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Abstract

Due to the increasing quantity and variety of generated and stored data, the manual

and automatic analysis becomes a more and more challenging task in many modern

applications, like biometric identification and content-based image retrieval. In this thesis,

we consider two very typical, related inherent structures of objects: Multiple-Instance

(MI) objects and Gaussian Mixture Models (GMM). In both approaches, each object is

represented by a set. For MI, each object is a set of vectors from a multi-dimensional space.

For GMM, each object is a set of multi-variate Gaussian distribution functions, providing

the ability to approximate arbitrary distributions in a concise way. Both approaches are

very powerful and natural as they allow to express (1) that an object is additively composed

from several components or (2) that an object may have several different, alternative kinds

of behavior. Thus we can model e.g. an image which may depict a set of different things

(1). Likewise, we can model a sports player who has performed differently at different

games (2). We can use GMM to approximate MI objects and vice versa. Both ways of

approximation can be appealing because GMM are more concise whereas for MI objects

the single components are less complex.

A similarity measure quantifies similarities between two objects to assess how much

alike these objects are. On this basis, indexing and similarity search play essential roles in

data mining, providing efficient and/or indispensable supports for a variety of algorithms

such as classification and clustering. This thesis aims to solve challenges in the indexing

and knowledge discovery of complex data using MI objects and GMM.

For the indexing of GMM, there are several techniques available, including univer-



xiv Abstract

sal index structures and GMM-specific methods. However, the well-known approaches

either suffer from poor performance or have too many limitations. To make use of the

parameterized properties of GMM and tackle the problem of potential unequal length of

components, we propose the Gaussian Components based Index (GCI) for efficient queries

on GMM. GCI decomposes GMM into their components, and stores the n-lets of Gaussian

combinations that have uniform length of parameter vectors in traditional index structures.

We introduce an efficient pruning strategy to filter unqualified GMM using the so-called

Matching Probability (MP) as the similarity measure. MP sums up the joint probabilities

of two objects all over the space. GCI achieves better performance than its competitors on

both synthetic and real-world data. To further increase its efficiency, we propose a strategy

to store GMM components in a normalized way. This strategy improves the ability of

filtering unqualified GMM. Based on the normalized transformation, we derive a set of

novel similarity measures for GMM. Since MP is not a metric (i.e., a symmetric, positive

definite distance function guaranteeing the triangle inequality), which would be essential

for the application of various analysis techniques, we introduce Infinite Euclidean Distance

(IED) for probability distribution functions, a metric with a closed-form expression for

GMM. IED allows us to store GMM in well-known metric trees like the Vantage-Point tree

or M-tree, which facilitate similarity search in sublinear time by exploiting the triangle

inequality. Moreover, analysis techniques that require the properties of a metric (e.g.

Multidimensional Scaling) can be applied on GMM with IED.

For MI objects which are not well-approximated by GMM, we introduce the potential

densities of instances for the representation of MI objects. Based on that, two joint

Gaussian based measures are proposed for MI objects and we extend GCI on MI objects

for efficient queries as well.

To sum up, we propose in this thesis a number of novel similarity measures and novel

indexing techniques for GMM and MI objects, enabling efficient queries and knowledge dis-

covery on complex data. In a thorough theoretic analysis as well as extensive experiments

we demonstrate the superiority of our approaches over the state-of-the-art with respect to

the run-time efficiency and the quality of the result.



Zusammenfassung

Angesichts der steigenden Quantität und Vielfalt der generierten und gespeicherten

Daten werden manuelle und automatisierte Analysen in vielen modernen Anwendungen

eine zunehmend anspruchsvolle Aufgabe, wie z.B. biometrische Identifikation und

inhaltbasierter Bildzugriff. In dieser Arbeit werden zwei sehr typische und relevante

inhärente Strukturen von Objekten behandelt: Multiple-Instance-Objects (MI) und

Gaussian Mixture Models (GMM). In beiden Anwendungsfällen wird das Objekt in

Form einer Menge dargestellt. Bei MI besteht jedes Objekt aus einer Menge von

Vektoren aus einem multidimensionalen Raum. Bei GMM wird jedes Objekt durch

eine Menge von multivariaten normalverteilten Dichtefunktionen repräsentiert. Dies

bietet die Möglichkeit, beliebige Wahrscheinlichkeitsverteilungen in kompakter Form zu

approximieren. Beide Ansätze sind sehr leistungsfähig, denn sie basieren auf einfachsten

Ideen: (1) entweder besteht ein Objekt additiv aus mehreren Komponenten oder (2)

ein Objekt hat unterschiedliche alternative Verhaltensarten. Dies ermöglicht es uns z.B.

ein Bild zu repräsentieren, welches unterschiedliche Objekte und Szenen zeigt (1). In

gleicher Weise können wir einen Sportler modellieren, der bei verschiedenen Wettkämpfen

unterschiedliche Leistungen gezeigt hat (2). Wir können MI-Objekte durch GMM

approximieren und auch der umgekehrte Weg ist möglich. Beide Vorgehensweisen können

sehr ansprechend sein, da GMM im Vergleich zu MI kompakter sind, wogegen in MI-

Objekten die einzelnen Komponenten weniger Komplexität aufweisen.

Ein Ähnlichkeitsmaßdient der Quantifikation der Gemeinsamkeit zwischen zwei

Objekten. Darauf basierend spielen Indizierung und Ähnlichkeitssuche eine wesentliche



xvi Zusammenfassung

Rolle für die effiziente Implementierung von einer Vielzahl von Klassifikations- und

Clustering-Algorithmen im Bereich des Data Minings. Ziel dieser Arbeit ist es, die

Herausforderungen bei Indizierung und Wissensextraktion von komplexen Daten unter

Verwendung von MI Objekten und GMM zu bewältigen.

Für die Indizierung der GMM stehen verschiedene universelle und GMM-spezifische

Indexstrukuren zur Verfügung. Jedoch leiden solche bekannten Ansätze unter schwacher

Leistung oder zu vielen Einschränkungen. Um die parametrisieren Eigenschaften der

GMM auszunutzen und dem Problem der möglichen ungleichen Komponentenlänge

entgegenzuwirken, präsentieren wir das Verfahren Gaussian Components based Index

(GCI), welches effizienten Abfrage auf GMM ermöglicht. GCI zerlegt dabei ein GMM

in Parameterkomponenten und speichert alle möglichen Kombinationen mit einheitlicher

Vektorlänge in traditionellen Indexstrukturen. Wir stellen ein effizientes Pruningverfahren

vor, um ungeeignete GMM unter Verwendung der sogenannten Matching Probability

(MP) als Ähnlichkeitsmaßauszufiltern. MP errechnet die Summe der gemeinsamen

Wahrscheinlichkeit zweier Objekte aus dem gesamten Raum. CGI erzielt bessere

Leistung als konkurrierende Verfahren, sowohl in Bezug auf synthetische, als auch auf

reale Datensätze. Um ihre Effizienz weiter zu verbessern, stellen wir eine Strategie

zur Speicherung der GMM-Komponenten in normalisierter Form vor. Diese Strategie

verbessert die Fähigkeit zum Ausfiltern ungeeigneter GMM. Darüber hinaus leiten wir,

basierend auf dieser Transformation, neuartige Ähnlichkeitsmaße für GMM her.

Da MP keine Metrik (d.h. eine symmetrische, positiv definite Distanzfunktion, die die

Dreiecksungleichung garantiert) ist, dies jedoch unentbehrlich für die Anwendung mehrerer

Analysetechniken ist, führen wir Infinite Euclidean Distance (IED) ein, ein Metrik mit

geschlossener Ausdrucksform für GMM. IED erlaubt die Speicherung der GMM in Metrik-

Bäumen wie z.B. Vantage-Point Trees oder M-Trees, die die Ähnlichkeitssuche in sublinear

Zeit mit Hilfe der Dreiecksungleichung erleichtert. Außerdem können Analysetechniken,

die die Eigenschaften einer Metrik erfordern (z.B. Multidimensional Scaling), auf GMM

mit IED angewandt werden.

Für MI-Objekte, die mit GMM nicht in außreichender Qualität approximiert werden
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können, stellen wir Potential Densities of Instances vor, um MI-Objekte zu repräsentieren.

Darauf beruhend werden zwei auf multivariater Gaußverteilungen basierende Maße für MI-

Objekte eingeführt. Außerdem erweitern wir GCI für MI-Objekte zur effizienten Abfragen.

Zusammenfassend haben wir in dieser Arbeit mehrere neuartige Ähnlichkeitsmaße

und Indizierungstechniken für GMM- und MI-Objekte vorgestellt. Diese ermöglichen

effiziente Abfragen und die Wissensentdeckung in komplexen Daten. Durch eine

gründliche theoretische Analyse und durch umfangreiche Experimente demonstrieren wir

die Überlegenheit unseres Ansatzes gegenüber anderen modernen Ansätzen bezüglich ihrer

Laufzeit und Qualität der Resultate.



xviii Zusammenfassung



Chapter 1

Introduction

“Processed data is information. Processed information is knowledge.

Processed knowledge is wisdom.”

Ankala V. Subbarao

Nowadays, data are being generated at a dramatic pace across a wide variety of fields,

such as banking, manufacturing, marketing and monitoring [1]. Advances in storage capac-

ity and digital data gathering equipments enable possible massive datasets and resources.

Extracting meaningful information from the data is hindered by its size and complexity,

which brings the challenges for indexing and searching through the growing data and raises

an urgent need for the development of computational theories to assist humans. The notion

of finding useful information from data has been given a variety of names, including data

analysis, data dredging, knowledge extraction, information discovery, etc [2], among which

Knowledge Discovery in Databases (KDD) emphasizes that knowledge is the end product

of a data-driven discovery [3].

1.1 Knowledge Discovery in Databases

Extracting useful information and knowledge from huge amount of data is essential for

many modern applications ranging from business intelligence [4], market analysis [5], risk
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control [6], etc. As the process shown in Figure 1.1, KDD consists of a sequence of following

steps to find and interpret patterns from data.

• Data selection and preprocessing. Selecting target datasets, or focusing on subsets

of variables, and cleaning data.

• Data transformation. According to the goal of the task, finding useful features for

the representation of the data and using dimensionality reduction or transformation

methods to transfer the data into forms appropriate for the following mining methods.

• Data mining. Searching for data patterns in a particular representational form using

intelligent methods.

• Interpretation and evaluation. Identifying the truly understandable patterns on base

of some interestingness measures which includes pattern value, combining validity,

novelty, usefulness and simplicity.

Data 
Warehouse

Target Data

Transformed 
Data

Patterns

Selection & 
Preprocessing

Transformation

Data Mining

Interpretation 
& Evaluation

Applications

Knowledge

Understanding

Integration

Raw Data

Figure 1.1: Demonstration of KDD Process. The figure is modified from J. Han and M.

Kamber [2].
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The mined knowledge is presented to users by visualization and knowledge repre-

sentation techniques to guide the procedure of KDD and improve the performance of

applications.

Here KDD refers to the overall process of discovering useful information from data, and

data mining, however, is only a particular step that consists of data analysis and discovery

algorithms in this process. There are several major data mining algorithms have been

developed, including regression, classification, clustering, association rules, etc.

Regression analysis is a classical statistical process to estimate relations between vari-

ables, and it is widely used for prediction and forecasting [12]. Many techniques have

been developed, such as Linear Regression, Multiple Regression [13] and Support Vector

Machine [14]. Classification is the problem of identifying to which of a set of categories an

object belongs, on basis of a training set of objects with category membership information.

Techniques like regression [15], decision trees [16], neural network [17], etc. can be used to

map input data to categories, known as classifiers. Clustering is the task of grouping a set

of objects in such a way that objects in the same group (or cluster) are more similar to

each other than to those in other groups. Based on cluster models, clustering algorithms

can be categorized as hierarchical clustering [18, 19], centroid-based clustering [8, 20],

distribution-based clustering [21], density-based clustering [10, 11], as demonstrated in

Figure 1.2. Association rules learning aims to discovery interesting relations between items

in large datasets [22]. A famous applications is mining regularities between products in

transaction data, and the knowledge can be used as the basis for decision making in

marketing [22].

1.2 Representation of Complex Data

In addition to the massive scale, datasets turn to be more and more diverse and complex.

Big data is a popular term in the data-rich landscape, and Gartner uses 3Vs to describe

it: Volume, Velocity and Variety [23]. More complementary characteristics of big data

includes the other Vs: Variability and Veracity [24].
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(b) K-Means
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(c) EM
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(d) DBSCAN

Figure 1.2: Demonstration of clustering algorithms on Iris data [7]. (a) Ground truth of

three classes of Iris data, only two attributes are used here. (b) As a centroid model, K-

Means algorithm [8] represents each cluster by a single mean vector. It assumes equal-sized

clusters. (c) Clusters are modeled using statistical distributions, here for example, Gaussian

distribution. The parameters of the model are estimated using Expectation-Maximization

algorithm [9]. (d) Density models defines clusters as connected dense regions in the data

space, such as DBSCAN [10] and OPTICS [11]. Here the parameters of DBSCAN are set

to ε = 0.4 and MinPts = 10, and gray diamonds indicate noise in the clustering result.
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• Volume. Big data observes and tracks what happens anywhere, and it does not

sample.

• Variety. The data types are various and complex.

• Velocity. Big data is often available in real-time.

• Variability. The data sets are inconsistency.

• Veracity. The quality of captured data can vary greatly.

Aside high-dimensional numerical features, many datasets are collected in non-numerical

forms and/or with inherent structures. Figure 1.3 demonstrates several forms of complex

data. As shown in Figure 1.3(a), a categorical feature and two numerical features are

included in these data objects. Each of the possible values of categorical variables is

referred to as a level (e.g., here referred to as the gender). Figure 1.3(b) shows an example

of time-series data, which is a series of data points indexed in time order [25]. Most

commonly, a time series is a sequence taken at equally spaced points in time. Multiple-

Instance (MI) data is shown in Figure 1.3(c), where each data object is a set of individual

instances.

M

M

W

(a) Mixed-type (b) Time-series (c) MI

Data object A

Data object B

Data object C

Figure 1.3: Demonstration of different data types.
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1.3 Similarity and Dissimilarity Measures

To search for similar objects and to analysis on the basis of similarities, we need similarity

measures or dissimilarity measure for objects. A similarity measure is a real-valued function

that quantifies the similarity between data objects. The value of a similarity is higher when

objects are more alike, while the value of the dissimilarity is lower. Usually similarities are

the inverses of dissimilarities. Most of the dissimilarity measures are distance functions

when they meet the following definition.

Definition 1. (Distance function) Given an nonempty set of objects P, a mapping d :

P ×P −→ R+ is a distance function when the following properties always hold for any

object X ,Y ,Z ∈P.

• identity of indiscernibles: d(X ,Y) = 0⇔ X = Y

• symmetry: d(X ,Y) = d(Y ,X )

A distance function is a metric if it additionally fulfills the triangle inequality:

d(X ,Y) + d(Y ,Z) ≥ d(X ,Z)

1.3.1 Measures for Feature Vectors

Many distance functions have been proposed for numeric variables, for instance, Euclidean

distance, Manhattan distance and Chebyshev distance. Figure 1.4 illustrates two well-

known distance functions: Manhattan distance and Euclidean distance. In this figure, the

blue dot line indicates the Manhattan distance (4.02 km) from 368 W23rd St. New York

to 590 Madison Ave. New York, and the black solid line shows the Euclidean distance

(2.98 km) between two locations.

Turning to other kinds of variables (e.g. binary variables), various measures are avail-

able, including simple matching coefficient [26], Jaccard index [27], etc. The choice of

a particular measure to capture the essential differences between objects depends on the
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Figure 1.4: Demonstration of Manhattan distance and Euclidean distance. The screenshot

is taken from maps.google.com.

application and other factors, such as the distribution of data points and computational

considerations.

1.3.2 Measures for Distributions

To measure the (dis)similarities between distributions or sets of vectors (instances), var-

ious similarity measures have been proposed, ranging from relatively simple and efficient

proposals to more sophisticated ones. Here we introduce two main categories of them.

The first one uses prototype instances for each object together with previous introduced

measures. The second one uses the complete information about the structure of objects.

For measure based on prototype vectors, different hierarchical schemes have been

proposed. Sum of Minimum Distance (SMD) sums up the minimum distances between

the instances of two objects, and returns the average value as the distance for the sets [28].

Chamfer distance shares the same schemes with SMD [29]. Hausdorff distance is the

greatest of all distances from an instance in one set to the closest instance in the other

set [30]. Given two objects X = {xi}mi=1 and Y = {yj}nj=1, the three distances can be
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X

Y

    
   

    
   

        

    
   

    
   

        

Figure 1.5: Demonstration of Hausdorff distance between two MI objects X and Y .

described as follows.

dSMD(X, Y ) =
1

m+ n




m∑

i=1

min{d(xi, yj)}nj=1 +
n∑

j=1

min{d(xi, yj)}mi=1




dChamfer(X, Y ) =
1

m

m∑

i=1

min{d(xi, yj)}nj=1 +
1

n

m∑

j=1

min{d(xi, yj)}mi=1

dHausdorff(X, Y ) = max

{
sup
xi∈X

inf
yj∈Y

d(xi, yj), sup
yj∈Y

inf
xi∈X

d(xi, yj)

}

where d(x, y) is a distance function between x and y. Figure 1.5 demonstrates the Hausdorff

distance between object X and Y represented by green solid line and blue solid line,

respectively. The upper dash line indicates the maximum Euclidean distance between all

the minimum distances from a point in X to points in Y , and the lower dash line indicates

the other way around.

Instead of using the prototype vectors in a linear way, Probabilistic Integral Metric

(PIM) assumes that data objects are generated from the same template and defines a

distance measure on basis of Hamming distance [31]. As shown in Figure 1.6, four example

template instances t1, ..., t4 with those red circles cover both instances from object X and

Y at the same time, which means four ’hits’ in the calculation of PIM.

Methods based on probabilistic distance uses the information of set-conditional proba-
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Instances of

Instances of

t2

t4

t1

t3

Figure 1.6: Demonstration of PIM between MI objects X and Y [31].

bility density functions. One of the main disadvantages of the probabilistic based methods

is the numerical integration. It restricts their usefulness in many applications, especially

for some real-time situations. Given two Probability Distribution Functions (PDF) f

and g, the Bhattacharyya measure [32] and Kullback-Leibler (KL) divergence [33] can be

described as follows.

dBhatta(f, g) = −log

∫ √
p(x|f)p(x|g)dx

dKL(f ||g) =

∫
p(x|f)

p(x|f)

p(x|g)
dx

Under some assumptions regarding to the form of the distributions, the expression can

be evaluated analytically. For example, the KL divergence of two Gaussian distributions

f ′ and g′ has a closed-form expression:

dKL(f ′||g′) =
1

2

(
log
|Σg′|
|Σf ′ |

+ Tr(Σ−1
g′ Σf ′)−D + (µf ′ − µg′)TΣ−1

g′ (µf ′ − µg′)
)
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where µf ′ and µg′ are the means, and Σf ′ and Σg′ are the covariance matrices of f ′ and g′

in a D-dimensional space, respectively.

1.4 Indexing Structures

The goal of indexing structures is to facilitate the efficient similarity search of databases,

and the applications include content based image and video retrieval [34], time series

indexing [35], biometric identification [36], etc. Similarity search relates to some similarity

measures between objects, for example, a query for the most similar feature vector given

a reference feature vector.

1.4.1 Index of Feature Vectors

Most previous work in the database literature has focused on the indexing of feature

vectors. K-D tree is the one of the first structures proposed for indexing multidimensional

objects for nearest neighbor queries [37]. K-D tree is a space-partitioning data structure

for organizing points in a K-dimensional space. Figure 1.7 demonstrates a K-D tree of six

two-dimensional points. There are many ways to choose axis-aligned splitting planes. Here

a median-finding sort is used to construct this tree.

A

B

D

E

C

F

A

B

D

C

E F

X

Y

X

X

Y

Figure 1.7: Demonstration of a K-D tree of two-dimensional points.
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R11

R12

R13 R14

R15
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R19

R1 R2

R3 R4 R5 R6 R7

R16

R17

R13 R14 R15 R16 R17 R18 R19 R8 R9 R10 R11 R12

Root

Figure 1.8: Demonstration of an R-tree for two-dimensional rectangles. Different colors

indicate the different levels of rectangles in the tree, and all leaf nodes are at the same red

level.
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R-tree [38] is a widely used index for multiple dimensional data. The key idea is to

group nearby objects and represent them with the Minimum Bounding Rectangle (MBR)

in the next higher level of the tree. A query object that does not intersect the MBR also

cannot intersect any of the contained objects, thus a MBR can be used to decide whether

or not to search inside a subtree. Figure 1.8 shows an example of an R-tree. At the leaf

level, each rectangle describes a single object, and at the higher levels the aggregation

of an increasing number of objects are included. The queries start at the root and only

interested subtrees are accessed.

R*-tree [39] is one of the most successful variants of R-tree. When a node overflows in R-

tree, it is split into two new nodes. In R*-tree, however, a portion of the entries of that node

are removed and reinserted, allowing them to find a more appropriated location. R*-tree

has slightly higher construction cost than R-tree because of the strategy of reinsertion, but

it minimizes both overlaps and coverage. Lower overlaps mean that, on the data query and

insertion, less branches of the tree need to be expanded. A minimized coverage improves

pruning performance by excluding whole pages for the query.

