Logo Logo
Help
Contact
Switch language to German
A multi-scale imaging approach to understand osteoarthritis development
A multi-scale imaging approach to understand osteoarthritis development
X-ray phase-contrast imaging is an innovative and advanced imaging method. Contrary to conventional radiology, where the image contrast is primarily determined by X-ray attenuation, phase-contrast images contain additional information generated by the phase shifts or refraction of the X-rays passing through matter. The refractive effect on tissue samples is orders of magnitude higher than the absorption effect in the X-ray energy range used in biomedical imaging. This technique makes it possible to produce excellent and enhanced image contrast, particularly when examining soft biological tissues or features with similar X-ray attenuation properties. In combination with high spatial resolution detector technology and computer tomography, X-ray phase-contrast imaging has been proved to be a powerful method to examine tissue morphology and the evolution of pathologies three-dimensionally, with great detail and without the need of contrast agents. This Thesis work has focused on developing an accurate, multi-scale X-ray-based methodology for imaging and characterizing the early stages of osteoarthritis. X-ray phase-contrast images acquired at different spatial resolutions provide unprecedented insights into cartilage and the development of its degeneration, i.e., osteoarthritis. Other types of X-ray phase-contrast imaging techniques and setups using spatial resolutions ranging from micrometer down to nanometer were applied. Lower spatial resolutions allow large sample coverage and comprehensive representations, while the nanoscale analysis provides a precise depiction of anatomical details and pathological signs. X-ray phase-contrast results are correlated to data obtained, on the same specimens, by standard laboratory methods, such as histology and transmission electron microscopy. Furthermore, X-ray phase-contrast images of cartilage were acquired using different X-ray sources and results were compared in terms of image quality. It was shown that with the use of synchrotron radiation, more detailed images and much faster data acquisitions could be achieved. A second focus in this Thesis work has been the investigation of the reaction of healthy and degenerated cartilage under different physical pressures, simulating the different levels of stress to which the tissue is subject during daily movements. A specifically designed setup was used to dynamically study cartilage response to varying pressures with X-ray phase-contrast micro-computed tomography, and a fully volumetric and quantitative methodology to accurately describe the tissue morphological variations. This study revealed changes in the behavior of the cartilage cell structure, which differ between normal and osteoarthritic cartilage tissues. The third focus of this Thesis is the realization of an automated evaluation procedure for the discrimination of healthy and cartilage images with osteoarthritis. In recent years, developments in neural networks have shown that they are excellently suited for image classification tasks. The transfer learning method was applied, in which a pre-trained neural network with cartilage images is further trained and then used for classification. This enables a fast, robust and automated grouping of images with pathological findings. A neural network constructed in this way could be used as a supporting instrument in pathology. X-ray phase-contrast imaging computed tomography can provide a powerful tool for a fully 3D, highly accurate and quantitative depiction and characterization of healthy and early stage-osteoarthritic cartilage, supporting the understanding of the development of osteoarthritis., Röntgen-Phasenkontrast-Bildgebung ist eine innovative und weiterführende Bildgebungsmethode. Im Gegensatz zu herkömlichen Absorptions-Röntgenaufnahmen, wie sie in der Radiologie verwendet werden, wird der Kontrast bei dieser Methode aus dem Effekt der Phasenverschiebung oder auch Brechung der Röngtenstrahlen gebildet. Der Brechungseffekt bei Gewebeproben ist um ein Vielfaches höher als der Absorptionseffekt des elektromagnetischen Spektrums der Röntgenstrahlen. Diese Methode ermöglicht die Darstellung von großen Kontraste im Gewebe. Unter Verwendung eines hochauflösenden Detektors und in Kombination mit der Computer-Tomographie, ist Phasenkontrast-Bildgebung eine sehr gute Methode um Knorpelgewebe und Arthrose im Knorpel zu untersuchen. Diese Arbeit beschreibt primär ein Verfahren zur Darstellung arthrotischen Knorpels im Anfangsstadium. Die mit verschiedenen Auflösungen und 3D-Phasen-Kontrast-Methoden produzierten Aufnahmen ermöglichen einen noch nie dagewesenen Einblick in den Knorpel und die Entwicklung von Arthrose im Anfangsstadium. Hierbei kam die propagationsbasierte Phasenkontrastmethode mit einer Auflösung im mikrometer Bereich und die (Nano)-Holotomographie-Methode mit einer Auflösung im Submicrometer Bereich zum Einsatz. Durch Auflösung im mikrometer Bereich kann ein großes Volumen im Knorpel gescannt werden, während die Nano-Holotomographie Methode eine sehr große Detailauflösung aufweißt. Die Phasenkontrast-Aufnahmen werden mit zwei anderen wissenschaftlichen Methoden verglichen: mikroskopische Abbildungen histologisch aufgearbeiteter Knorpelproben und Aufnahmen eines Transmissionselektroskop zeigen sehr große Übereinstimmungen zur Röntgen-Phasenkontrast-Bildgebung. Desweiteren wurden Phasenkontrast-Aufnahmen von Knorpel aus unterschiedlichen Röntgenquellen verglichen. Hierbei zeigte sich, dass mit Hilfe des Teilchenbeschleunigers (Synchrotron) detailreichere und schnellere Aufnahmen erzielt werden können. Bilder aus Flüssig-Metall-Quellen zeigen sich durchaus von guter Qualität, erfordern jedoch sehr lange Aufnahmezeiten. In dieser Arbeit wird zudem das Verhalten von Knorpelgewebe, welches ein Anfangsstadium von Arthrose aufweist, unter physikalischem Druck untersucht. Hierfür wurden 3D-Computertomographie-Aufnahmen von komprimiertem Knorpelgewebe angefertig und mit Aufnahmen ohne Komprimierung verglichen. Ein quantitativer Vergleich machte Veränderungen des Verhaltens der Knorpelzellstruktur (Chondronen) sichtbar. Es konnte gezeigt werden, dass Chondrone bei arthrotischem Knorpel ein verändertes Kompressionsverhalten haben. Der dritte Fokus dieser Arbeit liegt auf der automatisierten Auswertung von Aufnahmen gesunden und arthrotischen Knorpelgewebes. Die Entwicklungen im Bereich der Neuronale Netze zeigten in den letzten Jahren, dass diese sich hervoragend für Bildklassifizierungsaufgaben eignen. Es wurde die Methode des transferierenden Lernens angewandt, bei der ein vortrainiertes Neuronales Netz mit Knorpelbildern weitertrainiert und anschließend zur Klassifizierung eingesetzt wird. Dadurch ist eine schnelle, robuste und automatisierte Gruppierung von Bildern mit pathologischen Befunden möglich. Ein derart konstruiertes Neuronales Netz könnte als unterstützendes Instrument in der Pathologie angewandt werden. Röntgen-Phasenkontrast-CT kann ein leistungsstarkes Werkzeug für eine umfassende, hochpräzise und quantitative 3D-Darstellung und Charakterisierung von gesundem Knorpel und athrotischem Knorpel im Frühstadium bieten, um das Verständnis der Entwicklung von Osteoarthritis zu erweitern.
Not available
Stroebel, Johannes
2021
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Stroebel, Johannes (2021): A multi-scale imaging approach to understand osteoarthritis development. Dissertation, LMU München: Faculty of Physics
[img]
Preview
PDF
Stroebel_Johannes.pdf

