoir states r(t). Being initially set to ri(t0) = 0 for all nodes, the
evolution over time is according to the recurrent equation

r(t+ 1) = αr(t) + (1− α)tanh(Ar(t) + Winu(t)) . (2.3)

The parameter α defines to what extend the updated reservoir states are mixed
with those from the previous timestep. The activation function is chosen to be the
hyperbolic tangent and serves as the only nonlinear component in the standard RC
setup. An extensive overview and explanation of all mentioned components is given
in [20]. The updating process of the reservoir states r(t) is visualized in Fig. 2.1. Here,
the reservoir A is schematically represented and the bubbles correspond to nodes,
while arrows denote directional connections between the nodes. The width of the
arrow stands for the respective edge weight. In the adjacency matrix representation of
A, the respective edge weights between nodes are then off-diagonal matrix elements
which are nonzero when nodes are connected. For most RC applications, the reservoir
is a sparse matrix, which corresponds to a small probability p of connecting nodes
when constructing A as an Erdös-Renyi random network. To obtain D dimensional
output from the reservoir states r(t), an output mapping function Wout is required.
It linearly depends on the training matrix P

v(t) = Wout(r(t),P) = Pr̃(t) , (2.4)

where r̃(t) is a function of r(t) that is often chosen as r̃(t) = r(t). However, this
can lead to severe problems due to the antisymmetry of the hyperbolic tangent
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as explained in [21]. To break this symmetry, a quadratic readout r̃ = {r, r2}
can be added. This means that the squared elements of the reservoir states r2 =
{r2

1, r
2
2, ..., r

2
Dr
} are appended and therefore the output mapping matrix P now

contains 2Dr ×D degrees of freedom. Determining its coefficients is called training.
This is accomplished by acquiring a sufficient number of reservoir states r(tw...tw+T )
and then choosing P such that the output v of the reservoir is as close as possible
to the known test data vR(tw...tw+T ). Before the training process is started, the
RC system should be initialized during a washout phase of tw time steps in order
synchronize the reservoir states r(t) with the dynamics of the input signal u. Then
the training can be executed by using Ridge regression, which minimizes

∑

w≤t≤T

‖Wout(r̃(t),P)− vR(t) ‖2 − β‖ P ‖2 , (2.5)

where β is the regularization constant that prevents from overfitting by penalizing
large values of the elements of P. This can be rewritten in matrix form [22] such
that:

P = (rT r + β1)
−1rTvR . (2.6)

After the training, the predicted state v(t) can be fed back in the activation function
as input instead of the actual data u(t) by combining Eq 2.3 and Eq 2.4. The
resulting recursive form of the equation for the reservoir states r(t) allows to create
predicted trajectories of arbitrary length:

r(t+ 1) = tanh(Ar(t) + WinWout(r̃(t),P)) (2.7)
= tanh(Ar(t) + WinPr̃(t)) . (2.8)

Figure 2.2 presents a schematic representation of the reservoir computing framework.
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Figure 2.2: Schematic illustration of reservoir computing.

2.2 Measuring the climate of a dynamical system

When forecasting nonlinear dynamical systems such as chaotic attractors, the goal of
the predictions is not only to hit the actual short-time trajectory exactly but rather
to reproduce the long-term statistical properties of the system called climate. This
is important because by its definition, chaotic systems exhibit sensitive dependence
on initial conditions and therefore small disturbances grow fast. Consequently, even
if at first the short term prediction is perfect, at some stage already numerical
inaccuracies can lead to the separation of the predicted and actual trajectories. For
many applications, however, this is not a problem as long as the predicted trajectory
sill leads to the same attractor. To quantify this behavior, quantitative measures are
needed that grasp the complex dynamics of the system.
To assess the structural complexity of an attractor, its correlation dimension is
calculated, which measures the dimensionality of the space populated by the trajectory
[23]. It belongs to the measures for fractal dimensionality, which have been brought
up by Mandelbrot in 1967 [24]. The correlation dimension is based on the correlation
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integral

C(r) = lim
N→∞

1

N2

N∑

i,j=1

θ(r − |xi − xj|)

=

∫ r

0

d3r′c(r′) ,

(2.9)

where θ is the Heaviside function and c(r′) is the standard correlation function. The
correlation integral represents the mean probability that two states in phase space
are close to each other at different time steps. This is the case if the distance between
the two states is less than the threshold distance r. The correlation dimension ν is
then defined by the power-law relationship

C(r) ∝ rν . (2.10)

For self-similar strange attractors, this relationship holds for a certain range of r,
which therefore needs to be properly calibrated. The calculation of the correlation
dimension is done using the Grassberger Procaccia algorithm [25] and therefore is
purely data based and does not require any knowledge of the underlying equations of
the system. One advantage of the correlation dimension over other fractal measures is
that it can be calculated having a comparably small number of data points available.
Throughout this thesis, mainly the relative comparison among various predictions
and actual trajectories is of interest and therefore the accuracy of the absolute values
is not the highest priority.
Besides the fractal dimensionality, the statistical climate of an attractor is also
characterized by its temporal complexity as measured by the Lyapunov exponents.
They describe the average rate of divergence of nearby points in phase space, and thus
measure sensitivity to initial conditions. There is one exponent for each dimension in
phase space. If the system exhibits at least one positive Lyapunov exponent λi > 0,
it is classified as chaotic. The magnitudes of λi quantify the time scale on which the
system becomes unpredictable [26, 27]. Since at least one positive exponent is the
requirement for being classified as chaotic, it is sufficient for the purposes in this
thesis to calculate only the largest Lyapunov exponent λmax

d(t) = Ceλmaxt . (2.11)

This makes the task computationally much easier than determining the full Lyapunov
spectrum and describes the overall system behavior to a large extent. We use the
Rosenstein algorithm [28] to obtain it. In essence, it tracks the distance d(t) of
two initially nearby states in phase space. The constant C normalizes the initial
separation. As for the correlation dimension, mainly a relative comparison is of
interest to characterize states of the system rather than the exact absolute values.
Again, no model or knowledge of the underlying equations is required.





Chapter 3

Prediction variability of Reservoir
Computing and the effect of network
topology

This chapter is based on the following paper, which is listed in this thesis as Ref [29].

A. Haluszczynski and C. Räth, “Good and bad predictions: assessing
and improving the replication of chaotic attractors by means of reservoir
computing”, Chaos: An Interdisciplinary Journal of Nonlinear Science 29,
103143 (2019)

3.1 Objectives

The prediction of spatiotemporal dynamics of nonlinear systems using reservoir
computing (RC) has attracted much attention [30–37] in the recent years. Many of
these results are impressive, but are based on single executions of reservoir computing
and therefore do not allow conclusions about robustness due to the computing model
being based on random numbers. The objective of this paper is on the first hand
to conduct a thorough statistical analysis by using multiple random realizations of
a RC setup with same hyperparameters to analyze the prediction robustness both
in terms of exact short-term predictions and the long-term statistical properties of
the system. Further, besides the standard Erdös-Renyi random network architecture
[19] also scale free [38] networks and small world networks [39] are evaluated. It is
shown in the following that the prediction variability and hence robustness of RC
strongly differs depending on the parameter choice and does not depend much on
network topology.

15
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3.2 Methods

Analogous to Pathak et al. [31] and Lu et al. [36] the focus lies on low-dimensional
chaotic systems and therefore the Lorenz system [8] is used as an example. It has
been developed as a simplified model for atmospheric convection and exhibits chaos
for certain parameter ranges, while other parameter choices also lead to intermittent
and periodic behavior. The equations read

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz + x

(3.1)

where the x term in the equation for ż is added in order to break the symmetry in x
and y of the standard Lorenz system with respect to the transformation x → −x
and y → −y. This system is referred to as modified Lorenz system. As reported by
Lu et al. [40] such a symmetry can be an issue when inferring the x and y dimension
from knowledge of the z dimension. The standard parameters for chaotic behavior
σ = 10, β = 8/3 and ρ = 28 are used. In addition to the Lorenz system the analysis
is also carried out for the Rössler system [41]

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c) ,
(3.2)

where parameters a = 0.5 , b = 2.0 and c = 4.0 lead to chaotic behavior. It is
regarded as less chaotic than the Lorenz system because its equations have only one
quadratic nonlinearity in the z dimension. Therefore, it is interesting to compare its
short-term predictability with that of the Lorenz system. Both sets of differential
equations are solved using the 4th order Runge-Kutta method [42] with a time
resolution ∆t = 0.02 for the Lorenz system and ∆t = 0.05 for the Rössler system. To
predict those chaotic systems, a reservoir computing approach is used as introduced
in Section 2.1. The reservoir is first constructed as a sparse Erdös-Renyi random
network with Dr = 300 nodes and connection probability p = 0.02 such that the
unweighted average degree is d = 6. Besides the Erdös-Renyi random network, also
random small world networks as a choice for the reservoir A are investigated. Those
are of potential interest, as many real world phenomena such as social networks,
electric power grids, chemical reaction networks and neuronal networks exhibit the
small world property [43]. Its characteristic is that the average distance between any
pair of nodes is small, while at the same time the network exhibits a high average
clustering coefficient. To have comparable sparsity and thus average degree d as the
Erdös-Renyi network, each node is connected with its six nearest neighbours implying
periodic boundary conditions. Nearest neighbour connections are defined as nonzero



3.2. METHODS 17

Figure 3.1: Largest Lyapunov exponent scattered against the correlation dimension for
each of the N = 1000 predictions per spectral radius. Results are shown for the Lorenz
(left) and Rössler system (right). Different spectral radii are differentiated by colours. The
red object represents the five sigma error ellipse of both measures calculated based on 1000
simulated true trajectories. Random Erdös-Renyi networks are used for the reservoir A.

elements of the adjacency matrix of A which are directly located next to the diagonal
elements. This now gives a network with high clustering coefficient but does not fulfil
the condition of small average distances between two nodes. This can be achieved
by looping over each edge x − y and rewire it to x − z with probability p = 0.2,
where node z is randomly chosen. Furthermore, also scale free network topology is
tested. Those are graphs where the distribution of the number of edges per node
decays with a power law. Many real world networks exhibit not only the small world
property but are also scale free. These include the previously mentioned electric
power grid networks and neuronal networks and furthermore the world wide web or
networks of citations of scientific papers [43]. To construct the reservoir this way,
the scale free graph generator of the NetworkX package [44] is used with parameters
α = 0.285, β = 0.665, γ = 0.05, δin = 0.2, δout = 0 again leading to an average degree
of d = 6. For training, 5000 time steps are used, of which 100 are run as washout
phase for initialization. For the assessment of short-term prediction quality the



18 CHAPTER 3. PREDICTION VARIABILITY AND TOPOLOGY

0.0 0.5 1.0 1.5 2.0 2.5 3.00

100

200

300

400
0.9
0.6
0.4
0.2
0.1

0.0 0.5 1.0 1.5 2.0 2.5 3.00

200

400

600

800

1000
0.9
0.6
0.4
0.2
0.1

0.0 0.5 1.0 1.5 2.0 2.5 3.00

50

100

150

200
2.2
1.8
1.45
1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.00

100

200

300

400

500
2.2
1.8
1.45
1.2

0.0 0.2 0.4 0.6 0.8 1.0
Correlation Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Fo
re

ca
st

 H
or

iz
on

Figure 3.2: Forecast horizon scattered against the correlation dimension for each of the
N = 1000 predictions per spectral radius. Results are shown for the Lorenz (left) and
Rössler system (right). Different spectral radii are differentiated by colours. Random
Erdös-Renyi networks are used for the reservoir A.

forecast horizon is chosen as evaluation measure. It tracks for how long the distance
between the predicted and actual trajectory lies below a certain threshold value

|v(t)− vR(t)| < δ , (3.3)

where the thresholds are δ = (5, 10, 5)T for the Lorenz system and δ = (2.5, 2.5, 4)T

for the Rössler system. The values are chosen this way due to the different ranges of
the state variables in both systems. The aim is that small fluctuations around the
actual trajectory do not immediately lead to the prediction being classified as not
matching anymore. Empirically it was found that distances between the trajectories
become much larger than the threshold values as soon as short-term prediction
collapses. To quantify the long-term statistical climate, the correlation dimension
and largest Lyapunov exponent are calculated as introduced in Section 2.2.
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Figure 3.3: Forecast horizon scattered against the correlation dimension for each of the
N = 1000 predictions per spectral radius. Results are shown for the Lorenz (left) and
Rössler system (right). Different spectral radii are differentiated by colours. Small world
networks are used for the reservoir A.

3.3 Results

For the assessment of prediction variability depending on the choice for the key
parameter spectral radius ρ, N = 1000 different random realizations of the RC
system have been simulated for each parameter value. Figure 3.1 shows the results
evaluated in terms of the statistical climate as expressed by the correlation dimension
and largest Lyapunov exponent of the resulting attractor. The red ellipse encloses the
five sigma errors of both measures calculated from trajectories based on the actual
equations of the Lorenz and Rössler system using 1000 random initial conditions.
It is clearly visible that in particular larger values for the spectral radius lead to
very high prediction variability with most results being outside the five sigma error
ellipse. The left side presents the results for the Lorenz system. Here, for the smallest
spectral radius ρ = 0.1 the variability is also the smallest but still significant given
that five sigma is a large error. For the larger spectral radii shown in the bottom
left plot - including the values ρ = 1.2 and ρ = 1.45 as used in Ref. [31] - there is
not a single point within the ellipse. This indicates that the prediction completely
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Figure 3.4: Forecast horizon scattered against the correlation dimension for each of the
N = 1000 predictions per spectral radius. Results are shown for the Lorenz (left) and
Rössler system (right). Different spectral radii are differentiated by colours. Scale free
networks are used for the reservoir A.

fails to reproduce the long term climate for those cases. The results for the Rössler
system on the right side of the plot give a similar picture. In this case even for the
best working spectral radius of ρ = 0.4 there are many points outside of the σ = 5
error ellipse.
Besides the statistical climate also the short-term prediction capabilities are of
interest. For this, the forecast horizon is plotted against the correlation dimension in
Fig. 3.2. The first observation is that the forecast horizon for the Rössler system
is significantly longer than for the Lorenz system. This is in line with the initial
claim that the Rössler system is less chaotic and thus easier to predict. The second
observation is that a good reproduction of the forecast horizon also tends to coincide
with a better reproduction of the correlation dimension. Similar to Figure 3.1, the
best working spectral radius is ρ = 0.1 for the Lorenz system and ρ = 0.4 for the
Rössler.
The same analysis has been applied to the other network topologies as shown in
Fig. 3.3 and Fig. 3.4. Overall the results are very similar among all network topologies.
However, scale free networks tend to perform worse for short-term predictions of
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Figure 3.5: Top plot: Cumulative distribution of χ2 for the best working spectral radius
ρ = 0.1 of the Lorenz system calculated for values between 0 and 10. Bottom plot: Same
for the Rössler system with ρ = 0.4 and values between 0 and 500

the Lorenz system with low spectral radii, while there is a number of points for the
Rössler system based on high spectral radii that lead to a longer forecast horizon.
To compare the performance of the three different network topologies on a statistical
level, a χ2 analysis of the long term climate prediction is performed. For this,

χ2(i, ρ) =
2∑

j=1

[
Xj(i, ρ)− 〈Xj〉

σXj

]2

(3.4)

is calculated, where i is the i− th random number seed and ρ indexes the spectral
radius. The sum goes over the correlation dimension (j = 1) and the largest Lyapunov
exponent (j = 2). 〈Xj〉 represents the average value derived from 1000 simulated
actual Lorenz trajectories and σXj

is the corresponding standard deviation. Therefore,
the resulting χ2 describes how strong the predicted results deviate from the actual
values weighted by the errors of the actual values.
Figure 3.5 shows the cumulative distribution of the χ2 for all topologies. The top
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plot contains the results for the Lorenz system with ρ = 0.1 and evaluation values
of χ2 for 0 and 10. It is visible that all topologies show comparable performance as
already indicated by Fig. 3.3 and Fig. 3.4. However, for the Rössler system there
is an underperformance of the scale free network evident. For the bottom plot,
the cumulative distribution for values of χ2 is plotted between 0 and 500 based on
ρ = 0.4. The reason for the wider range is that even for the best working spectral
radius the variability is significantly higher as compared to the Lorenz system. This
leads to higher values of χ2 with only very few data points in the 0 to 10 range.

3.4 Conclusions

This chapter addressed the prediction variability of Reservoir Computing analyzed for
different choices of the hyperparameters. In addition, alternative network topologies
such as small world and scale free networks have been investigated. The variability
is characterized in terms of the forecast horizon and the long term statistical climate
expressed as the correlation dimension and the largest Lyapunov exponent of the
trajectories. It has been shown that for common choices of the spectral radius ρ,
prediction variability is rather high. By choosing appropriate values for ρ – in this
case smaller values – variability can be significantly reduced. The reason for this
finding lies in the response of the hyperbolic tangent activation function as presented
in Ref [45] and Section 4. Furthermore, it turned out that network topology only has
minor influence on the prediction variability. As a conclusion, Reservoir Computing
users should not only carry out a proper hyperparameter optimization, but also
validate their parameter choice by running a statistical analysis over multiple random
realizations of the reservoir.



Chapter 4

Improving prediction stability of
Reservoir Computing

This chapter is based on the following paper, which is listed in this thesis as Ref [45].