For indexing high-dimensional data, both R-tree and R*-tree are not competent due

to the overlap problem. Thus X-tree [40] emphasizes the prevention of overlaps in the

bounding boxes and utilizes the concept of supernodes based on R-tree. Its split algorithm

and supernodes keep the directory as hierarchical as possible and at the same time avoid

split which would result in a high degree of overlap in the directory. SS-tree [41] uses

ellipsoid bounding regions in a lower dimensional space after the transformation of the

nodes. SS+ tree [42] has a tigher bounding sphere for each node than SS-tee, and makes

use of the clustering property of data as the split method. SR-tree [43] is an extension

of R*-tree and SS-tree, combining the utilization of bounding rectangles and bounding

spheres, which improves the performance on nearest queries by reducing both the diameter

and volume of regions.

Vantage-Point (VP)-tree is a metric tree that designed for objects in metric spaces.

It partitions data points into two parts by distances between these points to the vantage

point, and VP-tree only take metric as the distance function. Each node in a VP-tree



1.4 Indexing Structures 13

contains an input point and a radius r. The points inside the circle are the left children,

while those outside the circle are the right children.

VP

Q

P1

Root

τ 
VP

P1, d(VP, P1) 

P2, d(VP, P2) 

P2

Figure 1.9: Demonstration of an VP-tree. The distances between points P1, P2 and the

vantage point V P are pre-computed, respectively.

Given a query point, the range query returns all the data points that have smaller

distances than a threshold. Figure 1.9 shows the demonstration of a VP-tree where the

pre-computed distances are used to filter out distanced data points. The VP-tree has a

internal node of a vantage point V P and two leaf points P1 and P2 of which the distances

to the vantage point are known. The range query task in this case is to find all the data

points that have smaller distances to the query point Q than a threshold τ . For the data

point P1, according to the triangle inequality, we have:

d(Q,P1) + d(Q, V P ) > d(P1, V P )

By considering only the distance between Q and V P :

d(Q, V P ) < d(P1, V P )− τ

we can derive that d(Q,P1) > τ and filter P1 out. So it is for point P2. The search

algorithm of VP-tree is recursive. If the distance d between the query and the vantage
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point is smaller than the radius r then we search the subtree of the node, otherwise recurse

to the subtree of nodes that contain points that locate outside the circle of r.

O1 O2

O1 O4 O3 O6 O4 O8

o1

o2

o3

o6

o7

o4

o5

O1 O3 O2 O4

O2 O7

o8

Figure 1.10: Demonstration of a M-tree [44]. Blue circles indicate non-leaf nodes and red

circles represent leaf nodes.

M-tree [44] is another metric tree that relies on the triangle inequality for efficient

queries. As shown in Figure 1.10, M-tree has a similar structure like R-tree, and it could

also have large overlaps. There are four components in M-tree: objects, routing objects, leaf

nodes and non-leaf nodes. An object includes the feature vector of a data point, identifier,

and the distance between the data point and its parent. A routing object consists of

the feature vector of a routing point, a covering radius, a pointer to its children and the

distance to its parent. A non-leaf node includes a set of routing objects and a pointer to

its parent while a leaf node includes a set of objects and also a pointer to its parent.
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1.4.2 Index of Distributions

Some indexing structure designed for distributions have also been proposed. Gauss-tree [45]

provides efficient search for Gaussian distributions in parameter space instead of feature

space. U-tree [46] index uncertain data with the help of approximate constrained regions.

Figure 1.11: Demonstration of a Gauss-tree [45].

To handle the uncertainty of features and objects, Böhm et al. [45] assumed that the

error of measurements for a feature value follows a Gaussian distribution and built an index

structure called Gauss-tree. The Gauss-tree is also a variant of R-tree family, however, it

index objects in the parameter space instead of the spatial space. For a M -degree Gauss-

tree, the root has up to M entries and the numbers of entries for all the other inner nodes

are between M/2 and M . As for the leaf node, the number of entries is between M and

2M . Figure 1.11 demonstrates a three level Gauss-tree of univariate distributions. The

parameter space here consists of the variance σ and the mean µ. In the top-right of this

figure, a MBR of Gaussian distributions is shown, and the corresponding PDF of the stored

objects are shown in the bottom of Figure 1.11, where the bold line is the upper boundary

of this MBR.
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l2+

l2-

l1- l1+

UR
q

Figure 1.12: Demonstration of the PCR of an object stored in U-tree [46]. The red

box q represents for a prob-range query where qualified objects have higher appearance

probabilities than a given threshold.

U-tree is designed for range queries on multi-dimensional PDF, and Probabilistically

Constrained Regions (PCR) is introduced to assist prob-range search. The PCR of an

object takes a parameter p ∈ [0, 0.5] which is the probability of the uncertain data appears

in this region. As shown in Figure 1.12, the dashed line-encircled region UR is the

uncertainty region of an object o, and the grey area decided by four lines l1−, l1+, l2−

and l2+ is the PCR of the object at probability p. Take line l1+ for example, it divides

UR into two parts: the left part and the right part, and the appearance probability in the

right part (the shadowed part) is p. Similarly, the left part of UC partitioned by line l1−

has a probability of p as well. Having PCR, we can prune un-qualified objects without

computing the accurate appearance probabilities. Assuming that the parameter p is set

to 0.3 in Figure 1.12, and the red box q represents a range query with threshold τq = 0.8.

Since q is disjoint with the left part of UR (divided by line l1+), it is not possible that the

object o have a higher appearance probability than τp in the range query. Thus we can

safely exclude the object for this query. U-tree can be applied to objects with arbitrary

distributions, however, its efficiency deteriorates for mixture models.
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1.4.3 Analysis of Index

Insertion, deletion and update are critical operations for the corresponding index struc-

tures. They heavily determine the structures and the achievable performance. Take

insertion for example, the general steps are shown as follows.

• Search a suitable data page (or node) P for the data object Oi.

• Insert Oi into page P .

• If the number of data objects stored in P exceeds the maximum number, then split

P into two pages by some strategies.

• Replace the previous description of P in its parent by the new one.

• If the parent page of P exceed its capacity, then split it.

• If the root need to be split, then grow the height of the tree by 1, split the root and

create a new one that parents the split pages.

Different splitting and merging strategies produce different index structures.

Space Utilization

Space utilization indicates the utilization rate of data pages in the index. Higher storage

utilization will generally reduce the query cost as the height of the tree will be kept low.

Take R-tree for example, let M be the maximum capacity of nodes, every split node will

generate 2M − (M + 1) = M − 1 empty entries, thus node splitting may propagate to low

storage utilization.

Overlap

The overlap of index structures means more than one branch of the tree needs to be

expanded on data query or insertion. As shown in Figure 1.8, directory rectangle R6 and
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R7 (blue dash rectangles) are overlap, and bounding rectangle R9 and R10 (red solid line

rectangles) are shared.

The overlap leads to the traversal of a larger number of index paths, which increases

the number of accessed index pages. The overlap between directory rectangles should be

minimized.

1.5 Performance Evaluation

Evaluation is the structured interpretation and giving of meaning to predicted or actual

impacts of proposals or results. It is an essential part of the model development process,

with the intention of improving the value or effectiveness of the proposal. In this thesis,

classification and clustering is used for the evaluation of our novel similarity measures.

Similarity measures that are more meaningful and suitable for objects achieve better

classification and clustering results than the others.

1.5.1 Classification and Regression

To avoid over-fitting, it is not acceptable to evaluate model performance with the data

used for training. Hold-out validation splits original datasets into two parts, training sets

and testing sets. The training sets are used to build models and the testing sets are used

to assess the performance of the models, which provides a test platform for the selecting of

the best-performing model and tuning parameters. When only a limited amount of data

is available, cross-validation can be used to divide a dataset into k subsets of equal size.

k models are built and each time one of the subsets is left from training and is used as

the test set. There are several criteria to evaluate and compare the performance of built

models.
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Root Mean Squared Error

Root Mean Squared Error (RMSE) is a popular formula to measure the error rate of a

regression model. RMSE sums up the squared differences of predicted targets and actual

targets, and returns the root of the mean value. The formula is shown as follows.

RMSE =

√∑n
i=1(pi − ai)2

n

where n is the number of predicted units, p and a are the predicted targets and actual

targets, respectively.

Relative Squared Error

Unlike RMSE, Relative Squared Error (RSE) can be compared between models whose

errors are measured in the different units. The formula of RSE is shown as follows.

RSE =

∑n
i=1(pi − ai)2

∑n
i=1(ā− ai)2

where ā is the mean of all actual targets a.

Confusion Matrix

A confusion matrix shows the number of correct and incorrect predictions made by clas-

sification models compared to the actual targets. The matrix is N × N , where N is the

number of classes. The following table shows a 2× 2 confusion matrix, where A,B,C and

D are the frequencies of data objects in different categories. Take A for example, it is the

number of positive data objects that are classified as positive ones.

1.5.2 Clustering

The objective functions of clustering formalize the goal of attaining high intra-cluster sim-

ilarities and low inter-cluster similarities. Good scores on an objective function, however,

does not necessarily translate into good effectiveness in applications. Clustering evaluation
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Table 1.1: Demonstration of a confusion matrix.

Target

Positive Negative

Model
Positive A B Positive Predictive A/(A+B)

Negative C D Negative Predictive D/(C+D)

True Positive False Positive
Accuracy = (A+D)/(A+B+C+D)

A/(A+C) D/(B+D)

provides evidence whether data contains non-random structures, ranks alternative cluster-

ings with regards to their quality, and determines the ideal number of clusters. Given N

data objects and a set of clusters Ω = {ω1, ω2, ...ωK} and a set of classes C = {c1, c2, ...cM},
where ωi represents the data objects of the i-th cluster and cj represents data objects with

the j-th class label, we introduce three widely-used external criteria of clustering quality

as follows.

Purity

Purity is a simple and transparent evaluation measure of extent to which clusters contains

a single class. Each cluster is assigned to the class that is most frequent in the cluster, and

then we measure the mean of the accuracy of this assignment. Purity can be defined as:

Purity(Ω, C) =
1

N

K∑

i=1

max
j∈[1,M ]

|ωi ∩ cj|

where | · | indicates the cardinality of a set.

Purity ranges from 0 to 1 and does not penalise having many clusters. A highest value

of 1 is possible by putting each data object in its own cluster.
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Normalized Mutual Information

Mutual information is an information theoretic measure of how much information is shared

between a cluster and a ground truth. It can detect a non-linear similarity between two

clusters. Given two clusters Ω and C, mutual information can be defined as:

I(Ω, C) =
K∑

i=1

M∑

j=1

|ωi ∩ cj|
N

log
N |ωi ∩ cj|
|ωi||cj|

Derived from thinking of mutual information as an analogue to covariance, Normalized mu-

tual information (NMI) [47] that is calculated similarly to the Person correlation coefficient

is defined as follows.

NMI(Ω, C) =
I(Ω, C)√
H(Ω)H(C)

where H(Ω) and H(C) are the entropies of the cluster Ω and the ground truth C, respec-

tively. The formula of H(Ω) is given by:

H(Ω) = −
K∑

i=1

|ωi|
N

log
|ωi|
N

Like purity, the range of NMI is [0, 1], and the higher the value, the better performance

of the clustering result is. NMI can be used for the comparison of clusterings with different

number of clusters.

F-Measure

Precision, Recall and F-Measure (FM) are often used in pattern recognition, information

retrieval and binary classification. They can also be used for the evaluation of clustering

by viewing the assignments of data objects as a series of decisions.

As shown in Table 1.1, True Positive (TP) assigns two objects to the same cluster

when they belong to the same cluster in ground truth, and False Positive (FP) assigns two

objects that come from different clusters in the ground truth to the same cluster. As for

False Negative (FN), it fails to assign two same-labeled data objects into the same cluster.
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The definitions of precision and recall are shown as follows.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Thus we can calculate FM by using the following formula.

FMβ =
(β2 + 1)Presion×Recall
β2Presion+Recall

where β ≥ 0. Increasing β allocates an increasing amount of weight to recall in the final

FM. When β > 1, FM penalizes FN more strongly than FP.

1.5.3 Indexing

A query operation takes a physical query plan, executes the plan and returns the result.

The goal of an index is to compute query results as fast as possible. There are many

possible ways to estimate query cost, for instance, disk accesses and CPU time.

Disk access is relatively easy to estimate. Typically the number of block transfers

from/to disk is used as the measure on basis of a simplifying assumption, each block

transfer has the same cost. CPU time is the amount of time for which a CPU is used for

the query processing. The CPU time is measured in clock ticks or seconds.

1.6 Contributions and Structure of the Thesis

This thesis aims to study the indexing and similarity search of complex data represented as

Multiple-Instance (MI) objects and Gaussian Mixture Models (Gaussian Mixture Models

(GMM)), and to support knowledge discovery with specific designed similarity measures.

Extensive experiments are performed to demonstrate the effectiveness and efficiency of the

proposed technologies. The major contributions and the general structure of this thesis as

shown in Figure 1.13.

Chapter 2 introduces a dynamic index structure for GMM, Gaussian Component based

Index (GCI) [48]. GCI decomposes GMM into the single, pairs, or n-lets of Gaussian
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components, stores these components into well studied index trees such as R-tree and

Gauss-Tree, and refines the corresponding GMM in a conservative but tight way. GCI

supports both k-most-likely queries and probability threshold queries by means of Matching

Probability, and also provides an approximate way to get a balance between the efficiency

and accuracy of the queries. Extensive experimental evaluations of GCI demonstrate a

considerable speed-up of similarity search on both synthetic and real-world data sets.

Chapter 3 generalizes Euclidean distance to GMM and derive the closed-form expression

called Infinite Euclidean Distance (IED) [49]. Our metric enables efficient and accurate

similarity calculations. For the analysis of complex data, we model two real-world data

sets, NBA player statistic and the weather data of airports into GMM, and we compare the

performance of IED to previous similarity measures on both classification and clustering

tasks. Experimental evaluations demonstrate the efficiency and effectiveness of GMM with

IED on the analysis of complex data.

Chapter 4 proposes a novel technique Normalized Transformation that reorganizes the

index structure to account for different numbers of components in GMM [50]. In addition,

Normalized Transformation enables us to derive a set of similarity measures on the basis

of existing ones that have close-form expression. Extensive experiments demonstrate the

effectiveness of proposed technique for GCI and the performance of the novel similarity

measures for clustering and classification.

Chapter 5 introduces two joint Gaussian based measures for Multiple-Instance Learning

(MIL), Joint Gaussian Similarity (JGS) and Joint Gaussian Distance (JGD), which require

no prior knowledge of relations between the labels of MI objects and their instances [51].

JGS is a measure of similarity while JGD is a metric of which the properties are necessary

for many techniques like clustering and embedding. JGS and JGD take all the information

into account and many traditional machine learning methods can be introduced to MIL.

Extensive experimental evaluations on various real-world data demonstrate the effective-

ness of both measures, and better performances than state-of-the-art MIL algorithms on

benchmark tasks.

Chapter 6 uses JGS and JGD for the indexing of MI objects [52]. For JGS, we propose
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the Instance based Index for querying MI objects. For JGD, metric trees can be directly

used as the index because of its metric properties. Extensive experimental evaluations on

various synthetic and real-world data sets demonstrate the effectiveness and efficiency of

the similarity measures and the performance of the corresponding index structures.

Chapter 7 concludes the thesis and discusses about the possible future work.
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Chapter 2

Gaussian Component Based Index

for GMM

“Things get done only if the data we gather can inform and inspire those in

a position to make a difference.”

Mike Schmoker

In this chapter, we propose GCI, a novel technique for the indexing of GMM on basis

of component combinations. Parts of this chapter have been published in:

Linfei Zhou, Bianca Wackersreuther, Frank Fiedler, Claudia Plant, Christian

Böhm. Gaussian Component Based Index for GMMs. IEEE 16th International

Conference on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona,

Spain.

where Linfei Zhou was mostly responsible for the development of main concepts, imple-

mented main algorithms and wrote the most parts of the paper. Bianca Wackersreuther and

Frank Fiedler helped with the implementation and experimental design. Christian Böhm

and Claudia Plant supervised the project and proposed the initial idea of decomposition.

All co-authors contributed to the discussion, paper writing and revising.
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2.1 Introduction

Information extraction systems capable of handling uncertain data objects is an actively

investigated research field. Many modern applications such as speaker recognition, content-

based image and video retrieval, biometric identification and stock market analysis can be

supported by the representation of uncertain data [53, 54, 55].

Instead of using the exact positions of a feature vector, PDF are assigned to each

uncertain data object for the representation. As a general class of PDF, GMM consist of a

weighted sum of univariate or multivariate Gaussian distributions, allowing a concise but

exact representation of the uncertain data object [56]. A typical example of using objects

represented by GMM is managing multimedia data. A 90 minutes movie contains about

130,000 images, and requires a large storage capacity as well as enormous computational

efforts for the content-based retrieval. Nevertheless, storing the movie as GMM will

dramatically reduce resource consumption. As shown in Figure 2.1, features are extracted

from original data objects (the frame images of the movie) to estimate GMM, which

represent the objects precisely by parameters.

Besides the modeling of uncertainty, the efficiency of similarity search on uncertain data

is another important aspect. Several dynamic index structures designed for uncertain data

have been proposed, for instance, Gauss-tree [45] and U-tree [46]. However, these existing

index techniques either cannot handle GMM or have too many constraints. Although a

bottom-up hierarchical tree has been proposed specifically for data objects represented by

GMM[57], it is only usable for static data sets due to the lack of convenient insertion and

deletion functions. Dynamic index structures for GMM are yet to be developed and tested.

A competitive candidate for such a structure has the properties to guarantee the query

accuracy and to keep high efficiency in similarity calculations and pruning steps.

As we will demonstrate, GCI proposed in this chapter is highly efficient, because it has

a tight pruning strategy and enables a closed-form calculation for GMM. The tight pruning

strategy avoids unnecessary expensive calculations while it keeps the query accuracy. The

closed-form expression of the similarity calculation is intrinsically valuable for computation,



2.1 Introduction 29

Original data 
objects

Features
GMM-modeled 

objects

Image Color histogram

Audio Frequency spectrum

G1={g11, g12, g13, g14}

G2={g21, g22}

Root

P1 P2 P3

P11 P12 P21 P22 P31 P32

Ranking List

Threshold τ 

Gaussian Component 
based Index

gij

Refinement

Gi={gi1,  , gij, }

gij

...
...

......

GQ={ gQj, }

......

Figure 2.1: Illustration of retrieval systems for GMM-modeled objects. Multimedia data

or the other original data is modeled by GMM using selected features, then an index is

built to support similarity search. GCI is used as the index here.

and can be easily adopted in many applications, especially the real-time applications.

The main contributions of this chapter are listed as follows:

• We propose GCI, a novel index structure that applies efficient similarity search

for GMM-modeled objects. GCI provides both efficient k-most-likely queries and

probability threshold queries (range queries).

• GCI is a dynamic structure and stores the single, pairs, or n-lets of Gaussian com-

ponents in each entry, thus it is capable of employing various of hierarchical index

methods that are designed for non-mixture models.

• GCI allows the pruning and validation of GMM. Since the implementation of GCI

in this chapter is based on an R-tree like structure, it retrieves the lower bound of

nodes to enable the pruning and validation.

• A refinement strategy of GCI guarantees the search accuracy of queries, and can

balance between efficiency and accuracy on the other hand.
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The rest of this chapter is organized as follows. In Section 2.2, we survey previous work

on similarity measures and index methods for GMM. Section 2.3 gives the definitions of

GMM and Matching Probability (MP) which is a similarity measure for GMM. Section 2.4

describes the principle of GCI which indexes GMM by the single, pairs, or n-lets of Gaussian

components. Section 2.5 shows experimental studies on both synthetic and real-world data

sets for verifying the effectiveness and efficiency of GCI. The final section, Section 2.6,

concludes this chapter with a summary and outlines the directions of future work.

2.2 Related Work

In this section we present a discussion on similarity measures and index techniques for

GMM in previous work.

2.2.1 Similarity Measures for Gaussian Mixture Models

A fundamental concept to measure the difference between two PDF is the KL divergence,

also called the discrimination information [33]. The KL divergence is always non-negative

and has a closed-form expression for two Gaussian distributions. However, no such ex-

pression for two GMM exists. Hence, the KL divergence of two GMM is determined by

approximations, such as Monte-Carlo sampling, matching based approximation, product

approximation and variation approximation [58, 59].

Another class of similarity measures with closed-form expressions for GMM have been

proposed. Helén et al. [60] have suggested the squared Euclidean distance, which integrates

the squared differences of two GMM over the whole feature space. Sfikas et al. [61] have

presented the C2 distance and the Bhattacharyya-based distance for GMM, and the former

is more effective than the latter. The normalized L2 distance has been proposed by Jensen

et al. [62] in the similarity search of music. Beside, two similarity measures that support

component-wise calculations have been introduced. The first one is MP [45], which is the

matching probability of two PDF that correspond to the same object. The second measure
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is Gaussian Quadratic Form Distance (GQFD) [63], which is designed for content-based

image retrieval systems. Although both MP and GQFD have closed-form expressions for

GMM, we select MP as the similarity measure for GMM in this chapter, since it is widely

used in papers as well as the technique chosen for comparison in this study [45, 64, 65].

