
Deep Neural Networks for
Identification of

Sentential Relations

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

Wenpeng Yin

München 2017

Erstgutachter: Prof. Dr. Hinrich Schütze
Zweitgutachter: Prof. Dr. Thomas Hofmann
Drittgutachter: Assistenzprofessor Kevin Gimpel, PhD

Tag der Einreichung: 07. Juni 2017
Tag der mündlichen Prüfung: 10. Oktober 2017

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig
ohne unerlaubte Beihilfe angefertigt ist.

München, den 16. Oktober 2017

Wenpeng Yin

5

6

Abstract

Natural language processing (NLP) is one of the most important technologies in
the information age. Understanding complex language utterances is also a crucial
part of artificial intelligence. Applications of NLP are everywhere because people
communicate mostly in language: web search, advertisement, emails, customer
service, language translation, etc. There are a large variety of underlying tasks
and machine learning models powering NLP applications.

Recently, deep learning approaches have obtained exciting performance across
a broad array of NLP tasks. These models can often be trained in an end-to-end
paradigm without traditional, task-specific feature engineering.

This dissertation focuses on a specific NLP task — sentential relation iden-
tification. Successfully identifying the relations of two sentences can contribute
greatly to some downstream NLP problems. For example, in open-domain ques-
tion answering, if the system can recognize that a new question is a paraphrase
of a previously observed question, the known answers can be returned directly,
avoiding redundant reasoning. For another, it is also helpful to discover some
latent knowledge, such as inferring “the weather is good today” from another
description “it is sunny today”. This dissertation presents some deep neural net-
works (DNNs) which are developed to handle this sentential relation identification
problem. More specifically, this problem is addressed by this dissertation in the
following three aspects.

(i) Sentential relation representation is built on the matching between phrases
of arbitrary lengths. Stacked Convolutional Neural Networks (CNNs) are em-
ployed to model the sentences, so that each filter can cover a local phrase, and
filters in lower level span shorter phrases and filters in higher level span longer
phrases. CNNs in stack enable to model sentence phrases in different granularity
and different abstraction.

(ii) Phrase matches contribute differently to the tasks. This motivates us to pro-
pose an attention mechanism in CNNs for these tasks, differing from the popular
research of attention mechanisms in Recurrent Neural Networks (RNNs). Atten-
tion mechanisms are implemented in both convolution layer as well as pooling
layer in deep CNNs, in order to figure out automatically which phrase of one sen-

7

tence matches a specific phrase of the other sentence. These matches are supposed
to be indicative to the final decision. Another contribution in terms of attention
mechanism is inspired by the observation that some sentential relation identifi-
cation task, like answer selection for multi-choice question answering, is mainly
determined by phrase alignments of stronger degree; in contrast, some tasks such
as textual entailment benefit more from the phrase alignments of weaker degree.
This motivates us to propose a dynamic “attentive pooling” to select phrase align-
ments of different intensities for different task categories.

(iii) In certain scenarios, sentential relation can only be successfully identified
within specific background knowledge, such as the multi-choice question answer-
ing based on passage comprehension. In this case, the relation between two sen-
tences (question and answer candidate) depends on not only the semantics in the
two sentences, but also the information encoded in the given passage.

Overall, the work in this dissertation models sentential relations in hierarchical
DNNs, different attentions and different background knowledge. All systems got
state-of-the-art performances in representative tasks.

8

Zusammenfassung

Die Verarbeitung natürlicher Sprachen (engl.: natural language processing - NLP)
ist eine der wichtigsten Technologien des Informationszeitalters. Weiterhin ist das
Verstehen komplexer sprachlicher Ausdrücke ein essentieller Teil künstlicher In-
telligenz. Anwendungen von NLP sind überall zu finden, da Menschen haupt-
sächlich über Sprache kommunizieren: Internetsuchen, Werbung, E-Mails, Kun-
denservice, Übersetzungen, etc. Es gibt eine große Anzahl Tasks und Modelle des
maschinellen Lernens für NLP-Anwendungen.

In den letzten Jahren haben Deep-Learning-Ansätze vielversprechende Ergeb-
nisse für eine große Anzahl verschiedener NLP-Tasks erzielt. Diese Modelle
können oft end-to-end trainiert werden, kommen also ohne auf den Task zugeschnit-
tene Feature aus.

Diese Dissertation hat einen speziellen NLP-Task als Fokus: Sententielle Re-
lationsidentifizierung. Die Beziehung zwischen zwei Sätzen erfolgreich zu erken-
nen, kann die Performanz für nachfolgende NLP-Probleme stark verbessern. Für
open-domain question answering, zum Beispiel, kann ein System, das erkennt,
dass eine neue Frage eine Paraphrase einer bereits gesehenen Frage ist, die be-
kannte Antwort direkt zurückgeben und damit mehrfaches Schlussfolgern ver-
meiden. Zudem ist es auch hilfreich, zu Grunde liegendes Wissen zu entdecken,
so wie das Schließen der Tatsache ”das Wetter ist gut” aus der Beschreibung ”es
ist heute sonnig”. Diese Dissertation stellt einige tiefe neuronale Netze (eng.:
deep neural networks - DNNs) vor, die speziell für das Problem der sententiellen
Relationsidentifizierung entwickelt wurden. Im Speziellen wird dieses Problem
in dieser Dissertation unter den folgenden drei Aspekten behandelt: (i) Senten-
tielle Relationsrepräsentationen basieren auf einem Matching zwischen Phrasen
beliebiger Länge. Tiefe convolutional neural networks (CNNs) werden verwen-
det, um diese Sätze zu modellieren, sodass jeder Filter eine lokale Phrase ab-
decken kann, wobei Filter in niedrigeren Schichten kürzere und Filter in höheren
Schichten längere Phrasen umfassen. Tiefe CNNs machen es möglich, Sätze
in unterschiedlichen Granularitäten und Abstraktionsleveln zu modellieren. (ii)
Matches zwischen Phrasen tragen unterschiedlich zu unterschiedlichen Tasks bei.
Das motiviert uns, einen Attention-Mechanismus für CNNs für diese Tasks einzuführen,