A. Haluszczynski et al., “Reducing network size and improving prediction
stability of reservoir computing”, Chaos: An Interdisciplinary Journal of
Nonlinear Science 30, 063136 (2020)

4.1 Objectives

After it has been shown in Chapter 3 that Reservoir Computing can exhibit high
variability in prediction quality depending on the parameter choice, the natural
question is where this variability comes from and if prediction quality can be related
to differential properties of RC. Those include nodes and edges of the reservoir as
well as the input and output weights. First attempts regarding the former were made
by Caroll and Pecora [46], who demonstrated that symmetries in a simple reservoir
setup with unweighted edges do have a considerable effect on the prediction quality
of reservoir computing. In the following it is shown how a controlled removal of
nodes influences predictions. Furthermore, the nonlinearity of the activation function
is altered by introducing a nonlinear scaling factor in the argument of the hyperbolic
tangent. This then explains the high variability for high spectral radii as observed in
Chapter 3.

23



24 CHAPTER 4. IMPROVING PREDICTION STABILITY

Figure 4.1: Schematic illustration of the controlled node removal procedure. The top
graphic shows the initial network before the removal. Input is on the left side, while the
right side represents output. Here, the orange example node is being removed. Input/output
interactions of the other nodes are not shown here. In the bottom plot the example node
has been removed and therefore all connections and interactions vanished.

4.2 Methods

The analysis is mainly based on the Lorenz system as introduced in Section 3.2, as
well as a number of other nonlinear dynamical systems [41, 47–52] from the class of
autonomous dissipative flows such as the Rössler system [41], Rabinovich-Fabrikant
equations [49], Rucklidge system [52] and the Chua circuit [50]. All these systems
are three-dimensional but differ in properties like Lyapunov exponents, correlation
dimension, size of the attractor and the nature of their nonlinearity. The parameters
for all systems except Lorenz and Rössler are taken from the textbook Chaos and
Time-Series Analysis by Sprott [53]. In addition, also blended systems – a linear
combination of two different dynamical systems – have been investigated.
The implementation of Reservoir Computing is based on the setup presented in
Section 3.2, however, using different parameters. The reservoir is constructed as a
sparse Erdös-Renyi random network with Dr = 200 nodes and connection probability
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p = 0.02, therefore exhibiting an unweighted average degree of d = 4. In order to
determine suitable parameters for the spectral radius of the reservoir ρ(A) , the
scale for Win and the regularization constant β, a random search hyperparameter
optimization is carried out. This leverages on the simple architecture of RC allowing
for quick training and thus efficient parameter optimization. The forecast horizon as
also introduced in 3.2 averaged over 30 random realizations of RC serves as objective
function and results in the values ρ(A) = 0.17, Win scale = 0.17 and β = 1.9×10−11.
To reduce variability and improve computational efficiency, alterations to the reservoir
are made by removing nodes including their respective edges from both the reservoir
A and Win. This procedure is inspired by the concept of attack tolerance [54] in
complex networks. Here, the aim is to investigate the effect of removing nodes on
the prediction capabilities of the system. The different magnitudes of the output
weights Wout assigned in the training process suggest that their corresponding nodes
are either more or less important. Intuitively one would suggest that higher weights
correspond to higher importance of the node. The approach is motivated by the
assumption that there is a relationship between the importance of each node and its
output weights Wout assigned in the training process. To investigate this potential
relationship, a fraction p of all nodes is removed that correspond to the largest or
smallest elements of Wout. However, each node is affiliated with D output weights
where D denotes the dimensionality of the system that is being predicted. Therefore,
Wout is sorted based on the largest absolute value of all D output weights for each
node in order to determine which nodes should be removed. After removal, the newly
obtained reduced network is trained again leading to a new set of Wout. The node
removal process is illustrated in Fig 4.1.
Apart from manipulating the network structure as explained above, also the effect of
tuning the nonlinearity of the activation function is studied. This has well-known
effects on the memory of the reservoir [55–58]. To tune the nonlinearity, a scaling
factor a is introduced in the argument of the hyperbolic tangent such that the update
equation for r(t) now reads:

r(t+ ∆t) = tanh(a[Ar(t) + WinPr(t)]) . (4.1)

With the reservoir itself as well as Win and Wout being linear, the activation
function is the only source of nonlinearity in the standard reservoir computing setup.
Introducing the nonlinear scaling factor a can be seen as simply tuning the scale for
Win and the spectral radius of A simultaneously.

4.3 Results

To investigate the effect of the controlled node removal, N = 500 random realizations
of the reservoir A and Win have been simulated. The parameters are those obtained
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Figure 4.2: Boxplot of the correlation dimension for N = 500 realizations for the original
setup (green – left) and different percentages of nodes removed. Positive numbers (e.g.
Red [0.1]) represent a removal of the 10% largest Wout nodes, while negative numbers
(e.g. Red [-0.1]) denote a removal of the 10% smallest Wout nodes. Consequently, Red
[-0.05,0.05] stands for the nodes with the 5% largest and smallest Wout values removed
symmetrically. Red are the results for the system after node removal, while Ref represents
a smaller reference network. The yellow box on the right represents the error of the
correlation dimension calculated from N = 500 simulated trajectories. The boxes represent
the 25%–75% percentile range while the extended lines denote the 5% and 95% percentile,
respectively. Red bars are indicating the mean values and red dots show the median. In
order to make a comparison easier, the bottom plot gives a zoomed in view of the 25%–75%
percentile boxes and the respective median values.

from the hyperparameter optimization explained above, while the nonlinear scaling
factor is set to a = 1. Figure 4.2 shows a boxplot representing the distribution of the
correlation dimension of the different random realizations for different levels of node
removal. The green box on the left represents the results for the original network
before node removal, whereas the yellow box on the right quantifies the error of the
correlation dimension calculation based on N = 500 simulated trajectories by using
the Lorenz equations with different initial conditions. The labels are defined the
following way: Red [x] denotes the results for the reduced system after removing the
nodes corresponding to the largest x% of the output weights if x > 0 and smallest
x% if x < 0. Both positive and negative values at the same time mean that nodes
are symmetrically removed from both ”sides”. In contrast, the results shown for the
Ref [x] labels are reference reservoirs, which are initially constructed and trained



4.3. RESULTS 27

N=20
0

ref
 [-0

.6]

red
 [-0

.6]

ref
 [-0

.5,
 0.

1]

red
 [-0

.5,
 0.

1]

ref
 [-0

.4,
 0.

2]

red
 [-0

.4,
 0.

2]

ref
 [-0

.3,
 0.

3]

red
 [-0

.3,
 0.

3]

ref
 [-0

.2,
 0.

4]

red
 [-0

.2,
 0.

4]

ref
 [-0

.1,
 0.

5]

red
 [-0

.1,
 0.

5]

ref
 [0

.6]

red
 [0

.6] sim
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Dcorr

Figure 4.3: Boxplot of the correlation dimension for N = 500 realizations for the original
setup (green – left) and different percentages of nodes removed. Positive numbers (e.g.
Red [0.6]) represent a removal of the 60% largest Wout nodes, while negative numbers
(e.g. Red [-0.6]) denote a removal of the 60% smallest Wout nodes. Consequently, Red
[-0.3,0.3] stands for the nodes with the 30% largest and smallest Wout values removed
symmetrically. Red are the results for the system after node removal, while Ref represents
a smaller reference network. The yellow box on the right represents the error of the
correlation dimension calculated from N = 500 simulated trajectories. The boxes represent
the 25%–75% percentile range while the extended lines denote the 5% and 95% percentile,
respectively. Red bars are indicating the mean values and red dots show the median

with the same number of nodes as the reduced systems and calibrated to the same
spectral radius that the respective reservoirs have after the node removal procedure.
The results show that removing the nodes corresponding to the largest 10% of the
output weights – Red [0.1] – improves the prediction quality in terms of resembling
the correlation dimension compared to the original setup – Orig. In particular, the
mean of the correlation dimension improves from 1.85 to 1.89, whereas the median
stays at 1.96. The values of the simulated system are 1.97 and 1.97, respectively.
However, a stronger effect can be observed for bad predictions as denoted by the
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Figure 4.4: Top plot: Distribution of the arguments of the activation function during
training period split into the contribution from the reservoir (green), the input term (red)
and total (blue). Bottom plot: Hyperbolic tangent for different nonlinear scaling factors -
x-axis represents values of its argument and y-axis the function value.

lower bars in the top plot. Here, the 5% percentile significantly increases from around
1 to 1.6 indicating a lower number of outliers, where the predictions did not resemble
the statistical climate well. Comparing the reduced reservoir after node removal with
now only N = 180 nodes to a reservoir initially setup and trained with N = 180
nodes shows that the improved prediction quality is not due to the changed reservoir
size but driven by the altered properties of the system. In contrast, just reducing the
number of nodes leads to more outliers and thus worse reproduction of the correlation
dimension. If instead the nodes corresponding to the smallest 10% of the output
weights are removed, again the prediction quality deteriorates. This is contrary to the
intuitive expectation that small output weights point to unimportant nodes and thus
removing them would be beneficial. Finally, a symmetrical removal of the smallest
and largest 5% slightly improves prediction quality. Removing even larger amounts
of nodes generally increases prediction variability. However, the results for excluding
the largest 30% indicate comparable prediction quality to the original setup and
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Figure 4.5: Largest Lyapunov exponent scattered against correlation dimension for
different values of the nonlinear scaling parameter a based on N = 300 realizations each.
The colors denote the forecast horizon of the predictions and the red ellipses show the
three σ errors of the correlation dimension (σ = 0.024) and the largest Lyapunov exponent
(σ = 0.039) calculated from simulations of the actual system.

thus may add value in applications where a downscaled system is beneficial due to
computational challenges, e.g. when dimensionality is high or in the case of hardware
implementations of reservoir computing, such as neuromorphic computing [59–61]. If
in the latter case even more downscaling is necessary, Fig. 4.3 shows how removing
60% and therefore a large part of the nodes affects the outcome. The results suggest
that in those cases where much downscaling is needed, an asymmetrical removal
of nodes from both ”sides” leads to the best results. In this case this is achieved
by removing the nodes corresponding to the 40% smallest and 20% largest output
weights. Although there are significantly more outliers compared to the original
setup, the median is still comparably close to the original setup.
In the following, the effect of varying the nonlinear scaling parameter a is investigated.
As shown in the bottom plot of Fig. 4.4, the profile of the hyperbolic tangent is such
that it is saturating for large positive or negative values and approximately linear
for small values. The nonlinear scaling factor a thus controls when the saturation
regime begins and consequently the nonlinearity of the response. If it is chosen small,
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Figure 4.6: Forecast horizon of the modified Lorenz system plotted for different values of
the nonlinear scaling parameter a with N = 300 realizations for each a (blue). Furthermore,
the average (red) as well as the median (green) value are shown for each value of a. The
black horizontal line marks the optimal choice for a.

e.g. a = 0.2 as denoted by the green line in the bottom plot, the distribution of
the input argument lies predominantly within the linear regime of the hyperbolic
tangent. The other way around, for large choices like a = 5.9 most inputs are
located in the saturation regime. Here, the value 5.9 comes from the hyperparameter
optimization mentioned above which led to Win scale = 0.17. In commonly used
standard parameterizations the Win scale is 1 – approximately it can be stated
that Win scale of 0.17 in this setup with a = 5.9 is equivalent to Win scale of 1,
ignoring the comparably small influence of the reservoir term. Figure 4.5 shows the
results based on N = 300 random realizations of the reservoir for different values of
a. As one would intuitively expect, the above mentioned extreme cases lead to a bad
reproduction of the statistical climate of the Lorenz system. In both cases, not a
single point is located inside the three sigma error ellipse. This is in particular an
interesting result for the commonly used standard setup. Results become significantly
better when the choice for a moves towards a = 1, where the majority of points is
within the error ellipse. Hence it can be stated that a reasonable choice for a plays
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Figure 4.7: Blue dots: Optimal value for the nonlinear scaling parameter a – based on
the maximum of the average forecast horizon over all realizations for a given a – plotted
against the standard deviation σ of the input data. The vertical bars denote the range of
values for a, where the average forecast horizon is up to 10% lower than for the optimal
a, while the horizontal bars represent the standard error. The red line represents a fit
through the points. Dynamical systems from left to right: Rabinovich-Fabrikant equations,
Chua circuit, Complex Butterfly attractor, Thomas’ cyclically symmetric attractor, Rössler
system, Rucklidge system, Halvorsen model, blended system: 0.4*Modified Lorenz system +
Halvorsen Model, blended system: 0.5*Modified Lorenz system + 3*Rabinovich-Fabrikant
equations, blended system: Rössler + 2*Rucklidge system, Modified Lorenz system and
Chen system

a key role for prediction quality and variability. In addition, Fig. 4.5 also suggests
that for reasonable choices of a, realizations with a well resembled statistical climate
coincide with longer forecast horizons. To confirm the optimal value for a, again
N = 300 random realizations for different values of a between 0 and 10 are analyzed.
The results are shown in Fig 4.6, where the blue points correspond to the forecast
horizon of the single realizations. In addition, the red and green dots represent the
average and median value across all realizations for a given value of a. The optimal
value for a is then chosen such that the average over all realizations is maximized.
This leads to a value around a = 1.0, as one would expect given the hyperparameter
optimization at the beginning. Moreover, this also agrees with the findings in Fig 4.5
and confirms that nonlinearity in the activation function is essential for predicting
complex nonlinear systems.
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In addition to the Lorenz system, the same analysis is done for other nonlinear
complex systems such as the Chua circuit, the Rössler system and other autonomous
dissipative flows as summarized in section 4.2. Figure 4.7 shows the results for their
optimal values of a scattered against the standard deviation of the input. In addition,
combinations of the nonlinear systems are constructed in order to fill the gap in
between the standard deviations of the Halvorsen model (0.53) and the modified
Lorenz system (1.56). The results indicate a strong relationship between the optimal
choice for a and the input standard deviations, which intuitively makes sense given
the above discussion of Fig. 4.4. Surprisingly, this seems to dominate effects of other
system-specific properties. As a rule of thumb, the optimal value for the nonlinear
scaling parameter can be derived as aopt = c/σ(Winu)b with b = 0.80 and c = 1.22
determined by the fitted red curve. This provides a good starting point for the
hyperparameter optimization. However, it is always recommended to run a system
specific analysis as shown in Fig 4.6. Equivalent results for aopt are obtained by
carrying out the same analysis using correlation dimension as an evaluation measure
instead of forecast horizon.

4.4 Conclusions

This chapter investigated the influence of alterations to the reservoir network structure
by carrying out a controlled node removal. This led to two main insights: First,
removing nodes corresponding to the largest 10% of the output weights improves
prediction quality and reduces outliers. This is somewhat counter-intuitive, as large
weights in the output function suggest a strong influence of the respective node in
the construction of the output signal. Second, the network size can be reduced by
more than 30% at comparable prediction quality and up to 60% while still delivering
reasonable performance. This could be helpful for hardware implementations or
improved computational efficiency for high dimensional applications of reservoir
computing.
Furthermore, the influence of tuning the nonlinearity of the hyperbolic tangent
activation function was investigated by introducing a nonlinear scaling factor. A
reasonable choice for the scaling factor reduces variability significantly and leads
to better predictions. Moreover, a relationship between the optimal choice of the
scaling factor and the standard deviation of the input was found, thus providing a
good starting point for a complete hyperparameter optimization. Overall, the results
demonstrate that a large optimization potential lies in a systematical refinement of
the differential reservoir properties for a given data set.



Chapter 5

A flexible control mechanism for
nonlinear dynamical systems

This chapter is based on the following paper, which is listed in this thesis as Ref [62].

A. Haluszczynski and C. Räth, “Controlling nonlinear dynamical systems
into arbitrary states using machine learning”, Scientific Reports 11, 1–8
(2021)

5.1 Objectives

With robust and high quality predictions at hand, far-reaching perspectives open
up for applications in dynamical systems. In particular, the control of nonlinear
dynamical systems is a key task in many different areas of science and engineering.
While the possibility of controlling chaotic systems has been a remarkable discovery
[10, 11, 63], previous approaches, however, require knowledge of the underlying
equations or large data sets as they rely on phase space methods. Yet, for many
real-world applications, the equations are not known or only limited data is available.
Exploiting the improved prediction capabilities of reservoir computing as shown in
Chapter 3 and Chapter 4, a novel and fully data driven approach is introduced in
the following, which generalizes control techniques of chaotic systems. In this way,
the system can be brought not only into periodic states, but even very accurately
into intermittent and different chaotic behavior. This goes well beyond existing
approaches that so far only managed to break up periodic or synchronized motion [64,
65] through ’chaotification’ but did not allow to control the system into well-specified,
yet more complex target states.
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5.2 Methods

The proposed control mechanism relies on a machine learning based prediction of the
desired dynamics of the system. To obtain robust predictions, a reservoir computer
with quadratic readout is used as introduced in Section 2.1. The term control is
defined the following way: A dynamical system with trajectory u originally is in state
X, which may represent e.g. periodic, intermittent or chaotic behavior. Then, the
system behavior changes into another state Y as a consequence of order parameter
changes or some uncontrollable external force. The aim is now to control the system
back into its original state X, while the cause for the initial change in state is still
present. This can be achieved by deriving a suitable control force F(t), which is
applied while the system is still in state Y. Deriving F(t) requires the knowledge of
how the trajectory u(t) would have evolved if the system was still in state X instead.
This ’what if’ scenario can be obtained by reservoir computing or in general any
other machine learning approach that is capable to predict the dynamics well and is
denoted as v(t). Then, the control force F(t) is derived as

F(t) = K(u(t)− v(t)) , (5.1)

with K scaling the magnitude of the force. Therefore, the force only depends on the
distance between the measured coordinates u(t) and the machine learning prediction
of the desired dynamics v(t). The control mechanism is investigated based on the
Lorenz and Rössler system as introduced in Chapter 3.2. Here, different dynamical
states X and Y correspond to different parameter sets π and π∗. Thus, if the
parameters changed now to π∗ and, as a consequence, the system exhibits the
unwanted dynamical state Y, it can be forced back into X by applying the control
force F(t)

u(t+ ∆t) =

∫ t+∆t

t

(ḟ(u(t̃),π∗) + F(t̃))dt̃ , (5.2)

where ḟ denotes the time derivatives of the respective system. Since this example is
based on a simulation, the known equations are used to simulate the trajectories. In
a real world application where the equations are not known, u(t) would be measured
instead of simulated and F(t) would be directly applied to the system. To evaluate
if the controlled dynamics matches the desired state, the correlation dimension and
largest Lyapunov exponent are used as evaluation measure similarly to the previous
chapters.
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Figure 5.1: Periodic to chaotic control. Top: 2D attractor representation in the x-y plane.
Bottom: X coordinate time series. Left plots show the original chaotic state which changes
to a periodic state (middle) after tuning the order parameter. After applying the control
mechanism, the system is forced into a chaotic state again (right).

