Logo Logo
FAQ
Contact
Switch language to German
Indexing and knowledge discovery of gaussian mixture models and multiple-instance learning
Indexing and knowledge discovery of gaussian mixture models and multiple-instance learning
Due to the increasing quantity and variety of generated and stored data, the manual and automatic analysis becomes a more and more challenging task in many modern applications, like biometric identification and content-based image retrieval. In this thesis, we consider two very typical, related inherent structures of objects: Multiple-Instance (MI) objects and Gaussian Mixture Models (GMM). In both approaches, each object is represented by a set. For MI, each object is a set of vectors from a multi-dimensional space. For GMM, each object is a set of multi-variate Gaussian distribution functions, providing the ability to approximate arbitrary distributions in a concise way. Both approaches are very powerful and natural as they allow to express (1) that an object is additively composed from several components or (2) that an object may have several different, alternative kinds of behavior. Thus we can model e.g. an image which may depict a set of different things (1). Likewise, we can model a sports player who has performed differently at different games (2). We can use GMM to approximate MI objects and vice versa. Both ways of approximation can be appealing because GMM are more concise whereas for MI objects the single components are less complex. A similarity measure quantifies similarities between two objects to assess how much alike these objects are. On this basis, indexing and similarity search play essential roles in data mining, providing efficient and/or indispensable supports for a variety of algorithms such as classification and clustering. This thesis aims to solve challenges in the indexing and knowledge discovery of complex data using MI objects and GMM. For the indexing of GMM, there are several techniques available, including universal index structures and GMM-specific methods. However, the well-known approaches either suffer from poor performance or have too many limitations. To make use of the parameterized properties of GMM and tackle the problem of potential unequal length of components, we propose the Gaussian Components based Index (GCI) for efficient queries on GMM. GCI decomposes GMM into their components, and stores the n-lets of Gaussian combinations that have uniform length of parameter vectors in traditional index structures. We introduce an efficient pruning strategy to filter unqualified GMM using the so-called Matching Probability (MP) as the similarity measure. MP sums up the joint probabilities of two objects all over the space. GCI achieves better performance than its competitors on both synthetic and real-world data. To further increase its efficiency, we propose a strategy to store GMM components in a normalized way. This strategy improves the ability of filtering unqualified GMM. Based on the normalized transformation, we derive a set of novel similarity measures for GMM. Since MP is not a metric (i.e., a symmetric, positive definite distance function guaranteeing the triangle inequality), which would be essential for the application of various analysis techniques, we introduce Infinite Euclidean Distance (IED) for probability distribution functions, a metric with a closed-form expression for GMM. IED allows us to store GMM in well-known metric trees like the Vantage-Point tree or M-tree, which facilitate similarity search in sublinear time by exploiting the triangle inequality. Moreover, analysis techniques that require the properties of a metric (e.g. Multidimensional Scaling) can be applied on GMM with IED. For MI objects which are not well-approximated by GMM, we introduce the potential densities of instances for the representation of MI objects. Based on that, two joint Gaussian based measures are proposed for MI objects and we extend GCI on MI objects for efficient queries as well. To sum up, we propose in this thesis a number of novel similarity measures and novel indexing techniques for GMM and MI objects, enabling efficient queries and knowledge discovery on complex data. In a thorough theoretic analysis as well as extensive experiments we demonstrate the superiority of our approaches over the state-of-the-art with respect to the run-time efficiency and the quality of the result., Angesichts der steigenden Quantität und Vielfalt der generierten und gespeicherten Daten werden manuelle und automatisierte Analysen in vielen modernen