Logo Logo
Help
Contact
Switch language to German
Deep neural networks for identification of sentential relations
Deep neural networks for identification of sentential relations
Natural language processing (NLP) is one of the most important technologies in the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate mostly in language: web search, advertisement, emails, customer service, language translation, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications. Recently, deep learning approaches have obtained exciting performance across a broad array of NLP tasks. These models can often be trained in an end-to-end paradigm without traditional, task-specific feature engineering. This dissertation focuses on a specific NLP task --- sentential relation identification. Successfully identifying the relations of two sentences can contribute greatly to some downstream NLP problems. For example, in open-domain question answering, if the system can recognize that a new question is a paraphrase of a previously observed question, the known answers can be returned directly, avoiding redundant reasoning. For another, it is also helpful to discover some latent knowledge, such as inferring ``the weather is good today'' from another description ``it is sunny today''. This dissertation presents some deep neural networks (DNNs) which are developed to handle this sentential relation identification problem. More specifically, this problem is addressed by this dissertation in the following three aspects. (i) Sentential relation representation is built on the matching between phrases of arbitrary lengths. Stacked Convolutional Neural Networks (CNNs) are employed to model the sentences, so that each filter can cover a local phrase, and filters in lower level span shorter phrases and filters in higher level span longer phrases. CNNs in stack enable to model sentence phrases in different granularity and different abstraction. (ii) Phrase matches contribute differently to the tasks. This motivates us to propose an attention mechanism in CNNs for these tasks, differing from the popular research of attention mechanisms in Recurrent Neural Networks (RNNs). Attention mechanisms are implemented in both convolution layer as well as pooling layer in deep CNNs, in order to figure out automatically which phrase of one sentence matches a specific phrase of the other sentence. These matches are supposed to be indicative to the final decision. Another contribution in terms of attention mechanism is inspired by the observation that some sentential relation identification task, like answer selection for multi-choice question answering, is mainly determined by phrase alignments of stronger degree; in contrast, some tasks such as textual entailment benefit more from the phrase alignments of weaker degree. This motivates us to propose a dynamic ``attentive pooling'' to select phrase alignments of different intensities for different task categories. (iii) In certain scenarios, sentential relation can only be successfully identified within specific background knowledge, such as the multi-choice question answering based on passage comprehension. In this case, the relation between two sentences (question and answer candidate) depends on not only the semantics in the two sentences, but also the information encoded in the given passage. Overall, the work in this dissertation models sentential relations in hierarchical DNNs, different attentions and different background knowledge. All systems got state-of-the-art performances in representative tasks., Die Verarbeitung natürlicher Sprachen (engl.: natural language processing - NLP) ist eine der wichtigsten Technologien des Informationszeitalters. Weiterhin ist das Verstehen komplexer sprachlicher Ausdrücke ein essentieller Teil künstlicher Intelligenz. Anwendungen von NLP sind überall zu finden, da Menschen haupt\-säch\-lich über Sprache kommunizieren: Internetsuchen, Werbung, E-Mails, Kundenservice, Übersetzungen, etc. Es gibt eine große Anzahl Tasks und Modelle des maschinellen Lernens für NLP-Anwendungen. In den letzten Jahren haben Deep-Learning-Ansätze vielversprechende Ergebnisse für eine große Anzahl verschiedener NLP-Tasks erzielt. Diese Modelle können oft end-to-end trainiert werden, kommen also ohne auf den Task zugeschnittene Feature aus. Diese Dissertation hat einen speziellen NLP-Task als Fokus: Sententielle Relationsidentifizierung. Die Beziehung zwischen zwei Sätzen erfolgreich zu erkennen, kann die Performanz für nachfolgende NLP-Probleme stark verbessern. Für open-domain question answering, zum Beispiel, kann ein System, das erkennt, dass eine neue Frage eine Paraphrase einer bereits gesehenen Frage ist, die be\-kann\-te Antwort direkt zurückgeben und damit mehrfaches Schlussfolgern vermeiden. Zudem ist es auch hilfreich, zu Grunde liegendes Wissen zu entdecken, so wie das Schließen der Tatsache "das Wetter ist gut" aus der Beschreibung "es ist heute sonnig". Diese Dissertation stellt einige tiefe neuronale Netze (eng.: deep neural networks - DNNs) vor, die speziell für das Problem der sententiellen Re\-la\-tions\-i\-den\-ti\-fi\-zie\-rung entwickelt wurden. Im Speziellen wird dieses Problem in dieser Dissertation unter den folgenden drei Aspekten behandelt: (i) Sententielle Relationsrepr\"{a}sentationen basieren auf einem Matching zwischen Phrasen beliebiger Länge. Tiefe convolutional neural networks (CNNs) werden verwendet, um diese Sätze zu modellieren, sodass jeder Filter eine lokale Phrase abdecken kann, wobei Filter in niedrigeren Schichten kürzere und Filter in höheren Schichten längere Phrasen umfassen. Tiefe CNNs machen es möglich, Sätze in unterschiedlichen Granularitäten und Abstraktionsleveln zu modellieren. (ii) Matches zwischen Phrasen tragen unterschiedlich zu unterschiedlichen Tasks bei. Das motiviert uns, einen Attention-Mechanismus für CNNs für diese Tasks einzuführen, der sich von dem bekannten Attention-Mechanismus für recurrent neural networks (RNNs) unterscheidet. Wir implementieren Attention-Mechanismen sowohl im convolution layer als auch im pooling layer tiefer CNNs, um herauszufinden, welche Phrasen eines Satzes bestimmten Phrasen eines anderen Satzes entsprechen. Wir erwarten, dass solche Matches die finale Entscheidung stark beeinflussen. Ein anderer Beitrag zu Attention-Mechanismen wurde von der Beobachtung inspiriert, dass einige sententielle Relationsidentifizierungstasks, zum Beispiel die Auswahl einer Antwort für multi-choice question answering hauptsächlich von Phrasen\-a\-lignie\-rungen stärkeren Grades bestimmt werden. Im Gegensatz dazu profitieren andere Tasks wie textuelles Schließen mehr von Phrasenalignierungen schwächeren Grades. Das motiviert uns, ein dynamisches "attentive pooling" zu entwickeln, um Phrasenalignierungen verschiedener Stärken für verschiedene Taskkategorien auszuwählen. (iii) In bestimmten Szenarien können sententielle Relationen nur mit entsprechendem Hintergrundwissen erfolgreich identifiziert werden, so wie multi-choice question answering auf der Grundlage des Verständnisses eines Absatzes. In diesem Fall hängt die Relation zwischen zwei Sätzen (der Frage und der möglichen Antwort) nicht nur von der Semantik der beiden Sätze, sondern auch von der in dem gegebenen Absatz enthaltenen Information ab. Insgesamt modellieren die in dieser Dissertation enthaltenen Arbeiten sententielle Relationen in hierarchischen DNNs, mit verschiedenen Attention-Me\-cha\-nis\-men und wenn unterschiedliches Hintergrundwissen zur Verf\ {u}gung steht. Alle Systeme erzielen state-of-the-art Ergebnisse für die entsprechenden Tasks.
deep neural networks, sentence semantics, sentence relations, convolutional neural networks
Yin, Wenpeng
2017
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Yin, Wenpeng (2017): Deep neural networks for identification of sentential relations. Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics
[thumbnail of Yin_Wenpeng.pdf]
Preview
PDF
Yin_Wenpeng.pdf