5.3 Results

Figure 5.1 shows the results for the Lorenz system initially (left side) being in a
chaotic state X (π = [σ = 10.0, ρ = 167.2, β = 8/3]), which then changes to periodic
behavior Y (middle) after ρ is changed to ρ = 166. The scaling constant is empirically
set to K = 25. It has been found that the method works for a wide range of choices
and thus an optimization was not needed at that stage. In the left plot the control
scheme is activated and the attractor again looks chaotic and similar to the original
one. Therefore, the method is able to control a periodic state into a well-defined
chaotic target state. For an additional quantitative assessment, N = 100 random
realizations of the system are evaluated in terms of correlation dimension and largest
Lyapunov exponent. The first line in Table 5.1 confirms that the control mechanism
robustly re-establishes the statistical climate of the desired state. The next step is
to investigate if also intermittent dynamics can be successfully forced, in particular
when coming from in this case undesired chaotic dynamics and thus involving
complex initial as well as target states. This situation is shown in Figure 5.2. Here,
intermittent dynamics correspond to parameters π = [σ = 10.0, ρ = 166.15, β = 8/3].
Then, ρ is changed to ρ = 167.2 resulting in a chaotic state (middle plots). Again, it
can be seen that the control succeeds. In particular, the lower plots indicate that
the controlled system in the left plot exhibits the same characteristics — periodic
behavior interrupted by irregular bursts — as the right plot representing the original
dynamics. Also in this case the statistics in Table 5.1 confirm the observation. It is
remarkable that bursts do not seem to occur more often given the chaotic dynamics
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Table 5.1: Statistical simulation overN = 100 random realizations of the systems evaluated
in terms of the mean values of the largest Lyapunov exponent and the correlation dimension
with corresponding standard deviations. The subscript orig denotes the initial state of
the system, while changed refers to the new state after parameters changed and controlled
means the system controlled back into the original state. The description left to the arrow
is the original state that also will be achieved again after controlling the system whereas
the state written right to the arrow corresponds to the changed condition.

Largest Lyapunov Exponent λ Correlation Dimension ν
λorig λchanged λcontrolled νorig νchanged νcontrolled

Periodic→ Chaotic 0.851 ±0.070 0.080 ±0.075 0.841 ±0.074 1.700±0.065 1.052 ±0.071 1.700 ±0.061

Chaotic→ Intermittent 0.571 ±0.096 0.853 ±0.053 0.614 ±0.101 1.321 ±0.086 1.678 ±0.055 1.351 ±0.091

ChaoticB → ChaoticA 0.479 ±0.060 0.643 ±0.075 0.478 ±0.067 1.941 ±0.038 1.948 ±0.047 1.933 ±0.040

ChaoticD → ChaoticC 0.819 ±0.092 0.884 ±0.058 0.822 ±0.052 1.855 ±0.069 1.959 ±0.037 1.866 ±0.050

Periodic← Chaotic -0.003 ±0.012 0.844 ±0.059 0.028 ±0.110 1.001 ±0.065 1.700 ±0.071 1.001 ±0.061

Chaotic← Intermittent 0.851 ±0.070 0.550 ±0.094 0.828 ±0.067 1.700 ±0.086 1.326 ±0.055 1.698 ±0.091

ChaoticB ← ChaoticA 0.629 ±0.069 0.446 ±0.068 0.629 ±0.066 1.948 ±0.037 1.939 ±0.049 1.956 ±0.037

ChaoticD ← ChaoticC 0.881 ±0.092 0.836 ±0.058 0.880 ±0.052 1.958 ±0.069 1.864 ±0.038 1.951 ±0.050

of the underlying equations and parameter setup in the left plot. Instead, the control
works so well that it exactly enforces the desired dynamics. Finally, the goal is
to control from one specific chaotic state to another specific chaotic state. Two
examples are shown in Fig. 5.3 and Fig. 5.4. In the first, initial chaotic state ChaoticA
corresponds to parameters π = [σ = 10.0, ρ = 28.0, β = 8/3]. When changing ρ
to rho = 50.0 a different chaotic attractor ChaoticB is obtained. In the latter,
ChaoticA corresponds to π = [σ = 10.0, ρ = 102.0, β = 8/3] leading to ChaoticB
after this time σ is changed to σ = 20.0. The examples aim at two different effects:
In the first case, the size of the attractor significantly increases after the parameter
change, while in the second case the attractor takes on a different shape. The latter
is particularly visible in the different dynamics of the X coordinate shown in the
lower plots of Fig. 5.4. However, both examples have in common that the control
mechanism works excellently. It is visible in Fig. 5.3 that besides the dynamics also
the original size of the attractor is restored. Also for the chaos-to-chaos control, the
exemplary observations are confirmed by the statistics in Table 5.1.
Furthermore, the bottom half of the table shows the results for the opposite direction
for each example given above. Therefore, Periodic→ Chaotic in the upper half of the
table means, that an initially chaotic system changed into a periodic state and then
gets controlled back into its initial chaotic state. In contrast, Periodic← Chaotic
in the lower half now means that the system initially is in the periodic state. It
then shows chaotic behavior after the parameter change and finally is controlled
back into the original periodic state - thus the opposite direction as above. It is
evident that all cases also succeed in the opposite direction. This supports the
claim that the prediction based control mechanism works for arbitrary states. To
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Figure 5.2: Chaotic to intermittent control. Top: 2D attractor representation in the x-y
plane. Bottom: X coordinate time series. Left plots show the original intermittent state
which changes to a chaotic state (middle) after tuning the order parameter. After applying
the control mechanism, the system is forced into an intermittent state again (right).
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Figure 5.3: Chaotic to chaotic control. Top: 2D attractor representation in the x-y plane.
Bottom: X coordinate time series. Left plots show the original chaotic state which changes
to a different chaotic state (middle) after tuning the order parameter ρ. After applying the
control mechanism, the system is forced into the initial chaotic state again (right).
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Figure 5.4: Chaotic to chaotic control. Top: 2D attractor representation in the x-y plane.
Bottom: X coordinate time series. Left plots show the original chaotic state which changes
to a different chaotic state (middle) after tuning the order parameter σ. After applying the
control mechanism, the system is forced into the initial chaotic state again (right).
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Figure 5.5: Chaotic to chaotic control for the Rössler system. Top: 2D attractor
representation in the x-z plane. Bottom: X coordinate time series. Left plots show the
original chaotic state which changes to a different chaotic state (middle) after tuning the
order parameter. After applying the control mechanism, the system is forced into the initial
chaotic state again (right).
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verify that this claim does not only hold for the Lorenz system, the same approach
of controlling one chaotic state to another chaotic state is tested with the Rössler
system. Parameters π = [a = 0.5, b = 2.0, c = 4.0] correspond to the state ChaoticA,
changing to ChaoticB after a is changed to a = 0.55. It becomes clear in Fig. 5.5
that the control mechanism is successful again.

5.4 Conclusions

In this chapter, a flexible new approach for the control of nonlinear dynamical
systems has been presented. In contrast to existing methods, where either knowledge
of the underlying equations or large amount of data for phase space methods is
required, it is fully data driven and only relies on limited data. With sufficiently good
machine learning predictions at hand, it has been shown that the systems can be
controlled to different dynamical target states, even from one chaotic state to another
specific chaotic state. This opens up numerous possible applications ranging from
engineering to medicine. For example, a rocket engine is a nonlinear system that can
exhibit critical combustion instabilities [66, 67]. Their onset could be detected in
time using reservoir computing and the further course could be prevented with the
help of the control mechanism by pushing the engine in a stable state by applying
the control force via its pressure valves. Another example would be the development
of personalized pacemakers, since the heart of a healthy human does not beat in a
purely periodic fashion but rather shows features being typical for chaotic systems
like multifractality [68] that vary significantly among individuals. However, pacing
protocols developed so far aim at keeping the diastolic interval constant [69–72]. As
reservoir computing can learn the individual dynamics, the control scheme could
emulate the patient-specific full behavior of the heart in healthy conditions and
therefore serve as personalized pacemaker. In conclusion, this machine learning
enhanced method allows for an unprecedented flexible control of dynamical systems
and has thus the potential solve a plethora of new real-world problems.





Chapter 6

System Causalities and Outlook

It has been shown in the previous chapters that reservoir computing is capable to
accurately predict nonlinear dynamical and even chaotic systems in a fully data
driven manner without knowledge of the underlying equations. Furthermore, it has
been demonstrated that there lies a large optimization potential in a systematical
refinement of the differential properties of the reservoir computing system. However,
reservoir computing or machine learning methods in general can also be extended by
incorporating knowledge about the system in the form of constraints, causal relations
or even governing equations to build a so called hybrid system [33, 73–76]. Building
on the concept of surrogate data [77–79] for the separation of linear and nonlinear
effects [80] in time series, the causal structure of dynamical systems is analyzed
using different causal inference techniques: Granger causality [81], convergent cross
mapping [82] and transfer entropy [83, 84].
In order to separate linear and nonlinear effects, a linearized version of the time
series of the respective system is needed. By Fourier transforming a time series x, its
linear properties are separated into the amplitudes and the nonlinear ones into the
phases. Fourier transform (FT) surrogates [85] are then created by adding uniformly
distributed numbers φk to the phases and thus destroying the encoded nonlinear
properties, while the linear properties in the amplitudes remain unchanged. As a
result, the back-transformation is a linear version of the original time series:

x̃(k) = F−1
{
F{x} · eiφk

}
. (6.1)

To investigate how the linear or nonlinear part of a time series affects another time
series, one can construct surrogate based bivariate measures, where either all time
series or only one time series is surrogated. A bivariate measure ψ

(
x,y

)
is a function

which maps two time series to a real number. Its corresponding surrogate measure is
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then defined as the average over K surrogate realizations of both time series:

ψsurro
(
x,y

)
≡ 1

K

K∑

k=1

ψ
(
x̃(k), ỹ(k)

)
, (6.2)

where the superscript k indicates that the same random phases were added to both
time series. Linear correlation measures such as Pearson correlation only depend
on the phase differences and therefore, linear cross dependencies are also conserved.
A number of K different random phases is used in order to obtain stable results.
Furthermore, cross measures are defined by only surrogating the first time series and
leaving the second untouched

ψcross
(
x,y

)
≡ 1

K

K∑

k=1

ψ
(
x̃(k),y

)
, (6.3)

or vice versa which is then called ψanti
(
x,y

)
. Now, nonlinearity measures can be

derived as

ψnlin ≡
max

{
0, ψ − ψsurro

}

ψ
, (6.4)

where negative nonlinearities are attributed to spurious effects and thus ruled out.
By interchanging surro-, cross- and anti-measures, further nonlinearity measures can
be derived. For the measure ψ, different causal inference techniques are analyzed.
Granger causality (GC) [81] was one of the first causal inference approaches and
tests whether the prediction error of the next time step of a time series y can be
decreased by including the history of another time series x. If this is the case, x
is said to Granger cause y. It compares the prediction error of the autoregression
model

ŷt =
τmax∑

τ=1

ατ · yt−τ + εt (6.5)

to an augmented model including the history of x:

ŷt =
τmax∑

τ=1

ατ · yt−τ + βτ · xt−τ + ηt , (6.6)

where ατ and βτ are coefficients at lag τ , and εt and ηt denote independent error
terms. Relying on autoregression, GC is only capable of capturing linear causality.
Therefore, it is well suited as a verification, since GC of a surrogated time series
should be equal to GC of the original one. While GC is mostly used as a binary
statistical hypothesis test [86], the strength of the causal coupling can be quantified
using the following normalization:

ψGC
(
x,y

)
≡ 1−max



1,

(
RSSaug
RSSrest

)2


 ∈ [0, 1] , (6.7)
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where RSSrest and RSSaug are the residual sum of squares (RSS) of the initial and
augmented model, respectively. To capture also nonlinear effects, convergent cross
mapping (CCM) [82, 87] is used as a measure in addition. It builds on Takens’
theorem [88], which states that the full state-space can be reconstructed from a
single delay embedded coordinate of the system, also called shadow manifold. Due
to transitivity, two coordinates within one system can then be mapped to each
other through neighboring states in their respective shadow manifolds - this enables
a cross prediction. Hence if x causes y, the prediction of the future ŷt using the
shadow manifold Mx should be identical to the actual value yt. As a next step,
the prediction is extended from a single point to a time series. For this, both time
series are divided into training and test sets, where the former are used to construct
the shadow manifolds and the latter serve as benchmarks to evaluate the prediction
performance. While CCM is originally defined as the Pearson correlation ρ between
the prediction ŷ|Mx and the test set of y, the correlation distance d =

√
2(1− ρ) is

proposed as evaluation measures in order to make results more comparable to transfer
entropy, which will be introduced shortly. This entire procedure is repeated for an
increasing training set fraction, which delivers a series d consisting of D correlation
distances. This series should theoretically converge to a maximum since the prediction
is enhanced for finer resolutions of the shadow manifolds. To assess convergence,
an algorithmic approach using overlapping sliding windows of d is introduced. The
convergence is fulfilled if the standard deviation decreases continuously and falls
below the preset threshold of 0.1. If d converges, the mean of its last 5 values is
calculated in order to smooth outliers. If d does not converge, CCM causality is set
to 0:

ψCCM
(
x,y

)
≡

{
1
5

∑5
i=1 dD−5+i if d converges

0 else
∈ [0, 1] . (6.8)

Finally, transfer entropy [83] is used as an alternative method for quantifying both
linear and nonlinear dependencies. It has been proven that for Gaussian variables,
Granger causality and transfer entropy are equivalent [89] and thus transfer entropy
can be seen as information-theoretical extension of Granger causality which is also
capable of detecting nonlinear causality. It represents the reduction of uncertainty
on future values of y given the history of y due to the knowledge of past values of x
and can be expressed as conditional mutual information:

ψTE
(
x,y

)
≡ I(y;xt−1: | yt−1:)

= H(y | yt−1:)−H(y | yt−1:;xt−1:) ,
(6.9)

where H(x | y) is the conditional entropy

H(x | y) =
∑

i,j

p(xi, yj)log(
p(xi, yj)

p(yj)
), (6.10)
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Figure 6.1: System causality box plots of the Lorenz system. The system means of the
original-, surro, cross-, and anti-matrices for GC, TE, and CCM are computed, respectively.
The sample consists of 50 simulations under the standard configuration. The surrogate-based
measures are averaged over K = 10 surrogate realizations.
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Figure 6.2: System causality box plots of the Halvorsen system. The same configurations
as in previous figure are used.

with p(xi, yj) being the probability that x = xi and y = yj. The causality measures
are tested on the Lorenz system with standard parameters σ = 10, ρ = 28, and
β = 8/3. In addition, the Halvorsen system [90] is investigated, as it contains
quadratic nonlinearities:

dx

dt
= ax− 4y − 4z − y2 , (6.11)

where a = 1.3. The equations for y and z are constructed through rotating the
three variables. If not specified otherwise, the differential equations are solved for
T = 10000 steps and discretization dt = 0.1. The analysis on the Lorenz and
Halvorsen attractors indicate that the system causality is mainly driven by nonlinear
properties. This can be seen in Figures 6.1 and 6.2. The box plots show that both
transfer entropy (TE) and convergent cross mapping (CCM) indicate significantly
lower system causality for the surrogated time series compared to the original system
time series. Since nonlinear properties are destroyed in the surrogated time series,
these differences prove that nonlinearity play a significant role for causality, where
approximately 70% of the measured transfer entropy and 50% of CCM can be
attributed to nonlinear properties. Furthermore, the results for Granger causality
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Figure 6.3: Causality decomposition of the Lorenz system. For GC, TE, and CCM the
original-, surrogate-, and nonlinear- causality are computed, respectively. The contributions
of the individual causal flows to the system causality are mapped by color, while the different
inference techniques are indicated by white stripes. The individual fractions are averaged
over 50 simulations under the standard configuration. The surrogate-based measures are
averaged over K = 10 surrogate realizations.
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Figure 6.4: Causality decomposition of the Halvorsen system. The same configurations
as in the previous figure are used.