Anwendungen eine zunehmend anspruchsvolle Aufgabe, wie z.B. biometrische Identifikation und inhaltbasierter Bildzugriff. In dieser Arbeit werden zwei sehr typische und relevante inhärente Strukturen von Objekten behandelt: Multiple-Instance-Objects (MI) und Gaussian Mixture Models (GMM). In beiden Anwendungsfällen wird das Objekt in Form einer Menge dargestellt. Bei MI besteht jedes Objekt aus einer Menge von Vektoren aus einem multidimensionalen Raum. Bei GMM wird jedes Objekt durch eine Menge von multivariaten normalverteilten Dichtefunktionen repräsentiert. Dies bietet die Möglichkeit, beliebige Wahrscheinlichkeitsverteilungen in kompakter Form zu approximieren. Beide Ansätze sind sehr leistungsfähig, denn sie basieren auf einfachsten Ideen: (1) entweder besteht ein Objekt additiv aus mehreren Komponenten oder (2) ein Objekt hat unterschiedliche alternative Verhaltensarten. Dies ermöglicht es uns z.B. ein Bild zu repräsentieren, welches unterschiedliche Objekte und Szenen zeigt (1). In gleicher Weise können wir einen Sportler modellieren, der bei verschiedenen Wettkämpfen unterschiedliche Leistungen gezeigt hat (2). Wir können MI-Objekte durch GMM approximieren und auch der umgekehrte Weg ist möglich. Beide Vorgehensweisen können sehr ansprechend sein, da GMM im Vergleich zu MI kompakter sind, wogegen in MI-Objekten die einzelnen Komponenten weniger Komplexität aufweisen. Ein ähnlichkeitsmaß dient der Quantifikation der Gemeinsamkeit zwischen zwei Objekten. Darauf basierend spielen Indizierung und ähnlichkeitssuche eine wesentliche Rolle für die effiziente Implementierung von einer Vielzahl von Klassifikations- und Clustering-Algorithmen im Bereich des Data Minings. Ziel dieser Arbeit ist es, die Herausforderungen bei Indizierung und Wissensextraktion von komplexen Daten unter Verwendung von MI Objekten und GMM zu bewältigen. Für die Indizierung der GMM stehen verschiedene universelle und GMM-spezifische Indexstrukuren zur Verfügung. Jedoch leiden solche bekannten Ansätze unter schwacher Leistung oder zu vielen Einschränkungen. Um die parametrisieren Eigenschaften der GMM auszunutzen und dem Problem der möglichen ungleichen Komponentenlänge entgegenzuwirken, präsentieren wir das Verfahren Gaussian Components based Index (GCI), welches effizienten Abfrage auf GMM ermöglicht. GCI zerlegt dabei ein GMM in Parameterkomponenten und speichert alle möglichen Kombinationen mit einheitlicher Vektorlänge in traditionellen Indexstrukturen. Wir stellen ein effizientes Pruningverfahren vor, um ungeeignete GMM unter Verwendung der sogenannten Matching Probability (MP) als ähnlichkeitsma\ss auszufiltern. MP errechnet die Summe der gemeinsamen Wahrscheinlichkeit zweier Objekte aus dem gesamten Raum. CGI erzielt bessere Leistung als konkurrierende Verfahren, sowohl in Bezug auf synthetische, als auch auf reale Datensätze. Um ihre Effizienz weiter zu verbessern, stellen wir eine Strategie zur Speicherung der GMM-Komponenten in normalisierter Form vor. Diese Strategie verbessert die Fähigkeit zum Ausfiltern ungeeigneter GMM. Darüber hinaus leiten wir, basierend auf dieser Transformation, neuartige ähnlichkeitsmaße für GMM her. Da MP keine Metrik (d.h. eine symmetrische, positiv definite Distanzfunktion, die die Dreiecksungleichung garantiert) ist, dies jedoch unentbehrlich für die Anwendung mehrerer Analysetechniken ist, führen wir Infinite Euclidean Distance (IED) ein, ein Metrik mit geschlossener Ausdrucksform für GMM. IED erlaubt die Speicherung der GMM in Metrik-Bäumen wie z.B. Vantage-Point Trees oder M-Trees, die die ähnlichkeitssuche in sublinear Zeit mit Hilfe der Dreiecksungleichung erleichtert. Außerdem können Analysetechniken, die die Eigenschaften einer Metrik erfordern (z.B. Multidimensional Scaling), auf GMM mit IED angewandt werden. Für MI-Objekte, die mit GMM nicht in außreichender Qualität approximiert werden können, stellen wir Potential Densities of Instances vor, um MI-Objekte zu repräsentieren. Darauf beruhend werden zwei auf multivariater Gaußverteilungen basierende Maße für MI-Objekte eingeführt. Außerdem erweitern wir GCI für MI-Objekte zur effizienten Abfragen. Zusammenfassend haben wir in dieser Arbeit mehrere neuartige ähnlichkeitsmaße und Indizierungstechniken für GMM- und MI-Objekte vorgestellt. Diese ermöglichen effiziente Abfragen und die Wissensentdeckung in komplexen Daten. Durch eine gründliche theoretische Analyse und durch umfangreiche Experimente demonstrieren wir die überlegenheit unseres Ansatzes gegenüber anderen modernen Ansätzen bezüglich ihrer Laufzeit und Qualität der Resultate.