9

der sich von dem bekannten Attention-Mechanismus für recurrent neural net-
works (RNNs) unterscheidet. Wir implementieren Attention-Mechanismen sowohl
im convolution layer als auch im pooling layer tiefer CNNs, um herauszufinden,
welche Phrasen eines Satzes bestimmten Phrasen eines anderen Satzes entsprechen.
Wir erwarten, dass solche Matches die finale Entscheidung stark beeinflussen.
Ein anderer Beitrag zu Attention-Mechanismen wurde von der Beobachtung in-
spiriert, dass einige sententielle Relationsidentifizierungstasks, zum Beispiel die
Auswahl einer Antwort für multi-choice question answering hauptsächlich von
Phrasenalignierungen stärkeren Grades bestimmt werden. Im Gegensatz dazu
profitieren andere Tasks wie textuelles Schließen mehr von Phrasenalignierun-
gen schwächeren Grades. Das motiviert uns, ein dynamisches ”attentive pooling”
zu entwickeln, um Phrasenalignierungen verschiedener Stärken für verschiedene
Taskkategorien auszuwählen. (iii) In bestimmten Szenarien können sententielle
Relationen nur mit entsprechendem Hintergrundwissen erfolgreich identifiziert
werden, so wie multi-choice question answering auf der Grundlage des Verständnisses
eines Absatzes. In diesem Fall hängt die Relation zwischen zwei Sätzen (der Frage
und der möglichen Antwort) nicht nur von der Semantik der beiden Sätze, sondern
auch von der in dem gegebenen Absatz enthaltenen Information ab.

Insgesamt modellieren die in dieser Dissertation enthaltenen Arbeiten senten-
tielle Relationen in hierarchischen DNNs, mit verschiedenen Attention-Mecha-
nismen und wenn unterschiedliches Hintergrundwissen zur Verfügung steht. Alle
Systeme erzielen state-of-the-art Ergebnisse für die entsprechenden Tasks.

10

Contents

Publications and Declaration of Co-Authorship 15

1 Introduction 19
1.1 Deep Neural Networks . 19

1.1.1 DNN Basics . 21
1.1.2 Convolutional Neural Network 26
1.1.3 Recurrent Neural Networks 27
1.1.4 CNNs vs. RNNs . 29

1.2 Word Distributed Representations 30
1.2.1 Word Embedding Basics 30
1.2.2 Word Embedding Learning 31

1.3 Sentence Representation Learning 33
1.3.1 Unsupervised Sentence Representation Learning 33
1.3.2 Supervised Sentence Representation Learning 34

1.4 Tasks for Sentential Relation Identification 35
1.4.1 Task Introduction . 36
1.4.2 Task Analysis . 38

1.5 Systems for Sentential Relation Identification 38
1.5.1 Independent Sentence Modeling 38
1.5.2 Sentence Interaction . 39
1.5.3 Attention Mechanism . 40
1.5.4 Sentential Relation Identification in Background 43

1.6 Summary . 44

2 Discriminative Phrase Embeddings for Paraphrase Identification 47
2.1 Introduction . 48
2.2 Related Work . 49
2.3 Embedding Learning for Unites 49

2.3.1 Phrase collection . 49
2.3.2 Identification of phrase continuity 49

11

CONTENTS

2.3.3 Sentence reformatting . 50
2.4 Measure of unit discriminativity 50
2.5 Experiments . 50

2.5.1 Data and baselines . 50
2.5.2 Experimental results . 51
2.5.3 Effectiveness of TF-KLD-KNN 51
2.5.4 Reweighting schemes for unseen units 52

2.6 Conclusion . 52

3 Convolutional Neural Network for Paraphrase Identification 55
3.1 Introduction . 56
3.2 Related Work . 58
3.3 Convolution sentence model CNN-SM 58

3.3.1 Wide convolution . 60
3.3.2 Averaging . 60
3.3.3 Dynamic k-max pooling 60

3.4 Convolution interaction model CNN-IM 60
3.4.1 Feature matrices . 60
3.4.2 Dynamic pooling of feature matrices 61

3.5 Training . 61
3.5.1 Supervised training . 61
3.5.2 Unsupervised pretraining 62

3.6 Experiments . 63
3.6.1 Data set and evaluation metrics 63
3.6.2 Paraphrase detection systems 63
3.6.3 Results . 63

3.7 Conclusion and future work . 64

4 MultiGranCNN: An Architecture for General Matching of Text Chunks
on Multiple Levels of Granularity 67
4.1 Introduction . 68
4.2 Related Work . 69
4.3 Overview of MultiGranCNN . 70
4.4 gpCNN: Learning Representations for g-Phrases 70
4.5 Match Feature Models . 71
4.6 Dynamic 2D Pooling . 72