(GC) confirm that it is restricted to capturing only linear causality, since original
and surrogate based results are both on the same scale. The small deviations stem
from the inaccuracies of the linear regression required for the calculation of GC.
Furthermore, the newly introduced anti- and cross-causalities, which measure the
causal flow from the linear properties from one time series to both the linear and
nonlinear properties of another, vanish for all three inference methods. This further
underpins the observation that causal flows are mainly dominated by nonlinearity.
On a finer scale, it becomes clear that the causal structure in terms of linear and
nonlinear effects differs significantly among the coordinates of the Lorenz system,
as illustrated in Fig. 6.3. The x and y pair is mainly driven by linear properties
as it dominates the surrogate-causalities of GC and CCM - with both directions
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contributing equal amounts. In contrast, the surrogate TE indicates that the direction
x to y dominates the linear causality with a fraction of around 41%. This result is in
line with the governing equations as the equation for x contains a linear contribution
from y, while the equation for y contains a linear and nonlinear contribution from x.
The remaining causal dependencies are split evenly across the respective flows. In
comparison, all flows in the Halvorsen attractor contribute approximately equally to
the system causality across all causality types and inference techniques, as shown
in Fig. 6.4. This causal structure is expected due to the circulant nature of the
governing equations.
Current work is exploring the derivation of the governing equations based on the
system causality [91]. Feeding this information into the reservoir computing system
could then restrict predictions to meaningful paths by constraining the allowed
dynamics of the system and leveraging the additional information. Finding a suitable
layout for this is subject to further research.
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ABSTRACT

The prediction of complex nonlinear dynamical systems with the help of machine learning techniques has become increasingly popular. In
particular, reservoir computing turned out to be a very promising approach especially for the reproduction of the long-term properties of a
nonlinear system. Yet, a thorough statistical analysis of the forecast results is missing. Using the Lorenz and Rössler system, we statistically
analyze the quality of prediction for di�erent parametrizations—both the exact short-term prediction as well as the reproduction of the long-
term properties (the “climate”) of the system as estimated by the correlation dimension and largest Lyapunov exponent. We �nd that both
short- and long-term predictions vary signi�cantly among the realizations. Thus, special care must be taken in selecting the good predictions
as realizations, which deliver better short-term prediction also tend to better resemble the long-term climate of the system. Instead of only
using purely random Erdös-Renyi networks, we also investigate the bene�t of alternative network topologies such as small world or scale-
free networks and show which e�ect they have on the prediction quality. Our results suggest that the overall performance with respect to the
reproduction of the climate of both the Lorenz and Rössler system is worst for scale-free networks. For the Lorenz system, there seems to be a
slight bene�t of using small world networks, while for the Rössler system, small world and Erdös-Renyi networks performed equivalently well.
In general, the observation is that reservoir computing works for all network topologies investigated here.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118725

The application of machine learning techniques to various �elds
in science and technology yields very promising and fast advanc-
ing results. However, the robustness of these methods is a critical
aspect that is often not adequately addressed. Particularly when
trying to predict complex nonlinear systems—here by using a
recurrent neural network based approach called reservoir com-
puting—it is very useful to know how likely it is to end up with a
“good” prediction and how di�erent the results can be in terms
of quality. In our context, a good prediction is achieved when
the predicted trajectory matches those of the actual system in the
short-term,while reproducing its statistical properties in the long-
term. In order to thoroughly investigate the prediction quality, we

run our analysis not only using a single prediction but on many
realizations, which are based on the same parameters but di�er-
ent random number seeds. As a result, we �nd strong variability
among the quality of the predictions, indicating that robustness
seems to be an issue, and show the e�ect of varying the network
topology of the reservoir.

I. INTRODUCTION
In the recent years, the use ofmachine learning (ML) techniques

has not only become increasingly important in research but also
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popular in media, public perception, and businesses. The euphoric
application in all possible areas, however, carries the risk of misin-
terpreting the results if deeper methodological knowledge is lacking.
This is reminiscent of the situation in the late 1980s and early 1990s
when chaos was a hot topic in the scienti�c community. In the
absence of adequate statistical analysis,many systems have been erro-
neously categorized as being chaotic on the basis of, e.g., assessing
the attractor dimensions by single measurements of short and noisy
time series. Only after Theiler et al.1 introduced the concept of sur-
rogate data, the errors of the nonlinear measures for a given data
set could be assessed, and it turned out that many claims of chaos
had to be rejected. The lesson learned is that in the absence of a
proper (linear) model of the underlying process, credible results can
only be obtained by applying thorough statistical analyses involving
averaging over a large number of realizations of simulations or surro-
gates. In recent years, the use of reservoir computing for quantifying
and predicting the spatiotemporal dynamics of nonlinear systems
has attracted much attention.2–9 Many of the achievements—be it,
e.g., the crossprediction of variables in two-dimensional excitable
media6 or the reproduction of the spectrum of Lyapunov expo-
nents in lower dimensional (Lorenz or Rössler) and higher dimen-
sional (Kuramoto-Sivashinsky) systems2–4—are impressive and guide
the way to a range of new applications of ML in complex systems
research. However, all results shown until now are based on a single
or few realizations of reservoir computing. It is thus so far impos-
sible to judge the robustness of the results on, e.g., variations of
the set of random variables specifying the reservoir. Here, we per-
form the �rst thorough statistical analysis of predicting short- and
long-term behavior of nonlinear time series by means of reservoir
computing.

The heart of reservoir computing is—as the name already
says—a so-called reservoir, which consists of Dr nodes that are
sparsely connected with each other. The nodes are supposed to
yield a proper “echo state” to a given input, which is then trans-
ferred to the output layer. This is why most types of reservoir net-
works are often called “echo state networks (ESN).”Beginning with
the �rst introduction of ESNs by Maass and Jaeger,10,11 the reser-
voir has typically been modeled as a random Erdös Rényi network,
where two nodes are connected with a certain probability p. How-
ever, the groundbreaking works of Watts and Strogatz,12 Albert and
Barabási,13 and many others have shown that random networks are
far from being common in physics, biology, �nance, or sociology.
Rather, more complex networks like scale-free, small world, or inter-
mediate forms of networks14,15 with intriguing new properties are
most often found in real world applications. Having this in mind,
it seems natural to ask whether also for reservoir computing the
topology of the network has a signi�cant in�uence on the pre-
diction results.16 As a �rst step, we use the three aforementioned
prototypical classes of networks as a reservoir and compare them
regarding their ability of short- and long-term prediction of time
series.

The paper is organized as follows: Sec. II introduces reser-
voir computing and the methods used in our study. In Sec. III,
we present the main results obtained from the statistical analy-
sis of the prediction results as well as studying di�erent reser-
voir topologies. Our summary and the conclusions are given
in Sec. IV.

II. METHODS

A. Lorenz and Rössler system
As in Pathak et al.3 and Lu et al.,8 we use the Lorenz system17

as an example for replicating chaotic attractors using reservoir com-
puting. It has been developed as a simpli�ed model for atmospheric
convection and it exhibits chaos for certain parameter ranges. The
standard Lorenz system, however, is symmetric in x and y with
respect to the transformation x → −x and y → −y. This can be an
issue, for example, when trying to infer the x and y dimension from
knowledge of the z dimension as outlined in Lu et al.18 In order to
study a more general example, we would like to modify the Lorenz
system such that this symmetry is broken. This can be achieved by
adding the term x to the z-component, which then reads

ẋ = σ(y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz + x.

(1)

We use the standard parameters σ = 10,β = 8/3, and ρ = 28. This
system is referred to as a modi�ed Lorenz system. The equations
are solved using the 4th order Runge-Kutta method with a time
resolution 1t = 0.02.

In addition to the Lorenz system, we ran the same analysis also
on the Rössler system,19 which equations read

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c),

(2)

where we use the parameters a = 0.5, b = 2.0, and c = 4.0. Again,
this is aD = 3 dimensional chaotic system but said to be less chaotic
than the Lorenz attractor. Thus, it is an interesting object to study, in
particular, when it comes to the short-term prediction capabilities of
reservoir computing. For the Rössler system, the time resolution is
chosen to be 1t = 0.05 in order to ensure a su�cient manifestation
of the attractor in the ttrain = 5000 training time steps.

B. Reservoir computing
Reservoir computing is a machine learning technique that falls

into the category of arti�cial recurrent neural networks. The core of
themodel is a network called “reservoir,” which—in contrast to feed-
forwardneural networks—exhibits loops. Thismeans that past values
feed back into the system and thus allow for dynamics.20,21 In order
to complete the task of predicting time series, the ability to capture
dynamics is essential. Moreover, reservoir computing has a powerful
advantage: While in other methods the network itself is dynami-
cal, here the training is based only on the linear output layer and,
therefore, allows for large reservoir dimensionality while still being
computationally feasible.8

In our implementation, we stick to the setup used by Pathak
et al.,3 which works as follows. We have an input signal u(t) with
dimension D that we would like to feed into a reservoir A. The
reservoir is chosen to be a sparse Erdös-Renyi random network with
Dr = 300 nodes and p = 0.02.22 Here, p describes the probability of
connecting two nodes, which then leads to an unweighted average
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degree of d = 6. To obtain the weighted network, we then replace
all nonzero elements of the adjacency matrix by independently and
uniformly drawn numbers from [−1, 1]. It is important to highlight
that the network itself is static and thus does not change over time. In
order to feed the lower dimensional input signal u(t) into the reser-
voir, anDr × D input functionWin is required. The entries ofWin are
chosen here to be uniformly distributed random numbers within the
range of the nonzero elements of the reservoir.

A key property of the system are its Dr × 1 reservoir states r(t),
which represent the scalar states of the nodes of the reservoir net-
work. We initially assume ri(t0) = 0 for all nodes and update the
reservoir states in each time step according to the equation

r(t + 1t) = αr(t) + (1 − α)tanh(Ar(t) + Winu(t)). (3)

As in Pathak et al.,3we set α = 0 and, therefore, do not mix the input
function with past reservoir states. Now, we have a fully dynamical
system where the network edges are constant and the states of the
nodes are time dependent.

The next step is to map the reservoir states r(t) back to the D
dimensional output v given by

v(t + 1t) = Wout(r(t + 1t), P). (4)

Here, we assume that Wout depends linearly on P and reads
Wout(r,P) = Pr. This means that the output depends only on the
reservoir states r(t) and the output matrix P, which contains a large
number of adjustable parameters—all its elements. Therefore, after
acquiring a su�cient number of reservoir states r(t), we have to
choose P such that the output v of the reservoir is as close as pos-
sible to the known real output vR. This process is called training. In
general, the task is to �nd an output matrix P using Ridge regression,
which minimizes

∑

−T≤t≤0

‖ Wout(r(t),P) − vR(t) ‖2 − β‖ P ‖2, (5)

where β denotes the regularization constant, which prevents from
over�tting by penalizing large values of the �tting parameter. In this
study, we choose β = 0.01. The notation, ‖ P ‖, describes the sum of
the square elements of the matrix P. For solving this problem, we are
applying the matrix form of the Ridge regression,23 which leads to

P = (rTr + β1)
−1
rTvR. (6)

The notion r and vR without the time indexing denotes matrices
where the columns are the vectors r(t) and vR(t), respectively, in
each time step. In our implementation, we chose ttrain = 5000 train-
ing time steps while allowing for a washout or initialization phase of
tinit = 100. During this time, we do not “record” the reservoir states
r(t), which means that only 4900 time steps are used for the regres-
sion. In order to ensure that 100 time steps washout is su�cient, we
also ran the analysis with 1000 time steps washout and found both
results to be equivalent.

After P is determined, we can now switch to the prediction
mode by giving the predicted state v(t) as input instead of the
actual data u(t). The update equation for the network states r(t)

then reads

r(t + 1t) = tanh(Ar(t) + WinWout(r(t),P))

= tanh(Ar(t) + WinPr(t)).
(7)

This allows us to produce a predicted trajectory of any length by just
applying Eq. (4).

C. Alternative network topologies
So far, it has been standard practice to use purely randomErdös-

Renyi networks for the reservoir A. However, there is a variety of
conceivable network topologies that may have an in�uence on the
results. In this study, we investigate the use of “small world”12 and
“scale-free”24 networks as an alternative.

Small world networks are graphs where the distance—in terms
of steps via other nodes—between any pair of nodes is small. At the
same time, the clustering coe�cient is relatively high, which means
that neighboring nodes tend to be connected. This so-called “small
world property” is observed in many real world networks such as
social networks, electric power grids, chemical reaction networks,
and neuronal networks.25 In order to have the same average degree
d = 6 as the random Erdös-Renyi networks, we construct the small
world networks in the following way: First, we connect each node
with its six nearest neighbors implying periodic boundary condi-
tions. This is equivalent to arranging all nodes as a ring. Then, we
loop over each edge x − y and rewire it to x − z with probability
p = 0.2, where node z is randomly chosen.

Scale-free networks are graphs where the distribution of the
number of edges per node decays with a power-law tail. This is
again a property, which is observed in many real world networks.
For example, the abovementioned electric power grid networks and
neuronal networks exhibit not only the small world property but
are also scale free. Other examples include the World Wide Web or
networks of citations of scienti�c papers.25Again, the network is con-
structed such that its average degree is d = 6. For this, we use the
scale-free graph generator of the “NetworkX” package26with parame-
ters α = 0.285,β = 0.665, γ = 0.05, δin = 0.2, δout = 0. Note that in
this case, the graph is directed, while the other two network topolo-
gies result in undirected graphs. Here,α sets the probability of adding
a new node, which is connected to an already existing node, which
is chosen randomly according to the in-degree distribution, while
γ does the same except that the node is chosen according to the
out-degree distribution. In addition, β regulates the probability of
creating an edge between two existing nodes where one is chosen
according to the in-degree distribution and the other node according
to the out-degree distribution.27

D. Measures of the system
In order to assess the quality of the prediction, we are mainly

using three di�erent measures. The goal is to adequately address
both the exact short-term prediction as well as the long-term repro-
duction of the statistical properties of the system—its so-called
climate.
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1. Forecast horizon
To quantify the quality and duration of the exact prediction of

the trajectory, we use a fairly simple measure, which we call “fore-
cast horizon.” Here, we track the number of time steps during which
the predicted and the actual trajectory are matching. As soon as
one of the three coordinates exceeds certain deviation thresholds, we
consider the trajectories as not matching anymore. Throughout our
study, we use

|v(t) − vR(t)| > δ, (8)

where the thresholds are δ = (5, 10, 5)T for the Lorenz system and
δ = (2.5, 2.5, 4)T for the Rössler system. The values are chosen this
way due to the di�erent ranges of the state variables in both systems.
The aim is that small �uctuations around the actual trajectory as well
as minor detours do not exceed the threshold. Empirically, we found
that distances between the trajectories become much larger than the
threshold values as soon as short-term prediction collapses.

2. Correlation dimension
One important characteristic of the long-term properties of the

system is its structural complexity. This can be quanti�ed by calculat-
ing the correlation dimension, whichmeasures the dimensionality of
the space populated by the trajectory.28 It is based on the correlation
integral,

C(r) = lim
N→∞

1

N2

N
∑

i,j=1

θ(r − |xi − xj|)

=

∫ r

0

d3r′c(r′), (9)

which describes the mean probability that two states in the phase
space are close to each other at di�erent time steps. The condition
“close to” is met if the distance between the two states is less than the
threshold distance r. θ represents the Heaviside function, while c(r′)

denotes the standard correlation function. For self-similar strange
attractors, the following power-law relationship holds in a range of r,

C(r) ∝ rν . (10)

The “correlation dimension” is then measured by the scaling expo-
nent ν. We use the Grassberger Procaccia algorithm29 to calculate
the correlation dimension of our trajectories. This approach is purely
data driven and, therefore, does not require any knowledge about the
system.

3. Largest Lyapunov exponent
Another aspect of the long-term behavior is the temporal com-

plexity of the system. When dealing with chaotic systems, looking at
its Lyapunov exponents is an obvious choice. The Lyapunov expo-
nents λi describe the average rate of divergence of nearby states in
the phase space and thusmeasure sensitivity to initial conditions. For
each dimension in the phase space, there is one exponent. If the sys-
tem exhibits at least one positive Lyapunov exponent, it is classi�ed
as chaotic, while the magnitude of the exponent quanti�es the time
scale on which the system becomes unpredictable.30,31 Therefore, it

is su�cient for our analysis to determine only the largest Lyapunov
exponent λ1,

d(t) = Ceλ1t , (11)

whichmakes the task computationally easier. Here, d(t) is the average
distance or separation of the initially nearby states at time t and C
is a constant that normalizes the initial separation. To calculate the
largest Lyapunov exponent, we use the Rosenstein algorithm.32

III. RESULTS
Although machine learning techniques and reservoir comput-

ing, in particular, have become increasingly popular, a thorough
statistical analysis of the forecast results is yet missing. Therefore, we
found it insightful to not only perform one single prediction where
“prediction” means forecasting the trajectory for tprediction = 10 000
time steps. As there are random numbers involved in the construc-
tion of the reservoir A as well as the input functionWin, we can run
the prediction with N = 1000 di�erent random number seeds while
keeping all other parameters of the network constant. Therefore, for
di�erent seeds, bothA andWin will vary. This allows us to gain a sta-
tistical view on the quality of the prediction instead of analyzing only
single realizations. In addition to the parametersmentioned in Sec. II,
there is one more parameter that we can tune. This is the spectral
radius ρ of the adjacency matrix of the reservoir A, which is de�ned
as its largest absolute eigenvalue,

ρ(A) = max{|λ1|, . . . , |λDr |}, (12)

and re�ects some kind of average degree of the network. We can
adjust the spectral radius by

A∗ =
A

ρ(A)
ρ∗, (13)

where ρ∗ is the desired spectral radius. Note that λi here denote the
eigenvalues of the adjacency matrix of the reservoir A—not to be
confused with the Lyapunov exponent in Eq. (11), which is com-
monly called λ as well. Other studies showed results for particular
values of ρ such as Pathak et al.,3 e.g., claiming that the prediction
using a spectral radius of ρ = 1.2 accurately resembles the long-
term climate of the system, while the same setup with ρ = 1.45
does not. To possibly reproduce these results and to assess the best
ranges for the spectral radius, we ran the reservoir computing with
N = 1000 di�erent random number seeds for each spectral radius
ρ∗
i ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.45, 1.6,

1.8, 2.0, 2.2, 2.4}, while all other parameters remain constant.We sim-
ulate one trajectory, which is used for the training of the network
as well as for the comparison of the predicted trajectory with the
actual one. Furthermore, we simulated additional 1000 trajectories
of the actual Lorenz and Rössler system with di�erent randomly
chosen initial conditions in order to investigate the statistical error
when calculating the correlation dimension and the largest Lyapunov
exponent from the time series with limited length.