Knowledge Discovery in Database, Similarity Measures, Indexing, Gaussian Mixture Models, Multiple-Instance Objects
Zhou, Linfei
2018
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Zhou, Linfei (2018): Indexing and knowledge discovery of gaussian mixture models and multiple-instance learning. Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics
[thumbnail of Zhou_Linfei.pdf]
Preview
PDF
Zhou_Linfei.pdf

4MB

Abstract

Due to the increasing quantity and variety of generated and stored data, the manual and automatic analysis becomes a more and more challenging task in many modern applications, like biometric identification and content-based image retrieval. In this thesis, we consider two very typical, related inherent structures of objects: Multiple-Instance (MI) objects and Gaussian Mixture Models (GMM). In both approaches, each object is represented by a set. For MI, each object is a set of vectors from a multi-dimensional space. For GMM, each object is a set of multi-variate Gaussian distribution functions, providing the ability to approximate arbitrary distributions in a concise way. Both approaches are very powerful and natural as they allow to express (1) that an object is additively composed from several components or (2) that an object may have several different, alternative kinds of behavior. Thus we can model e.g. an image which may depict a set of different things (1). Likewise, we can model a sports player who has performed differently at different games (2). We can use GMM to approximate MI objects and vice versa. Both ways of approximation can be appealing because GMM are more concise whereas for MI objects the single components are less complex. A similarity measure quantifies similarities between two objects to assess how much alike these objects are. On this basis, indexing and similarity search play essential roles in data mining, providing efficient and/or indispensable supports for a variety of algorithms such as classification and clustering. This thesis aims to solve challenges in the indexing and knowledge discovery of complex data using MI objects and GMM. For the indexing of GMM, there are several techniques available, including universal index structures and GMM-specific methods. However, the well-known approaches either suffer from poor performance or have too many limitations. To make use of the parameterized properties of GMM and tackle the problem of potential unequal length of components, we propose the Gaussian Components based Index (GCI) for efficient queries on GMM. GCI decomposes GMM into their components, and stores the n-lets of Gaussian combinations that have uniform length of parameter vectors in traditional index structures. We introduce an efficient pruning strategy to filter unqualified GMM using the so-called Matching Probability (MP) as the similarity measure. MP sums up the joint probabilities of two objects all over the space. GCI achieves better performance than its competitors on both synthetic and real-world data. To further increase its efficiency, we propose a strategy to store GMM components in a normalized way. This strategy improves the ability of filtering unqualified GMM. Based on the normalized transformation, we derive a set of novel similarity measures for GMM. Since MP is not a metric (i.e., a symmetric, positive definite distance function guaranteeing the triangle inequality), which would be essential for the application of various analysis techniques, we introduce Infinite Euclidean Distance (IED) for probability distribution functions, a metric with a closed-form expression for GMM. IED allows us to store GMM in well-known metric trees like the Vantage-Point tree or M-tree, which facilitate similarity search in sublinear time by exploiting the triangle inequality. Moreover, analysis techniques that require the properties of a metric (e.g. Multidimensional Scaling) can be applied on GMM with IED. For MI objects which are not well-approximated by GMM, we introduce the potential densities of instances for the representation of MI objects. Based on that, two joint Gaussian based measures are proposed for MI objects and we extend GCI on MI objects for efficient queries as well. To sum up, we propose in this thesis a number of novel similarity measures and novel indexing techniques for GMM and MI objects, enabling efficient queries and knowledge discovery on complex data. In a thorough theoretic analysis as well as extensive experiments we demonstrate the superiority of our approaches over the state-of-the-art with respect to the run-time efficiency and the quality of the result.