4MB

Abstract

Natural language processing (NLP) is one of the most important technologies in the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate mostly in language: web search, advertisement, emails, customer service, language translation, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications. Recently, deep learning approaches have obtained exciting performance across a broad array of NLP tasks. These models can often be trained in an end-to-end paradigm without traditional, task-specific feature engineering. This dissertation focuses on a specific NLP task --- sentential relation identification. Successfully identifying the relations of two sentences can contribute greatly to some downstream NLP problems. For example, in open-domain question answering, if the system can recognize that a new question is a paraphrase of a previously observed question, the known answers can be returned directly, avoiding redundant reasoning. For another, it is also helpful to discover some latent knowledge, such as inferring ``the weather is good today'' from another description ``it is sunny today''. This dissertation presents some deep neural networks (DNNs) which are developed to handle this sentential relation identification problem. More specifically, this problem is addressed by this dissertation in the following three aspects. (i) Sentential relation representation is built on the matching between phrases of arbitrary lengths. Stacked Convolutional Neural Networks (CNNs) are employed to model the sentences, so that each filter can cover a local phrase, and filters in lower level span shorter phrases and filters in higher level span longer phrases. CNNs in stack enable to model sentence phrases in different granularity and different abstraction. (ii) Phrase matches contribute differently to the tasks. This motivates us to propose an attention mechanism in CNNs for these tasks, differing from the popular research of attention mechanisms in Recurrent Neural Networks (RNNs). Attention mechanisms are implemented in both convolution layer as well as pooling layer in deep CNNs, in order to figure out automatically which phrase of one sentence matches a specific phrase of the other sentence. These matches are supposed to be indicative to the final decision. Another contribution in terms of attention mechanism is inspired by the observation that some sentential relation identification task, like answer selection for multi-choice question answering, is mainly determined by phrase alignments of stronger degree; in contrast, some tasks such as textual entailment benefit more from the phrase alignments of weaker degree. This motivates us to propose a dynamic ``attentive pooling'' to select phrase alignments of different intensities for different task categories. (iii) In certain scenarios, sentential relation can only be successfully identified within specific background knowledge, such as the multi-choice question answering based on passage comprehension. In this case, the relation between two sentences (question and answer candidate) depends on not only the semantics in the two sentences, but also the information encoded in the given passage. Overall, the work in this dissertation models sentential relations in hierarchical DNNs, different attentions and different background knowledge. All systems got state-of-the-art performances in representative tasks.