Table I shows the means and standard deviations for both mea-
sures indicating that the error is reasonably small. As we use “only”
10 000 data points, our results are slightly below the expected val-
ues of around 2.04 for the correlation dimension and 0.89 for the
largest Lyapunov exponent of the Lorenz system. For the Rössler
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TABLE I. Mean and standard deviation σ of the two measures calculated from 1000

simulated trajectories with different initial conditions.

Lorenz Mean σ

Correlation dimension 2.026 0.014
Largest Lyapunov exponent 0.878 0.029

Rössler Mean σ

Correlation dimension 1.713 0.037
Largest Lyapunov exponent 0.107 0.011

system, the results for the correlation dimension are signi�cantly
below the desired value of around 2 because the Grassberger Pro-
caccia algorithm is slower converging as compared to the Lorenz
system when using only 10 000 data points. This is also re�ected in
the higher standard deviation σ of the correlation dimension. How-
ever, we veri�ed through increasing the number of data points that
our calculations converge to the expected results.

Figure 1 shows two examples of predicted trajectories using
reservoir computing in the setup described above with a spectral
radius of ρ = 0.3. Although we ran the prediction over n = 10 000
time steps, we plotted the results for n = 2000 time steps for the sake

of clarity. On the left side of the plot, one can see the trajectory of
the X coordinate for the predicted system using reservoir comput-
ing (blue) and the simulated system based on the Lorenz di�erential
equations (green). In the upper plot, both trajectories are overlap-
ping for around 200 time steps and then deviate while still showing
the characteristic pattern of the Lorenz system.However, in the lower
plot, both trajectories already separate after less than 100 time steps
leading to a pattern, which looks completely di�erent.

This is remarkable given the fact that the setup for both cases is
identical except for a di�erent random number seed, which results
in di�erent realizations of the input function Win and the reser-
voir A. Since looking solely at the X coordinate yields insu�cient
information about the overall prediction quality, it is meaningful to
investigate the whole attractor as plotted on the right side of Fig. 1.
Here, we can see that the Lorenz attractor is reconstructed very well
by the upper prediction, while the lower prediction has nothing to
do with the butter�y-shaped Lorenz attractor. Instead, the trajectory
quickly runs into a �xed point after detaching and partly forming
some kind of a mirrored Lorenz attractor. The di�erence in predic-
tion quality is not only re�ected in the ability to match the original
trajectory in the short-term but also with respect to the correla-
tion dimension and the largest Lyapunov exponent. While in the
upper case the resulting values of ν = 1.992 and λ = 0.851 are well
within the expectations for the Lorenz system, the lower realization

FIG. 1. Left: X coordinate of two predicted (blue) trajectories of the Lorenz system plotted over n = 2000 time steps. The results are compared against the trajectory of the
simulated actual Lorenz system (green). The upper plot shows a good realization where both trajectories are partly overlapping, while the lower part shows a bad prediction.
Right: Three dimensional attractor for both cases. The spectral radius is ρ = 0.3, and random Erdös-Renyi networks are used for the reservoir A. The correlation dimension
is ν = 1.992 for the upper and ν = 0.007 for the lower realization, while the largest Lyapunov exponents are λ1 = 0.851 (upper) and λ1 = 0.420 (lower).
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completelymisses to reconstruct the long-term climate. Immediately,
the question arises if this observation is an exception or whether
the prediction quality is not robust with respect to di�erent random
number seeds. Therefore, we systematically investigated this e�ect
by running the same setup withN = 1000 di�erent random number
seeds. Since it would be laborious to visually inspect the trajectories
and attractors of all realizations, we rely on the measures introduced
in Sec. II in order to assess if a prediction is good or bad.

Figure 2 shows a scatter plot where the forecast horizon is plot-
ted against the correlation dimension for all realizations. The colors
represent di�erent spectral radii, and for each spectral radius, there is
one point for each of theN = 1000 randomnumber seeds. In order to
make the results better readable, we divided the plot into four sections
where we grouped the results for four to �ve di�erent spectral radii.
The �rst thing we can observe is that the prediction of the Lorenz
system using reservoir computing works better for smaller spectral
radii. However, more importantly, one can also see that the predic-
tion quality signi�cantly varies even when using the same spectral
radius—as already indicated by Fig. 1. This becomes not only evident
by the results for the forecast horizon but especiallywhen considering
the correlation dimension. Its values quickly spread when increasing
the spectral radius indicating that the resulting predicted trajectories
do not resemble the long-term climate of the system well in many
cases. Figure 3 shows the same results for the Rössler system. In
contrast to the Lorenz system, not the smallest spectral radius but a
choice of ρ = 0.4 leads to the best results. In addition, the short-term
prediction ability measured by the forecast horizon is signi�cantly

better with a number of predictions matching the original trajectory
for 500 to almost 1000 time steps. However, the spread of the results
for the correlation dimension seems to be larger as compared to the
Lorenz system with high variability even for the best working spec-
tral radii. This is partly due to the fact that the numerical calculation
of the correlation dimension converges slower for the Rössler system
as mentioned in Sec. III. As in Fig. 2, there seems to be some “quan-
tization” of the forecast horizon for both systems. The reason is that
the predicted trajectory typically detaches from the actual one after
completing a loop around the attractor.

The variability becomes even clearer when looking at Fig. 4.
Here, we can see another scatter plot where the largest Lyapunov
exponent is plotted against the correlation dimension, and thus, both
components of assessing the long-term climate are re�ected. The
left plots show the results for the Lorenz system whereas those for
the Rössler system are shown on the right side. In addition, the
red ellipse shows the �ve sigma errors of the correlation dimension
and the largest Lyapunov exponent calculated from 1000 simulations
using the actual equations of the Lorenz and Rössler system as shown
in Table I. When studying the left side, it becomes clear that even
for the smallest and for the Lorenz system the best working spectral
radius being ρ = 0.1 (top left plot, dark green), the resulting “bubble”
of points is of the same size as the σ = 5 error ellipse. This indi-
cates strong variability given that σ = 5 is a large error. For the larger
spectral radii shown in the bottom left plot—including the values
ρ = 1.2 and ρ = 1.45 as used in Ref. 3—there is not a single point
within the ellipse. This indicates that the prediction completely fails

FIG. 2. Forecast horizon scattered against the correlation dimension for each of the N = 1000 predictions of the Lorenz system per spectral radius. Different spectral radii
are differentiated by colors. Random Erdös-Renyi networks are used for the reservoir A.
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FIG. 3. Forecast horizon scattered against the correlation dimension for each of the N = 1000 predictions of the Rössler system per spectral radius. Different spectral radii
are differentiated by colors. Random Erdös-Renyi networks are used for the reservoir A.

FIG. 4. Largest Lyapunov exponent scattered against the correlation dimension for each of the N = 1000 predictions per spectral radius. Results are shown for the Lorenz
(left) and Rössler system (right). Different spectral radii are differentiated by colors. The red object represents the five sigma error ellipse of both measures calculated based
on 1000 simulated true trajectories. Random Erdös-Renyi networks are used for the reservoir A.
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to reproduce the long-term climate for those cases. The results for
the Rössler system on the right side of the plot give a similar picture.
However, even for the best working spectral radius of ρ = 0.4, there
are many points outside of the σ = 5 error ellipse. In addition, one
can also see from the upper plots of Fig. 4 that a good reproduction of
the correlation dimension also tends to coincide with a better repro-
duction of the largest Lyapunov exponent, although this e�ect is not
very signi�cant.

So far, we only looked at the results based on the random Erdös-
Renyi networks. In order to compare the performance of the three
di�erent network topologies on a statistical level, we perform a χ 2

analysis of the long-term climate prediction. This means that we
calculate

χ 2(i, ρ) =

2
∑

j=1

[

Xj(i, ρ) − 〈Xj〉

σXj

]2

, (14)

where i is the ith random number seed and ρ indexes the spectral
radius. The sum goes over the correlation dimension (j = 1) and the
largest Lyapunov exponent (j = 2). 〈Xj〉 represents the average value
derived from 1000 simulated actual Lorenz trajectories—as shown in
Table I, while σXj is the corresponding standard deviation. Therefore,

the resulting χ 2 describes how strong the predicted results deviate
from the actual values weighed by the errors of the actual values.

Figure 5 shows the cumulative distribution of the χ 2 for the
three network topologies. The top plot contains the results for the
Lorenz system using the spectral radius ρ = 0.1 and evaluation val-
ues of χ 2 for 0 and 10. We can see that scale-free networks (red
line) tend to work worse, while small world networks (blue line)

FIG. 5. Top plot: Cumulative distribution ofχ 2 for the best working spectral radius
ρ = 0.1 of the Lorenz system calculated for values between 0 and 10. Bottom
plot: Same for the Rössler system with ρ = 0.4 and values between 0 and 500.

slightly outperform the Erdös-Renyi networks (yellow line). How-
ever, it becomes clear that the method of reservoir computing works
for all networks topologies tested here. In contrast, there is a dif-
ference between scale-free networks and the other topologies in the
case of the Rössler system (bottom plot). Here, we calculated the
cumulative distribution for values of χ 2 between 0 and 500 based on
ρ = 0.4. The reason is that even for the best working spectral radius,
the variability is signi�cantly higher as compared to the Lorenz sys-
tem, which leads to higher values ofχ 2 with only very few data points
in the 0–10 range. It is interesting to note that the performance of
scale-free networks is now strongly below the other two networks,
while Erdös-Renyi networks are slightly leading overall. Therefore,
in contrast to the Lorenz system, network topology seems to matter
in this case.

IV. CONCLUSIONS AND OUTLOOK
In this paper, we investigated the prediction of chaotic attrac-

tors by using reservoir computing from a statistical perspective.
Instead of only predicting one trajectory, we simulated 1000 realiza-
tions each—where each realization corresponds to another random
number seed—for a number of di�erent spectral radii ρ. Analyz-
ing both the Lorenz and Rössler system, we found that the ability
to exactly forecast the correct trajectory as well as the reconstruc-
tion of the long-term climate measured by the correlation dimension
and largest Lyapunov exponent strongly varies. Even for the exact
same parameter setup, there can be very good results that match the
true trajectory for a large number of time steps and nicely recon-
struct the attractor. On the other hand, there can be results that
completely fail in either one or both dimensions and are not re�ecting
the desired properties of the system. The results suggest that smaller
spectral radii than typically used work better for both systems, while
in the case of the Lorenz system, even the smallest spectral radius
ρ = 0.1 performed best. However, even in this case, results show
strong variability as they completely �ll the �ve sigma error ellipse
of the correlation dimension and largest Lyapunov exponent. For the
Rössler system, there are several predictions exceeding the σ = 5
error ellipse for the best working spectral radius of ρ = 0.4, and thus,
variability is even stronger as compared to the Lorenz system. This is
an interesting observation given that the Rössler system is consid-
ered less nonlinear. Overall, special care must be taken in selecting
the good predictions as realizations, which deliver better short time
prediction also tend to better resemble the long-term climate of the
system.

Furthermore, we ran the same analysis using two other net-
work topologies: Small world and scale free networks. In essence,
they produced comparable results with a slight outperformance of
small world networks and underperformance of scale-free networks
for the Lorenz system. For the Rössler system, the picture is di�er-
ent with a slight outperformance of Erdös-Renyi networks, while
scale-free networks are showing worst results in terms of the χ 2

analysis. A tentative explanation for the lower performance of scale-
free networks could be the following: According to Singh et al.,33

the more capable a brain or neuronal system is, the less scaling is
present in its degree distribution. Overall, it is important to point
out that despite the di�erences presented here, the general method-
ology of reservoir computing works for di�erent network topologies.
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However, even after trying di�erent parameters and alternatively a
setup where also the input states are going into the regression as
described by Lukoševičius and Jaeger,20 the variability can always be
observed.

Once the network is trained, the prediction is deterministic and
depends strongly on the weights and only weak on the topology. It
should thus be possible to associate good and bad predictions with
di�erential properties of the respective realization of the reservoir
in a systematic way. First attempts in this direction for a reservoir
with unweighted edges have recently been reported in Carroll and
Pecora.34 Once based on those insights, more stable predictions are
possible, a more precise analysis of the attractor properties, e.g., with
the spectrum of Lyapunov exponents could be useful and neces-
sary. Furthermore, the role of the network size is also an interest-
ing aspect. Current and future work is dedicated to the investiga-
tion of these questions—not the least because the answers to them
will shed new light on the complexity of the underlying dynamical
system.
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ABSTRACT

Reservoir computing is a very promising approach for the prediction of complex nonlinear dynamical systems. Besides capturing the exact
short-term trajectories of nonlinear systems, it has also proved to reproduce its characteristic long-term properties very accurately. However,
predictions do not always work equivalently well. It has been shown that both short- and long-term predictions vary significantly among
different random realizations of the reservoir. In order to gain an understanding on when reservoir computing works best, we investigate
some differential properties of the respective realization of the reservoir in a systematic way. We find that removing nodes that correspond
to the largest weights in the output regression matrix reduces outliers and improves overall prediction quality. Moreover, this allows to
effectively reduce the network size and, therefore, increase computational efficiency. In addition, we use a nonlinear scaling factor in the
hyperbolic tangent of the activation function. This adjusts the response of the activation function to the range of values of the input variables
of the nodes. As a consequence, this reduces the number of outliers significantly and increases both the short- and long-term prediction
quality for the nonlinear systems investigated in this study. Our results demonstrate that a large optimization potential lies in the systematical
refinement of the differential reservoir properties for a given dataset.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006869

A pervasive stigma of common machine learning (ML) meth-
ods is that they are considered an inscrutable black box. This
is problematic for many practical applications, since a precise
understanding of the tool is necessary to correctly assess uncer-
tainties and sensitivities. Knowing that there is often significant
variability in the prediction quality, the natural question arises
how one can identify good predictions and prevent outliers that
do not adequately resemble the targeted data or system. In con-
trast to many other neural network based approaches, reservoir
computing (RC) makes it possible to bring light into the dark.
Its comparably simple architecture allows for a systematic anal-
ysis of the differential properties of the reservoir realizations,
leading to good or bad predictions. In the context of nonlinear
dynamical systems, a good prediction should not only be able to
match the actual short-term trajectory but also needs to recreate

its statistical long-term characteristics. To investigate the connec-
tion between properties of the reservoir and prediction quality,
we remove certain nodes from the reservoir network and ana-
lyze how this impacts predictions. We find that a controlled node
removal of the “right” nodes not only leads to less variability, and
thus better predictions, but also allows to reduce network size
noticeably. Furthermore, we turn from the reservoir itself to the
activation function and show how rescaling of the argument gives
rise to better results.

I. INTRODUCTION
The remarkable rise of machine learning (ML) techniques dur-

ing the recent years has made it inevitable for researchers to dig
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deeper into the mechanisms and properties of the methods. This is
required to fundamentally understand how, when, and why they are
working well. Otherwise, the application of machine learning tech-
niques to various fields in business and science carries the risk of
misinterpreting the results if deeper methodological knowledge is
lacking.

In the context of complex systems research, the use of reser-
voir computing (RC)1—also known as Echo State Networks2,3—for
quantifying and predicting the spatiotemporal dynamics of nonlin-
ear systems has attracted much attention recently.4–11 RC represents
a special kind of recurrent neural networks (RNNs). The core of the
model is a neural network called reservoir, which is a complex net-
work with loops. Input data are fed into the nodes of the reservoir,
which are connected according to a predefined network topology
(mostly random networks). Only the weights of the linear output
layer, transforming the reservoir response to output variables, are
subject to optimization via linear regression. This makes the learning
extremely fast, comparatively transparent, and omits the vanishing
gradient problem of other RNN training methods. The reservoir is
kept fixed and only the weights constituting the output layer are
optimized in a deterministic and non-iterative manner. Therefore,
RC allows for a controlled differential manipulation of the proper-
ties of the neural network and to identify, how those changes are
associated with the prediction quality.