4.6.1 Grid-based pooling . 72
4.6.2 Phrase-focused pooling 72

4.7 mfCNN: Match feature CNN . 73
4.8 MultiGranCNN . 73

12

CONTENTS

4.9 Experimental Setup and Results 74
4.9.1 Training . 74
4.9.2 Clause Coherence Task 74
4.9.3 Paraphrase Identification Task 75

4.10 Conclusion . 76

5 ABCNN: Attention-Based Convolutional Neural Network for Mod-
eling Sentence Pairs 79
5.1 Introduction . 80
5.2 Related Work . 81
5.3 BCNN: Basic Bi-CNN . 82
5.4 ABCNN: Attention-Based BCNN 83
5.5 Experiments . 86

5.5.1 Answer Selection . 87
5.5.2 Paraphrase Identification 87
5.5.3 Textual Entailment . 88

5.6 Summary . 90

6 Task-Specific Attentive Pooling of Phrase Alignments Contributes
to Sentence Matching 95
6.1 Introduction . 96
6.2 Related Work . 97
6.3 Model . 98

6.3.1 GRU Introduction . 98
6.3.2 Representation Learning for Phrases 99
6.3.3 Attentive Pooling . 99
6.3.4 The Whole Architecture 100

6.4 Experiments . 101
6.4.1 Common Setup . 101
6.4.2 Textual Entailment . 101
6.4.3 Answer Selection . 102
6.4.4 Visual Analysis . 104
6.4.5 Effects of Pooling Size k 104

6.5 Conclusion . 104

7 Simple Question Answering by Attentive Convolutional Neural Net-
work 107
7.1 Introduction . 108
7.2 Related Work . 109
7.3 Task Definition and Data Introduction 110

13

CONTENTS

7.4 Entity Linking . 110
7.5 Fact Selection . 112

7.5.1 Framework of CNN-Maxpooling 113
7.5.2 AMPCNN: CNN-Attentive-Maxpooling 114

7.6 Experiments . 114
7.6.1 Training Setup . 114
7.6.2 Entity Linking . 115
7.6.3 SimpleQuestions . 115
7.6.4 Effect of Attentive Maxpooling 116

7.7 Conclusion . 117

8 Attention-Based Convolutional Neural Network for Machine Com-
prehension 119
8.1 Introduction . 120
8.2 Related Work . 121
8.3 Model . 122

8.3.1 HABCNN . 122
8.3.2 HABCNN-QP & HABCNN-QAP 123
8.3.3 HABCNN-TE . 124

8.4 Experiments . 124
8.4.1 Dataset . 124
8.4.2 Training Setup . 124
8.4.3 Baseline Systems . 124
8.4.4 Results . 125

8.5 Conclusion . 125

Bibliography 127

Curriculum Vitae 149

14

Publications and Declaration of
Co-Authorship

Chapter 2

Chapter 2 corresponds to the following publication:

Wenpeng Yin, Hinrich Schütze; Discriminative Phrase Embedding
for Paraphrase Identification; Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Denver, Colorado, USA,
May 31 - June 5, 2015), pages 1368–1373

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 3

Chapter 3 corresponds to the following publication:

Wenpeng Yin, Hinrich Schütze; Convolutional Neural Network for
Paraphrase Identification; Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Denver, Colorado, USA,
May 31 - June 5, 2015), pages 901–911

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

15

Chapter 4

Chapter 4 corresponds to the following publication:

Wenpeng Yin, Hinrich Schütze; MultiGranCNN: An Architecture
for General Matching of Text Chunks on Multiple Levels of Gran-
ularity; Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing of the Asian Federation of Nat-
ural Language Processing (Beijing, China, July 26-31, 2015) Volume
1: Long Papers, pages 63–73

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 5

Chapter 5 corresponds to the following publication:

Wenpeng Yin, Hinrich Schütze, Bing Xiang and Bowen Zhou; ABCNN:
Attention-Based Convolutional Neural Network for Modeling Sen-
tence Pairs; Transactions of the Association for Computational Lin-
guistics, Volume 4, pages 259–272, 2016

Bing Xiang and Bowen Zhou contributed a reference dataset and collaborated
with me on designing the experimental evaluation. I also regularly discussed this
work with my coauthors. Apart from these explicitly declared exceptions, I con-
ceived of the original research contributions and performed implementation and
evaluation. I wrote the initial draft of the article and did most of the subsequent
corrections. My coauthors assisted me in improving the draft.

Chapter 6

Chapter 6 corresponds to the following publication:

Wenpeng Yin, Hinrich Schütze; Task-Specific Attentive Pooling of
Phrase Alignments Contributes to Sentence Matching; Proceed-
ings of the 15th Conference of the European Chapter of the Associa-
tion for Computational Linguistics (Valencia, Spain, April 3-7, 2017):
Volume 1, Long Papers, pages 699–709

16

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 7

Chapter 7 corresponds to the following publication:

Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou and Hinrich Schütze;
Simple Question Answering by Attentive Convolutional Neural
Network; Proceedings of the 26th International Conference on Com-
putational Linguistics: Technical Papers (Osaka, Japan, December
11-17 2016), pages 1746–1756.