Abstract

Angesichts der steigenden Quantität und Vielfalt der generierten und gespeicherten Daten werden manuelle und automatisierte Analysen in vielen modernen Anwendungen eine zunehmend anspruchsvolle Aufgabe, wie z.B. biometrische Identifikation und inhaltbasierter Bildzugriff. In dieser Arbeit werden zwei sehr typische und relevante inhärente Strukturen von Objekten behandelt: Multiple-Instance-Objects (MI) und Gaussian Mixture Models (GMM). In beiden Anwendungsfällen wird das Objekt in Form einer Menge dargestellt. Bei MI besteht jedes Objekt aus einer Menge von Vektoren aus einem multidimensionalen Raum. Bei GMM wird jedes Objekt durch eine Menge von multivariaten normalverteilten Dichtefunktionen repräsentiert. Dies bietet die Möglichkeit, beliebige Wahrscheinlichkeitsverteilungen in kompakter Form zu approximieren. Beide Ansätze sind sehr leistungsfähig, denn sie basieren auf einfachsten Ideen: (1) entweder besteht ein Objekt additiv aus mehreren Komponenten oder (2) ein Objekt hat unterschiedliche alternative Verhaltensarten. Dies ermöglicht es uns z.B. ein Bild zu repräsentieren, welches unterschiedliche Objekte und Szenen zeigt (1). In gleicher Weise können wir einen Sportler modellieren, der bei verschiedenen Wettkämpfen unterschiedliche Leistungen gezeigt hat (2). Wir können MI-Objekte durch GMM approximieren und auch der umgekehrte Weg ist möglich. Beide Vorgehensweisen können sehr ansprechend sein, da GMM im Vergleich zu MI kompakter sind, wogegen in MI-Objekten die einzelnen Komponenten weniger Komplexität aufweisen. Ein ähnlichkeitsmaß dient der Quantifikation der Gemeinsamkeit zwischen zwei Objekten. Darauf basierend spielen Indizierung und ähnlichkeitssuche eine wesentliche Rolle für die effiziente Implementierung von einer Vielzahl von Klassifikations- und Clustering-Algorithmen im Bereich des Data Minings. Ziel dieser Arbeit ist es, die Herausforderungen bei Indizierung und Wissensextraktion von komplexen Daten unter Verwendung von MI Objekten und GMM zu bewältigen. Für die Indizierung der GMM stehen verschiedene universelle und GMM-spezifische Indexstrukuren zur Verfügung. Jedoch leiden solche bekannten Ansätze unter schwacher Leistung oder zu vielen Einschränkungen. Um die parametrisieren Eigenschaften der GMM auszunutzen und dem Problem der möglichen ungleichen Komponentenlänge entgegenzuwirken, präsentieren wir das Verfahren Gaussian Components based Index (GCI), welches effizienten Abfrage auf GMM ermöglicht. GCI zerlegt dabei ein GMM in Parameterkomponenten und speichert alle möglichen Kombinationen mit einheitlicher Vektorlänge in traditionellen Indexstrukturen. Wir stellen ein effizientes Pruningverfahren vor, um ungeeignete GMM unter Verwendung der sogenannten Matching Probability (MP) als ähnlichkeitsma\ss auszufiltern. MP errechnet die Summe der gemeinsamen Wahrscheinlichkeit zweier Objekte aus dem gesamten Raum. CGI erzielt bessere Leistung als konkurrierende Verfahren, sowohl in Bezug auf synthetische, als auch auf reale Datensätze. Um ihre Effizienz weiter zu verbessern, stellen wir eine Strategie zur Speicherung der GMM-Komponenten in normalisierter Form vor. Diese Strategie verbessert die Fähigkeit zum Ausfiltern ungeeigneter GMM. Darüber hinaus leiten wir, basierend auf dieser Transformation, neuartige ähnlichkeitsmaße für GMM her. Da MP keine Metrik (d.h. eine symmetrische, positiv definite Distanzfunktion, die die Dreiecksungleichung garantiert) ist, dies jedoch unentbehrlich für die Anwendung mehrerer Analysetechniken ist, führen wir Infinite Euclidean Distance (IED) ein, ein Metrik mit geschlossener Ausdrucksform für GMM. IED erlaubt die Speicherung der GMM in Metrik-Bäumen wie z.B. Vantage-Point Trees oder M-Trees, die die ähnlichkeitssuche in sublinear Zeit mit Hilfe der Dreiecksungleichung erleichtert. Außerdem können Analysetechniken, die die Eigenschaften einer Metrik erfordern (z.B. Multidimensional Scaling), auf GMM mit IED angewandt werden. Für MI-Objekte, die mit GMM nicht in außreichender Qualität approximiert werden können, stellen wir Potential Densities of Instances vor, um MI-Objekte zu repräsentieren. Darauf beruhend werden zwei auf multivariater Gaußverteilungen basierende Maße für MI-Objekte eingeführt. Außerdem erweitern wir GCI für MI-Objekte zur effizienten Abfragen. Zusammenfassend haben wir in dieser Arbeit mehrere neuartige ähnlichkeitsmaße und Indizierungstechniken für GMM- und MI-Objekte vorgestellt. Diese ermöglichen effiziente Abfragen und die Wissensentdeckung in komplexen Daten. Durch eine gründliche theoretische Analyse und durch umfangreiche Experimente demonstrieren wir die überlegenheit unseres Ansatzes gegenüber anderen modernen Ansätzen bezüglich ihrer Laufzeit und Qualität der Resultate.