Many of the achievements obtained with RC—be it, e.g., the
cross-prediction of variables in two-dimensional excitable media,8

the reproduction of the spectrum of Lyapunov exponents in
lower dimensional (Lorenz or Rössler) and higher dimensional
(Kuramoto–Sivashinsky) systems,4–6 or the prediction of extreme
events12—are impressive and significantly extend the possibilities to
predict future states of high dimensional, nonlinear systems. While
the results reported in the works mentioned above are mainly based
on a single or few realizations of reservoir computing, we showed,
however, in an earlier study13 that there is a strong variability in
prediction quality by running multiple realizations of the reser-
voir. The natural question that arises is where this variability comes
from and whether one can associate good and bad predictions with
differential properties of the reservoir. Based on a reservoir with
unweighted edges, first attempts in this direction have been made
by Carroll and Pecora.14 They showed that symmetries in the net-
work do have a considerable effect on the prediction quality of RC.
In this work, we investigate the effect of two methods to manipu-
late reservoirs with weighted edges, since those are typically used in
time-series prediction. First, we decrease the reservoir size by apply-
ing pruning techniques. Thinning out a (deep) neural network is a
classical technique for enhancing its generalization ability. However,
pruning mostly refers to the removal of synapses, i.e., edges, in a
network. More rarely, pruning refers to the removal of neurons, i.e.,
nodes. So far, only few studies have investigated the effects of a con-
trolled removal of edges or nodes in reservoir computing (see, e.g.,
Refs. 15–17). Pruning of the reservoir network is a new optimiza-
tion approach for the prediction of the long-term behavior of chaotic
systems using RC. We propose and discuss a novel scheme for the
controlled removal of nodes that relies on ideas stemming from
network science. In addition, we vary the nonlinearity of the hyper-
bolic tangent activation function with a scaling factor. The paper
is organized as follows: Sec. II introduces reservoir computing and

the reservoir manipulation methods used in our study. In Sec. III,
we present the main results obtained from the statistical analysis
of the prediction results and its associated differential properties of
the reservoir realizations. The summary and an outlook are given in
Sec. IV.

II. METHODS

A. Reservoir computing
Within the class of artificial recurrent neural networks, reser-

voir computing is a promising approach for predicting complex
nonlinear dynamical systems. The model is based on a static network
called reservoir, whose nodes and edges are kept fixed after it has ini-
tially been set up. In contrast to feedforward type neural networks,
the reservoir is allowed to have loops, and, therefore, past values
are fed back into the system allowing for dynamics.18,19 As opposed
to other neural network based machine learning approaches, the
training process of reservoir computing alters only the linear output
layer. This allows for large model dimensionality while still being
computationally feasible.10

This implementation is mainly based on the setup of our pre-
vious study13 and works in the following way. First, we set up the
reservoir A, which has dimensionality Dr, and is constructed as
a sparse Erdös–Renyi random network.20 In our study, we chose
Dr = 200 nodes that are connected with a probability of p = 0.02.
This results in an unweighted average degree of d = 4, while the
weights of the edges are determined by independently drawn and
uniformly distributed numbers within the interval [−1, 1]. Once
created, the reservoir is fixed and does not change over time. The
next task is to feed the D dimensional input data u(t) into the reser-
voir A. This requires an Dr × D input matrix Win that defines for
every node the excitation by each dimension of the input signal.
The entries of Win are chosen to be uniformly distributed random
numbers within a certain range to be defined later.

A key element of the system are its Dr × 1 reservoir states r(t),
which represent the scalar states of the nodes of the reservoir. We
initially set ri(t0) = 0 for all nodes and update the reservoir states in
each time step according to the equation

r(t + 1t) = αr(t) + (1 − α)tanh(Ar(t) + Winu(t)). (1)

As in Pathak et al.,5 we set α = 0 and, therefore, do not mix the input
function with past reservoir states. Now, we have a dynamical sys-
tem, where the reservoir A itself is static and its scalar states r(t)
change over time.

The next step is to map the reservoir states r(t) back to the D
dimensional output v through an output function Wout

v(t + 1t) = Wout(r(t + 1t), P). (2)

Here, we assume that Wout depends linearly on a matrix P and reads
Wout(r, P) = Pr. This means that the output of the system depends
only on the reservoir states r(t) and the output matrix P, which
contains Dr × D degrees of freedom. Therefore, after acquiring a
sufficient number of reservoir states r(t), we have to choose P such
that the output v of the reservoir is as close as possible to the known
real data vR. This process is called training. Specifically, the task is to
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find an output matrix P using Ridge regression, which minimizes

∑
−T≤t≤0

‖ Wout(r(t), P) − vR(t) ‖2 − β‖ P ‖2, (3)

where β is the regularization constant. Setting β > 0 prevents from
overfitting by penalizing large values of the fitting parameters. The
notation ‖ P ‖ describes the sum of the square elements of the
matrix P. For solving this problem, we are using the matrix form
of the Ridge regression,21 which leads to

P = (rTr + β1)
−1

rTvR. (4)

The notion r and vR without the time indexing t denotes matrices,
where the columns are the vectors r(t) and vR(t), respectively, in
each time step. In our implementation, we chose ttrain = 5000 train-
ing time steps while allowing for a washout or initialization phase of
tinit = 5000. During this time, we do not “record” the reservoir states
r(t) in order to allow the system to sufficiently synchronize with the
dynamics of the input signal.

Now that P is determined, we can feed the predicted state
v(t) back in as input instead of the actual data u(t) by combining
Eqs. (1) and (2). This allows to create predicted trajectories of arbi-
trary length due to the recursive equation for the reservoir states
r(t),

r(t + 1t) = tanh(Ar(t) + WinWout(r(t), P))

= tanh(Ar(t) + WinPr(t)). (5)

An illustration of this reservoir computing framework is given
in Fig. 1.

To find the most suitable parameter values for the spectral
radius of the reservoir ρ(A), the scale for Win and the regularization
constant β , we carried out a hyperparameter optimization. As reser-
voir computing system can be trained very quickly, we use a simple

FIG. 1. Schematic illustration of reservoir computing.

TABLE I. Results of the hyperparameter optimization.

ρ 0.17
Win scale 0.17

β 1.9 × 10−11

random search procedure with uniform sampling from the parame-
ter space.22 The objective function is the forecast horizon, as defined
in Sec. II C, averaged over N = 30 realizations. The term realizations
means running reservoir computing with the exact same parameters
but different random realizations of the reservoir A and the input
function Win. Each of the realizations is starting from randomly
chosen coordinates obtained from simulating a very long trajectory
of the Lorenz system. In order to assure independent trajectories,
small scale uniform noise is added. The optimal values are shown
in Table I.

B. Controlled node removal and activation function
adjustment

The standard approach to reservoir computing exhibits a
strong variability in prediction quality as shown in Haluszczynski
and Räth.13 In order to reduce this variability, we make alterations
to the reservoir structure by removing nodes and their respective
edges from both the reservoir A and Win. This is inspired by the
concept of attack tolerance23 in complex networks and the aim is to
investigate the effect of removing nodes on the prediction capabili-
ties of the system. The approach is motivated by the assumption that
there is a relationship between the importance of each node and its
output weights Wout assigned in the training process. Following the
findings of Albert et al.23 for networks, one would assume that the
removal (“attack”) of important nodes (with high Wout values) has
a large negative impact on the “response” of the reservoir to input
data, i.e., on the prediction quality. On the other hand, the removal
of unimportant nodes (with low Wout values) should not alter the
prediction too much. To test this assumption, we remove a fraction
p of the N = 200 nodes, which correspond to certain values—e.g.,
the largest or smallest—of Wout. However, each node is affiliated not
only with one but D output weights, where D denotes the dimen-
sionality of the system that is being predicted. Hence, we sort Wout

based on the largest absolute value of all D output weights for each
node in order to determine which nodes should be removed. After
removal, we train the newly obtained reduced network again. This
leads to a new set of Wout. As a consequence, the new reservoir is
not only reduced in size but also altered in its spectral radius, degree
distribution, and the distribution of Win. The node removal process
is illustrated in Fig. 2.

In addition to changes to the structure of the reservoir network
outlined above, we study the effect of nonlinearity of the activa-
tion function. This has well-known effects on the memory of the
reservoir.24–27 However, in the present study, we focus on systems
where the role of memory is small. To do this, we introduce a non-
linear scaling factor a in the hyperbolic tangent of the activation
function to further improve prediction quality. This changes the
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FIG. 2. Schematic illustration of the controlled node removal. The top graphic
shows the initial network before the removal procedure. Here, the orange exam-
ple node is fed only with input (blue) from the x dimension of the system. The
orange lines denote its contribution to the output values of all three dimensions.
We assign the relevant weight by taking the maximum of the absolute value
of these three weights. The black lines represent connections to other nodes.
Input/output interactions of the other nodes are not shown here. In the bottom
plot, the example node has been removed, and, therefore, all connections and
interactions vanished.

update equation for r(t) to

r(t + 1t) = tanh(a[Ar(t) + WinPr(t)]). (6)

The nonlinearity of the activation function is a crucial property
for reservoir computing. Because both the reservoir itself and the
output function are linear, the activation function is the only source
of nonlinearity in the system. The introduction of a scaling factor in
the argument can be interpreted as varying the degree of this non-
linearity. Equivalently, it can be seen as simply tuning the scale for
Win and the spectral radius of A simultaneously. Thus, the effective
number of parameters stays the same. However, due to its relation

to the activation function, it is interesting to study the isolated effect
of the scaling, while fixing the other parameters.

C. Measures and system characteristics

1. Forecast horizon
To quantify the quality and duration of the exact prediction of

the trajectory, we use a fairly simple measure, which we call forecast
horizon. It is defined as the number of time steps while the pre-
dicted and the actual trajectory are matching. As soon as one of the
D coordinates exceeds certain deviation thresholds, we consider the
trajectories as not matching anymore. Throughout our study we use

|v(t) − vR(t)| > δ, (7)

where the thresholds are δ = (5.8, 8.0, 6.9)T for the Lorenz system.
In general, the values are chosen based on the different ranges of
the state variables and correspond to 15% of the spatial extent of the
attractor. The aim is that small fluctuations around the actual trajec-
tory as well as minor detours do not exceed the threshold. Empiri-
cally, we found that distances between the trajectories become much
larger than the threshold values as soon as short-term prediction
collapses. A similar measure has been proposed using a normalized
L2 norm.7 However, when dealing with data, which show signifi-
cant differences in spatial extent between dimensions (e.g., the Chua
circuit), this weighted approach is advantageous.

2. Correlation dimension
The structural complexity of a dynamical system is an impor-

tant characteristic of its long-term properties. This can be quantified
by its correlation dimension, where we measure the dimensionality
of the space populated by the trajectory.28 The correlation dimension
is based on the correlation integral

C(r) = lim
N→∞

1

N2

N∑
i,j=1

θ(r − |xi − xj|)

=

∫ r

0

d3r′c(r′), (8)

which describes the mean probability that two states in phase space
are close to each other at different time steps. The condition close to
is met if the distance between the two states is less than the threshold
distance r. θ represents the Heaviside function while c(r′) denotes
the standard correlation function. For self-similar strange attractors,
the following power-law relationship holds in a range of r:

C(r) ∝ rν . (9)

The correlation dimension is then measured by the scaling exponent
ν. We use the Grassberger Procaccia algorithm29 to calculate the cor-
relation dimension of our trajectories. The scaling region is derived
from the data itself as r ∈ [0.5, 2.5] ∗ sr, where the trajectory depen-

dent scaling factor sr is defined as sr = σ(u)/8.5. Thus, the scaling
region depends on the standard deviation σ of the input data u. This
approach is purely data driven and, therefore, does not require any
knowledge about the system.

Chaos 30, 063136 (2020); doi: 10.1063/5.0006869 30, 063136-4

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

3. Largest Lyapunov exponent
Apart from the structural properties, the temporal complexity

of a system is another crucial feature of its so-called long-term cli-
mate. For chaotic systems, the analysis of the Lyapunov exponents is
the most suitable approach for quantifying this. The Lyapunov expo-
nents λi describe the average rate of divergence of nearby points in
phase space and thus measure sensitivity to initial conditions. For
each dimension in phase space, there is one exponent. If the sys-
tem exhibits at least one positive Lyapunov exponent, it is classified
as chaotic, while the magnitude of the exponent quantifies the time
scale on which the system becomes unpredictable.30,31 Therefore, it
is sufficient for our analysis to determine only the largest Lyapunov
exponent λ1,

d(t) = C eλ1t. (10)

This makes the task computationally much easier than calculating
the full Lyapunov spectrum. Here, d(t) is the average distance or
separation of the initially nearby states at time t and C is a constant
that normalizes this initial separation. To calculate the largest Lya-
punov exponent, we use the Rosenstein algorithm without requiring
temporal separation of neighbors.32

D. Modified Lorenz system
As an example for replicating chaotic attractors, we apply reser-

voir computing to the Lorenz system.33 It has been developed as a

simplified model for atmospheric convection and exhibits chaos for
certain parameter ranges. The standard Lorenz system, however, is
symmetric in x and y with respect to the transformation x → −x
and y → −y. In order to study a more general example, we would
like to modify the Lorenz system such that this symmetry is broken.
This can be achieved by adding the term x to the z-component such
that the equations read as

ẋ = σ(y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz + x.

(11)

This system is called the modified Lorenz system. We utilize the
standard parameters for its chaotic regime σ = 10, β = 8/3, and
ρ = 28 and solve the equations using the fourth order Runge–Kutta
method with a time resolution 1t = 0.02.

In addition to the Lorenz system, we run the analysis in
Sec. III B also for a number of other nonlinear dynamical
systems34–40 from the class of autonomous dissipative flows, such as
the Rössler system,34 Rabinovich–Fabrikant equations,37 Rucklidge
system,40 Halvorsen cyclically symmetric system,41 and the Chua
circuit.38 All these systems are D = 3 dimensional but differ in prop-
erties like Lyapunov exponents, correlation dimension, size of the
attractor, and the nature of their nonlinearity. The parameters for
all systems except Lorenz and Rössler are taken from the textbook
Chaos and Time-Series Analysis by Sprott.41

FIG. 3. Boxplot of the correlation dimension for N = 500 realizations for the original setup (green—left) and different percentages of nodes removed. Positive numbers (e.g.,
Red [0.1]) represent a removal of the 10% largest Wout nodes, while negative numbers (e.g., Red [−0.1]) denote a removal of the 10% smallest Wout nodes. Consequently,
Red [−0.05, 0.05] stands for the nodes with the 5% largest and smallestWout values removed symmetrically. Red are the results for the system after node removal, while Ref
represents a smaller reference network. The yellow box on the right represents the error of the correlation dimension calculated from N = 500 simulated trajectories. The
boxes represent the 25%–75% percentile range, while the extended lines denote the 5% and 95% percentile, respectively. Red bars are indicating the mean values and red
dots show the median. In order to make a comparison easier, the bottom plot gives a zoomed in view of the 25%–75% percentile boxes and the respective median values.
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III. RESULTS
In our previous study,13 we showed that there is a strong vari-

ability in prediction quality by running the same setup with multiple
different random realizations of the reservoir. In order to quantify
the quality of a prediction, we analyzed both the exact short-term
prediction horizon and the reproduction of the long-term climate
of the system as measured by the correlation dimension and the
largest Lyapunov exponent. Our aim is now to reduce this variability
by applying the controlled node removal procedure and introduc-
ing an optimal choice for the nonlinear scaling parameter a in the
activation function as introduced in Sec. II B.

A. Controlled node removal
After showing that changing the overall network topology, e.g.,

by using small-world or scale-free networks, does not lead to bet-
ter predictions,13 we now focus on the differential properties of the
reservoir. To do this, we carry out the controlled node removal pro-
cedure as introduced in Sec. II B. Here, we stick to the default setup
by setting the nonlinear scaling parameter to a = 1 and, therefore,
do not rescale the activation function in order to separate effects.

Figure 3 shows a boxplot of the correlation dimension for
N = 500 realizations and compares the results for the original sys-
tem (green box on the left) to those after different steps of node
removal. In addition, the yellow box on the right shows the error of
the correlation dimension calculated from N = 500 simulated tra-
jectories with different initial conditions. The boxes represent the
25%–75% percentile range while the extended lines denote the 5%
and 95% percentile, respectively. Furthermore, the median values
are indicated by the red bars while the red dots show the mean
values. The labels on the x axis are defined in the following way:
Red [x] denotes the results for the system after removing the nodes
corresponding to the largest x% of the output weights if x > 0
and smallest x% if x < 0. Both positive and negative values at the
same time mean that we symmetrically remove nodes from both
“sides.” In contrast, the results shown for the Ref [x] labels are refer-
ence reservoirs, which are initially constructed and trained with less
nodes and calibrated to the same spectral radius as the reservoirs
after the node removal procedure.

The results indicate that removing the nodes that correspond to
the largest 10% of the output weights—Red [0.1]—improves the pre-
diction quality compared to the original setup—Orig. In particular,
the mean of the correlation dimension improves to 1.89 compared
to 1.85 in the default setup, while the median stays at 1.96. The
values of the simulated system are 1.97 and 1.97. This means that
predominantly bad predictions have been enhanced. Moreover, the
5% percentile significantly increases from around 1 to 1.6. This indi-
cates a lower number of outliers, where the reproduction of the
correlation dimension did not work. As this reduced reservoir now
effectively only has 180 nodes, it is interesting to analyze how a reser-
voir computing setup performs, which is initialized with only 180
nodes. We can see in Fig. 3 that for Ref [0.1], the reproduction of the
correlation dimension becomes slightly worse as compared to the
default setup with Dr = 200 nodes. This means that the improve-
ment due to the controlled node removal is not due to the changed
reservoir size but driven by the altered properties of the system. In
contrast, removing nodes corresponding to the smallest 10% of the

FIG. 4. Top plot: Distribution of the arguments of the activation function dur-
ing training period split into the contribution from the reservoir (green), the input
term (red), and total (blue). Bottom plot: Hyperbolic tangent for different nonlinear
scaling factors.

output weights has a slightly negative effect on the prediction qual-
ity. However, the results are still better than those of its reference
system with the same spectral radius and only 180 nodes initially.
Finally, we symmetrically removed the nodes corresponding to the
smallest and largest 5% of the output weights. As for the first case,
the prediction quality improves compared to the default system and
the performance is again better than its reference system.