Mo Yu contributed the design and implementation of the active entity linker. I
collaborated with Bing Xiang and Bowen Zhou on system design and experimen-
tal evaluation. I also regularly discussed this work with my coauthors. Apart from
these explicitly declared exceptions, I conceived of the original research contri-
butions and performed implementation and evaluation. I wrote the initial draft of
the article and did most of the subsequent corrections. My coauthors assisted me
in improving the draft.

Chapter 8

Chapter 8 corresponds to the following publication:

Wenpeng Yin, Sebastian Ebert and Hinrich Schütze; Attention-Based
Convolutional Neural Network for Machine Comprehension; Pro-
ceedings of 2016 North American Chapter of the Association for
Computational Linguistics Human-Computer Question Answering Work-
shop (San Diego, California, USA, June 16, 2016), pages 15–21

I collaborated with Sebastian Ebert on Figures 1, 2 and 3. I also regularly dis-
cussed this work with my coauthors. Apart from these explicitly declared excep-
tions, I conceived of the original research contributions and performed implemen-
tation and evaluation. I wrote the initial draft of the article and did most of the
subsequent corrections. My coauthors assisted me in improving the draft.

17

München, 16. Oktober 2017

Wenpeng Yin

18

Chapter 1

Introduction

Sentences play a dominant role in expressing human beings’ opinion, compos-
ing the semantics of single words to form an expression of a complete meaning.
Further, a sequence of sentences constructs a passage that conveys more compre-
hensive content. This dissertation mainly studies the identification of sentential
relations. Two sentences can correlate variously, such as paraphrasing, question-
answer, textual entailment etc. Identifying the sentential relations helps in com-
prehending the sentence meaning as well as downstream natural language pro-
cessing (NLP) tasks.

Almost all NLP problems, including sentential relation identification, were
dominated by shallow machine learning methods with intensive feature engineer-
ing. The resurgence of deep neural networks (DNNs) enables the possibility
of solving NLP problems via deep systems with no or fewer artificial features.
Most NLP tasks have acquired state-of-the-art by DNN systems. This dissertation
presents our work employing DNNs for sentential relation identification problem.

This chapter first introduces some basics of DNNs, including fully-connected
feedforward neural networks, backpropagation algorithm, and two typical DNN
types – Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), then covers some work for sentence representation learning, and finally
elaborates our work in sentential relation identification.

1.1 Deep Neural Networks

Neural networks are powerful statistical models within the machine learning area.
As parametrical methods, they learn hundreds or thousands of parameters of hy-
pothesis (i.e., a non-linear function) to map some input data to some output data,
so as to solve complex problems like natural language understanding. Neural net-
works introduce multiple types of representations on different levels of abstraction

19

1. Introduction

throughout their networks. The principle behind this is to build complex represen-
tations out of simpler ones to form a “hierarchy of concepts”.

Neural networks are one of the most powerful modeling paradigms ever in-
vented. The conventional approach to modeling requires breaking big problems
up into many small, precisely defined tasks that the computer can easily perform.
By contrast, in a neural network we do not tell the computer how to solve our
problem. Instead, it learns from observational data, figuring out its own solution
to the problem at hand.

Automatically learning from data sounds promising. However, until about a
decade ago, there was no effective methodology for training neural networks to
surpass more traditional approaches, except for a few specialized problems. What
changed ten years ago was the discovery of techniques for learning in so-called
deep neural networks (DNNs) (Hinton et al., 2006; Hinton and Salakhutdinov,
2006; Salakhutdinov and Hinton, 2009). These techniques are now known as deep
learning. They have been developed further, and today DNNs achieve outstanding
performance on many important problems in computer vision, speech recognition,
and natural language processing.

Before the DNN’s resurgence, the neural networks discussed or applied in
community are shallow in the sense that the number of system layers is usually
at most two – logistic regression merely consists of input layer and output layer,
PCA has an observed layer (i.e., the inputs) and a single hidden layer. A DNN
is deep, on one hand, because mostly it has more than three layers of units, more
importantly, when it is characterized by following two conditions (Bengio and
LeCun, 2007; Cho, 2014):

• The network can be deepened by inserting more hidden layers;

• The parameters of each layer can be trained.

Therefore, it is worth mentioning that there is no absolute number of layers
that distinguishes deep neural networks from shallow ones. In real-world appli-
cations, the depth of a DNN grows by a generic procedure of adding and training
one or more layers, until it can yield satisfactory results for a target problem. In
other words, the task and the dataset jointly decide how many layers a deep neural
network needs.

In summary, deep neural networks are part of the broader machine learning
field of learning representations of data that

• use a cascade of nonlinear layers of hidden units for feature learning. Each
successive layer takes the output from the previous layer as input;

• learn hierarchical levels of representations that correspond to different levels
of abstraction.

20

1.1 Deep Neural Networks

Figure 1.1 – Fully-connected neural network. Three input features, four out-
puts and n hidden layers

In a simple case, there might be two sets of neurons: one set that receives an
input signal and one that sends an output signal. In conventional machine learning
techniques, the models such as a classifier directly connect the input signal and
output signal and make decisions based on the input signals. In a DNN, there are
many nonlinear layers (a.k.a hidden layers) between the input and the output, al-
lowing the algorithm to learn more sophisticated feature patterns and hence make
more reliable decisions.