9MB

Abstract

X-ray phase-contrast imaging is an innovative and advanced imaging method. Contrary to conventional radiology, where the image contrast is primarily determined by X-ray attenuation, phase-contrast images contain additional information generated by the phase shifts or refraction of the X-rays passing through matter. The refractive effect on tissue samples is orders of magnitude higher than the absorption effect in the X-ray energy range used in biomedical imaging. This technique makes it possible to produce excellent and enhanced image contrast, particularly when examining soft biological tissues or features with similar X-ray attenuation properties. In combination with high spatial resolution detector technology and computer tomography, X-ray phase-contrast imaging has been proved to be a powerful method to examine tissue morphology and the evolution of pathologies three-dimensionally, with great detail and without the need of contrast agents. This Thesis work has focused on developing an accurate, multi-scale X-ray-based methodology for imaging and characterizing the early stages of osteoarthritis. X-ray phase-contrast images acquired at different spatial resolutions provide unprecedented insights into cartilage and the development of its degeneration, i.e., osteoarthritis. Other types of X-ray phase-contrast imaging techniques and setups using spatial resolutions ranging from micrometer down to nanometer were applied. Lower spatial resolutions allow large sample coverage and comprehensive representations, while the nanoscale analysis provides a precise depiction of anatomical details and pathological signs. X-ray phase-contrast results are correlated to data obtained, on the same specimens, by standard laboratory methods, such as histology and transmission electron microscopy. Furthermore, X-ray phase-contrast images of cartilage were acquired using different X-ray sources and results were compared in terms of image quality. It was shown that with the use of synchrotron radiation, more detailed images and much faster data acquisitions could be achieved. A second focus in this Thesis work has been the investigation of the reaction of healthy and degenerated cartilage under different physical pressures, simulating the different levels of stress to which the tissue is subject during daily movements. A specifically designed setup was used to dynamically study cartilage response to varying pressures with X-ray phase-contrast micro-computed tomography, and a fully volumetric and quantitative methodology to accurately describe the tissue morphological variations. This study revealed changes in the behavior of the cartilage cell structure, which differ between normal and osteoarthritic cartilage tissues. The third focus of this Thesis is the realization of an automated evaluation procedure for the discrimination of healthy and cartilage images with osteoarthritis. In recent years, developments in neural networks have shown that they are excellently suited for image classification tasks. The transfer learning method was applied, in which a pre-trained neural network with cartilage images is further trained and then used for classification. This enables a fast, robust and automated grouping of images with pathological findings. A neural network constructed in this way could be used as a supporting instrument in pathology. X-ray phase-contrast imaging computed tomography can provide a powerful tool for a fully 3D, highly accurate and quantitative depiction and characterization of healthy and early stage-osteoarthritic cartilage, supporting the understanding of the development of osteoarthritis.