Naturally the question arises, how results change if we remove
more than 10% of the nodes and if it is possible to achieve compa-
rable performance for smaller reservoir computing systems than the
original setup with Dr = 200 nodes. Thus, we calculated the results
for removing up to 60% of the nodes and, therefore, significantly
reduced network sizes. As a first step, we increase the percentage of
removed nodes to those associated with the largest 30% of the out-
put weights. We can see that the performance is comparable to the
larger original system while the number of outliers is still reduced.
This can be observed by the shorter length of the black line. More-
over, this also holds for the mean and median values. Those are 1.85
and 1.96, respectively, for the reduced system and 1.86 and 1.96 for
the original system. In addition, we also ran the same analysis for the
nodes belonging to the smallest 30% of output weights. Again, this
leads to significantly worse results than excluding nodes with large
weights.
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FIG. 5. Largest Lyapunov exponent scattered against correlation dimension for different values of the nonlinear scaling parameter a based on N = 300 realizations each.
The colors denote the forecast horizon of the predictions and the red ellipses show the three σ errors of the correlation dimension (σ = 0.024) and the largest Lyapunov
exponent (σ = 0.039) calculated from simulations of the actual system.

In contrast to the improvements in reproducing the correlation
dimension seen for the 10% and 30% cases, removing the nodes cor-
responding to the largest 60% of the output weights clearly leads to
lower prediction quality and a higher number of bad realizations.
The same can be observed for removing those nodes based on the
smallest 60% of the output weights, which is not shown here. It is
interesting to note that in both cases, the initially reduced refer-
ence system now performs better than in those cases, where a lower
percentage of nodes has been removed. Furthermore, symmetri-
cally removing the nodes reflecting both the largest and smallest
30% of the output weights leads to better results than removing
60% of either the largest or smallest. In addition, the results now
outperform those of the reference system. While the overall predic-
tion quality is notably worse than for the default system, it is very
interesting to notice that it is possible to still achieve good predic-
tion results with a significantly downscaled system. This can be very
beneficial when applications are computationally more challenging,
e.g., when the dimensionality of the dynamical system is high or the
trajectories are very long. Moreover, reducing the network size is
important when it comes to hardware implementations of reservoir
computing, such as neuromorphic computing.42 To make this more
practicable, Griffith et al.43 proposed very simple reservoir designs
with low connectivity. In contrast, our approach reduces the num-
ber of nodes Dr and, therefore, could add additional benefits for
hardware implementations.

Instead of calculating the correlation dimension, we ran the
same analysis also based on the forecast horizon of the predictions.

As the results look very similar to those of the correlation dimension,
they are not shown here.

B. Prediction variability and nonlinear scaling
parameter

As a next step, we focus on the activation function and examine
the effect of different choices for the nonlinear scaling parameter a.
The upper plot of Fig. 4 shows the distribution of the arguments
of the hyperbolic tangent activation function during the training
period. While the green area shows the influence of the reservoir
term Ar(t), the red area represents the impact of the external input
Winu(t). One can clearly see that the values of the reservoir term
are very small compared to those of the external input. In com-
monly used parameterizations of reservoir computing, the value for
the Win scale is 1—this means that the weights of the input function
are uniformly distributed between −1 and 1. However, our hyper-
parameter optimization in Sec. II A led to a Win scale of 0.17, and,
therefore, we can approximately say that the input scale of 1 in the
standard parameterization is equivalent to a value of a = 5.9 in our
setup, ignoring the comparably small influence of the reservoir term.
If we compare the scale of the distribution to the functional form
of the hyperbolic tangent in the lower plot, it becomes clear that
for a = 5.9, the majority of points lies in the saturation regime of
the function. Intuitively, one can expect that the best results can be
achieved, if a is chosen such that a large part of the distribution of
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the input arguments lies within the “dynamical” range of the hyper-
bolic tangent rather than in its saturation regime. Low values of
a, however, would lead to an approximately linear behavior of the
function and would thus not allow the system to adequately capture
the nonlinear dynamics of the input data.

In order to test this assumption empirically, we simulated
N = 300 realizations for different values of a. We then evaluated the
forecast horizon as well as the long-term climate for each realization.
The bottom right plot in Fig. 5 shows the largest Lyapunov expo-
nent scattered against the correlation dimension for the modified
Lorenz system. The results are based on the above described default
setup with the nonlinear scaling factor set to a = 5.9. The red ellipse
shows the three σ errors of the correlation dimension and the largest
Lyapunov exponent. Those are calculated from simulations of the
actual equations of the Lorenz system for N = 500 different initial
conditions. We can clearly see that for a = 5.9, all points are widely
spread outside this error ellipse and are, therefore, to be classified as
bad predictions. This is because they do not well resemble the long-
term climate. While some realizations lead to meaningful values for
the largest Lyapunov exponent, the correlation dimension is badly
reconstructed in particular.

To find the optimal value for a, we systematically analyzed mul-
tiple realizations for a number of different values of a between 0 and
10. This is shown in Fig. 6, where the blue points correspond to the
forecast horizon of the single realizations. In addition, the red and
green dots represent the average and median value across all real-
izations for a given value of a. We then determine the optimal value
for a such that the average is maximized. This leads to an optimal
value of around a = 1.0, which is in line with our expectation, given
that we carried out a hyperparameter optimization in the begin-
ning. For validating the above arguments, we turn back to Fig. 5.

FIG. 6. Forecast horizon of themodified Lorenz system plotted for different values
of the nonlinear scaling parameter a with N = 300 realizations for each a (blue).
Furthermore, the average (red) and the median (green) values are shown for each
value of a. The black horizontal line marks the optimal choice for a.

The bottom left plot shows the results for the optimal choice of a,
where many outliers and thus bad predictions disappeared. More-
over, there is now a compact cloud of points around the error ellipse,
and, therefore, the overall prediction quality is significantly better
as compared to the case a = 5.9 in the bottom right plot. In con-
trast, setting a = 0.1 and a = 0.5 as shown in the top plots leads to
a complete breakdown of the prediction ability of the system. The
reason that one can see only a few points in the top left plot is the
following. The prediction quality for a = 0.1 completely collapses
in most cases such that we obtain NaN results for our calculations
of the largest Lyapunov exponent. This happens in cases where the
prediction jumps between multiple points in a cyclical fashion. Con-
sequently, this leads to division by zero and generally only occurs
for unsuitable parameter choices—in this case for too small values
of a. As both examples in the top plots correspond to arguments of
the activation function being in the linear regime of the hyperbolic
tangent, this demonstrates that nonlinearity in the activation func-
tion is essential for predicting complex nonlinear systems. Besides
the results for the reproduction of the long-term climate, we also
show the forecast horizon encoded in the colors of the points. Equiv-
alently, the longest forecast horizon can be achieved by choosing the
optimal value for a, whereas smaller or larger values both lead to
worse results. Another interesting result is that realizations, which
well resemble the long-term climate, have a higher forecast horizon
than those failing to properly reconstruct the climate.

In addition to the Lorenz system, we carried out the same anal-
ysis for other nonlinear complex systems such as the Chua circuit,

FIG. 7. Blue dots: Optimal value for the nonlinear scaling parameter a—based
on the maximum of the average forecast horizon over all realizations for a given
a—plotted against the standard deviation σ of the input data. The vertical bars
denote the range of values for a, where the average forecast horizon is up to
10% lower than for the optimal a, while the horizontal bars represent the stan-
dard error. The red line represents a fit through the points. Dynamical systems
from left to right: Rabinovich–Fabrikant equations, Chua circuit, Complex Butterfly
attractor, Thomas’ cyclically symmetric attractor, Rössler system, Rucklidge sys-
tem, Halvorsenmodel, blended system: 0.4 * Modified Lorenz system + Halvorsen
Model, blended system: 0.5 * Modified Lorenz system + 3 * Rabinovich–Fabrikant
equations, blended system: Rössler + 2*Rucklidge system, Modified Lorenz
system, and Chen system.
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FIG. 8. Forecast horizon of the Chua circuit plotted for different values of the
nonlinear scaling parameter a with N = 300 realizations for each a (blue). Fur-
thermore, the average (red) and the median (green) values are shown for each
value of a. The black horizontal line marks the optimal choice for a.

the Rössler system, and other autonomous dissipative flows as sum-
marized in Sec. III B. Figure 7 shows the results for their optimal
values of a scattered against the standard deviation of the input.
In addition, we also constructed combinations of the systems used,
in order to fill the gap in between the standard deviations of the
Halvorsen model (0.53) and the modified Lorenz system (1.56). We
can clearly see that there is a relationship between the optimal a and
the input standard deviations. This makes intuitively sense, since the
dynamical regime of the hyperbolic tangent needs to be at a different
range for different distributions. Surprisingly, this seems to domi-
nate effects of other system-specific properties. Therefore, as a rule
of thumb, the optimal value for the nonlinear scaling parameter is

given by aopt = c/σ(Winu)b with b = 0.80 and c = 1.22 determined
by the fitted red curve. This provides a good starting point for the
hyperparameter optimization. However, it is always recommended
to run a system-specific analysis as shown in Fig. 6. On the example
of the Chua circuit, it turns out that good predictions cannot only
be achieved by values for a close to the result given by the above for-
mula for aopt. However, among those systems, the Chua circuit yields
optimal predictions not only for a = 7.05 following the above intro-
duced rule of thumb, but also shows another peak for small values
of around a = 0.75 as shown in Fig. 8. This might be related to the
fact that the equations of the Chua attractor only have a local nonlin-
earity at x = ±1, making the linear regime very successful anywhere
else. We also looked at a larger parameter range for a and found that
the average forecast horizon is monotonically declining for values
of a > 10, which are not shown here. Equivalent results for aopt are
gained by carrying out the same analysis for the above mentioned
systems based on the reproduction of the correlation dimension. In
particular, the results for the Chua circuit indicate that there is a
significant potential for system specific optimizations.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we used reservoir computing to predict and
reconstruct attractors for chaotic systems such as the Lorenz sys-
tem. While other recurrent neural network based approaches often
tend to be a black box, the architecture of reservoir computing is
simple enough that a systematic analysis of driving properties for
good predictions should be possible. The reason is that the reservoir
network itself is static, and, therefore, predictions are deterministic
and depend strongly on output weights once trained. Knowing this,
we made alterations to the reservoir network structure by removing
nodes and their respective edges based on their weights in the output
function. This was motivated by two aims: first, understanding how
the prediction quality depends on differential properties of the sys-
tem and, second, investigating by how much a reservoir computing
setup can be reduced while still delivering sufficient prediction per-
formance. We found that removing the nodes associated with the
largest 10% of the output weights improves the replication of the
climate of the Lorenz system and reduces variability in prediction
quality. This is somewhat counterintuitive, as large weights in the
output function suggest a strong influence of the respective node in
the aggregation of the (correct) output signal. These findings have
to be rather interpreted in the sense that some connections from the
nodes with the largest output weights obviously impede the reservoir
operations and lead to worse predictions. Further research is needed
to unveil the relevance and the impact of connections within the
reservoir on the prediction results. Furthermore, it turned out that
by applying the node removal framework, the network size can be
reduced by more than 30% at comparable prediction quality and up
to 60% while still delivering reasonable performance. This could be
helpful when it comes to hardware implementations of the reservoir,
as, for example, neuromorphic computing.42

Moreover, we varied the scaling of the hyperbolic tangent acti-
vation function. We showed that for widely used parameterizations
of reservoir computing, a high fraction of the arguments of the acti-
vation function is in the saturation regime of the hyperbolic tangent.
This leads to high variability and bad prediction quality, as the sys-
tem cannot adequately grasp the input dynamics. By tuning the scale
of the activation function, this problem can be addressed much more
conveniently and intuitively than by varying the spectral radius and
Win scale separately. We found a relationship between the optimal
choice of a and the standard deviation of the input, that can serve
as a rule of thumb and provide a good starting point for a complete
hyperparameter optimization. At the same time, a system-specific
analysis and optimization of the nonlinear scaling parameter can
unveil interesting results. An example for this was presented for
the Chua circuit, where we found not only one peak for the opti-
mal value of a but another—much smaller—regime where good
predictions can be achieved. We showed that a description of the
dependency of the optimal a on the standard deviation of the input
of the activation function does not only hold for the Lorenz system
but for other complex nonlinear systems as well.

Our results demonstrate that a large optimization potential lies
in a systematical refinement of the differential reservoir properties
for a given dataset. This was outlined on the examples of controlled
node removal and introduction of a scaling factor in the activation
function. Future research will focus on deepening the understanding
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of how other differential properties of the reservoir affect the qual-
ity of the predictions, with the aim to identify an optimal reservoir
in terms of (minimal) size, (best) prediction quality, and (highest)
statistical robustness.
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Controlling nonlinear dynamical 
systems into arbitrary states using 
machine learning
Alexander Haluszczynski1,2* & Christoph Räth3

Controlling nonlinear dynamical systems is a central task in many different areas of science and 
engineering. Chaotic systems can be stabilized (or chaotified) with small perturbations, yet existing 
approaches either require knowledge about the underlying system equations or large data sets as they 
rely on phase space methods. In this work we propose a novel and fully data driven scheme relying on 
machine learning (ML), which generalizes control techniques of chaotic systems without requiring a 
mathematical model for its dynamics. Exploiting recently developed ML-based prediction capabilities, 
we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states 
coming from any initial state. We outline and validate our approach using the examples of the Lorenz 
and the Rössler system and show how these systems can very accurately be brought not only to 
periodic, but even to intermittent and different chaotic behavior. Having this highly flexible control 
scheme with little demands on the amount of required data on hand, we briefly discuss possible 
applications ranging from engineering to medicine.

The possibility to control nonlinear chaotic systems into stable states has been a remarkable  discovery1,2. Based 
on the knowledge of the underlying equations, one can force the system from a chaotic state into a fixed point 
or periodic orbit by applying an external force. This can be achieved based on the pioneering approaches by Ott 
et al.1 or  Pyragas3. In the former, a parameter of the system is slightly changed when it is close to an unstable 
periodic orbit in phase space, while the latter continuously applies a force based on time delayed feedback. There 
have been many extensions of those basic approaches (see e.g. Boccaletti et al.4 and references therein) including 
“anti-control”  schemes5, that break up periodic or synchronized motion. However, all of them do not allow to 
control the system into well-specified, yet more complex target states such as chaotic or intermittent behavior. 
Further, these methods either require exact knowledge about the system, i.e. the underlying equations of motion, 
or rely on phase space techniques for which very long time series are necessary.

In recent years, tremendous progress has been made in the prediction of nonlinear dynamical systems by 
means of machine learning (ML). It has been demonstrated that not only exact short-term predictions over 
several Lyapunov times become possible, but also the long-term behavior of the system (its “climate”) can be 
reproduced with unexpected  accuracy6–12—even for very high-dimensional  systems13–15. While several ML tech-
niques have successfully been applied to time series prediction, reservoir computing (RC)16,17 can be considered 
as the so far best approach, as it combines often superior performance with intrinsic advantages like smaller 
network size, higher robustness, fast and comparably transparent  learning18 and the prospect of highly efficient 
hardware  realizations19–21.

Combining now ML-based predictions of nonlinear systems with manipulation steps, we propose in this study 
a novel, fully data-driven approach for controlling nonlinear dynamical systems. In contrast to previous methods, 
this allows to obtain a variety of target states including periodic, intermittent and chaotic ones. Furthermore, we 
do not require the knowledge of the underlying equations. Instead, it is sufficient to record some history of the 
system that allows the machine learning method to be sufficiently trained. As previously  outlined22, an adequate 
learning requires orders of magnitude less data than phase space methods.
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Results
We define the situation that requires to be controlled in the following way: A dynamical system with trajectory 
u is in state X , which may represent e.g. periodic, intermittent or chaotic behavior. Then, the system behavior 
changes into another state Y as a consequence of order parameter changes or some uncontrollable external force. 
The aim of a control mechanism is now to push the system back into its original state X , while the cause for the 
initial change in state is still present. This can be achieved by deriving a suitable control force F(t) which is applied 
while the system is in state Y . Deriving F(t) requires the knowledge of how the trajectory u(t) of the system 
would have evolved if the system was still in state X instead. This ’what if ’ scenario can be obtained by training a 
suitable machine learning technique on past observations of the system while being in state X . In this study, this 
is achieved by using reservoir  computing23, which is a recurrent neural network based approach. In principle, 
any other prediction method could be used instead as long as it is able to deliver good predictions. Once trained 
and synchronized, it can create predictions v(t) of arbitrary length from which the control force F(t) is derived as

where K scales the magnitude of the force. Since F(t) only depends on the (measured) coordinates u(t) and the 
ML prediction v(t), no mathematical model is required to control the system and thus the method is generally 
applicable as long as good predictions are available. The definition of the control force being dependent on the 
distance between the actual coordinate and a target coordinate is similar to what has been originally proposed by 
 Pyragas3. However, in our case the control is not limited to periodic orbits but can achieve a variety of dynamical 
target states. A step by step description of the method is given in Section 0.2. The control of nonlinear dynamical 
system is studied on the example of the Lorenz  system24, which is a model for atmospheric convection. Depending 
on the choice of parameters, the system exhibits e.g. periodic, intermittent or chaotic behavior. The equations read

and π ≡ (σ , ρ,β) are the order parameters that lead to a certain state and the trajectory is thus described by 
u(t) = (x(t), y(t), z(t))T . First, we simulate the Lorenz system with parameters π such that we obtain the desired 
initial state X . Second, we train reservoir computing on the resulting trajectory until time step ttrain . Then, the 
parameters are shifted to π∗ such that the system behavior changes to state Y at time step tshift . If tshift ≥ ttrain , 
the RC system is synchronized accordingly with the trajectory since ttrain . Synchronization means that the scalar 
states of the reservoir (see Eq. 5) are updated but the system is not re-trained. To control the system now back 
into state X , the correction force F(t) is derived in each time step based on the prediction v(t) and applied to the 
system by solving the differential equations of the system for the next time step including F(t)

where ḟ  is defined in Eq. (2). The knowledge of ḟ  is only required for the model system examples in this study but 
not for real world applications. The equations are solved using the 4th order Runge–Kutta method with a time 
resolution �t = 0.02 . Since still the parameters π∗ are used, the system would continue to exhibit the undesired 
state Y if the control force was 0. For the Lorenz system, the scaling constant set to K = 25. We did not optimize 
for K and empirically found that our method works for a wide range of choices. It is important to emphasize 
that a smaller choice for K does not necessarily mean that a smaller force is needed, because smaller values may 
allow for more separation of u(t) and v(t).