1.1.1 DNN Basics
As shown in Figure 1.1, typically a fully-connected DNN consists at least of three
layer types: the input layer, the hidden layer and the output layer. By adding more
hidden layers, the neural network can describe highly complex functions. The
total number of layers specifies the model’s depth, while the maximum size of the
layers specifies the width of the model. The units of one layer are each connected
to the units of the next layer.

The units of the input layer represent different features xi of the input data,
while the units of the output layer represent one of more classes yi. A DNN
describes a function y? = f ?(x) which maps the input features X over several
hidden layers to the output classes Y . This function thereby approximates a real
while unknown mapping function y=f(x). A DNN approximates the function f()

21

1. Introduction

by fitting the model’s parameters θ so that predicted outputs y? are as close as
possible to the real outputs y.

θ = min
θ?
|f ?(x, θ?), y| (1.1)

where | · | can be any distance function.
The learning process of a DNN consists of two iterative steps: i) Forward

propagation – computing the prediction y? by current parameters θ?; ii) Backprop-
agation – updating the parameters θ? by the current loss between the prediction
y? and the ground truth y. We briefly describe the two steps in following parts.

Forward Propagation

In the feedforward step, a neuron in successive layer is computed by a weighted
summation over all neurons of previous layer, for example, the jth hidden neuron
in the hidden layer H1 in Figure 1.1 is calculated as follow:

h1j = σ(
∑

i

xi · w1
ij + bj) (1.2)

where weightw1
ij connects input neuron xi to the hidden neuron h1j , bj acts as bias,

and σ is a nonlinear function. In a similar way, all neuron values in subsequent
layers can be derived layer-by-layer, until reaching the output layer. At the output
layer, the prediction is compared with the ground truth, then we get a loss l:

l(θ) = |f ?(x, θ), y| (1.3)

In NLP, the breakthroughs of DNN lie in not only the stacked hidden layers,
but also the parameterization of input layer (and output layer if needed). Contrary
to image processing in which the input features are mostly the raw pixels, in NLP,
the input words can be even denoted by a parameterized embeddings. That means
the whole DNN, from inputs to outputs, can be parameterized, the objective is
then to find the best parameter space which can best represent the inputs (and
outputs in some cases) and approximate the mapping function f(x).

Backpropagation

The parameter θ of the DNN has to be learned during training by approximating
the model’s hypothesis to the training data. In DNNs, it is impossible to com-
pute error signal for internal neurons directly, because output values of these neu-
rons are unknown. For many years the effective method for training multi-layer
networks has been unknown. Only in the middle eighties the backpropagation

22

1.1 Deep Neural Networks

Figure 1.2 – Error backpropagation examples

algorithm was popularized by Rumelhart et al. (1986).1 Before that, delta rule
(Widrow and Hoff, 1960) was a gradient descent learning rule for updating the
weights of the inputs to artificial neurons in a single-layer neural network. Back-
propagation afterwards acts as a generalization of the delta rule towards multi-
layered feedforward networks, making use of the chain rule to iteratively compute
gradients for each layer.

The backpropagation algorithm is a learning procedure, which adjusts the pa-
rameters to minimize the loss l in Equation 1.3. The idea is to propagate error
signal l (computed in single teaching step) back to all neurons, whose output
signals were input for discussed neuron. Hence, backpropagation is also called
“backward propagation of errors”.

As Figure 1.2 shows, generally the error signal for ith neuron in layer n back-
propagated from the jth neuron in layer n+ 1 is computed as:

lni = wn+1
ij · ln+1

j (1.4)

The weight wn+1
ij used to propagate errors back is equal to that used during com-

puting output value in feedforward process. Only the direction of data flow is
changed (signals are propagated from output to inputs one after the other). Be-
cause the loss is passed backwards through the network from the output layer to
the hidden layers and further to the input layer, and those internal weights are up-
dated based on those internal losses, this differentiation algorithm is called “back-
propagation algorithm”.

1A detailed account of the history of backpropagation is beyond the scope of this dissertation.
See Schmidhuber (2015) for a comprehensive review of all work that led to the modern form of
the backpropagation algorithm, in particular, (Werbos, 1974) and (Linnainmaa, 1970).

23

1. Introduction

Figure 1.3 – Weight Updating Examples

The goal of backpropagation is to compute the partial derivatives ∂l/∂w and
∂l/∂b of the loss lwith respect to any weightw or bias b in the network. Therefore,
the partial derivatives of the loss lw.r.t each parameter have to be computed. When
the error signal for each neuron is computed, the weights coefficients of each
neuron input node may be modified. The formula below represents the derivative
of a parameter wnij with respect to the loss.

gnij =
∂lnj
∂wnij

(1.5)

Then, the parameter wnij will be updated as follows:

w̄nij = wnij − η · gnij (1.6)

where coefficient η is called learning rate, affecting network teaching speed. The
weight updating is illustrated in Figure 1.3.

The choice of learning rate η is important, since a high value can cause too
strong a change, causing the minimum to be missed, while a too low learning rate
slows the training unnecessarily. In order to avoid oscillation inside the network
such as alternating connection weights, and to improve the rate of convergence,
most practical DNN systems use an adaptive learning rate, implemented by algo-
rithms such as Adam (Kingma and Ba, 2015), AdaGrad (Duchi et al., 2011) and
so on.