Abstract

Röntgen-Phasenkontrast-Bildgebung ist eine innovative und weiterführende Bildgebungsmethode. Im Gegensatz zu herkömlichen Absorptions-Röntgenaufnahmen, wie sie in der Radiologie verwendet werden, wird der Kontrast bei dieser Methode aus dem Effekt der Phasenverschiebung oder auch Brechung der Röngtenstrahlen gebildet. Der Brechungseffekt bei Gewebeproben ist um ein Vielfaches höher als der Absorptionseffekt des elektromagnetischen Spektrums der Röntgenstrahlen. Diese Methode ermöglicht die Darstellung von großen Kontraste im Gewebe. Unter Verwendung eines hochauflösenden Detektors und in Kombination mit der Computer-Tomographie, ist Phasenkontrast-Bildgebung eine sehr gute Methode um Knorpelgewebe und Arthrose im Knorpel zu untersuchen. Diese Arbeit beschreibt primär ein Verfahren zur Darstellung arthrotischen Knorpels im Anfangsstadium. Die mit verschiedenen Auflösungen und 3D-Phasen-Kontrast-Methoden produzierten Aufnahmen ermöglichen einen noch nie dagewesenen Einblick in den Knorpel und die Entwicklung von Arthrose im Anfangsstadium. Hierbei kam die propagationsbasierte Phasenkontrastmethode mit einer Auflösung im mikrometer Bereich und die (Nano)-Holotomographie-Methode mit einer Auflösung im Submicrometer Bereich zum Einsatz. Durch Auflösung im mikrometer Bereich kann ein großes Volumen im Knorpel gescannt werden, während die Nano-Holotomographie Methode eine sehr große Detailauflösung aufweißt. Die Phasenkontrast-Aufnahmen werden mit zwei anderen wissenschaftlichen Methoden verglichen: mikroskopische Abbildungen histologisch aufgearbeiteter Knorpelproben und Aufnahmen eines Transmissionselektroskop zeigen sehr große Übereinstimmungen zur Röntgen-Phasenkontrast-Bildgebung. Desweiteren wurden Phasenkontrast-Aufnahmen von Knorpel aus unterschiedlichen Röntgenquellen verglichen. Hierbei zeigte sich, dass mit Hilfe des Teilchenbeschleunigers (Synchrotron) detailreichere und schnellere Aufnahmen erzielt werden können. Bilder aus Flüssig-Metall-Quellen zeigen sich durchaus von guter Qualität, erfordern jedoch sehr lange Aufnahmezeiten. In dieser Arbeit wird zudem das Verhalten von Knorpelgewebe, welches ein Anfangsstadium von Arthrose aufweist, unter physikalischem Druck untersucht. Hierfür wurden 3D-Computertomographie-Aufnahmen von komprimiertem Knorpelgewebe angefertig und mit Aufnahmen ohne Komprimierung verglichen. Ein quantitativer Vergleich machte Veränderungen des Verhaltens der Knorpelzellstruktur (Chondronen) sichtbar. Es konnte gezeigt werden, dass Chondrone bei arthrotischem Knorpel ein verändertes Kompressionsverhalten haben. Der dritte Fokus dieser Arbeit liegt auf der automatisierten Auswertung von Aufnahmen gesunden und arthrotischen Knorpelgewebes. Die Entwicklungen im Bereich der Neuronale Netze zeigten in den letzten Jahren, dass diese sich hervoragend für Bildklassifizierungsaufgaben eignen. Es wurde die Methode des transferierenden Lernens angewandt, bei der ein vortrainiertes Neuronales Netz mit Knorpelbildern weitertrainiert und anschließend zur Klassifizierung eingesetzt wird. Dadurch ist eine schnelle, robuste und automatisierte Gruppierung von Bildern mit pathologischen Befunden möglich. Ein derart konstruiertes Neuronales Netz könnte als unterstützendes Instrument in der Pathologie angewandt werden. Röntgen-Phasenkontrast-CT kann ein leistungsstarkes Werkzeug für eine umfassende, hochpräzise und quantitative 3D-Darstellung und Charakterisierung von gesundem Knorpel und athrotischem Knorpel im Frühstadium bieten, um das Verständnis der Entwicklung von Osteoarthritis zu erweitern.