Abstract

Die Verarbeitung natürlicher Sprachen (engl.: natural language processing - NLP) ist eine der wichtigsten Technologien des Informationszeitalters. Weiterhin ist das Verstehen komplexer sprachlicher Ausdrücke ein essentieller Teil künstlicher Intelligenz. Anwendungen von NLP sind überall zu finden, da Menschen haupt\-säch\-lich über Sprache kommunizieren: Internetsuchen, Werbung, E-Mails, Kundenservice, Übersetzungen, etc. Es gibt eine große Anzahl Tasks und Modelle des maschinellen Lernens für NLP-Anwendungen. In den letzten Jahren haben Deep-Learning-Ansätze vielversprechende Ergebnisse für eine große Anzahl verschiedener NLP-Tasks erzielt. Diese Modelle können oft end-to-end trainiert werden, kommen also ohne auf den Task zugeschnittene Feature aus. Diese Dissertation hat einen speziellen NLP-Task als Fokus: Sententielle Relationsidentifizierung. Die Beziehung zwischen zwei Sätzen erfolgreich zu erkennen, kann die Performanz für nachfolgende NLP-Probleme stark verbessern. Für open-domain question answering, zum Beispiel, kann ein System, das erkennt, dass eine neue Frage eine Paraphrase einer bereits gesehenen Frage ist, die be\-kann\-te Antwort direkt zurückgeben und damit mehrfaches Schlussfolgern vermeiden. Zudem ist es auch hilfreich, zu Grunde liegendes Wissen zu entdecken, so wie das Schließen der Tatsache "das Wetter ist gut" aus der Beschreibung "es ist heute sonnig". Diese Dissertation stellt einige tiefe neuronale Netze (eng.: deep neural networks - DNNs) vor, die speziell für das Problem der sententiellen Re\-la\-tions\-i\-den\-ti\-fi\-zie\-rung entwickelt wurden. Im Speziellen wird dieses Problem in dieser Dissertation unter den folgenden drei Aspekten behandelt: (i) Sententielle Relationsrepr\"{a}sentationen basieren auf einem Matching zwischen Phrasen beliebiger Länge. Tiefe convolutional neural networks (CNNs) werden verwendet, um diese Sätze zu modellieren, sodass jeder Filter eine lokale Phrase abdecken kann, wobei Filter in niedrigeren Schichten kürzere und Filter in höheren Schichten längere Phrasen umfassen. Tiefe CNNs machen es möglich, Sätze in unterschiedlichen Granularitäten und Abstraktionsleveln zu modellieren. (ii) Matches zwischen Phrasen tragen unterschiedlich zu unterschiedlichen Tasks bei. Das motiviert uns, einen Attention-Mechanismus für CNNs für diese Tasks einzuführen, der sich von dem bekannten Attention-Mechanismus für recurrent neural networks (RNNs) unterscheidet. Wir implementieren Attention-Mechanismen sowohl im convolution layer als auch im pooling layer tiefer CNNs, um herauszufinden, welche Phrasen eines Satzes bestimmten Phrasen eines anderen Satzes entsprechen. Wir erwarten, dass solche Matches die finale Entscheidung stark beeinflussen. Ein anderer Beitrag zu Attention-Mechanismen wurde von der Beobachtung inspiriert, dass einige sententielle Relationsidentifizierungstasks, zum Beispiel die Auswahl einer Antwort für multi-choice question answering hauptsächlich von Phrasen\-a\-lignie\-rungen stärkeren Grades bestimmt werden. Im Gegensatz dazu profitieren andere Tasks wie textuelles Schließen mehr von Phrasenalignierungen schwächeren Grades. Das motiviert uns, ein dynamisches "attentive pooling" zu entwickeln, um Phrasenalignierungen verschiedener Stärken für verschiedene Taskkategorien auszuwählen. (iii) In bestimmten Szenarien können sententielle Relationen nur mit entsprechendem Hintergrundwissen erfolgreich identifiziert werden, so wie multi-choice question answering auf der Grundlage des Verständnisses eines Absatzes. In diesem Fall hängt die Relation zwischen zwei Sätzen (der Frage und der möglichen Antwort) nicht nur von der Semantik der beiden Sätze, sondern auch von der in dem gegebenen Absatz enthaltenen Information ab. Insgesamt modellieren die in dieser Dissertation enthaltenen Arbeiten sententielle Relationen in hierarchischen DNNs, mit verschiedenen Attention-Me\-cha\-nis\-men und wenn unterschiedliches Hintergrundwissen zur Verf\ {u}gung steht. Alle Systeme erzielen state-of-the-art Ergebnisse für die entsprechenden Tasks.