Strengths of Fully-connected DNNs

DNNs are widely recognized to have strengths in four folds:

• Less need of engineered features. One motivation to develop DNN sys-
tems to solve for example NLP problems is to relieve the burden of feature
engineering. Feature defining and extraction occupy the dominant efforts
in conventional machine learning system. DNNs instead try to learn task-
specific features automatically from the dataset;

24

1.1 Deep Neural Networks

• Strong modeling capability. It was shown by (Hornik et al., 1989; Cy-
benko, 1989) that one-layer Multi Layer Perceptron is a universal approx-
imator – it can approximate with any desired non-zero amount of error a
family of functions that include all continuous functions on a closed and
bounded subset of Rn, and any function mapping from any finite dimen-
sional discrete space to another (Goldberg, 2016);

• Parameterize all system components. In conventional shallow machine
learning systems, the input X and the output Y are known and fixed, only
their connection are parameterized and trained. In DNNs, all system com-
ponents, including inputs, connections and outputs, are parameterized –
they are treated as weights to train until convergence to a good parameter
space which yields good performance in NLP task;

• Strong generalization power. DNNs often have far more trainable pa-
rameters than the number of training samples. Nonetheless, some of these
models exhibit remarkably small generalization error, i.e., difference be-
tween “training error” and “test error” (Zhang et al., 2017). The strong gen-
eralization power of DNNs can be attributed to two reasons: (i) Distributed
representations of inputs in both training data as well as testing data. These
parameterized continuous representations build connections between sam-
ples which, in conventional representation schemes, stand far away from
each other; (ii) Various and effective regularization approaches have been
successfully applied to DNN systems, such as dropout (Srivastava et al.,
2014), layer normalization (Ba et al., 2016) and so on.

Limitations of Fully-connected DNNs

However, there are some limitations for the basic feedforward deep neural net-
works, which motivate model modification in mainly two categories:

• Too many parameters to train. As shown in Figure 1.1, each two adjacent
layers are fully connected. This results in a requirement of a huge number
of parameters, for example, given input feature size n and the neuron size
m in the first hidden layer, there will be n×m paramters to train merely in
this single hidden layer.

An alternative is to split the large input into multiple small groups, sharing
parameters across groups. Each group provides some local features, then
the system composes all of them to form the feature representation of the
whole input. This is achieved by convolutional neural networks (LeCun
et al., 1998).

25

1. Introduction

Figure 1.4 – Convolutional Neural Network

• Hard to deal with sequence data with variable lengths. In above discus-
sion, we always assume that the input size is fixed. However, in reality this
may be impossible to control. Especially, text input mostly has different
lengths, and in online application, it is also impossible to know in advance
how much input there will be in streaming data.

Hence, an ideal way is to make the system read input elements one by one,
sharing parameters at each step. This is the principle of another typical
DNN system – recurrent neural networks (Elman, 1990).

Next, we introduce convolutional neural networks and recurrent neural networks.

1.1.2 Convolutional Neural Network

When all input units are connected with all hidden units, the network architec-
ture is described as “fully connected”. These networks with complete connection
between all units have many parameters to learn, the parameter matrices become
very large, and the matrix multiplications are computationally expensive. The idea
of Convolutional Neural Networks (CNNs) (LeCun et al., 1998) is to reduce the
connections between the input units and the hidden units, instead of fully connect
them. Each hidden unit will obtain weighted inputs only from selected input units.
With a sequence of words as input, this means only a local phrase (i.e., n-gram)
will be processed by a hidden unit in CNN. In Figure 1.4, the idea of the restricted
connection between the input and hidden units is illustrated. Next, we elaborate
the architecture of a CNN for processing a sentence input.

26

1.1 Deep Neural Networks

Input Layer

Sequence x contains m entries. Each entry is represented by a d-dimensional
dense vector; thus the input x is represented as a feature map of dimensionality
d × m. Figure 1.4 shows the input layer as the lower rectangle with multiple
columns.

Convolution Layer

is used for representation learning from sliding n-grams. For an input sequence
with m entries: x1, x2, . . . , xm, let vector ci ∈ Rnd be the concatenated embed-
dings of n entries xi−n+1, . . . , xi where n is the filter width and 0 < i < m + n.
Embeddings for xi, i < 1 or i > m, are zero padded. We then generate the rep-
resentation pi ∈ Rd′ for the n-gram xi−n+1, . . . , xi using the convolution weights
W ∈ Rd′×nd:

pi = tanh(W · ci + b) (1.7)

where bias b ∈ Rd′ .

Maxpooling Layer

All n-gram representations pi (i = 1 · · ·m + n − 1) are used to generate the
representation of input sequence x by maxpooling: xj = max(p1,j,p2,j, · · ·)
(j = 1, · · · , d). The objective of maxpooling is to down-sample an input represen-
tation (image, hidden-layer output matrix, etc.), reducing its dimensionality and
allowing for assumptions to be made about features contained in the sub-regions.
This is done in part to help prevent over-fitting by providing an abstracted form
of the representation. As well, it reduces the computational cost by reducing the
number of parameters to learn and provides basic translation invariance to the
internal representation.

1.1.3 Recurrent Neural Networks
The recurrent neural network is also called Elman network (Elman, 1990). Its
architecture is shown in Figure 1.5. Each current input xt is composed with the
previous hidden state ht−1 to generate a new hidden state at time t as follow:

ht = σ(Vxt + Uht−1 + b) (1.8)

where xt ∈ Rd represents the token in x at position t, ht ∈ Rh is the hidden state
at t, supposed to encode the history x1, · · · , xt. V ∈ Rh×d and U ∈ Rh×h are
parameters.