Figure  1 shows the results for the Lorenz system originally (left side) being in a chaotic state X 
( π = [σ = 10.0, ρ = 167.2,β = 8/3] ), which then changes to periodic behavior (middle) Y after ρ is changed 
to ρ = 166 . Then, the control mechanism is activated and the resulting attractor again resembles the original 
chaotic state (left). While ‘chaotification’ of periodic states has been achieved in the past, the resulting attrac-
tor generally did not correspond to a certain specified target state but just exhibited some chaotic behavior. 
Since we would like to not only rely on a visual assessment, we characterize the attractors using quantitative 

(1)F(t) = K(u(t)− v(t)),

(2)ẋ = σ(y − x); ẏ = x(ρ − z)− y; ż = xy − βz,

(3)u(t +�t) =

∫ t+�t

t
(ḟ (u(t̃),π∗)+ F(t̃))dt̃,

Figure 1.  Periodic to chaotic control. Top: 2D attractor representation in the x–y plane. Bottom: X coordinate 
time series. Left plots show the original chaotic state which changes to a periodic state (middle) after tuning the 
order parameter. After applying the control mechanism, the system is forced into a chaotic state again (right).
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measures. First, we calculate the largest Lyapunov exponent, which quantifies the temporal complexity of the 
trajectory, where a positive value indicates chaotic behavior. Second, we use the correlation dimension to assess 
the structural complexity of the attractor. Based on the two measures, the dynamical state of the system can be 
sufficiently specified for our analysis. Both techniques are described in the supporting information. Because a 
single example is not sufficiently meaningful, we perform our analysis statistically by evaluating 100 random 
realizations of the system at a time. The term ’random realization’ refers to different random drawings of the 
reservoir A and the input mapping Win , as well as the initial conditions for the Lorenz system. The first line in 
Table 1 shows the respective statistical results for the setup shown in Figure 1. The largest Lyapunov exponent 
of the original chaotic system �orig = 0.851 significantly reduces to �changed = 0.080 when the parameter change 
drives the system into a periodic state. After the control mechanism is switched on, the value for the resulting 
attractor moves back to �controlled = 0.0841 and thus is within one standard deviation from its original value. 
Same applies to the correlation dimension, which resembles its original value after control very well.

Since there is a clear distinction between the chaotic- and the periodic state, with the latter being simple in 
terms of its dynamics, the next step is to control the system between more complex dynamics. Therefore, we start 
simulate the Lorenz system again with parameters π = [σ = 10.0, ρ = 166.15,β = 8/3] that lead to intermittent 
 behavior25. This is shown in Fig. 2 on the left. Now ρ is changed to ρ = 167.2 , which results in a chaotic state 
(middle plots). The control mechanism is turned on and the resulting state shows again the intermittent behavior 
(right plots) as in the initial state. This is particularly visible in the lower plots where only the X coordinate is 
shown. While the trajectory mostly follows a periodic path, it is interrupted by irregular burst that occur from 
time to time. It is remarkable that bursts do not seem to occur more often given the chaotic dynamics of the 
underlying equations and parameter setup. However, the control works so well that it exactly enforces the desired 
dynamics. This observation can again be confirmed by looking at the statistical results in Table 1.

Just like in the first two examples, it was not possible before to control a system from one chaotic state to 
another particular chaotic state. To do this, we start with the parameter set ( π = [σ = 10.0, ρ = 28.0,β = 8/3] ) 
leading to a chaotic attractor which we call ChaoticA . When changing ρ to rho = 50.0 we obtain a different chaotic 
attractor ChaoticB . This time we use a different range of values for ρ compared to the previous examples in order 
to present a situation where not only the chaotic dynamics change, but also the size of the attractor significantly 

Table 1.  Statistical simulation over N = 100 random realizations of the systems evaluated in terms of the 
mean values of the largest Lyapunov exponent and the correlation dimension with corresponding standard 
deviations. The subscript orig denotes the initial state of the system, while changed refers to the new state after 
parameters changed and controlled means the system controlled back into the original state. The description 
left to the arrow is the original state that also will be achieved again after controlling the system whereas the 
state written right to the arrow corresponds to the changed condition.

Largest Lyapunov exponent � Correlation dimension ν

�orig �changed �controlled νorig νchanged νcontrolled

Periodic → Chaotic 0.851 ± 0.070 0.080 ± 0.075 0.841 ± 0.074 1.700 ± 0.065 1.052 ± 0.071 1.700 ± 0.061

Chaotic → Intermittent 0.571 ± 0.096 0.853 ± 0.053 0.614 ± 0.101 1.321 ± 0.086 1.678 ± 0.055 1.351 ± 0.091

ChaoticB → ChaoticA 0.479 ± 0.060 0.643 ± 0.075 0.478 ± 0.067 1.941 ± 0.038 1.948 ± 0.047 1.933 ± 0.040

ChaoticD → ChaoticC 0.819 ± 0.092 0.884 ± 0.058 0.822 ± 0.052 1.855 ± 0.069 1.959 ± 0.037 1.866 ± 0.050

Periodic ← Chaotic - 0.003 ± 0.012 0.844 ± 0.059 0.028 ± 0.110 1.001 ± 0.065 1.700 ± 0.071 1.001 ± 0.061

Chaotic ← Intermittent 0.851 ± 0.070 0.550 ± 0.094 0.828 ± 0.067 1.700 ± 0.086 1.326 ± 0.055 1.698 ± 0.091

ChaoticB ← ChaoticA 0.629 ± 0.069 0.446 ± 0.068 0.629 ± 0.066 1.948 ± 0.037 1.939 ± 0.049 1.956 ± 0.037

ChaoticD ← ChaoticC 0.881 ± 0.092 0.836 ± 0.058 0.880 ± 0.052 1.958 ± 0.069 1.864 ± 0.038 1.951 ± 0.050

Figure 2.  Chaotic to intermittent control. Top: 2D attractor representation in the x–y plane. Bottom: X 
coordinate time series. Left plots show the original intermittent state which changes to a chaotic state (middle) 
after tuning the order parameter. After applying the control mechanism, the system is forced into an intermittent 
state again (right).
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varies between the two states. The goal of the control procedure now is to not only force the dynamics of the 
system back to the behavior of the initial state ChaoticA , but also to return the attractor to its original size. Fig-
ure 3 shows that both goals succeed. This is also confirmed by the statistical results, indicating that the largest 
Lyapunov exponent of the controlled system is perfectly close to the one of the uncontrolled original state. For 
the correlation dimension, however, there are no significant deviations between the two chaotic states. To give a 
more striking illustration of the statistical analysis, we show the results for each of the 100 random realizations in 
Fig. 4. The main plot scatters the largest Lyapunov exponents as measured for the original parameter set π against 
those measured after the parameters have been changed to π∗ . While the blue dots represent the situation where 
the control mechanism is not active, the control has been switched on for the black dots. Furthermore, each pair 
of points is connected with a line that belongs to the same random realization. It is clearly visible that the control 
leads to a downwards shift of the cloud of points towards the diagonal, which is consistent to the respective aver-
age values of the largest Lyapunov exponent shown in Table 1. In addition, the inlay plot shows the same logic 
but for the volume of the attractors being measured in terms of the smallest cuboid that covers the attractor. 
The control mechanism consistently works for every single realization and reduces the volume of the attractor 
back towards the initially desired state. We successfully applied our approach to other examples of controlling a 
chaotic state to another chaotic state, e.g. by varying the parameter σ as shown in the supporting information.

The bottom half of Table 1 proves that our statements are also valid if one reverses the direction in the 
examples. For example, Periodic → Chaotic in the upper half of the table means, that an initially chaotic 
system changed into a periodic state and then gets controlled back into its initial chaotic state. In contrast, 
Periodic ← Chaotic in the lower half now means that the system initially is in the periodic state. It then shows 
chaotic behavior after the parameter change and finally is controlled back into the original periodic state—thus 
the opposite direction as above. It is evident that all examples also succeed in the opposite direction. This sup-
ports our claim that the prediction based control mechanism works for arbitrary states.

Figure 3.  Chaotic to chaotic control. Top: 2D attractor representation in the x–y plane. Bottom: X coordinate 
time series. Left plots show the original chaotic state which changes to a different chaotic state (middle) after 
tuning the order parameter. After applying the control mechanism, the system is forced into the initial chaotic 
state again (right).

Figure 4.  Chaotic to chaotic control ( ρ changed). Values on the x-axis denote the largest Lyapunov exponent 
�max of the original system state before parameter change for N = 100 random realizations. Y-axis reflects the 
values for �max after parameters changed from ρ = 28 to ρ = 50 . The blue dots correspond to the uncontrolled 
systems, while the black dots represent the controlled systems. Inlay plot shows the same for the volume of the 
attractor.
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In addition to the Lorenz system we also applied the method to another popular chaotic attractor: the Roessler 
 system26. The equations read

and we use parameters π = [a = 0.5, b = 2.0, c = 4.0] leading to a chaotic behavior. This serves as 
our initial state and the dynamics change to another chaotic state after the parameters are changed to 
π
∗ = [a = 0.55, b = 2.0, c = 4.0] . For the Roessler system, we use a time resolution of �t = 0.05 and K = 20. It 

can be seen in Fig. 5 that the control mechanism is successful. Again, the left plots represent the initial attractor 
resulting from the parameter set π . Switching to π∗ (middle plots) not only increases the size of the attractor in 
the x–z plane, but also significantly changes the pattern of the x-coordinate time series. Both, the appearance of 
the attractor and its x-coordinate pattern become similar to the initial attractor again after the control mechanism 
is active (right plots). The initial state with parameters π has properties [�max = 0.13, ν = 1.59] , which become 
[�max = 0.14, ν = 1.75] after parameters have been changed to π∗ . Turning on the control mechanism leads to 
[�max = 0.12, ν = 1.64].

Discussion
Our method has a wide range of potential applications in various areas. For example, in nonlinear technical sys-
tems such as rocket engines it can be used to prevent the engine from critical combustion  instabilities27,28. This 
could be achieved by detecting them based on the reservoir computing predictions (or any other suitable ML 
technique) and subsequently controlling the system into a more stable state. Here, the control force can be applied 
to the engine via its pressure valves. Another example would be medical devices such as pacemakers. The heart 
of a healthy human does not beat in a purely periodic fashion but rather shows features being typical for chaotic 
systems like  multifractality29 that vary significantly among individuals. While pacing protocols developed so far 
aim at keeping the diastolic interval  constant30, our general control scheme will emulate the patient-specific full 
behavior of the heart in healthy conditions. The control scheme could therefore be used to develop personalized 
pacemakers that do not just stabilize the heartbeat to periodic  behavior31–33, but may rather adjust the heartbeat 
to the individual needs of the patients.

In conclusion, our machine learning enhanced method allows for an unprecedented flexible control of dynam-
ical systems and has thus the potential to extend the range of applications of chaos inspired control schemes to 
a plethora of new real-world problems.

Methods
Reservoir computing. RC or echo state  networks17,34,35 is an artificial recurrent neural network based 
approach, which builds on a static internal network called reservoir A . Static means that the nodes and edges are 
kept fixed once the network has been initially created. This property makes RC computationally very efficient, as 
only its linear output layer is being optimized in the training process. The reservoir A is constructed as a sparse 
Erdös–Renyi random  network36 with Dr = 300 nodes that are connected with a probability p = 0.02. In order to 
feed the D = 3 dimensional input data u(t) into the reservoir A , we set up an Dr × D input mapping matrix Win , 
which defines how strongly each input dimension influences every single node. The dynamics of the network are 
represented by its Dr × 1 dimensional scalar states r(t) evolving according to the recurrent equation

Output v(t +�t) is created by mapping back r(t) using a linear output function Wout such that

(4)ẋ = −(y + z); ẏ = x + ay; ż = b+ (x − c)z

(5)r(t +�t) = tanh(Ar(t)+Winu(t)).

(6)v(t) = Wout(r̃(t),P) = Pr̃(t),

Figure 5.  Chaotic to chaotic control for the Roessler system. Top: 2D attractor representation in the x–z plane. 
Bottom: X coordinate time series. Left plots show the original chaotic state which changes to a different chaotic 
state (middle) after tuning the order parameter. After applying the control mechanism, the system is forced into 
the initial chaotic state again (right).
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where r̃ = {r, r2} . The matrix P is determined in the training process. This is done by acquiring a sufficient num-
ber of reservoir states r(tw . . . tw + tT ) and then choosing P such that the output v of the reservoir is as close as 
possible to the known real data v(tw . . . tw + tT ) . For this we use Ridge regression, which minimizes

where β is the regularization constant that prevents from overfitting by penalizing large values of the fitting 
parameters. The training process only involves the linear output layer and therefore is fast compared to other ML 
methods. Replacing u(t) in the tanh activation function above by Pr̃(t) allows to create predictions of arbitrary 
length due to the recursive equation for the reservoir states r(t):

Further details including the choices for the hyperparameters are presented in the supporting information. 
We use a washout phase of 1000 time steps, a training period of 5000 time steps and let the parameter change 
of the dynamical system from π to π∗ happen immediately after the training period and thus the prediction is 
needed from this moment on. However, it is not necessary that the network is trained on the full history until 
the parameter change happened. In general, it needs to be sufficiently trained and can then be synchronized 
based on the recorded trajectory after the training ended. The prediction is carried out for 10,000 time steps.

It has been shown by Bompas et al.18 that the performance of reservoir computing does not strongly depend 
on the precision of the data. Hence, measurement noise and sensitive dependence on initial conditions for chaotic 
systems is not a problem when it comes to real world applications of the proposed method.

Control mechanism. The concrete steps of the application of the control mechanism to the examples in 
our study are shown in Algorithm 1. This is the simplest setup possible, where only one long prediction for v(t) 
is performed before the control force is activated. We also successfully tested multiple more complicated setups, 
e.g. where the control force is not immediately switched on and the system is running on the new parameters π∗ 
(and thus state Y ) for a while, where the reservoir computing prediction is updated after synchronizing the RC 
model with the realized trajectory since the last training or where the force is not applied in every time step. The 
control phase is run for 10,000 time steps.

These steps also apply for real world systems, where no mathematical model is available. The only requirement 
is sufficient data of the system recorded while being in the desired dynamical state X.

Correlation dimension. To characterize the attractor and therefore its dynamical state we rely on quanti-
tative measures. For this, we are looking at the long-term properties of the attractor rather than its short-term 
trajectory. One important aspect of the long-term behavior is the structural complexity. This can be assessed by 
calculating the correlation dimension of the attractor, where we measure the dimensionality of the space popu-
lated by the  trajectory37. The correlation dimension is based on the correlation integral

(7)
∑

−T≤t≤0

� Wout(r̃(t),P)− vR(t) �
2 − β� P �2,

(8)
r(t +�t) = tanh(Ar(t)+WinWout(r̃(t),P))

= tanh(Ar(t)+WinPr̃(t)).
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where θ is the Heaviside function and c(r′) denotes the standard correlation function. The correlation integral 
represents the mean probability that two states in phase space are close to each other at different time steps. This 
is the case if the distance between the two states is less than the threshold distance r. The correlation dimension 
ν is then defined by the power-law relationship

For self-similar strange attractors, this relationship holds for a certain range of r, which therefore needs to be 
properly calibrated. As we are finally only interested in comparisons, precision with regards to absolute values is 
not essential here. We use the Grassberger Procaccia  algorithm38 to calculate the correlation dimension.

Lypunov exponents. The temporal complexity of a system can be measured by its Lyapunov exponents �i , 
which describe the average rate of divergence of nearby points in phase space, and thus measure sensitivity to 
initial conditions. There is one exponent for each dimension in phase space. If the system exhibits at least one 
positive Lyapunov exponent, it is classified as chaotic. The magnitudes of �i quantify the time scale on which the 
system becomes  unpredictable39,40. Since at least one positive exponent is the requirement for being classified as 
chaotic, it is sufficient for our analysis to calculate only the largest Lyapunov exponent �max

This makes the task computationally much easier than determining the full Lyapunov spectrum. We use the 
Rosenstein  algorithm41 to obtain it. In essence, we track the distance d(t) of two initially nearby states in phase 
space. The constant C normalizes the initial separation. As for the correlation dimension, we are interested in a 
relative comparison that characterizes states of the system rather than the exact absolute values. It is important 
to point out that both measures—the correlation dimension and the largest Lyapunov exponent—are calculated 
purely based on data and do not require any knowledge of the underlying equations.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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