2.2.2 Index of Gaussian Mixture Models

For the index of GMM, there are several techniques available, including universal index

structures designed for uncertain data and GMM-specific methods. However, none of them

has the competency to obtain high efficiency and guarantee accuracy.

U-tree [46] provides a probability threshold retrieval on general multi-dimensional

uncertain data. It pre-computes a finite number of PCR which are possible appearance

regions with fixed probabilities, and uses them to prune unqualified objects. Although

U-tree works well with single PDF, its effectiveness deteriorates for mixture models such

as GMM. The reason behind this is that it is difficult for PCR to represent mixture models,

especially when the component numbers increase.

Rougui et al. [57] have designed a bottom-up hierarchical tree and an iterative grouping

tree for GMM-modeled speaker retrieval systems. Both approaches provide only two index

levels, and are lack of a convenient insertion and deletion strategy. Furthermore, they can

not guarantee reliable query results. Haegler et al. have published SUDN [64], an index to

perform similarity search on non-axis parallel GMM. SUDN introduces a rotation strategy

to transform non-axis parallel GMM into approximate diagonal GMM. Then the linear

scan, rather than any hierarchical structure, is applied to sort these approximate GMM in

a descending order and complete queries afterwards.

Gauss-tree [45] utilizes the characteristic of Gaussian distributions for efficient queries

and uses MP as the similarity measure. It provides both the k-most likely queries and the

range queries for Gaussian distributions. Instead of index Gaussian curves as spatial objects

in feature spaces, Gauss-tree searches the parameter space of the means and variances of

the Gaussian distributions. Probabilistic Ranking Query (PRQ) [65] extends Gauss-tree
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for the index of GMM. However, PRQ can not guarantee the query accuracy since it

assumes that all the Gaussian components of candidates have relatively high MP with

query objects, which is not common in general cases.

2.3 Formal Definitions

In this section, we summarize the formal notations of GMM and MP. A GMM is a prob-

abilistic model that represents the probability distribution of observations. The definition

of GMM is shown as follows.

Definition 2. (Gaussian Mixture Models) Let x ∈ Rd be a variable in a d-dimensional

space, x = (x1, x2, ..., xd). A Gaussian Mixture Model G is the weighted sum of m Gaussian

distributions, and defined as:

G(x) =
∑

1≤i≤m

wi · Ni(x) (2.1)

where
∑

1≤i≤mwi = 1, ∀i ∈ [1,m], wi ≥ 0, and Ni(x) is the density function of a Gaussian

distribution with a covariance matrix Σi:

Ni(x) =
1√

(2π)d|Σi|
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)

When Σi is a diagonal matrix, Ni(x) can be reformulated as:

Ni(x) =
∏

1≤l≤d

1√
2πσ2

i,l

exp

(
−(xl − µi,l)2

2σ2
i,l

)

where σi,l is the l-th element on the diagonal of Σi.

As we can see in Definition 2, a GMM can be represented by a set of components,

each of which is composed of a mean vector µ ∈ Rd and a covariance matrix Σ ∈ Rd×d.
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For example, a GMM G0 in a two-dimensional space consists of two Gaussian components
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, and the weights of the components

are 0.3 and 0.7, respectively (Figure 2.2).
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Figure 2.2: GMM G0 in a two-dimensional space. The height of grids in this figure indicates

the probability density of corresponding positions.

MP considers all the possible positions of true feature vectors, and sums up the joint

probabilities of two PDF. The definition of MP is shown as follows.

Definition 3. (Matching Probability) Let f1 and f2 be two PDFs, and x be a true feature

vector. MP between f1 and f2 is defined as:

mp(f1, f2) =

∫

Rd
f1(x) · f2(x)dx (2.2)

Let G1 and G2 be two GMM with diagonal covariance matrices, and they have m1 and
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m2 Gaussian components in Rd, respectively. MP between G1 and G2 can be derived as:

mp(G1,G2) =

∫

Rd
G1(x)G2(x)dx

=

∫

Rd

m1∑

i=1

w1,i · N (µ1,i, σ
2
1,i)

m2∑

j=1

w2,j · N (µ2,j, σ
2
2,j)dx

=

m1∑

i=1

m2∑

j=1

w1,iw2,j
1

2π
√
σ2

1,iσ
2
2,j

∫
e
−

(x−µ1,i)
2

2σ2
1,i

−
(x−µ2,j)

2

2σ2
2,j dx

=

m1∑

i=1

m2∑

j=1

w1,iw2,j
1√

2π(σ2
1,i + σ2

2,j)
e
−

(µ1,i−µ2,j)
2

2(σ2
1,i

+σ2
2,j

)

So the closed-form expression of mp(G1,G2) can be represented as:

m1∑

i=1

m2∑

j=1

w1,iw2,j · N (µ1,i, µ2,j, σ
2
1,i + σ2

2,j) (2.3)

MP between two GMM cannot exceed one, and if the two GMM are very disjoint, it

is close to zero. To obtain a high MP, it is required that two GMM objects have similar

shapes, i.e. similar parameters (µ, σ2, w).

We assume that all GMM included in this chapter have diagonal covariance matrices

to apply the closed-form similarity calculations.

2.4 Index GMM by Gaussian Components

In this section, we introduce GCI, which indexes GMM by the n-lets of Gaussian com-

ponents. At first the motivation of creating GCI is given. Secondly GCI is implemented

based on an R-tree like structure and derives a lower bound (or upper bound for MP in

our case) that can be achieved in a node. Thirdly the refinement strategy of Gaussian

components is introduced. Finally the time complexity of GCI is discussed.
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2.4.1 Problem Definition and Motivation

Let D = {Gi}Ni=1 be a database of N GMM-modeled objects in a d-dimensional space Rd,

and Gi consists of mi Gaussian components. For a given query object GQ, a k-most-likely

query is to find k database objects which have the highest MP with GQ, while a probability

threshold query is to find database objects that have a higher MP with GQ than a given

threshold T .

Index structures, besides the linear scan, are essential techniques to support the queries.

Similarity measures for GMM, such as MP, are expensive to calculate, especially when

GMM have large numbers of Gaussian components, which is prevalent in getting an

accurate estimation of real-world data. An intuitive index structure for GMM should

have the competency to prune those unqualified objects and to validate objects that have

high probabilities to be the final candidates. However, since mixture models, for example

GMM, can have unequal numbers of components, traditional index techniques such as

U-tree and Gauss-tree cannot be directly applied on them.

To tackle the problem, we create a special index tree with the single, pairs, or n-lets of

Gaussian components which have the same length, and refine potential GMM candidates

in a conservative but tight way. In the pruning step, the index tree works as a filter by

calculating MP between the query object and the tree nodes, instead of calculating MP

between GMM (referred to as full GMM calculation). In addition, we have a separate array

structure to store and access GMM whenever necessary, which we regard as refinement.

In this way, we can employ various of existing index methods that are designed for non-

mixture models, for instance, Gauss-tree and U-tree, and heuristic strategies can be applied

for the refinement. The index structure of GMM in Figure 2.1 demonstrates the basic idea

of GCI.

In this chapter, we implement GCI based on an R-tree like structure of Gaussian

components, since R-tree is the most widely used and well understood index tree. It is

worth noting that the similarity measure used to build the tree is MP instead of Euclidean

distance. Figure 2.3 shows the run-time of the full GMM calculation and the calculation of
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MP between the query component and MBR, which is referred to as the MBR calculation.

It is obvious that the MBR calculation has stable run-time when the number of components

increases, whereas the run-time of the full GMM calculation grows polynomially. The

advantage of GCI is avoiding unnecessary expensive calculations (full GMM calculations)

on basis of cheap calculations (MBR calculations). The fabrication process of GCI is given

in the following part of this section.
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Figure 2.3: Comparison of time costs for the MBR calculation and the full GMM

calculation. The solid green line shows the average run-time of 10,000 MP calculations

between GMM over 100 runs, while the red dash line shows that of 10,000 calculations

between the query component and MBRs.

2.4.2 Index Tree for Gaussian Components

In the index tree of Gaussian components, we store the n-lets of Gaussian components

combinations in each entry. For a GMM Gi with mi components, there are (mi
n

) possible

combinations to store.

Taking a GMM G1 that has four Gaussian components {g1,1, g1,2, g1,3, g1,4} for example,

(4
2
) Gaussian pairs will be stored in a 2-lets index tree: {g1,1, g1,2}, {g1,1, g1,3}, {g1,1, g1,4},
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{g1,2, g1,3}, {g1,2, g1,4}, {g1,3, g1,4}, where the first pair corresponds to:

(w1,1, µ1,1, σ
2
1,1︸ ︷︷ ︸

g1,1

, w1,2, µ1,2, σ
2
1,2︸ ︷︷ ︸

g1,2

,m1,G1)

In the case of mi < n, the Gaussian components combination will be supplemented with

zero-weight components.

After preparing these Gaussian components, we organize them into the R-tree like struc-

ture. The dimension of data stored in the tree is (2d+1)×n+1. For a query processing, we

need the conservative approximation of MP between the query GQ and entries (the single,

pairs, or n-lets of Gaussian components) stored in a node P = [w̌p, ŵp; µ̌p, µ̂p; σ̌2
p, σ̂

2
p; ...; m̌p, m̂p].

Since all Gaussian components are independent, it is sufficient to provide the conservative

approximation of MP between a query component gQ ∈ GQ and a single Gaussian compo-

nent gx ∈ P . According to Eq. 2.3, MP between gQ and gx can be represented as:

mp(gQ, gx) = wQwx
1√

2π(σ2
Q + σ2

x)
e
−

(µQ−µx)
2

2(σ2
Q

+σ2x)

The maximum m̂p(gQ, gx) for gQ in the node P is given as:

max
wx∈[w̌p,ŵp],µx∈[µ̌p,µ̂p],σ2

x∈[σ̌2
p,σ̂

2
p],mx∈[m̌p,m̂p]

{mp(gQ, gx)}

Determining m̂p(gQ, gx) in each dimension, we get the closed-form expression of the ap-

proximation by lemma 2.4.1.

Lemma 2.4.1. For entries stored in a node P , the maximum MP between the single

Gaussian component gx of them and a query component gQ can be computed by the following

function:

m̂p(gQ, gx) =





mpŵp,m̂p

mpµ̌p if µQ < µ̌p

mpµ̂p if µQ > µ̂p

mpµQ if µ̌p ≤ µQ ≤ µ̂p

mp
σ̂2
p

if σ2
Q < (µx − µQ)2 − σ̂2

p

mpσ̌2
p

if σ2
Q > (µx − µQ)2 − σ̌2

p

mp((µQ−µx)2−σ2
Q) for other σ2

Q

(2.4)
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where the subscripts of mp indicate the conditions of mp(gQ, gx) reaching its maximum.

Proof. The derivatives of mp(gQ, gx) with respect to wx and mx are greater than zero, so

mp(gQ, gx) reaches the maximum when wx = ŵp and mx = m̂p.

The derivative of mp(gQ, gx) with respect to µx is

∂mp

∂µx
=

wQwx√
2π(σ2

Q + σ2
x)
e
−

(µQ−µx)
2

2(σ2
Q

+σ2x)
µQ − µx
σ2
Q + σ2

x

Since ∂mp
∂µx

< 0 when µQ < µ̌p, m̂p(gQ, gx) = mpµ̌p . Likewise m̂p(gQ, gx) = mpµ̂p when

µQ > µ̂p, and m̂p(gQ, gx) = mpµQ when µ̌p ≤ µQ ≤ µ̂p.

The derivative of mp(gQ, gx) with respect to σ2
x is

∂mp

∂σ2
x

=
wQwxe

−
(µQ−µx)

2

2(σ2
Q

+σ2x)

2
√

2π(σ2
x + σ2

Q)5/2

(
(µQ − µx)2 − σ2

Q − σ2
x

)

If σ2
Q < (µx− µQ)2− σ̂2

p, we get ∂mp
∂σ2
x
> 0, thus m̂p(gQ, gx) = mp

σ̂2
p
. Similarly, m̂p(gQ, gx) =

mpσ̌2
p

when σ2
Q > (µx − µQ)2 − σ̌2

p, and m̂p(gQ, gx) = mpσ2
Q

when (µx − µQ)2 − σ̂2
p ≤ σ2

Q ≤
(µx − µQ)2 − σ̌2

p.

With the above equations and formularies, we have a tight and closed-form expression

for the MBR calculation in the index tree for Gaussian components, which has a similar

insertion and deletion strategy as R-tree. As for the insertion, if a new entry fits into

one node exactly, the entry is assigned to this node. When an entry does not fit into any

existing node, the upper bounds of MP, m̂p(gQ, gx), are calculated to locate a proper node

to assign the entry. When a node exceeds its capacity, two entries with the highest lower

bound and the lowest higher bound are set as seeds for two new nodes, respectively. The

other entries are assigned to the new nodes afterwards. If a node has less entries than a

pre-setting value after the deletion, the node will be removed and all entries of it will be

reinserted.
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2.4.3 Refinement Strategy

As for the query processing, we assume that we always have a pruning probability threshold

τ , below which the corresponding objects are not of interest. τ can either be defined by

the user in the probability threshold query (τ = T ), or be the k-th ranked MP from the

refinement steps in the k-most-likely query. In the latter case we start with τ = 0 and

update it whenever we find a greater k-th MP than τ .

After building the index tree of the n-lets of Gaussian components, we start the ranking

of entries by MP between them and a given query object GQ = {gQ,j}mQj=1, where mQ is the

component number of GQ. For an index node P , we determine whether or not it contains

any Gaussian components combinations which are above the threshold τ . According to

Eq. 2.4, we derive the upper bound of MP with the query object GQ for node P as shown

below.

m̂p(GQ, P ) =
1

n

∑

gQ,j∈GQ

∑

1≤i≤n

m̂p(gQ,j, gi) (2.5)

Thus we can get the ranking list of the entries in an efficient way. As for MP between

GQ and all the complete GMM stored in the database D, it can be evaluated considering

information from the ranking list only. If there is a n-let of Gaussian components that

matches well with the query object, the corresponding database object Gcurrent might be

one of the top-ranked candidates for the query. It is known for sure that for each following

entry below τ in the ranking list, Gcurrent cannot have a higher MP than τ if the other

components of Gcurrent have not shown in the previous list yet. Since none component

(or n-lets of components) of Gcurrent has an higher rank than τ , Gcurrent is an unqualified

candidate for the query. Therefore, entries with a lower rank than τ are definitely not

candidates for the refinement which means loading Gcurrent and determine the overall MP

with GQ.

We start the refinement from the top-ranked entries, and the pruning threshold τ is

updated in this step for the k-most-likely query. Different heuristic refinement strategies

can be applied here, but in any case we have to ignore those refined entries, of which the

corresponding GMM have been refined already. It can be done by keeping a boolean array,
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or using a hashing method to store them in an ignore list if there are too many GMM.

In this chapter we use a intuitive refinement method which refines entries whenever their

ranks are higher than τ and the corresponding GMM are not on the ignore list. For those

entries blow the updated τ , we can safely exclude them. This strategy is simple and clear,

and no other extra criteria are needed.

The refinement strategy in this chapter can also support approximate queries by re-

placing Eq. 2.5 with the following equation.

m̂p(GQ, P ) =
1

n

∑

gQ,j∈G∗Q

∑

1≤i≤n

m̂p(gQ,j, gi)

where G∗Q is a set of selected Gaussian components from GQ, and it is chosen by the sorted

weights of components, since the component with a higher weight might play a more

important role in MP between GMM.

The pseudo code in Algorithm 1 shows GCI for the k-most-likely query, and the

probability threshold query is shown in Algorithm 2. The two pseudo codes are similar

except that the latter one maintains an unknown number of possible candidates for queries.

To illustrate the processing of GCI, we generate a synthetic data set that consists of

eleven data objects (available in the synthetic data sets of Section 2.5). Each object is

represented by a two-component GMM in a two-dimensional data space. We store ten of

these objects in the index tree of Gaussian components and take the left one as a query

object. Since here we only store a single component in each entry, we have twenty leafs

(ID 0∼19) in total. Setting the minimum number of entries in each node as three and the

maximum as eight, we get an index tree for Gaussian components as shown in Figure 2.4.

There are three nodes (Node 1, 2 and 3) in level one, and one node (Node 0) in level two.

Setting τ = 0 in the beginning of a 1-most-likely query, three times of MBR calculations

are carried out from the root, and the descending order of them is: Node 2 (mp = 0.03),

Node 1 (mp = 1.9 × 10−17) and Node 3 (mp = 1 × 10−25). Since the child nodes of Node

2 are data pages, we start refining the entries in Node 2. All these entries belong to four

GMM, which means we have to perform four times of full GMM calculations. After this

refinement step, the threshold τ is updated to 0.0024. Entries stored in Node 1 and Node
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Algorithm 1: k-most-likely Objects Query

Data: int k, Node root, Query Object GQ
Result: PriorityQueue results

1 PriorityQueue results = new PriorityQueue() ; /* Ascending */

2 PriorityQuene activePages = new PriorityQueue() ; /* Descending */

3 activePages.put(root, MAX REAL);

4 τ = 0;

5 while activePages.isNotEmpty() &

results.getFirstMP()<activePages.getFirstMP() do

6 P = activePages.getFirstPage;

7 activePages.removeFirstPage();

8 if P .isDataPage() then

9 Entry E = P .data;

10 if mp(E,GQ) > τ then

11 Gcurrent = E.getGMM;

12 results.put(Gcurrent, mp(Gcurrent,GQ));

13 if results.size> k then

14 results.removeFirst;

15 τ = results.getFirstMP();

16 else

17 children = P .getChildren();

18 while children.hasMoreElements() do

19 child = children.getNextElement();

20 probability = m̂p(GQ, child);

21 activePages.put(child,probability);
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Algorithm 2: Probability Threshold Query

Data: T , Node root, Query Object GQ
Result: PriorityQueue results

1 PriorityQueue results = new PriorityQueue() ; /* Ascending */

2 PriorityQuene activePages = new PriorityQueue() ; /* Descending */

3 activePages.put(root, MAX REAL);

4 τ = T ;

5 while activePages.isNotEmpty() &

results.getFirstMP()<activePages.getFirstMP() do

6 P = activePages.getFirstPage;

7 activePages.removeFirstPage();

8 if P .isDataPage() then

9 Entry E = P .data;

10 if mp(E,GQ) > τ then

11 Gcurrent = E.getGMM;

12 if mp(Gcurrent,GQ) > τ then

13 results.put(Gcurrent, mp(Gcurrent,GQ));

14 else

15 children = P .getChildren();

16 while children.hasMoreElements() do

17 child = children.getNextElement();

18 probability = m̂p(GQ, child);

19 activePages.put(child,probability);
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Figure 2.4: Demonstration of an index tree of GCI for Gaussian components. The locations

of green points and red squares correspond to the two-dimensional means of Gaussian

components.

3 are excluded afterwards because the upper bounds of the two nodes are lower than the

new τ . Finally, the GMM with the highest MP will be selected from the refined four GMM

as the result of the 1-most-likely query. In summary, GCI executes three times of MBR

calculations and four times of full GMM calculations, while the linear scan has to carry

out ten times of full GMM calculations.

2.4.4 Time Complexity

Given N GMM-modeled objects, of which the maximum Gaussian components is m, we

store the n-lets of their components into an index tree with the minimum number of

entries in each node being rm. In this case, the time complexity of average queries by GCI

is O
(
logrm

(
N(m

n
)
))

+ αO (Nm), where α refers to the percentage of the refined GMM

over all the objects. In the expression, the elementary operation of the first part is the

MBR calculation. As shown in Figure 2.3, it is cheaper to calculate than that of the second

part, full GMM calculation, especially when GMM have large numbers of components. α
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varies in (0, 1], and it is related to data distributions and the settings of the employed

index tree. In the worst case, i.e. all the entries in the index tree of components have to

be refined, the second part of the time complexity will be equal to that of the linear scan:

O (Nm).

2.5 Experimental Evaluation

In this section, we provide the practical evaluations of GCI, comparing to PRQ [65] and the

linear scan. We choose PRQ because it is the only dynamic GMM-specific index structure

to the best of our knowledge. We first conduct experiments on synthetic data to investigate

how the three approaches perform when varying the dimensionality of the data, the number

of GMM components or objects, and k in k-most-likely queries1. Since PRQ is yield to

storing only single Gaussian components, GCI uses the same setting for the comparison.

Besides, GCI is evaluated with the varied number of components stored in the index entry.

Additionally, we evaluate the performance of the approximate queries provided by GCI.

Experiments on real-world data sets are also performed to evaluate the effectiveness and

efficiency of GCI.

GCI and PRQ share the same index tree of Gaussian components, and the minimum

and maximum entry numbers of each node in this tree are 10 and 50, respectively. All the

experiments arse implemented with Java 1.7, and executed on a regular workstation PC

with 3.4 GHz dual core CPU equipped with 32 GB RAM. For all the experiments, we use

the ten-fold cross validation and report the average results over 100 runs.