27

1. Introduction

Figure 1.5 – Simple Recurrent Neural Network

Figure 1.6 – GRU Figure 1.7 – LSTM

By this recurrent procedure, all inputs in X can be encoded sequentially into
a global representation. Unfortunately, vanishing gradient problem prevents stan-
dard RNNs from learning long-term dependencies. LSTMs (Long Short Term
Memory (Hochreiter and Schmidhuber, 1997)) were designed to combat vanish-
ing gradients through a gating mechanism. GRUs (Gated Recurrent Units), first
used in (Cho et al., 2014a), are a simpler variant of LSTMs that share many of the
same properties.

Gated Recurrent Unit (GRU)

GRU, as shown in Figure 1.6, models text x as follows:

z = σ(Uzxt + Wzht−1 + bz) (1.9)
r = σ(Urxt + Wrht−1 + br) (1.10)
st = tanh(Usxt + Ws(ht−1 ◦ r) + bs) (1.11)
ht = (1− z) ◦ st + z ◦ ht−1 (1.12)

28

1.1 Deep Neural Networks

z ∈ Rh×h and r ∈ Rh×h are two gates. All U ∈ Rh×d,W ∈ Rh×h are parameters.
“◦” denotes element-wise product. In order to generate the hidden state ht, GRU
first generates a temporary result st by a tanh non-linearity over the ensemble
of input xt and the preceding hidden state ht−1, then ht equals to the trade-off
between this temporary result st and history ht−1 by gate z.

Long Short-Term Memory (LSTM)

LSTM, denoted in Figure 1.7, models the word sequence x as follows:

it = σ(xtU
ixt + Wiht−1 + bi) (1.13)

ft = σ(Ufxt + Wfht−1 + bf) (1.14)
ot = σ(Uoxt + Woht−1 + bo) (1.15)
qt = tanh(Uqxt + Wqht−1 + bq) (1.16)
pt = ft ◦ pt−1 + it ◦ qt (1.17)
ht = ot ◦ tanh(pt) (1.18)

LSTM has three gates: input gate it, forget gate ft and output gate ot. All
gates are generated by a sigmoid function over the ensemble of input xt and the
preceding hidden state ht−1. In order to generate the hidden state at current step
t, it first generates a temporary result qt by a tanh non-linearity over the ensemble
of input xt and the preceding hidden state ht−1, then combines this temporary
result qt with history pt−1 by input gate it and forget gate ft respectively to get an
updated history pt, finally uses output gate ot over this updated history pt to get
the final hidden state ht.

1.1.4 CNNs vs. RNNs
In above sections, we have introduced the rationales and architectures of two typ-
ical deep neural networks – CNNs and RNNs. Now, we have a brief comparison
between them:

• First CNNs and RNNs have different styles in dealing with input. CNNs
divide the input into small parts, then compose the features of those parts.
RNNs read the input entries one by one, accumulating the features until
reaching the last entry, so the final feature vector is expected to represent
the whole input sequence. As a result, CNNs are hierarchical architecture,
RNNs instead are sequential architecture.

• Second, as CNNs mostly focus on local regions, CNNs can encode the local
structure while maybe losing the global structure. RNNs can encode both

29

1. Introduction

CNN RNN
handle input divide then compose one-by-one

system hierarchical sequential
input structure local structure local & global structure

long-distance dependency hard easier
good at pattern detection global semantics

Table 1.1 – CNNs vs. RNNs

Figure 1.8 – One-hot representations vs. word embeddings

local as well as global structure, such as some long-distance dependency. As
a result, CNNs are widely developed to detect position-independent patterns
while RNNs are widely utilized to learn global semantics.

We summarize the comparison in Table 1.1.

1.2 Word Distributed Representations
The success of DNNs in NLP partially relies on the outstanding distributed rep-
resentations of words. We can also treat a DNN as a system with two modules,
one is representing input units, the other is composing the unit representations.
In this perspective, effective word representations act as the first backbone of a
successful DNN system.

1.2.1 Word Embedding Basics
Word distributed representations – also called “word embeddings” – are low-
dimensional, dense vectors with continuous values. Figure 1.8 depicts the compar-
ison between conventional one-hot word representations and word embeddings.

30

1.2 Word Distributed Representations

Given a vocabulary with size V , one-hot representation denotes each single word
as a binary vector of length |V | with one value 1 at the word-specific index and
remaining values 0. It enjoys simplicity, however, it is memory inefficient and
the word similarity is unable to be detected. For example, based on the left part
in Figure 1.8, each pair of words share zero similarity, even including the pair
“(zebra, horse)” which denote two very similar animals.

Unlike the conventional one-hot representations, a single word in embedding
space is a d-dimensional vector (mostly d << |V |); Similar words will have
similar vectors – information is shared between similar words. Consider the right
part of Figure 1.8, “zebra” and “horse” have same feature values in all indices
except for the second location. It indicates the high similarity of these two words.
One benefit of using dense and low-dimensional vectors is computational, the
other is generalization power – if we believe some features may provide similar
clues, it is worthwhile to provide a representation that is able to capture these
similarities. For example, assume we have observed the word “dog” many times
during training, but only observed the word “cat” a handful of times, or not at all.
If each of the words is associated with its own dimension, occurrences of “dog”
will not tell us anything about the occurrences of “cat”. However, in the dense
vector representations the learned vector for “dog” may be similar to the learned
vector from “cat”, allowing the model to share statistical strength between the two
events.