2.5.1 Data Sets

Synthetic data sets2 are generated by randomly choosing mean values between 0 and 100

and standard deviations between 0 and 5 for each Gaussian component. The weights are

1The probability threshold queries have the similar performance with the k-most-likely queries, thus

the experiments of the former are not included in this chapter due to the limited space.
2https://drive.google.com/open?id=0B3LRCuPdnX1BaXJra2VSVTZLU1E

https://drive.google.com/open?id=0B3LRCuPdnX1BaXJra2VSVTZLU1E
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randomly assigned, and sum up to one within each GMM.

As for the real-world data sets, since we are not interested in tuning the modeling of data

objects into its optimum, the numbers of Gaussian components in GMM are determined

by the rule of thumb instead of the Bayesian Information Criterion. The Expectation-

Maximization algorithm3 is used to learn GMM from the data objects.

Classificaça̋o Nacional de Atividade Econőmica4 (CNAE) is a set of text documents of

Brazilian companies. We estimate 20-component GMM from it.

The Audio data set consists of selected speeches from ten speakers in Open Speech Data

Corpus5. The ten speakers are Aaron, Abdul Moiz, Afshad, Afzal, Akahansson, Alexander

Drachmann, Afred Strauss, Andy, Anna Karpelevich and Anniepoo. Every wav file is split

into ten fragments which are then transformed into frequency domains by Fast Fourier

Transform, and used to generate ten-component GMM.

Amsterdam Library of Object Images6 (ALOI) is a collection of images taking under

various light conditions and rotation angles. Here we use the 1000-level histogram of each

picture to train an univariate GMM, which has eight components. CorelDB data7 is another

image data set from the Corel image database. We use the grey histogram information of

each image to general ten-component GMM.

Weather Underground8 collects the historical weather data of the world. We use the

daily weather data of 907 airports in Europe from year 2005 to 2014. The selected features

of the Airports Weather data are temperature, humidity, sea level pressure, visibility

distance and wind speed, and the average values of each day are used. For each airport, a

ten-component GMM is estimated.

3Implementation provided by WEKA at http://weka.sourceforge.net/doc.dev/weka/clusterers/

EM.html.
4https://archive.ics.uci.edu/ml/datasets/CNAE-9
5 http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Main/16kHz_

16bit/
6http://aloi.science.uva.nl/
7https://sites.google.com/site/dctresearch/Home/content-based-image-retrieval
8https://www.wunderground.com/history

http://weka.sourceforge.net/doc.dev/weka/clusterers/EM.html
http://weka.sourceforge.net/doc.dev/weka/clusterers/EM.html
https://archive.ics.uci.edu/ml/datasets/CNAE-9
http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Main/16kHz_16bit/
http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Main/16kHz_16bit/
http://aloi.science.uva.nl/
https://sites.google.com/site/dctresearch/Home/content-based-image-retrieval
https://www.wunderground.com/history
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The NBA players data9 provides all the performance statistics of every player in the

history. We collect 1,023,731 game logs of 2444 players till 2014, and build a GMM with

20 components for each player using his 15 statistical data, including MIN, FGM, FGA,

3FGM, FTM, FTA, OREB, DREB, REB, AST, STL, BLK, TO, PF and PFS10.

2.5.2 Experiments on Synthetic Data

We compare the query times and average accuracies of GCI, PRQ and the linear scan, and

analyze the performance of GCI when varying its settings.

We start with experiments by scaling the data dimension d, the Gaussian components

number m of GMM, the object number N and k in k-most-likely queries.

As shown in Figure 2.5, GCI generally achieves the least run-time comparing to the

other approaches. In Figure 2.5(a), both the linear scan and GCI have a linear relation

with the data dimension, but the latter is much placid than the former. PRQ has a rather

stable time cost with the increase of the data dimension. In Figure 2.5(b), GCI has a

linear dependency with the component number of GMM. The linear scan completes the

queries in polynomial time, sharing the same trend with the full GMM calculations shown

in Figure 2.3. PRQ shows a similar trend with the linear scan, but costs slightly less run-

time. Figure 2.5(c) shows that with the increase of the object number, GCI is more and

more efficient than the linear scan and PRQ, except that it costs slightly more time than

the linear scan when the object number is ten. When varying k in k-most-likely queries,

the linear scan has a stable run-time cost, while that of GCI and PRQ increase linearly,

but GCI still costs less run-time than the linear scan (Figure 2.5(d)).

The percentages of refined GMM (referred to as refined percentages) are shown in

Figure 2.6, where GCI always has a lower refined percentage than PRQ, except for Figure

2.6(c). Both GCI and PRQ have stable refined percentages with the increase of the data

dimension (Figure 2.6(a)). GCI keeps the same trend when increasing the component

number of each GMM, while the refined percentage of PRQ decreases to a stable level

9http://stats.nba.com/players/
10Glossary is available at http://stats.nba.com/help/glossary.

http://stats.nba.com/players/
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(a) (b)

(c) (d)

Figure 2.5: Comparison of run-time between GCI, PRQ and the linear scan on synthetic

data. 1-most-likely queries are applied in (a), (b) and (c). In (a), the number of Gaussian

components in each GMM is fixed as ten and the object number is 100. The data dimension

in (b) is two and the object number is 100. In (c) the data dimension is two and the

components in each GMM is ten. The synthetic data set used in (d) has 100 GMM with

ten Gaussian components in a two-dimensional space.
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Figure 2.6: Refined percentages of GCI and PRQ on synthetic data. Experimental settings

are identical to that of Figure 2.5.
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Table 2.1: Search accuracy of PRQ on synthetic data.

index Data dimension Component # Object # k-most-likely

i d = i m = i N = 10i k = 2i− 1

1 0.135 0.000 0.490 0.085

2 0.070 0.079 0.110 0.253

3 0.110 0.076 0.000 0.419

4 0.117 0.074 0.000 0.538

5 0.174 0.118 0.558

6 0.124 0.143 0.527

7 0.119 0.125 0.549

8 0.178 0.131 0.588

9 0.183 0.094 0.600

10 0.102 0.097 0.591

when there are more than four components in each GMM (Figure 2.6(b)). Figure 2.6(c)

shows the decrease of the refined percentages of GCI and PRQ when we have an increasing

number of objects in the data set. The refined percentages of the two methods increase

with k in k-most-likely queries in Figure 2.6(d), corresponding to the trend of the run-time

costs as shown in Figure 2.5(d). It is notable that GCI and the linear scan guarantee the

search accuracy which reaches 100%, while PRQ gets a very low accuracy as shown in

Table 2.1.

GCI can not only store more than one single Gaussian component in each entry, but

also support approximate queries to obtain better efficiency. Each GMM in the database

is decomposed into Gaussian components and the n-lets of the components are stored in

the index tree of GCI. For each approximate query, the Gaussian components of the query

object are sorted by the weights, and only the top-ranked components are used for applying

the query. Taking the synthetic data set used in Figure 2.5(d) for example, we keep k in

k-most-likely queries to one, but vary the number of components n in each entry as well

as the percentage of used Gaussian components for the query. The time cost for building

the index tree achieves its maximum when storing only one single Gaussian component in
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each entry, and fluctuates within a narrow range with the increase of n (Figure 2.7(a)).

The query time and the refined percentage of GCI share the same trend, and the lowest

three points are n = 1, 2, 5 (Figure 2.7(a) and (b)). The query time shows an approximate

linear relation with the percentage of used component for the query (Figure 2.7(c)). In

correspondence with that, the query accuracy slightly decreases with the query percentage,

and its variance increases at the same time (Figure 2.7(d)).
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Figure 2.7: Results of 1-most-likely queries on the synthetic data used in Figure 2.5 (d)

when varying the parameters of GCI. The synthetic data set has 100 GMM, each of which

has ten Gaussian components in a two-dimensional space.

2.5.3 Experiments on Real-world Data

Moving to experiments on the real-world data sets, we measure the time cost, the refined

percentage and the number of accessed node in the index tree, and evaluate the performance

of approximate queries of GCI on CorelDB data.
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Figure 2.8: Results of approximate 1-most-likely queries using GCI on CorelDB data.

As shown in Table 2.2, GCI always outperforms the linear scan in the time cost, and

generally outperforms PRQ in the time cost and the node access number except for the

NBA data. For the six data sets, the refined percentage of GCI varies between 0.29 and

0.67, which is higher than that of PRQ. However, the query accuracy of PRQ on the six

data sets are all below 0.1 while GCI guarantees the query accuracy. That is because the

refinement will not be activated in PRQ until all the components of one GMM have been

retrieved, which makes it difficult for PRQ to locate qualified candidates for the queries.

The approximate queries provided by GCI have the same pattern on the six real-world

data sets, and here we show the results of experiments on the CorelDB data set in Figure

2.8 as an example. The query accuracy decreases with the percentage of used Gaussian

components in each query object, since the nodes that include potential candidates might

get excluded. Nevertheless, both the run-time and the refined percentage benefit from the

reduced percentage of used components. Reducing the percentage of used components from

100% to 20%, the approximate 1-most-likely query of GCI can almost halve the run-time

while maintaining the search accuracy above 0.8.

2.6 Conclusions

In this chapter we have proposed Gaussian Component based Index, a dynamic index

structure for GMM. GCI decomposes GMM into Gaussian components and stores the
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single, pairs or n-lets of them in well developed index techniques. GCI provides the k-

most-likely queries, the probability threshold queries and the approximate queries. The

implementation of GCI in this chapter is based on an R-tree like structure, where the

conservative bound of MP enables the efficient pruning process while it guarantees the

query accuracy. Besides, a refinement strategy is introduced to exclude unnecessary

expensive full GMM calculations.

The extensive experiments on both the synthetic data sets and the real-world data sets

demonstrate the effectiveness and efficiency of GCI. GCI outperforms the linear scan as

well as PRQ which is the only existing dynamic index structure for GMM. The advantage of

GCI expands with the increase of the data dimension, the component number of GMM and

the number of GMM-modeled objects. Specifically, storing different numbers of Gaussian

components in each index entry, GCI enables a solution for some special applications which

need the faster building of the index. As for the approximate queries, GCI can make a

good balance between efficiency and accuracy when varying the percentage of used query

components which are chosen by the sorted weights.

For future work, the enrichment of the refinement strategy is a promising direction. New

criteria to exclude potential unqualified objects in tighter ways will improve the efficiency

of GCI. Moreover, similarity measures with metric properties for GMM is an interesting

topic for both the index and the subsequent analysis.
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Chapter 3

Infinite Euclidean Distance

“Most of the world will make decisions by either guessing or using their gut.

They will be either lucky or wrong.”

Suhail Doshi

In this chapter, we propose IED, a novel metric for probability distribution functions

and it has a closed-form expression for GMM. Parts of this chapter have been published

in:

Linfei Zhou, Wei Ye, Claudia Plant, Christian Böhm. Knowledge Discovery of

Complex Data Using Gaussian Mixture Models. 18th International Conference

on Big Data Analytics and Knowledge Discovery, DaWaK 2017, August 28-31,

2017, Lyon, France.

where Linfei Zhou was mostly responsible for the development of main concepts, imple-

mented main algorithms and wrote the most parts of the paper. Wei Ye helped with the

design of experiment part. Christian Böhm and Claudia Plant supervised the project. All

co-authors contributed to the discussion, paper writing and revising.
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3.1 Introduction

With the increase of generated and stored data quantity and variety, the analysis of complex

data faces great challenges. One of the most important aspect is how to represent and

retrieve data in an efficient way. On one hand, modern applications like speaker recognition

[66, 67], content-based image and video retrieval [68, 69], biometric identification and stock

market analysis can benefit from the retrieval and analysis of complex data, on the other

hand, they also limit these applications. Take player statistics for example, far more

than field goal made, rebounds and etc., SportVU utilizes six cameras to track the real-

time positions of NBA players and the ball 25 times per second [70]. Comprehensive and

sophisticated data generated by SportVU provides a possibility to make the best game

strategy or to achieve the most effective team building, but it increases the difficulty of

following modeling and analysis as well.

Many representation methods for complex data have been proposed, ranging from

feature vectors to complicated models [71, 72, 73, 74, 75]. As a general class of PDF, GMM

consist of a weighted sum of univariate or multivariate Gaussian distributions, allowing a

concise but exact representation of data distributions. Storing complex data as GMM will

dramatically reduce the resource consumption and guarantees the accuracies of retrieval

operations. GMM is capable of representing a large class of distributions, and another

advantage of representing data as GMM is that the complexity of the model is constant

with the variable number of instances. As shown in Figure 3.1(a), there are some records of

Munich Airport weather statistics are missing, which is very common for real-world data.

When we regard the statistics of each day as an instance, the effect of missing data for

modeling the distribution is insignificant, as illustrated in Figure 3.1(b).

Comparing the distributions of instances in Figure 3.1(b), (c) and (d), we can tell

that the numbers of cold days in Munich tend to decrease from 2005 to 2014. However,

quantitative indicators are needed to get a more accurate description of weather changes.

The design of similarity measures aims at facilitating indexes and further analysis. A

closed-form expression is essential to efficient calculations, otherwise, approximate methods
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Figure 3.1: Weather statistic of Munich Airport.
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like Monte-Carlo sampling are needed, which results in time consuming and/or inaccurate.

What is more, since GMM might have different numbers of Gaussian components in them,

traditional indexes designed for fixed-length vectors can not be applied here. For those

indexes that are based on similarity measures, for instance, M-tree [44] and VP-tree [76],

the properties of metric (e.g., triangle inequality) are required for the similarity measure

to guarantee the effectiveness and efficiency queries. As we will demonstrate, the main

contributions of this chapter are:

• We generalize Euclidean distance to IED on PDF, prove its metric properties and

derive the closed-form expression for GMM.

• Our experimental evaluations on both synthetic and real-world data sets demonstrate

the effectiveness and efficiency of IED and the better performances than previous

similarity measures for GMM.

The rest of this chapter is organized as follows. In Section 3.2, we survey the previous

work. Section 3.3 gives the basic definition of GMM, and introduces IED, a metric with

closed-form expression for GMM. Section 3.4 shows the experimental studies for verifying

the efficiency and effectiveness of the proposed similarity measure. Section 3.5 summarizes

the chapter.

3.2 Related Work

This section gives a survey and discussion of previous work on Multiple-Instance Learning,

similarity measures and indexes for GMM.

3.2.1 Data Representations

For objects with inherent structures, MI is a natural way to describe them. First motivated

by the problem of drug activity predictions, MIL deals with MI objects that are sets (or

bags) of instances [77]. MIL algorithms can be grouped into three categories, the instance
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space based paradigm, the bag space based paradigm and the embedded space based

paradigm [78], the last of which maps MI objects into new feature spaces.

Many mapping methods have been proposed to represent the data of instances, in-

cluding feature vectors and complex models. The vocabulary based mapping clusters

all instances from all bags into k clusters (vocabularies), and then uses the histogram

information, i.e., the counts of instances that belong to these clusters, to obtain a k-

dimensional feature vector for each bag [72, 78, 79]. The instance based mapping models

instances as a feature. For example, DD-SVM (Diverse Density SVM) [80] uses instance

prototypes that obtained according to DD measure, while MILES [81] chooses one of

instances as the feature. The model based mapping trains each bag to a model, for instance,

each bag is represented by a k-component mixture model (EM-clustering [73], PPMM [82],

miFV [74]), a Gaussian distribution [83], a graph in miGraph [75], a joint optimization

concept [84] and so on.

Having the ability to approximate arbitrary distributions, GMM can achieve a more

accurate representation of data than the feature vectors and other models, and it is a

concise model as well [56].

3.2.2 Similarity Measures

Similarity measures for GMM can be grouped into two categories, having closed-form ex-

pressions for GMM or not. For measures that have no closed-form expressions, Monte Carlo

sampling or other approximation approaches are applied, which may be time consuming

or imprecise.

KL divergence [85] is a common way to measure the distance between two PDF. It

has a closed-form expression for Gaussian distributions, but no such expression for GMM

exists.

To compute the distance between GMM by KL divergence, several approximation

methods have been proposed. For two GMM, a commonly used approximation for KL

divergence between them is Gaussian approximation. It replaces two GMM with two
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Gaussian distributions, whose means and covariance matrices depend on those of GMM.

Another popular way is to use the minimum KL divergence of Gaussian components that

are included in two GMM. Moreover, Hershey et al. [59] have proposed the product of

Gaussian approximation and the variation approximation, but the former tends to greatly

underestimate the KL divergence between GMM while the latter does not satisfy the

positivity property. Besides, Goldberger et al. [58] have proposed the matching based KL

divergence (KLm) and the unscented transformation based KL divergence (KLt). KLm

works well when the Gaussian elements are far apart, but it cannot handle the overlapping

situations which are very common in real-world data sets. KLt solves the overlapping

problem based on a non-linear transformation. Cui et al. [86] have compared the six

approximation methods for KL divergence with Monte Carlo sampling, where the variation

approximation achieves the best result quality, while KLm give a comparable result with

a much faster speed.

Besides the approximation similarity methods for GMM, several methods with closed-

form expressions have been proposed. Helén et al. [60] have described a squared Euclidean

distance (SE), which integrates the squared differences over the whole feature space. Sfikas

et al. [61] have presented a KL divergence based distance C2 for GMM. Jensen et al. [62]

used a normalized L2 (NL2) distance to measure the similarity of GMM in mel-frequency

cepstral coefficients from songs. Beecks et al. have proposed GQFD for modeling image

similarity in image databases [63]. However, only GQFD fulfills the properties of metric

on condition that a proper setting of parameters is given.

3.2.3 Indexes

For the indexes of GMM, there are several techniques available, including universal index

structures designed for uncertain data and GMM-specific methods.

U-tree provides a probability threshold retrieval on general multi-dimensional uncertain

data [46]. It pre-computes a finite number of PCR) which are possible appearance regions

with fixed probabilities, and uses them to prune unqualified objects. Although U-tree works



3.3 Methods 61

well with single PDF, its effectiveness deteriorates for mixture models such as GMM. The

reason behind this is that it is difficult for PCR to represent mixture models, especially

when the component numbers increase.

Rougui et al. [57] have designed a bottom-up hierarchical tree and an iterative grouping

tree for GMM-modeled speaker retrieval systems. Both approaches provide only two index

levels, and are lack of a convenient insertion and deletion strategy. Furthermore, they can

not guarantee reliable query results.

Instead of indexing curves as spatial objects in feature spaces, PRQ technique [65]

and Gaussian Component based Index [48] search the parameter space of the means and

variances of GMM. However, PRQ can not guarantee the query accuracy since it assumes

that all the Gaussian components of candidates have relatively high matching probabilities

with query objects, which is not common in general cases. For both indexes, their prune

strategies are highly effected by the distributions of Gaussian components.

Similarity measures that have the properties of metric can easily be supported by metric

trees like M-tree [44] and VP-tree [76]. Otherwise, special designed structures are needed

to guarantee efficient queries.

3.3 Methods

In this section, firstly we summarize the formal notations for GMM, then we introduce

IED for distributions and give the proof of its metric properties. Finally we derive the

closed-form expression of IED for GMM.

3.3.1 Gaussian Mixture Models

A GMM is a probabilistic model that represents the probability distribution of observations.

The definition is shown as follows.

Definition 4. (Gaussian Mixture Models) Let x ∈ RD be a variable in a D-dimensional

space, x = (x1, x2, ..., xD). A Gaussian Mixture Model G is the weighted sum of m Gaussian
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functions, defined as:

G(x) =
∑

1≤i≤m

wi · Ni(x) (3.1)

where
∑

1≤i≤mwi = 1, ∀i ∈ [1,m], wi ≥ 0, and Gaussian component Ni(x) is the density

of a Gaussian distribution with a covariance matrix Σi:

Ni(x) =
1√

(2π)D|Σi|
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)

As we can see in Definition 6, a GMM can be represented by a set of m components, and

each of them is composed of a mean vector µ ∈ RD and a covariance matrix Σ ∈ RD×D.

Modelling complex data into GMM will dramatically reduce the resource consumption.

What is more, with the increase of components number m, GMM provide more and more

precious representations of the original data.

3.3.2 Infinite Euclidean Distance for Distributions

Euclidean distance is the basic distance function for feature vectors in Euclidean space.

Here we generalize Euclidean distance into IED, a distance measure for PDF. We determine

square differences between the values of the corresponding PDF and sum them up by

integration. The definition of IED is shown as follows.

Definition 5. (Infinite Euclidean Distance) Given two PDFs f(x) and g(x) in a D-

dimensional space, Infinite Euclidean Distance between them is defined as:

dIED(f, g) =

(∫

RD
|f(x)− g(x)|2dx

) 1
2

(3.2)

Metric Properties

The metric properties of similarity measures facilitate the applications of metric trees for

efficient queries, while for similarity measures without metric properties, special structures
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are needed to guarantee the accuracy and efficiency of queries. What is more, some analysis

techniques like DBSCAN [87] also require the properties of a metric. A metric, e.g.

Euclidean distance, is a distance function that fulfills three metric properties. Next we

give the proof that IED is a metric.

Lemma 3.3.1. IED is a metric.

Proof. (M1) Positive Definiteness: As a PDF, the integrated function is everywhere

greater or equal to zero. If and only if f1 and f2 are exactly equal, (f1(x) − f2(x))2 = 0

for all x, thus dIED(f1, f2) = 0. If in some positions, f1 and f2 are not equal, then it will

have a positive influence on the integral. In that case, dIED(f1, f2) > 0.

(M2) Symmetry: Obviously, dIED(f1, f2) = dIED(f2, f1), because of the absolute value

in |f1(x)− f2(x)|2.

(M3) Triangle Inequality: The triangle inequality of IED states that for any PDF,

the following inequality always holds.

dIED(f1, f2) + dIED(f2, f3) ≥ dIED(f1, f3)

Since for A,B,C ≥ 0, inequality A + B ≥ C is equivalent to (A + B)2 ≥ C2. The

inequality can be transformed into:

(dIED(f1, f2) + dIED(f2, f3))2 ≥ (dIED(f1, f3))2

To prove this inequality, we substitute IED into the objective function Obj as shown

below.

Obj = (dIED(f1, f2) + dIED(f2, f3))2 − (dIED(f1, f3))2

= 2

∫

RD
(f2 − f3)(f2 − f1)dx + 2

√∫

RD
(f1 − f2)2dx

∫

RD
(f2 − f3)2dx

≥ 2

∫

RD
(f2 − f3)(f2 − f1)dx + 2

∣∣∣∣
∫

RD
(f2 − f3)(f2 − f1)dx

∣∣∣∣ ≥ 0

Thus we obtain dIED(f1, f2) + dIED(f2, f3) ≥ dIED(f1, f3).
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Closed-form Expression

Firstly we derive the closed-form expression for the inner product of GMM. Let G1 and

G2 be two GMM with diagonal covariance matrices, and they have m1 and m2 Gaussian

components, respectively. Let x be a feature vector in the space RD. The inner product

of G1 and G2 can be derived as:

〈G1,G2〉 =

∫

RD

m1∑

i=1

w1,i · N (µ1,i, σ
2
1,i)

m2∑

j=1

w2,j · N (µ2,j, σ
2
2,j)dx

=

m1∑

i=1

m2∑

j=1

w1,iw2,j

D∏

l=1

1

2π
√
σ2

1,i,lσ
2
2,j,l

∫
e
−

(x−µ1,i,l)
2

2σ2
1,i,l

−
(x−µ2,j,l)

2

2σ2
2,j,l dx

=

m1∑

i=1

m2∑

j=1

w1,iw2,j

D∏

l=1

e
−

(µ1,i,l−µ2,j,l)
2

2(σ2
1,i,l

+σ2
2,j,l

)

√
2π(σ2

1,i,l + σ2
2,j,l)

(3.3)

where σ1,i,l and σ2,j,l are the l-th diagonal elements of Σ1,i and Σ2,j, respectively.

The relation of the inner product to IED is:

dIED(G1,G2) =
√
〈G1,G1〉+ 〈G2,G2〉 − 2〈G1,G2〉 (3.4)

A closed-form expression is intrinsically valuable for computations. It saves extra efforts

to get a good approximation by avoiding simulation methods, like Monte Carlo sampling,

which may cause a significant increase in computation time and the loss of precision.

Therefore, closed-form expressions are well received in many applications, especially in

real-time applications. It is worth noting that only for GMM that have diagonal covariance

matrices, IED for GMM has a closed-form expression, so are the other similarity measures

to the best of our knowledge.

3.4 Experimental Evaluations

In this section, we provide experimental evaluations on both synthetic and real-world data

sets to show the efficiency and effectiveness of complex data analysis using GMM and the
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proposed similarity measure.

For KL divergence based similarity measures, only KLm is included in the comparison

since it is one of the best-performing approximations [86]. We set the parameter α of

GQFD as 10E-5 following the original paper [63]. As for Hausdorff distance, we use the

following equations to calculate the distance between GMM G1 and G2.

dHausdorff(G1,G2) = max{sup
G1

inf
G2

e(g1i, g2j)

w1iw2j

, sup
G2

inf
G1

e(g1i, g2j)

w1iw2j

}

e(g1, g2) =

√√√√
2D∑

i=1

(v1,i − v2,i)2

(3.5)

where v = {µl, σ2
l }Dl=1 is the parameter vector of the Gaussian distribution in aD-dimensional

space.

All the experiments are implemented with Java 1.7, and executed on a regular worksta-

tion PC with 3.4 GHz dual core CPU equipped with 32 GB RAM. For all the experiments,

we use the 10-fold cross validation and report the average results over 100 runs.

3.4.1 Data Sets

The data sets used in this chapter consists of a synthetic data set1 and two real-world data

sets2.

We collect 3,769 NBA players statistic data that includes 1,023,731 match logs until

2014. Seventeen statistics (WL, MIN, FGM, FGA, FG3M, FG3A, FTM, FTA, OREB,

DREB, REB, AST, STL, BLK, TOV, PF and PTS3) are used as features for each player,

and we estimate GMM with ten components from statistic data using the EM algorithm.

To tune the number of GMM into its optimum, Bayesian Information Criterion can be

applied.

1https://drive.google.com/open?id=0B3LRCuPdnX1BSTU3UjBCVDJSLWs
2https://drive.google.com/open?id=0B3LRCuPdnX1BUW5TbzNSdDBoaVk
3http://stats.nba.com/help/glossary/
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For another real-world data, we use daily weather data of 2,946 airports in the whole

year 2014. Because of missing data, there are 961,308 pieces of records in the data set. The

selected features are temperature and humidity, and only the average values of each day

are used. For each airport, a ten-component GMM is estimated by EM algorithm based

on the whole year weather data.

3.4.2 Query performance

We study the performance of the only two metrics, IED and GQFD4, when using VP-

tree to facilitate efficient queries. The query results on synthetic data are reported in

Figure 3.2. As shown in Figure 3.2(a), the acceleration ratio (comparing with linear scan)

of IED increases with the number of stored objects while that of GQFD almost remains

unchanged. As for the query time (Figure 3.2(b)), IED costs more run-time than GQFD

at the beginning, then achieves a much better results than GQFD with the increase of the

number of objects.
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Figure 3.2: 1-Nearest Neighbour query results of IED and GQFD on synthetic data using

VP-tree. The capacity of nodes in the VP-tree is set to 32.

4With the given parameter, the query accuracies of GQFD using VP-tree is guaranteed for the synthetic

data.
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3.4.3 Classification on NBA data

Since there is no label information for NBA data, we evaluate classification results by

comparing them to subjective opinions.

There is a famous question about the NBA players: who plays most like M. Jordan.

To answer the question with the support of data, we model the statistics into GMM and

then apply k-Nearest Neighbour (k-NN) algorithm, setting the query object as the GMM

of M. Jordan. Most of the similarity measures, except GQFD, successfully pick Jordan as

the ’most like’ player to himself. The other results are shown in Table 3.1 in the form of

ranking lists, and opinions from two experts J. Kiang5 and F. Ewere6 are also included.

To have a quantified criteria, we define an accuracy function shown as follows to evaluate

the rankings.

Accuracy =

∣∣∣QR
⋂(

EO1

⋃
EO2

)∣∣∣
k

where QR is the query results of k-NN, and EO1 and EO2 are expert opinions. As shown in

Table 3.1, the highest accuracy is obtained by IED and SE, and four out of eight candidates

picked by them meet the opinions of experts.

Because of their definitions, IED and SE provide the same results on this query task.

Picking three levels of NBA players (See Table 3.2) from their ranking lists, we demonstrate

the multidimensional scaling (MDS) plot of IED and SE. A good similarity measure should

be able to put the candidates of the same level closer than the other levels in the MDS

plot. As shown in Figure 3.3, IED not only assigns NBA players from the same level closer

than ES, but also achieves a more distinguishable layout between levels than ES.

5http://bleacherreport.com/articles/537852-michael-jordan-and-his-nba-heirs-the-10-most-like-mike-

players-in-the-league
6http://www.rantsports.com/nba/2015/07/12/10-current-nba-players-who-emulate-michael-jordans-

competitiveness/
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Table 3.1: Eight NBA players that play most ’like’ Jordan

1 2 3 4 5 6 7 8 Accu

Kiang Bryant D. Rose Wade Durant James Westbrook Anthony Ellis -

Ewere Bryant Westbrook Wade C. Paul Garnett P. Pierce Ginobli Durant -

IED Barkley Iverson Wade P. Pierce Durant Nowitzki Powell Bryant 4/8

SE Barkley Iverson Wade P. Pierce Durant Nowitzki Powell Bryant 4/8

C2 Wade Iverson Robinson Mashburn Rose Malone Bryant Nowitzki 3/8

NL2 Wade Worthy D. Rose Robinson Iverson R. Gay Mashburn Westbrook 3/8

KLm Drexler Bird Wade Aguirre Bryant Carter Wilkins Anthony 3/8

GQFD Hanson Nickerson Johnson* Johnson† Werdann Lewis Stokes Claxton 0/8

Hausdf R. White T. Tyler Nimphius McDaniel Sobers Lucas Silas Churchwell 0/8

*Darryl Johnson †DeMarco Johnson

Table 3.2: Sub-dataset: three levels of NBA players

Level

A M. Jordan K. Bryant D. Wade A. Iverson P. Pierce

B W. Burton T.

Chambers

A. Peeler M. Fizer R. Pack

C C. Laettner B. Miller W. Person R. Seikaly B. Gordon

3.4.4 Clustering on Weather Data

For Weather data, we perform clustering experiments to compare the usability of the

proposed similarity measure for unsupervised data mining. Instead of k-means algorithm,

the k-medoids is used since it works with arbitrary similarity measures, making it more

suitable here. We evaluate the clustering results using two widely used criteria, Purity and

NMI.

According to Peel et al. [88], the world climate can be divided into a total of 29

categories using Köppen climate classification, which is based on average annual and

monthly temperature and precipitation, as well as the seasonality of precipitation. These

features are highly relevant to Weather data, thus we assign each airport to one of the
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Figure 3.3: Multidimensional scaling plot of 15 players using different similarity measures.

Each marker (dot, diamond and square) represents a NBA player.

categories according to its location and get 25 classes of climate types (Cwc, Dsd, Dwd

and EF are not included) in total.

Table 3.3 shows the clustering results of Weather data. We can see that IED achieves

the highest Purity and NMI among all the similarity measures. To get an visualized

impression of the best two results from IED and NL2, we mark the airports of different

clusters as dots with different colors in Figure 3.4.

Figure 3.4(a) shows the ground truth of Köppen climate classification of all the world.

Figure 3.4(b) and (c) demonstrate the clustering results of IED and NL2, respectively. To

compare these two results, we focus on the clusters in areas like Africa, North America

and Southeast Asian Islands. Climate type BWh locates in North Africa and the most

part of Australia. The result of IED indicates the same trend with the ground truth. NL2

clusters airports that locate in North Africa and Australia in the same group, however, it

also includes airports that locate in the south part of Africa. For airports in North America

and Southeast Asian Islands, IED outperforms NL2 with a more clear categories.
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(a) Ground truth [88]

(b) IED

(c) NL2

Figure 3.4: Clustering results of Weather data. It is worth noting that dots with same

color on different figures may indicate different clusters.
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Table 3.3: Clustering results of Weather data

Purity NMI

IED 0.363±0.010 0.245±0.000
SE 0.342±0.014 0.241±0.000

C2 0.347±0.010 0.231±0.010

NL2 0.357±0.010 0.237±0.000

KLm 0.337±0.014 0.224±0.010

GQFD 0.198±0.024 0.143±0.083

Hausdorff 0.219±0.014 0.085±0.010

3.5 Conclusions

In this chapter, we generalize Euclidean distance to IED for probability distribution func-

tions, and derive its closed-form expression for GMM. The metric properties of the proposed

similarity measure enable the usage of metric trees for indexing GMM. Representing

complex data that have inherent structures as GMM, we apply classification and clustering

analysis on real-world data with different similarity measures. Experimental evaluations

demonstrate the efficiency and effectiveness of the proposed similarity measure and better

performances than its comparisons.

For the future work, a GMM-specific index structure that uses IED as the similarity

measure is a perspective to outperform general metric trees.



72 3. Infinite Euclidean Distance



Chapter 4

Novel Indexing Strategy and

Similarity Measures for GMM

“You can use all the quantitative data you can get, but you still have to

distrust it and use your own intelligence and judgment.”

Alvin Toffler

In this chapter, we propose a novel strategy to improve the performance of GCI, and

several novel similarity measures on basis of that. Parts of this chapter have been published

in:

Linfei Zhou, Wei Ye, Bianca Wackersreuther, Claudia Plant, Christian Böhm.

Novel Indexing Strategy and Similarity Measures for Gaussian Mixture Models.

28th International Conference on Database and Expert Systems Applications,

DEXA 2017, August 28-31, 2017, Lyon, France.

where Linfei Zhou was mostly responsible for the development of main concepts, imple-

mented main algorithms and wrote the most parts of the paper. Wei Ye and Bianca

Wackersreuther helped with the discussion and experimental design. Christian Böhm and

Claudia Plant supervised the project. All co-authors contributed to the discussion, paper

writing and revising.
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4.1 Introduction

With the increase of generated and stored data quantity and variety, information extraction

systems face great challenges in the representation and analysis of the data. Take player

statistics for example, far more than field goal made, rebounds and etc., SportVU utilizes

six cameras to track the real-time positions of NBA players and the ball 25 times per

second [70]. Comprehensive and sophisticated data generated by SportVU provides a

possibility to make the best game strategy or to achieve the most effective team building,

but it increases the difficulty of following modeling and analysis as well. Besides, many

modern applications like speaker recognition systems [66, 67], content-based image and

video retrieval [68, 69], biometric identification and stock market analysis not only can

benefit from the retrieval and analysis of complex data, or the distributions of data, but

also are limited by them.

Various statistical models have been proposed in this actively investigated research field.

As a general class of PDF, GMM consist of a weighted sum of univariate or multivariate

Gaussian distributions, allowing a concise but exact representation of data distributions.

Storing complex data as GMM will dramatically reduce the resource consumption and

guarantees the accuracies of retrieval operations.

Besides the data representation, another important aspect is the design of similarity

measures that aims at facilitating indexes and further analysis. Matching probability [45]

sums up the joint probabilities of two PDF, and for GMM it has s closed-form expression

which is essential for efficient calculations. What is more, several similarity measures that

have closed-form expressions can be reformed into the functions of matching probabili-

ty [60, 61, 62]. Since GMM might have different numbers of Gaussian components in

them, traditional indexes designed for fixed-length vectors cannot be applied directly. For

the indexes of distributions, such as U-tree, their performances deteriorate on mixture

models [46]. Storing the components, instead of GMM, into entries, both GCI [48] and

PRQ [65] provide solutions for efficient range queries and nearest-neighbour queries on

GMM using matching probability. However, the efficiency of the two indexes vary with the
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distributions of components in GMM because of the settings of nodes, which encourages us

to improve the situation. As we will demonstrate, the main contributions of this chapter

are:

• We introduce a generalization technique called Normalize Transformation. After

Normalize Transformation, indexes based on matching probability can achieve the

better performances of queries on GMM.

• Normalize Transformation enables us to derive a set of new similarity measures from

the existing ones. The normalized versions of the similarity measures share the same

time complexity of their origins.

• Our experimental evaluation demonstrates the efficiency of filtering in GCI using

normalized matching probability and the better performances of normalized similarity

measures over their origins.

The rest of this chapter is organized as follows: In Section 4.2, we survey the previous

work. Section 4.3 gives the basic definition of GMM and matching probability. Section 4.4

introduces the motivation of the Normalized Transformation, and demonstrates how it

works. Section 4.5 shows the experimental studies for verifying the efficiency and effective-

ness of the proposed similarity measures. Section 4.6 summarizes the chapter.

4.2 Related Work

This section gives a survey and discussion of similarity measures and indexes for GMM in

previous work.

4.2.1 Similarity Measures

Similarity measures for GMM can be grouped into two categories, having closed-form ex-

pressions for GMM or not. For measures that have no closed-form expression, Monte Carlo



76 4. Novel Indexing Strategy and Similarity Measures for GMM

sampling or other approximation approaches are applied, which may be time consuming

or imprecise.

KL divergence [85] is a common way to measure the distance between two PDF. It

has a closed-form expression for Gaussian distributions, but no such expression for GMM

exists.

To compute the distance between GMM by KL divergence, several approximation

methods have been proposed. For two GMM, a commonly used approximation for KL

divergence between them is Gaussian approximation. It replaces two GMM with two

Gaussian distributions, whose means and covariance matrices depend on those of GMM.

Another popular way is to use the minimum KL divergence of Gaussian components that

are included in two GMM. Moreover, Hershey et al. [59] have proposed the product of

Gaussian approximation and the variation approximation, but the former tends to greatly

underestimate the KL divergence between GMM while the latter does not satisfy the

positivity property. Besides, Goldberger et al. [58] have proposed the matching based KL

divergence (KLm) and the unscented transformation based KL divergence (KLt). KLm

works well when the Gaussian elements are far apart, but it cannot handle the overlapping

situations which are very common in real-world data sets. KLt solves the overlapping

problem based on a non-linear transformation. Cui et al. [86] have compared the six

approximation methods for KL divergence with Monte Carlo sampling, where the variation

approximation achieves the best result quality, while KLm gives a comparable result with

a much faster speed.

Besides the approximation similarity methods for GMM, several methods with closed-

form expression have been proposed. Helén et al. [60] have described a squared Euclidean

distance, which integrates the squared differences over the whole feature space. It has

a closed-form expression for GMM. Sfikas et al. [61] have presented a KL divergence

based distance C2 for GMM. Jensen et al. [62] used a normalized L2 distance to measure

the similarity of GMM in mel-frequency cepstral coefficients from songs. Beecks et al.

have proposed Signature Quadratic form Distance for modeling image similarity in image

databases [63].
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4.2.2 Indexes

For the indexes of GMM, there are several techniques available, including universal index

structures designed for uncertain data and GMM-specific methods.

U-tree provides a probability threshold retrieval on general multi-dimensional uncertain

data [46]. It pre-computes a finite number of PCR which are possible appearance regions

with fixed probabilities, and uses them to prune unqualified objects. Although U-tree

works well with single-peak PDF, its effectiveness deteriorates for mixture models such as

GMM. The reason behind this is that it is difficult for PCR to represent mixture models,

especially when the component numbers increase.

Rougui et al. [57] have designed a bottom-up hierarchical tree and an iterative grouping

tree for GMM-modeled speaker retrieval systems. Both approaches provide only two index

levels, and are lack of a convenient insertion and deletion strategy. Furthermore, they can

not guarantee reliable query results.

Instead of index curves as spatial objects in feature spaces, PRQ technique [65] and

Gaussian Component based Index [48] search the parameter space of the means and

variances of GMM. However, PRQ can not guarantee the query accuracy since it assumes

that all the Gaussian components of candidates have relatively high matching probabilities

with query objects, which is not common in general cases. For both indexes, their prune

strategies are highly effected by the distributions of Gaussian components.

4.3 Formal Definitions

In this section, we summarize the formal notations for GMM. A GMM is a probabilistic

model that represents the probability distribution of observations. The definition of the

GMM is shown as follows.

Definition 6. (Gaussian Mixture Models) Let x ∈ RD be a variable in a D-dimensional

space, x = (x1, x2, ..., xD). A Gaussian Mixture Model G is the weighted sum of m Gaussian

functions, defined as:
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G(x) =
∑

1≤i≤m

wi · Ni(x) (4.1)

where
∑

1≤i≤mwi = 1, ∀i ∈ [1,m], wi ≥ 0, and Gaussian component Ni(x) is the density

of a Gaussian distribution with a covariance matrix Σi:

Ni(x) =
1√

(2π)D|Σi|
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)

As we can see in Definition 6, a GMM can be represented by a set of m components,

and each of them is composed of a mean vector µ ∈ RD and a covariance matrix Σ ∈ RD×D.

It is worth noting that only for GMM that have diagonal covariance matrices, matching

probability for GMM has closed-form expressions, so are the other similarity measures1.

The definition of MP is shown as follows.

Definition 7. (Matching Probability [45]) Let G1 and G2 be two GMM with diagonal

covariance matrices, and they have m1 and m2 Gaussian components, respectively. Let

x be a feature vector in RD. Matching probability between G1 and G2 can be derived as:

mp(G1,G2) =

∫

RD
G1(x)G2(x)dx

=

m1∑

i=1

m2∑

j=1

w1,iw2,j

D∏

l=1

e
−

(µ1,i,l−µ2,j,l)
2

2(σ2
1,i,l

+σ2
2,j,l

)

√
2π(σ2

1,i,l + σ2
2,j,l)

(4.2)

where σ1,i,l and σ2,j,l are the l-th diagonal elements of Σ1,i and Σ2,j, respectively.

MP between two GMM cannot exceed one, and if the two GMM are very disjoint, it

is close to zero. To obtain a high MP, it is required that two GMM objects have similar

shapes, i.e. similar parameters (µ, σ2, w).

1To the best of our knowledge.
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4.4 Normalized Transformation

In this section, we introduce Normalized Transformation. At first the motivation of

Normalized Transformation is given. Secondly the details of this technique and the im-

provement of nodes in GCI are described. Thirdly we derive a set of novel similarity

measures from the previous work using Normalized Transformation.

4.4.1 Motivation

Because of the potential unequal number of components and the complex structures of

mixture models, traditional indexes can not be applied on GMM directly. To tackle

the problem, GCI provides an intuitive solution that stores the Gaussian components

in a parameter space and prunes unqualified GMM candidates in a conservative but tight

way [48].

Given N GMM-modeled objects, of which the maximum Gaussian components is m,

we store the n-lets of their components into GCI with the minimum number of entries

in each node being r. In this case, the time complexity of average queries by GCI is

O
(
logr

(
N(m

n
)
))

+αO (Nm), where α refers to the percentage of the retrieved GMM over

all the objects. In this expression, the elementary operation of the first part is the minimum

bounding rectangle calculation, and it is cheaper to calculate than that of the second

part, matching probabilities between GMM, especially when GMM have large numbers of

components. α varies in (0, 1], and it is related to data distributions and the settings of

the index. In the worst case, i.e., all the entries in the index have to be refined, the second

part of the time complexity will be equal to that of the linear scan: O (Nm).

In GCI, each entry stores Gaussian components gi = wiN (µi, σ
2
i ). For efficient queries,

GCI derives the upper bound of matching probability, ˆdmp(Gq, P ), between a query object

Gq and a node of entries P = [w̌, ŵ, µ̌, µ̂, σ̌2, σ̂2]. This upper bound is used for filtering

unqualified components safely. Obviously, it is reached when ŵ is taken. Take Figure 4.1

for example, the upper bound of matching probability between a query component and

stored components is determined by the weight of the highest component d and the (µ, σ2)
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of three left-bottom components, a, b and c, which have the similar (µ, σ2) with the query

component. Under this circumstance, GCI gets a very high value of ˆdmp(Gq, P ). However,

having very small wights, components a, b and c play tiny influence in the corresponding

GMM. As for the main components of the corresponding GMM, components d and e are

very disjoint with the query components. Thus the components stored in this node have

no strong proof to be refined. The high value of ˆdmp(Gq, P ), however, will lead to a set of

unnecessary and expensive matching probability calculations between the corresponding

GMM and the query GMM.

σ 
2
  

μ  
w

σ 
2
  

μ  
w

Stored components

Query component

a

b
c

e

d

f

Figure 4.1: Demonstration of a node P of GCI for univariate GMM. Green crosses indicate

the stored entries of P , and blue dot indicates one of query component of a query GMM.

The conservative strategy guarantees the accuracy of queries, but unnecessary calcula-

tions are always very willing to be excluded when possible, i.e., achieving a lower rate of

refinement, which leads us to a normalized way to simplify the issue and avoid the situation

above.
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4.4.2 Normalized Indexing Strategy

In this chapter, we propose Normalized Transformation g′i for a GMM component gi =

N (µi, σ
2
i ) with a weight wi:

g′i = N
(
µi,

σ2
i

wi

)
(4.3)
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Figure 4.2: Normalized Transformation of a Gaussian component in an univariate space.

The red solid line indicates an original component with a mean of zero and a standard

variation of two. The green dash line and green dot line indicate two normalized

components that have a weight of 0.1 and 0.2, respectively.

Take a Gaussian component N (0, 22) for example, as demonstrated in Figure 4.2, the

distributions of two normalized components (green dash line and green dot line) are more

flat than the original Gaussian distribution (red solid line). For a Gaussian component in

a GMM, the smaller the weight is, the smaller the contribution of this component makes

to the GMM. The normalized component keeps the same trend. The transformed variance

σ′i = σi/
√
wi becomes greater with the decrease of the weight wi, making the normalized

component more flat.

Storing normalized GMM in GCI, the demonstration node P in Figure 4.1 will be

transformed into a rectangle P ′ in the parameter space of µ and σ2/w, as shown in Figure

4.3. Stored components a, b, and c that have similar µ and σ with the query component
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Figure 4.3: Demonstration of the normalized node P ′ of GCI for univariate GMM. Green

crosses indicate the stored components, and blue dot indicates one of query component of

a query GMM.

but tiny wights now are separated from the original node. In the present scene, the upper

bound of MP ˆdmp(Gq, P ′) provides a more objective reference than ˆdmp(Gq, P ) to determine

whether the stored components need to be refined or not, thus a more tight prune strategy

can be achieved.

4.4.3 Normalized Similarity Measures

Based on Normalized Transformation, we can derive the normalized matching probability

of two GMM from Equation 4.2. It is shown as follows.

mp′(G1,G2) =

m1∑

i=1

m2∑

j=1

D∏

l=1

e
−

(µ1,i,l−µ2,j,l)
2

2(σ2
1,i,l

/wi+σ
2
2,j,l

/wj)

√
2π(σ2

1,i,l/wi + σ2
2,j,l/wj)

(4.4)

Since several similarity measures with closed-form expression for GMM are the functions

of MP, we can easily extend them into a set of novel similarity measures. These normalized

measures share the same time complexities with their origins, and they have closed-form
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expressions for GMM as well. The definitions are shown as follows.

dSE’(G1,G2) = mp′(G1,G1) +mp′(G2,G2)− 2mp′(G1,G2) (4.5)

dIED’(G1,G2) =
√
mp′(G1,G1) +mp′(G2,G2)− 2mp′(G1,G2) (4.6)

dC2’(G1,G2) = − log

(
2mp′(G1,G2)

mp′(G1,G1) +mp′(G2,G2)

)
(4.7)

dNL2’(G1,G2) = 2

(
1− 2mp′(G1,G2)√

mp′(G1,G1) ·mp′(G2,G2)

)
(4.8)

4.5 Experimental Evaluation

In this section, we provide experimental evaluations on synthetic and real-world data sets

to show the effectiveness of Normalized Transformation for GCI and the effectiveness of

normalized similarity measures on both classification and clustering.

All the experiments are implemented with Java 1.7, and executed on a regular worksta-

tion PC with 3.4 GHz dual core CPU equipped with 32 GB RAM. For all the experiments,

we use the 10-fold cross validation and report the average results over 100 runs.

4.5.1 Data Sets

Synthetic data and three kinds of real-world data, including activity data, image data and

audio data, are used in the experiments. GMM are estimated from data using iterative

EM algorithm2.

The synthetic data sets3 are generated by randomly choosing mean values between 0

and 100 and standard deviations between 0 and 5 for each Gaussian component. The

weights are randomly assigned, and they sum up to one within each GMM. Since there is

no intuitive way to assign class labels for GMM in advance, here we use the synthetic data

sets only for the evaluation of indexes.

2Implementation provided by WEKA at http://weka.sourceforge.net/doc.dev/weka/clusterers/

EM.html.
3https://drive.google.com/open?id=0B3LRCuPdnX1BSTU3UjBCVDJSLWs

http://weka.sourceforge.net/doc.dev/weka/clusterers/EM.html
http://weka.sourceforge.net/doc.dev/weka/clusterers/EM.html
https://drive.google.com/open?id=0B3LRCuPdnX1BSTU3UjBCVDJSLWs
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Activity Recognition (AR) data4 is collected from 15 participants performing seven

activities. The sampling frequency of triaxial accelerometer is 52 Hz. Assuming that

participants complete a single activity in three seconds, we regard the 150 continuous

measurements of acceleration on three axes as one data object.

Amsterdam Library of Object Images5 (ALOI) is a collection of images taking under

various light conditions and rotation angles [89]. In this chapter we use the gray images

recording 100 objects from 72 viewpoints. For ALOI data, every image (192×144) is

smoothed by a Gaussian filter with a standard deviation of five.

Speaker Recognition6 (SR) consists of 35 hours of speech from 180 speakers. We

select the speeches from ten speakers to form our audio data set, the Speaker Recognition

(SR) data. The names of the ten speakers are as follows: Aaron, Abdul Moiz, Afshad,

Afzal, Akahansson, Alexander Drachmann, Afred Strauss, Andy, Anna Karpelevich and

Anniepoo. Every wav file is split into ten fragments, transformed into frequency domain

by Fast Fourier Transform. The SR data has ten classes (corresponding to ten speakers),

and each of them has 100 GMM objects.

4.5.2 Effectiveness of queries in GCI

We study the performance of MP and normalized matching probability when using GCI

to facilitate efficient queries. GMM are decomposed into Gaussian components that stored

into the entries of GCI. The minimum and maximum node capacity of GCI are set to

100 and 500, respectively. Original Gaussian components are stored when using MP as

the similarity measure, while normalized Gaussian components are stored for normalized

matching probability.

We apply k-Nearest Neighbors (k-NN) queries using both similarity measures when

varying the number of GMM objects and report the number of refined objects in Figure

4http://archive.ics.uci.edu/ml/machine-learning-databases/00287/
5http://aloi.science.uva.nl/
6 http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Main/16kHz_

16bit/

http://archive.ics.uci.edu/ml/machine-learning-databases/00287/
http://aloi.science.uva.nl/
http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Main/16kHz_16bit/
http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Main/16kHz_16bit/
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Figure 4.4: Number of refined GMM in GCI when varying the number of stored GMM on

Synthetic data. Each GMM here has ten Gaussian components in a univariate space.

4.4. With the increasing number of stored GMM objects, both similarity measures need

to refine more and more GMM, but normalized matching probability significantly reduced

the number of expensive calculations between GMM.

4.5.3 Effectiveness of normalized similarity measures

Classification

In the evaluation of classification, only k-NN, rather than the other more complex tech-

niques, is used to compare the effectiveness of the similarity measures, since we are not

interested in tuning the classification accuracy to its optimum.

We start with experiments on SR data sets when varying k in k-NN, and the clas-

sification is applied based on original and normalized similarity measures. Classification

accuracies are shown in Figure 4.5. From this figure we can see that all four normalized

similarity measures outperform their origins, and all the accuracies slightly decrease with

the increase of k.

Fixing k as 1, we report the classification results on AR data when varying the number
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Figure 4.5: Classification accuracies on SR data. For each data object, a five-component

GMM is estimated.



4.5 Experimental Evaluation 87

5 10 15 20 25
0.8

0.82

0.84

0.86

0.88

0.9

Number of Gaussian components

A
cc

ur
ac

y

 

 

Original

Normalized

(a) SE

5 10 15 20 25
0.8

0.82

0.84

0.86

0.88

0.9

Number of Gaussian components

A
cc

ur
ac

y

(b) IED

5 10 15 20 25
0.8

0.82

0.84

0.86

0.88

0.9

Number of Gaussian components

A
cc

ur
ac

y

(c) C2

5 10 15 20 25
0.8

0.82

0.84

0.86

0.88

0.9

Number of Gaussian components

A
cc

ur
ac

y

(d) NL2

Figure 4.6: 1-NN classification accuracies on AR data.



88 4. Novel Indexing Strategy and Similarity Measures for GMM

(a) AR (b) ALOI (c) SR

Figure 4.7: 1-NN classification accuracies on three real-world data sets. The numbers

of Gaussian components in each GMM object for (a), (b) and (c) are ten, five and five,

respectively.

of Gaussian components in estimated GMM. As shown in Figure 4.6, the normalized

similarity measures achieve better classification results than the origins in most cases when

the number of Gaussian components is high enough. Only at starting points, normalized

similarity measures, especially for NL2, have lower accuracies than their origins. GMM

have better representations of data objects with the increase of components number,

however, the training time of EM algorithm increases at the same time. To tune the

number of Gaussian components into the optimum for a given similarity measure, Bayesian

Information Criterion can be applied. For the following experiments, we choose the

component numbers by the rule of thumb instead.

Figure 4.7 shows the 1-NN classification results on three read-world data sets. All

similarity measure, SE, IED, C2 and NL2, have similar performances, and their normalized

versions outperform the origins.

Clustering

We perform clustering experiments to compare the usability of the normalized similarity

measures for unsupervised data mining. Instead of k-means algorithm, the k-medoids

is used since it works with arbitrary similarity measures, making it more suitable here.

We evaluate the clustering results using three widely used criteria, Purity, NMI and FM
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(a) Purity on AR (b) NMI on AR (c) FM on AR

(d) Purity on ALOI (e) NMI on ALOI (f) FM on ALOI

(g) Purity on SR (h) NMI on SR (i) FM on SR

Figure 4.8: Evaluations of k-medoids clustering results on three real-world data sets. The

components numbers of GMM are the same as these in Figure 4.7. The k for three data

are seven, ten and ten, respectively.
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(β = 1).

Figure 4.8 illustrates the evaluation of clustering results when using different similarity

measures on three real-world data sets. All three criteria have the same pattern for all the

similarity measures on three data sets. The normalized similarity measures have a better

performance than their origins.

4.6 Conclusions

In this chapter, we have introduced Normalized Transformation that aims to improve the

retrieval performance of index for GMM, and it also enable us to derive a set of normalized

similarity measures from proposed ones that have closed-form expressions for GMM. These

normalized similarity measures share the same time complexities with their origins. Queries

on GMM using Gaussian Component based Index have illustrated the effectiveness of

Normalized Transformation, achieving a much lower refinement rate than the original

MP. For the effectiveness of normalized similarity measures, we have demonstrated the

experimental evaluations on the real-world data sets. The normalized similarity measures

outperform their origins on different types of data sets in both classification and clustering.



Chapter 5

Similarity Measures for

Multiple-Instance Learning

“We’ve got to use every piece of data and piece of information, and hopefully

that will help us be accurate with our player evaluation. For us, that’s our

life blood.”

Billy Beane

In this chapter, we propose two similarity measures for MIL. Parts of this chapter have

been published in:

Linfei Zhou, Claudia Plant, Christian Böhm. Joint Gaussian Based Similarity

Measures for Multiple-Instance Learning. IEEE 33th International Conference

on Data Engineering, ICDE 2017, April 19-22, 2017, San Diego, United States.

where Linfei Zhou was mostly responsible for the development of main concepts, im-

plemented main algorithms and wrote the most parts of the paper. Christian Böhm

and Claudia Plant supervised the project and proposed the initial idea. All co-authors

contributed to the discussion, paper writing and revising.
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5.1 Introduction

First motivated by the problem of drug activity predictions, MIL deals with MI objects

that are sets (or bags) of instances [77]. For objects with inherent structures, which are

very common in real-world data, MI is a natural way to represent them. Thus various MIL

methods have been proposed in many application domains like image classification [80],

text categorization [90], activity recognition [91], etc..

The major work of MIL concerns with binary classification problems under a set of

assumptions including the standard assumption [77] and the collective assumption [92].

For all these assumptions, each instance is assumed to have an explicit label, known or

unknown, which is the same type as the label of the MI object. A learning model is trained

in an instance space in the same way as the ’single’ instance situation, then the labels of

bags are obtained from that of their instances by OR operators in the standard assumption

or mathematical expectations in the collective assumption. These assumptions work well

for many applications such as drug activity predictions and content based image retrieval.

However, they cannot deal with situations when the instances or bags have no labels, or

there is no clear relation between instance-level labels and over-all labels. For example,

the performance of an athlete is a MI object when the statistics of each match is regarded

as an instance. It is impossible to obtain the learning model from instance spaces because

there is a large number of instances (more than 0.7 million) need to be labeled, and even

for a single instance it is difficult to label it for evaluations.

There are two strategies to solve the problem, mapping each MI object into embedded

spaces and defining similarity measures for MI objects. However, they either are time

consuming or lose the information of MI objects, especially for the first strategy. Suitable

similarity measures for MI objects are yet to be developed and tested. A competitive

candidate for such a similarity measure has competencies to be robust to noise, to be

efficient in its computation, and to facilitate index and further analysis. As we will

demonstrate, our techniques are effective, and also support index for improving data

retrieval operations. The main contributions of this chapter are:
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• We propose two novel similarity measures for MIL, JGS and JGD. They have clear

physical meanings, are efficient to be calculated and are robust to noise while taking

all the information into account.

• Experimental results show that JGS and JGD work well for traditional MIL tasks and

also have good performances in the situation when there is no need of assumptions

of relations between the labels of instances and bags.

The rest of this chapter is organized as follows. In Section 5.2, we survey the previous

work. Section 5.3 gives the basic definition. Section 5.4 describes the ideas of JGS and

JGD. Section 5.5 shows the experimental studies to verify the effectiveness of proposed

measures. Finally, Section 5.6 summarizes this chapter.

5.2 Related Work

5.2.1 Instance Space Based Paradigm

In this category, Axis-Parallel Rectangles (APR) [77] searches for appropriate axis-rectangles

constructed by the features of positive instances. Similarly, an algorithm maximizing

Diverse Density (DD) measure has been proposed by O. Maron and T. Lozano-Pérez [93].

EM-DD [94] combines EM algorithm and DD measure. Several algorithms [90, 95, 96,

97, 98] represent each bag with one of its instance. Algorithm mi-DS uses rules that are

generated from classified instances to construct a similarity matrix [98].

Instance space based MIL has the ability to extend many well developed algorithms

designed for the ’single’ instance situation. However, it can not deal with situations when

the labels of instances are unknown or there is no clear relation between the labels of

instances and bags.
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5.2.2 Embedded Space Based Paradigm

The embedded space based paradigm defines mapping functions to project each bag into

a feature vector. Many mapping methods have been proposed, including the vocabulary

based mapping, the instance based mapping and the model based mapping. The first

mapping method clusters all instances from all bags into k clusters (vocabularies), and

then uses the histogram information to obtain a k-dimensional feature vector for each

bag [72, 78, 79]. The instance based mapping defines a feature vector for each bag using

the information of its instances [80, 99, 81]. The model based mapping trains each bag to

a model [75, 74, 82].

Besides the extra time cost of mappings, there needs to be enough instances in each

bag to estimate the parameters, and appropriate similarity measures are also needed.

5.2.3 Bag Space Based Paradigm

In the bag space based paradigm, algorithms treat each bag as a single object and define

similarity measures for bags.

All distance functions that measure the (dis)similarity between point sets can be used

for MI objects, including Hausdorff distance, SMD[100], Chamfer matching [29], Earth

Mover’s Distance (EMD) [101], Netflow distance [102], etc.. What is more, J. Wang and J.

Zucker have proposed modified Hausdorff distances for Bayesian k-NN and Citation k-NN

[103]. Similarly, W. Zhang et al. have applied Quantile based k-NN on MI data, defining

φ-quantile distance [104]. X. He has proposed PIM on the basis of an idea that each MI

object is a manifestation of some templates [31]. L. Sørensen et al. have compared BWmax

and BWmean distance [105]. Metric learning has been extended to MIL [106], however,

they actually learn a metric for instances, replacing Euclidean distances with Mahalanobis

distances.

The existing similarity measures range from simple and efficient ones like Hausdorff

distance to complex ones like Netflow distance and PIM, but only a few of them are

metrics and take account of the information of all instances. Taking Hausdorff distance for
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example, it is a metric, but it only uses the distance between two single instances of bags,

which makes it sensitive to noise. More information about these similarity measures are

shown in Table 5.1.

5.3 Formal Definitions

In this section, we summarize the formal definitions of MI objects. The definition is shown

as follows.

Definition 8. (Multiple-Instance Object)

A MI object X ∈P(RD) is a finite set of n instances {x1, x2, ..., xn} and a corresponding

weight vector W = {w1, w2, ..., wn}, where n = |X | is the cardinality of the object, an

instance xi = (xi1, xi2, ..., xiD) is a feature vector in a D-dimensional space RD, P(RD) is

the power set of RD and
∑n

1 wi = 1.

Under the circumstance when there is no weight information attached with instances,

which occurs in most cases, the weight of each instance is assigned as 1/n.

5.4 Joint Gaussian Based Measures

In this section, we present the ideas of JGS and JGD for MI objects. Firstly, we introduce

Multiple-Instance Density and generalize it to Potential Instance Density for MI objects.

Then we define JGS and JGD as the similarity measures.

5.4.1 Density of Instances

Being a finite set of instances, a MI object can be treated as a probability density function

of instances. We define Multiple-Instance Density as follows.

Definition 9. (Multiple-Instance Density)
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Table 5.1: Overview of similarity measures for MIL

Distance Formula Ref.

Use the

information

of all

instances

Metric

Hausdorff max{max
x∈X

min
y∈Y
‖x− y‖,max

y∈Y
min
x∈X
‖x− y‖} [30] No Yes

SMD‡
1

|X |+|Y| (
∑

x∈X min
y∈Y
‖x− y‖+

∑
y∈Y min

x∈X
‖x− y‖) [100] No No

Chamfer
1
|X |
∑

x∈X min
y∈Y
‖x− y‖+ 1

|Y|
∑

y∈Y min
x∈X
‖x− y‖ [29] No No

EMD
∑

x∈X
∑

y∈Y wij‖x−y‖∑
x∈X

∑
y∈Y wij

[101] Yes Yes

Netflow
min

f∈N(P,dist,M,W,X ,Y)
W (f(X ,Y))

See more details in the corresponding reference
[102] Yes Yes

minHausdorff min
x∈X

min
y∈Y
‖x− y‖ [103] No No

φ-quantile
‖xi − yj‖x∈X ,y∈Y

i, j = arg φ-quantile(wxi · wyj of sorted ‖xi − yj‖)
[104] No No

PIM

∫
RD
∫∞

0
p(r)hX ,Y(t, r)drdt

p(r) = drD−1

(2σ2)d/2Γ(D/2+1)
e−

r2

2σ2

hX ,Y(t, r) = {1, if cX (t, r) 6= cY(t,r); 0, otherwise}
cX (t, r) = {1, if minx∈X ‖t− x‖ ≤ r; 0, otherwise}

[31] Yes Yes

BWmean

1
2 (dEMD(HX , HX ,Y) + dEMD(HY , HX ,Y))

HX : Histogram of instance distance within X
HX ,Y : Histogram of instance distance between X ,Y

[105] Yes No

‡SMD is also called average Hausdorff distance [107].
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Given a MI object X = {xi}n1 where xi is a feature vector in a space RD, Multiple-

Instance Density fX (t) of the variable t ∈ RD can be represented by:

fX (t) =
∑

1≤i≤n

wiδi(t) (5.1)

where wi is the weight of instance xi,
∑n

1 wi = 1 and

δi(t) =





+∞ if t = xi;

0 otherwise;
(5.2)

Since Multiple-Instance Density is a piecewise function, some MIL algorithms train

probabilistic models to represent MI objects under the assumption that the instances of

a MI object are independently and identically distributed [73, 74, 83]. To obtain a high

accuracy of representing, there needs to be enough instances in each bag for the training,

which leads to another problem, i.e., the training is time consuming.

Instead of assuming that all the instances of a bag are generated from a known distribu-

tion such as a Gaussian model, we use a Gaussian distribution to represent the suppositional

density around each instance. The definition of Potential Instance Density is shown as

follows.

Definition 10. (Potential Instance Density)

Given the instance x of a MI object X , Potential Instance Density f(t|x, σ2
X ) of x in the

feature space RD is defined as:

f(t|x, σ2
X ) =

1√
2πσ2

X
e
− (t−x)2

2σ2X (5.3)

where σ2
X is the potential variance of X .

Replacing the δ function in Definition 9 with Potential Instance Density, we derive

Potential Multiple-Instance Density as follows.

Definition 11. (Potential Multiple-Instance Density)
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Given a MI object X = {xi}n1 where xi is a feature vector in a space RD, Potential

Multiple-Instance Density fX (t) is represented by:

fX (t) =
∑

1≤i≤n

wif(t|xi, σ2
X ) (5.4)

Fig. 5.1 demonstrates Potential Multiple-Instance Density and Multiple-Instance Den-

sity of a one-dimensional MI object {(30), (70)}, of which the weights are 0.4 and 0.6,

respectively. Eq. 5.2 can be referred to as the distribution function of the instances. As for

Potential Instance Density, it decreases with the increase of distance to the corresponding

instance. The suppositional distribution of instances, Potential Multiple-Instance Density,

reaches its peaks at the locations of instances.
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Figure 5.1: Density of instances of a one-dimensional MI object.

5.4.2 Joint Gaussian Measures

Representing MI objects by their Potential Multiple-Instance Density functions, we define

two measures, JGS and JGD. JGS is a measure of similarity for MI objects while JGD is

a measure of dissimilarity and also a metric.
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JGS considers all the potential positions of suppositional instances, and sums up the

joint densities for two MI objects. The definition of JGS is shown as follows.

Definition 12. (Joint Gaussian Similarity)

Given two MI objects X ,Y ∈P(RD), JGS can be determined on the basis of Potential

Multiple-Instance Density in the following way:

dJGS(X ,Y) =

∫

RD
fX (t)fY(t)dt

=

∫

RD

∑

x∈X

wxf(t|x, σ2
X )
∑

y∈Y

wyf(t|y, σ2
Y)dt

=
∑

x∈X

∑

y∈Y

wxwy
1

2π
√
σ2
Xσ

2
Y

∫
e
− (t−x)2

2σ2X
− (t−y)2

2σ2Y dt

=
∑

x∈X

∑

y∈Y

wxwy
1√

2π(σ2
X + σ2

Y)
e
− ‖x−y‖2

2(σ2X+σ2Y )

(5.5)

where ‖ · ‖ is Euclidean distance between feature vectors.

In this chapter, we assume σX = σY = α · σ, where α > 0 and σ is the variance of

Euclidean distances between all instances of all bags. Thus JGS can be reformulated as

follows.

dJGS(X ,Y) =
∑

x∈X

∑

y∈Y

wxwy
1√

4πα2σ2
e−
‖x−y‖2

4α2σ2 (5.6)

The value of JGS between MI objects cannot exceed one, and if the instances of two

MI objects are far from each other, it is close to zero. To obtain a high JGS, it is required

that two MI objects have common or similar instances as many as possible.

In contrast to integrating the joint density of potential instances, JGD uses the square

differences between two density functions and it is a measure of dissimilarity. The definition

is shown as follows.

Definition 13. (Joint Gaussian Distance)

Given two MI objects X ,Y ∈ P(RD), JGD sums up the square differences between
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JGS JGD
    

1

2
1

2

Figure 5.2: Demostration of JGS and JGD between MI objects U ,V in a two-dimensional

space.

their Potential Multiple-Instance Density values over the space RD.

dJGD(X ,Y) =

(∫

RD

(
fX (t)− fY(t)

)2
dt

) 1
2

=
√
dJGS(X ,X ) + dJGS(Y ,Y)− 2dJGS(X ,Y)

(5.7)

Fig. 5.2 demonstrates JGS and JGD between two MI objects U ,V , of which the

instances are marked by blue dots and green crosses, respectively. Two Potential Multiple-

Instance Density functions are generated from the corresponding MI objects. The most

similar instances between U ,V are u1&v1 and u2&v2. As a measure of similarity, generally

JGS integrates the similar parts of instances, as shown in the top-left of the figure. On

the contrary, JGD mainly integrates the rest part, which includes two instances in U and

three instances in V , as shown in the top-right of the figure.

As mentioned earlier, JGD is a metric for MI objects. Next we give the proof that JGD

fulfills the properties of a metric.

Lemma 5.4.1. Joint Gaussian Distance is a metric.

Proof. Positive Definiteness:



5.4 Joint Gaussian Based Measures 101

The integrated function of JGD in Eq. 5.7 is everywhere greater or equal to zero. If

and only if X and Y are exactly the same, the differences between their Potential Multiple-

instance Density values, fX (t) and fY(t), are zero for all t in the space RD, thus dJGD = 0.

If for some t, fX (t) and fY(t) are not equal, then it will have a positive influence on the

integral. In that case, dJGD > 0.

Symmetry:

Obviously, dJGD(X ,Y) = dJGD(Y ,X ) for any MI object X ,Y ∈P(RD).

Triangle Inequality:

The triangle inequality of JGD states that for any MI object X ,Y ,Z ∈ P(RD), the

following inequality always holds.

dJGD(X ,Y) + dJGD(Y ,Z) ≥ dJGD(X ,Z)

Since for any real value a, b, c ≥ 0, a+ b ≥ c is equivalent to (a+ b)2 ≥ c2. The inequality

can be transformed to:

(dJGD(X ,Y) + dJGD(Y ,Z))2 ≥ (dJGD(X ,Z))2

To prove this inequality, we substitute it by an object function Obj as shown below.

Obj = (dJGD(X ,Y) + dJGD(Y ,Z))2 − (dJGD(X ,Z))2

= 2

∫

RD
(fY(t)− fZ(t))(fY(t)− fX (t))dt

+ 2

√∫

RD
(fX (t)− fY(t))2dt

∫

RD
(fY(t)− fZ(t))2dt

Due to Cauchy−Schwarz inequality, for complex-valued functions u(x) and v(x), one

has:
∫

RD
|u(x)|2dx ·

∫

RD
|v(x)|2dx ≥

∣∣∣∣
∫

RD
u(x)v(x)dx

∣∣∣∣
2
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thus we have:

Obj ≥ 2

∫

RD
(fY(t)− fZ(t))(fY(t)− fX (t))dt

+ 2

∣∣∣∣
∫

RD
(fY(t)− fZ(t))(fY(t)− fX (t))dt

∣∣∣∣

≥ 0

Thus we obtain dJGD(X ,Y) + dJGD(Y ,Z) ≥ dJGD(X ,Z).

Having MI objects represented in our way, we can also extend several similarity mea-

sures designed for GMM to MIL [61, 62, 86], but none of them is a metric.

5.5 Experimental Evaluations

In this section, we provide experimental evaluations on real-world data sets to show the

effectiveness of the proposed measures. We employ the simplest and widely used algorithm

k-NN for the classification and k-medoids for the clustering.

All experiments are implemented1 with Java 1.7, and executed on a regular workstation

PC with 3.4 GHz dual core CPU equipped with 32 GB RAM. To keep the consistency of

the codes, we use the reciprocal value of JGS as its dissimilarity value. For all experiments,

we use the 10-fold cross validation and report the average results over 100 runs.

5.5.1 Data Sets

Synthetic data sets2 include demonstration data Syn1 and randomized data Syn2 which

is generated from a normal distribution. Syn1 consists of four MI objects in a two-

dimensional space, while Syn2 varies in the number of MI objects, the number of instances

in each object and the dimensionality of instances.

1https://drive.google.com/open?id=0B3LRCuPdnX1BMFViblpaS1VKZmM
2https://drive.google.com/open?id=0B3LRCuPdnX1BQlBOZzlQWmNrMVk

https://drive.google.com/open?id=0B3LRCuPdnX1BMFViblpaS1VKZmM
https://drive.google.com/open?id=0B3LRCuPdnX1BQlBOZzlQWmNrMVk
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Table 5.2: Real-world data sets

Objects # Avg. Instances # Dimension Classes #

Musk1 92 5.2 166 2

Musk2 92 64.7 166 2

Fox 200 6.6 230 2

Tiger 200 6.1 230 2

Elephant 200 6.9 230 2

NBA 2477 295.7 18 -

CorelDB 500 49 8 4

Weather 2937 12 6 5

Musk data3 is a benchmark data for MIL. It has two data sets, Musk 1 and Musk

2, the details of which have been described by T. Dietterich et al. [77]. Fox, Tiger and

Elephant data4 is another benchmark data. It is generated from image data sets after

preprocessing and segmentation [90]. Besides these data sets, we also use three other real-

world data sets5, NBA data, CorelDB data and Weather data. NBA data provides the

statistics of NBA players in every match till 2014. CorelDB data consists of extracted

features from images. Each image is smoothed by a Gaussian filter and then it generates

a 9× 9 grid of pixels of which the 7× 7 non-border are chosen as instances. The features

of each instance are color differences between a pixel and its neighbours. Weather data is

the historical weather data of airports around the world. Each instance of airports is the

average statistics in a month. We use the main categories of Köppen climate classification

system to label each airport. More details are shown in Table 5.2.
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Figure 5.3: Classification accuracies on Musk data.

5.5.2 Parameter Setting

To evaluate the influence of parameter α in Eq. 12, we perform 1-NN classifications on

Musk data. The classification accuracies when varying α are shown in Fig. 5.3. The

accuracies of both data sets shoot up before α reaches 1, especially for JGS, and level off

afterward. Therefore, we choose α = 1 for all the following experiments. The variances of

Euclidean distance between all instances in real-world data sets are shown in Table 5.3.

5.5.3 Effectiveness

In this part, we demonstrate the metric properties of JGD and other measures (Table 5.1)

on the synthetic data set, and report the performances of JGS and JGD on the real-world

data sets. Finally for benchmark tasks we compare the optimal classification accuracies

achieved by k-NN using JGD with those of state-of-the-art MIL algorithms.
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(a) Object A.
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(b) Object B.
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(c) Object C.
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(d) Object D.

Figure 5.4: Demonstration of four MI objects A,B, C,D in Syn1.
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Table 5.3: σ of real-world data sets

σ

Musk1 429

Musk2 400

Fox 9.37

Tiger 11.91

Elephant 8.71

NBA 11.02

CorelDB 0.26

Weather 18.10

Metric Properties on Syn1 Data

Fig. 5.4 shows the four MI objects of Syn1 data, where object A and B have the same

center of instances and one shared instance. Most instances of object B, C,D are the same

except three instances that locate on the circle of radius r.

According to formulas listed in Table 5.1, the minHausdorff distance between AB, AC,
BC, etc. are zero, although none of these pairs is exactly the same. It is similar for φ-

quantile distance when φ = 0.05. As for SMD, the distances between object B, C,D are

shown as follows:

dSMD(B, C) =
1

11 + 12
(0 + l)

dSMD(B,D) =
1

11 + 10
(r + 0)

dSMD(C,D) =
1

12 + 10
(2r + 0)

When l < 230/231r, which is true in our case, dSMD(C,D) > dSMD(B, C) + dSMD(B,D),

violating the triangle inequality. Chamfer, φ-quantile and BWmean also violate some

metric properties, and more information are shown in Table 5.4.

3https://archive.ics.uci.edu/ml/machine-learning-databases/musk/
4http://www.miproblems.org/datasets/foxtigerelephant/
5https://drive.google.com/open?id=0B3LRCuPdnX1BYXpGUzlxYVdsSDA

https://archive.ics.uci.edu/ml/machine-learning-databases/musk/
http://www.miproblems.org/datasets/foxtigerelephant/
https://drive.google.com/open?id=0B3LRCuPdnX1BYXpGUzlxYVdsSDA
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Table 5.4: Reports of distances on Syn1 data

Violation of metric properties

Hausdorff -

SMD d(C,D) > d(B, C) + d(B,D)

Chamfer d(C,D) > d(B, C) + d(B,D)

EMD -

Netflow -

minHausdorff d(A,B) = 0 when A 6= B
φ-quantile d(A,D) > d(A, C) + d(C,D)

PIM§ d(A, C) > d(A,B) + d(B, C)
BWmean d(A, C) > d(A,D) + d(C,D)

JGD -

§Due to the use of Monte Carlo sampling, PIM violates the triangle inequality here.

Classification on Real-World Data Sets

Since we are not interested in tuning the classification accuracy to its optimum, k-NN

rather than the other more complex techniques is used to compare the effectiveness of

similarity measures here. The parameters of PIM are set to the optimum in the original

paper, where the variance of template distribution is 5000 and the number of samples is

1000. For φ-quantile distance, φ is set to 0.5 as suggested in the original paper.

Classification accuracies on seven real-world data sets are shown in Table 6.1. JGD

achieves the best performance on six data sets, and its result is still considerable on

Elephant data. The performance of JGS is moderate except on Weather data.

Comparison with 15 MIL Algorithms

To evaluate the effectiveness of methods when using the proposed metric JGD as the

similarity measure, we compare the classification accuracy of k-NN with 15 state-of-the-

art MIL algorithms on benchmark data sets. The published results of these algorithms

and our optimum results are shown in Table 5.6.



108 5. Similarity Measures for Multiple-Instance Learning

T
ab

le
5.5:

C
lassifi

cation
resu

lts
of
k
-N

N
on

real-w
orld

d
ata

sets
(k

=
10)

M
u
sk

1
M

u
sk

2
F
o
x

T
ig
e
r

E
le
p
h
a
n
t

C
o
re

lD
B

W
e
a
th

e
r

A
v
a
ra

g
e

H
au

sd
orff

.71
6±

.13
4

.707±
.155

.6
5
5±

.1
0
8

.7
7
4±

.0
9
4

.8
2
9±

.0
8
7

.803±
.059

.469±
.026

.707

S
M

D
.7

04±
.14

3
.712±

.165
.6

6
8±

.0
9
4

.7
6
4±

.0
9
9

.8
1
0±

.0
8
8

.856±
.050

.471±
.026

.712

C
h

a
m

fer
.7

16±
.14

1
.720±

.154
.6

5
8±

.1
1
1

.7
9
6±

.0
9
3

.8
1
6±

.0
8
4

.856±
.050

.470±
.026

.718

E
M

D
.7

29±
.13

8
.705±

.163
.6

6
8±

.1
0
4

.8
0
9±

.0
7
9

.8
3
5±

.0
8
6

.873±
.051

.470±
.028

.727

N
etfl

ow
.7

29±
.1

38
.725±

.164
.6

6
9±

.1
0
3

.8
1
1±

.0
7
8

.8
3
5±

.0
8
6

.873±
.051

.470±
.028

.730

m
in

H
au

sd
orf

.7
2
9±

.1
37

.725±
.144

.6
7
4±

.1
0
4

.7
8
3±

.0
9
6

.8
0
6±

.0
9
9

.436±
.063

.299±
.024

.635

φ
-q

u
an

tile
.66

9±
.1

74
.654±

.157
.6

3
8±

.1
1
5

.7
5
1±

.1
0
1

.7
9
7±

.0
9
1

.793±
.063

.432±
.026

.676

P
IM

.7
2
3±

.1
52

.702±
.169

.6
6
7±

.0
9
9

.7
1
9±

.0
9
2

.7
7
6±

.0
9
5

.871±
.049

.471±
.026

.704

B
W

m
ea

n
.711±

.1
63

.737±
.131

.6
0
0±

.1
0
3

.7
0
3±

.1
1
0

.5
8
8±

.1
1
3

.8
7
8±

.0
4
7

.472±
.026

.670

J
G

S
.761±

.136
.718±

.14
9

.6
5
6±

.1
1
6

.7
7
8±

.1
0
7

.8
2
1±

.0
8
1

.837±
.057

.161±
.026

.676

J
G

D
.8
7
1±

.1
0
9

.8
0
1±

.1
4
2

.6
9
4±

.1
0
1

.8
1
3±

.0
8
3

.8
0
8±

.0
9
1

.8
7
8±

.0
5
1

.4
7
7±

.0
3
0

.7
6
3



5.6 Conclusions 109

Generally k-NN using JGD is the most competitive method comparing the existing

technologies, even without tuning parameter α (Table 5.6). Since the Musk data fully

fulfilled the standard assumption, JGD does not outperform all the methods duo to its

needless of priori knowledge. However, JGD turns k-NN to be a better performing method

than APR, which has been specifically designed and optimized for the classification on the

Musk data.

5.6 Conclusions

In this chapter, we have proposed JGS and JGD for MIL. JGS and JGD break the limitation

of MIL assumptions and turn MIL into a traditional machine learning problem. They use

all the information of instances in MI objects and they are robust to noise. Evaluations on

real-world data demonstrate the better performances of proposed measures than the other

similarity measures, especially on the data without clear relations between instance-level

labels and over-all labels. In addition to the bag space based paradigms, JGD achieves

considerably higher classification accuracies on the benchmark tasks than the state-of-

the-art MIL algorithms. As a metric, JGD has the ability to employ any metric tree to

accelerate queries.
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Table 5.6: Optimal accuracies on benchmark tasks

Algorithm Musk1 Musk2 Fox Tiger Eleph.

APR� [77] .924 .892 .532 .558 .751

mi-SVM [90] .874 .836 .582 .789 .582

MI-SVM [90] .779 .843 .594 .840 .814

MILES� [81] .863 .877 .625 .810 .790

miFV [74] .909 .884 .621 .813 .852

miGraph [75] .889 .903 .616 .860 .868

Bayesian k-NN [103] .902 .824 - - -

Citation k-NN� [103] .924 .863 .582 .788 .826

DD [93] .880 .825 - - -

EM-DD♦ [94] .848 .849 .561 .721 .783

ELM-MIL [95] .865 .858 .595 .746 .767

EoSVM [96] .888 .895 .611 .825 .846

GD-MIL [97] .93 .92 .69 .91 .89

mi-DS [98] .867 .770 .645 .734 .795

PPMM [82] .956 .812 .603 .802 .824

JGD(k in k-NN) .938(1) .901(1) .875(2) .913(2) .935(2)

�Results on Fox, Tiger and Elephant data are from M. Carbonneau [96].

♦The classification results of this algorithm are from S. Andrews [90] instead of the original paper, where

test data is used to select the optimal solution.



Chapter 6

Indexing Multiple-Instance Objects

“I think you can have a ridiculously enormous and complex data set, but if

have the right tools and methodoloy then it’s not a problem.”

Aaron Koblin

In this chapter, we introduce indexing techniques for MI Objects. Parts of this chapter

have been published in:

Linfei Zhou, Wei Ye, Zhen Wang, Claudia Plant, Christian Böhm. Indexing

Multiple-Instance Objects. 28th International Conference on Database and

Expert Systems Applications, DEXA 2017, August 28-31, 2017, Lyon, France.

where Linfei Zhou was mostly responsible for the development of main concepts, imple-

mented main algorithms and wrote the most parts of the paper. Wei Ye and Zhen Wang

helped with the discussion and experimental design. Christian Böhm and Claudia Plant

supervised the project. All co-authors contributed to the discussion, paper writing and

revising.

6.1 Introduction

First motivated by the problem of drug activity predictions, MIL deals with MI objects

that are sets (or bags) of instances [77]. For objects with inherent structures, which are
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very common in real-world data, MI is a natural way to represent them. Therefore, various

MIL methods have been proposed in many application domains like image classification

[80], text categorization [90], activity recognition [91], etc.

With the increase of generated and stored data quantity, the efficiency of querying on

MI data becomes a more and more important aspect. However, dynamic index structures

for MI objects are yet to be developed and tested. A competitive candidate for such a

structure has the properties to guarantee the query accuracy and to keep high efficiency in

similarity calculations and pruning steps, which largely depends on the choice of similarity

measures.

For MIL itself, the study of similarity measures is also the future direction. Most of

MIL approaches are under a set of assumptions including the standard assumption [77]

and the collective assumption [92]. For all these assumptions, each instance is assumed

to have an explicit label, known or unknown, which is the same type as the label of the

MI object. These assumptions work well for many applications such as drug activity

predictions and content based image retrieval. However, they cannot deal with situations

when the instances or bags have no labels, or there is no clear relation between instance-

level labels and over-all labels. For example, the performance of an athlete is a MI object

when the statistics of each match is regarded as an instance. It is impossible to obtain the

learning model from instance spaces because there is a large number of instances (more

than 0.7 million) need to be labeled, and even for a single instance it is difficult to label it

for the evaluation of athletes. Figure 6.1(a) shows the Andrews plot (a smoothed version of

parallel coordinate plot) of ten match logs from three NBA players, M. Jordan, K. Bryant

and D. Harris. Each match log includes three statistics, minutes, field goal made and field

goal attempted. As shooting guards, Jordan and Bryant have similar statistics, except that

two match logs of Bryant are more like that of Harris who is a point guard. Nevertheless,

due to the difference of play positions, it is not fair to label those two logs the same as the

logs of Harris while label the other eight the same as the logs of Jordan. With the help

of similarity measures, we can avoid these problems by taking each MI object as a whole,

instead of starting with learning in instance spaces.
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Figure 6.1: Demonstration of the motivation for similarity definitions.

Some MIL algorthms have introduced their similarity measures for MI objects, such

as minHausdorff distance [103] and φ-quantile distance [104]. What is more, all distance

functions that measure (dis)similarities between point sets can be used for MI objects.

However, they either lose the information of MI objects or are time consuming. Take MI

objects X ,Y (Figure 6.1(b)) for example, they have one instance in common and the centers

of instances are the same. Hausdorff distance between X and Y is highly determined by

the position of instance x0, making it extremely sensitive to outliers. Since the means of

instances in X and Y are equal, in algorithm SimpleMI, the dissimilarity of X and Y is

zero although the two objects are not exactly the same.

A suitable similarity measure has competencies to be robust to noise, to be efficient in

its computation, and to facilitate indexes and further analysis. As we will demonstrate,

similarity measures used in this chapter, JGS and JGD, are effective and efficient, and also

support indexes for improving data retrieval operations. The main contributions of this

chapter are:

• We introduce Instance based Index to execute efficient queries on MI objects using

JGS. Instance based Index stores a fixed number of instances in each entry, and has
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an effective strategy to prune non-qualified candidates.

• As a metric, JGD enables any metric tree to index MI objects. We apply VP-tree [76]

on the index of MI objects using JGD.

• Experimental results show the effectiveness of JGS and JGD, and the efficiency of

both indexes for MI objects.

The rest of this chapter is organized as follows. In Section 6.2, we survey the previous

work.Section 6.3 describes the idea of Instance based Index for MI objects. Section 6.4

shows the experimental studies to verify the effectiveness of similarity measures and the

efficiency of the proposed index. Finally, Section 6.5 summarizes this chapter and presents

some ideas for further research.

6.2 Related Work

In this section we give a brief survey and discussion of similarity measures for MI objects

and indexes in previous work.

6.2.1 Similarity Measures for MI objects

MIL algorithms can be grouped into three categories, the instance space based paradigm,

the embedded space based paradigm and the bag space based paradigm [78]. For the last

paradigm, the similarity measure for MI data is the essential part. In the bag space based

paradigm, algorithms treat each bag as a single object and define similarity measures for

bags. In this case, all distance based technologies can be used in MIL, such as k-NN, SVM,

k-mediods, DBSCAN, etc.

All distance functions that measure the (dis)similarity between point sets can be used

for MI objects, including Hausdorff distance [30], SMD [100], Chamfer matching [29], EMD

[101], Netflow distance [102], etc. What is more, some MIL algorithms have introduced

their similarity measures for MI objects. J. Wang and J. Zucker have proposed modified
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Hausdorff distances for Bayesian k-NN and Citation k-NN, and concluded that the minimal

Hausdorff distance slightly outperformed the maximal one [103]. It is worth noting that

these two algorithms can also handle general classification tasks besides MIL, and it is the

similarity measures that solve the MIL problem. Similarly, W. Zhang et al. have applied

Quantile based k-NN on MI data, defining φ-quantile distance [104]. X. He has proposed

PIM on the basis of an idea that each MI object is a manifestation of some templates

[31]. L. Sørensen et al. have compared BWmax and BWmean distance, and found that

the latter had a better performance [105]. T. Fukui and T. Wada have introduced four

similarity measures based on Diverse Density measure in their clustering algorithm, but

all these measures can only handle the binary situation [108]. Metric learning has been

extended to MIL [109, 106], however, they actually learn a metric for instances, replacing

Euclidean distances with Mahalanobis distances.

The existing similarity measures range from simple and efficient ones like Hausdorff

distance to complex ones like Netflow distance and PIM, but only a few of them are

metrics and take account of the information of all instances. Taking Hausdorff distance for

example, it is a metric, but it only uses the distance between two single instances of bags,

which makes it sensitive to noise.

6.2.2 Index

Index structures, besides linear scan, are essential techniques to make accesses to data

more efficient.

Most of indexes are based on classical binary search algorithms, for instance, k-d

tree [37], R-tree [38], etc. Spatial objects that can be treated as vectors are grouped

by L-norm distance. Gauss-tree [45] and GCI [48] store objects in parameter space instead

of feature spaces, and customized distance measures are used.

For general case where only a collection of objects and a function for measuring simi-

larities are given, metric trees are introduced. However, similarity measures are required

to satisfy the triangle inequality to prune candidates using the result of each similarity
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comparison. Metric trees includes M-tree [44], VP-tree [76], etc.

6.3 Index MI Objects

In this part we discuss index techniques for querying MI objects with JGS and JGD. Since

JGS is not a metric, we need to design a specialized index structure to ensure the query

efficiency and accuracy. As for JGD, we employ VP-tree, a hierarchical structure, directly

to speed up both k-NN queries and range queries while guaranteeing the accuracy.

Instance Based Index

Due to the potential unequal numbers of instances in MI objects, traditional index tech-

niques like R-tree cannot be used on MI data. To tackle this problem, on basis of GCI [48],

we introduce Instance based Index for MI objects using JGS. Firstly we store all the

instances of MI objects into a Gauss-tree [45] which supports efficient queries for Gaussian

distributions, thus Instance based Index shares the same insertion and deletion strategies

with the Gauss-tree. Then we build an extra structure to locate and store potential

candidates.

MI objects are decomposed into instances and stored in a Gauss-tree. Given a query

object XQ = {xj}nQj=1, where nQ is the number of instances in XQ, we start the ranking of

instances by JGS between them and XQ, and get the candidates list of MI objects. As for

the query processing, we assume that we always have a pruning threshold τ , below which

the corresponding objects of the instances are not of interest. Only for these instances

that have higher JGS than τ , their corresponding MI objects will be retrieved to execute

the expensive calculation of JGS between MI objects, which we call the refinement. τ can

either be defined by the user in range queries, or be the k-th ranked JGS with the query

object in k-NN queries. In the latter case we start with τ = 0 and update it whenever we

find a greater k-th JGS than τ . For instances that have lower JGS than τ , we can safely

exclude the corresponding MI objects if they have not been retrieved yet.

Given an index node P = [w̌p, ŵp; {x̌pi, x̂pi}D1 ; ňp, n̂p], in the prune stage of instance
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candidates, we determine whether or not this node contains any instance that has a higher

JGS than the threshold τ by its upper bound ˆdJGS(XQ, P ) shown as follows.

ˆdJGS(XQ, P ) =
∑

xj∈XQ

d̂JGS(xj, P )

=
∑

xj∈XQ

∏

1≤i≤D

d̂JGS(xji, xpi)
(6.1)

where d̂JGS(xji, xpi) is the i-th dimensional upper bound of JGS between a query instance

xj and instances xp stored in a node in the Gauss-tree, and it can be reached when the

following conditions are met:





wp = ŵp

xpi = x̌pi if xji < x̌pi

xpi = x̂pi if xji > x̂pi

xpi = xji if x̌pi ≤ xji ≤ x̂pi

(6.2)

The pseudo code in Algorithm 3 shows Instance based Index for k-NN queries. As for

range queries, an unknown number of possible candidates for a query object are returned

by fixing threshold τ as a given parameter T .

Index for Queries in Metric Spaces

To index data in metric spaces, metric trees exploit the metric property, the triangle

inequality, to have more efficient access to data. Because of the metric properties of JGD,

various metric trees can be employed to speed up queries for MI objects with JGD. In this

chapter we use VP-tree to evaluate the performance of JGD.

6.3.1 Time Complexity

Given two MI objects in a D-dimensional space, both JGS and JGD have the same time

complexity as that of Hausdorff distance, O((m+n)D), where m and n are the cardinalities

of MI objects.
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To apply k-NN search for a query object in a database of N MI objects that have

maximally m instances in each object, the time complexity of the linear scan is O(Nm).

Storing these N MI objects into Instance based Index, the average query time complexity is

O(log(Nm)) +αO(Nm). α varies in (0, 1], and it is related to the distribution of instances

and the setting of the Gauss-tree.

6.4 Experimental Evaluations

In this section, we provide experimental evaluations on both synthetic and real-world data

to show the effectiveness and efficiency of two measures and indexes.

All experiments are implemented1 with Java 1.7, and executed on a regular workstation

PC with 3.4 GHz dual core CPU equipped with 32 GB RAM. To keep the consistency of

the codes, we use the reciprocal value of JGS as its dissimilarity value. For all experiments,

we use the 10-fold cross validation and report the average results over 100 runs.

6.4.1 Data Sets

Synthetic data2 is generated from a normal distribution. It varies in the number of MI

objects, the number of instances in each object and the dimensionality.

Musk data3 is a benchmark data for MIL. It has two data sets, Musk 1 and Musk 2, the

details of which have been described by T. Dietterich et al. [77]. Fox, Tiger and Elephant

data4 is another benchmark data. It is generated from image data sets after preprocessing

and segmentation [90]. Besides these data sets, we also use two other real-world data sets5,

CorelDB data and Weather data. CorelDB data consists of extracted features from images.

Each image is smoothed by a Gaussian filter and then it generates a 9 × 9 grid of pixels

of which the 7 × 7 non-border are chosen as instances. The features of each instance are

1https://drive.google.com/open?id=0B3LRCuPdnX1BMFViblpaS1VKZmM
2https://drive.google.com/open?id=0B3LRCuPdnX1BVHFjeWpiLWF3M2M
3https://archive.ics.uci.edu/ml/machine-learning-databases/musk/
4http://www.miproblems.org/datasets/foxtigerelephant/
5https://drive.google.com/open?id=0B3LRCuPdnX1BYXpGUzlxYVdsSDA

https://drive.google.com/open?id=0B3LRCuPdnX1BMFViblpaS1VKZmM
https://drive.google.com/open?id=0B3LRCuPdnX1BVHFjeWpiLWF3M2M
https://archive.ics.uci.edu/ml/machine-learning-databases/musk/
http://www.miproblems.org/datasets/foxtigerelephant/
https://drive.google.com/open?id=0B3LRCuPdnX1BYXpGUzlxYVdsSDA
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color differences between a pixel and its neighbours. Weather data is the historical weather

data of airports around the world. Each instance of airports is the average statistics in a

month. We use the main categories of Köppen climate classification system to label each

airport.

6.4.2 Effectiveness

In this part, we evaluate the performances of proposed similarity measures on both su-

pervised and unsupervised learning. The parameters of PIM are set to the optimum in

the original paper, where the variance of template distribution is 5000 and the number of

samples is 1000. For φ-quantile distance, φ is set to 0.5 as suggested in the original paper.

Classification on Real-World Data Sets

Since we are not interested in tuning the classification accuracy to its optimum, k-NN

rather than the other more complex techniques is used to compare the effectiveness of

similarity measures here.

The accuracies of classification on seven real-world data sets are shown in Table 6.1.

JGD achieves the best performance on six data sets, and its result is still considerable on

Elephant data. The performance of JGS is moderate except on Weather data.

Clustering on Real-World Data Sets

We perform clustering experiments to compare the usability of proposed similarity mea-

sures for unsupervised data mining. k-medoids is used in this chapter because unlike

k-means, it works with arbitrary similarity measures. We evaluate clustering results with

two widely used criteria, Purity and NMI).

Evaluation results on CorelDB data and Weather data that have more than two classes

are shown in Table 6.2. We can see that the performance of JGD is the best or comparable

to the best on this task, while JGS achieves a moderate performance.
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6.4.3 Efficiency

In this part, we compare the efficiency of JGS, JGD and the other similarity measures. We

start with the time cost6 of all the similarity calculations when varying the dimensionality

and the number of instances of each MI object, and then investigate the performances of

five metrics supported by VP-tree, as well as JGS supported by Instance based Index.
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Figure 6.2: Time cost of similarity calculations on synthetic data.

All the similarity measures compared in this chapter have a linear relation with the

dimensionality and the number of instances in each MI object. Since the curves of SMD

and Chamfer almost duplicate that of Hausdorff, their results are not included in Figure

6.2.

Due to the inherent complexity of EMD, Netflow and BWmean distance, the influence

of dimensionality becomes evident after the dimensionality reaches 512, as shown in Figure

6.2(a), where the number of instances is fixed to ten. Hausdorff distance, SMD, Chamfer,

minHausdorff distance and JGS are the most efficient measures. JGD costs slightly more

run-time than these relatively simple measures, but it is much efficient than sophisticated

6The time cost in this chapter refers to the CPU time.
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measures like PIM. Fixing the data dimensionality to two, the run-time of similarity

measures increases linearly with the number of instances in each MI object, and the

performance of JGD is almost comparable with that of the most efficient techniques like

Hausdorff distance (Figure 6.2(b)).

Number of objects

T
im

e 
co

st
 (

m
s)

 

 

 27  28  29 210 211 212

2−2

 20

 22

 24

 26

 28

210

212 Hausdorff

EMD

Netflow

PIM

JGS

JGD

Figure 6.3: Time cost of 1-NN queries using linear scan on synthetic data.

Index

We study the scalability of five metrics with VP-tree and JGS with Instance based Index

here. The capacity of nodes in the VP-tree is set to 32, while the minimum and maximum

node capacity of the Instance based Index are set to 10 and 50, respectively.

Firstly linear scan queries are applied on synthetic data, and there are ten two-dimensional

instances in each MI object. As shown in Figure 6.3, the run-time of all six measures

increase linearly with the number of objects. JGD and JGS have almost the same perfor-

mance as Hausdorff distance which is the most efficient among all the proposed techniques.

To evaluate the performance of five metrics and JGS when using indexes, we report the

ratio of linear scan query time and the index query time on synthetic data. The higher the

ratio is, the more the similarity measure benefits from indexes. As shown in Figure 6.4,

JGD profits the most and its acceleration ratio is much higher than those of the others for
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this experiment. As for JGS with Instance based Index, it achieves higher speed-up rates

than the left four metrics.

Figure 6.4: Acceleration ratio of 1-NN queries using indexes on synthetic data. * indicates

that Instance based Index is used, while VP-tree is applied for other measures.

6.5 Conclusions

In this chapter, we have evaluated JGS and JGD for MIL. They use all the information of

MI objects and they are robust to noise. Evaluations on both synthetic and real-world data

demonstrate the better performance of them than the other similarity measures, especially

for JGD.

To achieve more efficient queries for MI objects, we have introduced Instance based

Index using JGS. To the best of our knowledge, Instance based Index is the very first

specialized dynamic index structure designed for MI objects. For JGD, it has the ability

to employ any metric tree to accelerate queries because of its metric properties. The

performance of JGD on VP-tree significant outperforms the other metrics.

For the future work, a specialized index for JGD is a promising perspective to obtain a

better performance than existing index structures. Making use of the characteristic of MI
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objects, the customized index could exploit the potential of efficient queries for MIL.
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Algorithm 3: Instance based Index for the k-NN Query
Data: int k, Node root, Query Object XQ
Result: PriorityQueue results

1 PriorityQueue results = new PriorityQueue() ; /* Ascending */

2 PriorityQueue activePages = new PriorityQueue() ; /* Descending */

3 results.put(-1, -MAX REAL);

4 activePages.put(root, MAX REAL);

5 τ = 0;

6 while activePages.isNotEmpty() and results.getMinJGS()<activePages.getMaxJGS() do

7 P = activePages.getFirstPage;

8 activePages.removeFirstPage();

9 if P .isDataPage() then

10 Entry E = P .data;

11 if ˆdJGS(XQ, P ) > τ then

12 Xcandidate = E.getMIobject;

13 results.put(Xcandidate, dJGS(Xcandidate,XQ));

14 if results.size> k then

15 results.removeFirst;

16 τ =results.getMinJGS();

17 else

18 children = P .getChildren();

19 while children.hasMoreElements() do

20 child = children.getNextElement();

21 probability = ˆdJGS(XQ, child);

22 activePages.put(child,probability);
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Table 6.1: Classification results of k-NN on real-world data sets (k=10)

Musk1 Musk2 Fox Tiger Elephant CorelDB Weather Avg

Hausdorff .716±.134 .707±.155 .655±.108 .774±.094 .829±.087 .803±.059 .469±.026 .707

SMD .704±.143 .712±.165 .668±.094 .764±.099 .810±.088 .856±.050 .471±.026 .712

Chamfer .716±.141 .720±.154 .658±.111 .796±.093 .816±.084 .856±.050 .470±.026 .718

EMD .729±.138 .705±.163 .668±.104 .809±.079 .835±.086 .873±.051 .470±.028 .727

Netflow .729±.138 .725±.164 .669±.103 .811±.078 .835±.086 .873±.051 .470±.028 .730

minHausd. .729±.137 .725±.144 .674±.104 .783±.096 .806±.099 .436±.063 .299±.024 .635

φ-quantile .669±.174 .654±.157 .638±.115 .751±.101 .797±.091 .793±.063 .432±.026 .676

PIM .723±.152 .702±.169 .667±.099 .719±.092 .776±.095 .871±.049 .471±.026 .704

BWmean .711±.163 .737±.131 .600±.103 .703±.110 .588±.113 .878±.047 .472±.026 .670

JGS .761±.136 .718±.149 .656±.116 .778±.107 .821±.081 .837±.057 .161±.026 .676

JGD .871±.109 .801±.142 .694±.101 .813±.083 .808±.091 .878±.051 .477±.030 .763

Table 6.2: Clustering results of k-medoids

CorelDB (k=4) Weather (k=5)

Purity NMI Purity NMI

Hausdorff .691±.052 .499±.078 .668±.060 .368±.032

SMD .805±.065 .663±.057 .670±.049 .380±.030

Chamfer .811±.070 .667±.062 .669±.053 .378±.035

EMD .809±.072 .716±.066 .649±.058 .365±.035

Netflow .824±.065 .730±.052 .651±.056 .368±.032

minHausdorff .680±.063 .500±.066 .537±.041 .202±.044

φ-quantile .761±.056 .683±.059 .635±.037 .335±.020

PIM .808±.068 .671±.064 .647±.057 .366±.030

BWmean .808±.076 .705±.079 .529±.035 .207±.046

JGS .595±.061 .372±.093 .613±.065 .355±.036

JGD .825±.081 .736±.072 .673±.057 .374±.033
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Chapter 7

Conclusions and Future Work

The complexity of data analysis increases with the generated and stored data quantity and

variety, especially in the age of “Big Data”. Indexing and efficient similarity search provides

essential supports for data mining algorithms. Representing complex data by GMM and

MI objects, in this thesis we have proposed indexing techniques on basis of component

combinations, and introduced several similarity measures with closed-form expressions.

7.1 Knowledge Discovery Using GMM

As a general class of probability distribution functions, GMM have the ability to ap-

proximate arbitrary distributions in a concise way. Modeling complex data into GMM

will dramatically reduce resource consumptions and computation efforts. Indexing and

similarity search on GMM provide an effective solution for the knowledge discovery of

complex data and enable the following usage of various analysis algorithms.

We stored the Gaussian component combinations instead of GMM into well-studied

indexing trees and proposed an efficient and conservative refinement strategy to locate the

interested objects of given queries. To achieve better efficiency of the indexing technique,

we normalized the stored GMM by their weights of components and improve the ability

of filtering unqualified candidates. Several novel similarity measures with closed-form
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expressions for GMM have been introduced and some of them are also metrics, of which

properties are essential for some data mining technologies.

For the index of GMM using the proposed metric, Infinite Euclidean Distance, we have

not reinvented the wheel in this thesis and employed metric trees directly, which saved extra

efforts. The efficiency could be further increased by specific-designed indexing structures

which exploit the properties of the proposed metric. Gaussian Component based Index

uses Matching Probability as the similarity measure, which cannot be extended for the

metric in a similar way. However, the idea of storing GMM by their components is still a

perspective to enable the specific-designed indexing structure using metrics.

7.2 Multiple-Instance Learning

First motivated by the problem of drug activity predictions, MIL discovers the knowledge

of data objects by their instances. The assumptions of traditional algorithms describe the

relations between the label of a data object and the labels of its instances in a given way,

e.g., a drug molecule is active if and only if one or more of its conformers are active. On

basis of that, most of MIL problems are transferred into single-instance spaces and then

solved with the assembled results of instances.

In this thesis, we have solved MIL in the object-level and proposed novel similarity

measures that make use of all the information of Multiple-Instance objects, which are

effective and efficient for computations. Similarity measures enable the usage of clustering

algorithms on MIL problems, and evaluations on synthetic and real-world data demonstrate

the better performance of our measures. What is more, indexing structures have been

introduced to Multiple-Instance objects.

For the future work, various analysis technologies could be extended to MIL on basis

of proposed metric for Multiple-Instance objects, such as Multidimensional Scaling, index-

accelerating clustering algorithms. A general assumption between the labels of instances

and the labels of objects is also a perspective for the further exploration of MIL.
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