1.2.2 Word Embedding Learning

Due to the importance of word embeddings in DNN systems, there are large num-
bers of work specifically study the learning of high-quality word embeddings. Dif-
ferent with sentential relation identification, word embedding learning can mostly
be carried out over unlabeled big data, such as Wikipedia, news and so on. We
can organize the word embedding work into three categories: rich context based,
word shape based and meta embeddings.

Rich Context Word embeddings are typically induced using neural language
models, which use neural networks as the underlying predictive model (Bengio,
2008). Collobert and Weston (2008) present a neural language model that could
be trained over billions of words, because the gradient of the loss was computed
stochastically over a small sample of possible outputs. For each training update,
the model reads an n-gram x = (w1, · · · , wn) from the corpus. The model con-
catenates the learned embeddings of the n words, and also creates a corrupted
or noise n-gram x̄ = (w1, · · · , wn−q, w̄n), where w̄n 6= wn is chosen uniformly
from the vocabulary. Then, the system predicts a score s(x) for x by passing

31

1. Introduction

Figure 1.9 – CBOW vs. Skip-gram

the concatenated representation vector through a single hidden layer neural net-
work. The training criterion is that n-grams that are present in the training corpus
like x must have a score at least some margin higher than the corrupted n-grams
like x̄. The log-bilinear model (Mnih and Hinton, 2007, 2008) is a probabilistic
and linear neural model. Given an n-gram, the model concatenates the embed-
dings of the n− 1 first words, and learns a linear model to predict the embedding
of the last word. CBOW and Skip-gram models in (Mikolov et al., 2013b), as
shown in Figure 1.9 further simplifies the log-bilinear model – no hidden layer,
no structure information. GloVe (Pennington et al., 2014) is a global log-bilinear
regression model that combines the advantages of two major model families in
the word representation literature: global matrix factorization and local context
window methods.

Word Shape Very soon, NLP community found that context-based embedding
learning approaches can not encode the inner-structure of words. For example,
GloVe word embeddings can not reflect the shape correlation between words “su-
pervised” and “unsupervised” as both share very similar context. The continuous
skip-gram model in (Mikolov et al., 2013b) was modified by Bojanowski et al.
(2017) to consider subword units, representing words by a sum of its character
n-grams.

Meta Embeddings Apart from trying to improve the word embedding quality
in a single system, some work (Yin and Schütze, 2016; Bollegala et al., 2017;
Muromägi et al., 2017) tries to do ensemble over multiple different versions of
pretrained word embeddings to get “meta-embeddings”. Those individual em-
bedding sets are complementary since their training data and training algorithms

32

1.3 Sentence Representation Learning

are mostly different. Ensemble approaches can on one hand enhance the ultimate
embedding quality, on the other hand, extend the vocabulary.

1.3 Sentence Representation Learning

As sentential relation identification addressed in this dissertation relies on sen-
tence representation learning, this section therefore briefly describes the progresses
of sentence representation learning via DNNs. Similar with image processing,
sentences are also initialized into a matrix representation, such as a matrix with
columns denoting word embeddings in sequence. Then, CNNs model a sentence
locally and hierarchically while RNNs model sequentially. Depending on if hu-
man annotation is required, sentence representation learning can be carried out in
unsupervised or supervised manner.

1.3.1 Unsupervised Sentence Representation Learning

Without access of annotated labels, sentences learn representations by compos-
ing embeddings of constituent words to either predict their own content words or
predict adjacent sentences.

The most straightforward way is to compose pre-trained word embeddings by
element-wise addition (Mitchell and Lapata, 2010), it acts as a strong baseline in
many NLP systems despite its simplicity.

Some work gets inspiration from n-gram language modeling. For example,
ParagraphVector (Le and Mikolov, 2014) first initializes a sentence representation
randomly, then combines it with some context words to predict the next word.
CNNLM (Yin and Pei, 2015) uses a CNN to encode a piece of context, then uses
the generated context representation to predict the next word.

Inspired by some word embedding learning approaches in which a word em-
bedding is trained by predicting the context words, a sentence representation can
also be derived by predicting adjacent sentences, assuming that all sentences in the
corpus appear in a natural order. For example, given consecutive sentences Si−1,
Si, Si+1 in a document, the SkipThought model (Kiros et al., 2015) uses GRU to
encode all sentences, then predicts target sentences Si−1 and Si+1 given source
sentence Si. FastSent (Hill et al., 2016) is a simplified version of SkipThought
through replacing sentence encoding model GRU by simpler addition – each sen-
tence starts as the sum of word embeddings.

33

1. Introduction

Figure 1.10 – Supervised sentence representation learning by DNN

1.3.2 Supervised Sentence Representation Learning

Figure 1.10 shows a common framework for supervised sentence representation
learning by DNN (assuming a classification task). As input, each word wi (i ∈
{0, · · · , n− 1}) is denoted by an embedding (randomly initialized or pretrained)
of dimension d, then the whole sentence is represented as a matrix S ∈ Rd×n; A
DNN system works on this sentence input format to generate a global sentence
representation, which is finally forwarded into a classifier to figure out the label of
this input sentence. Literature mainly made progresses in terms of enriching input
representations, enriching DNN expressivity and improving objective function.

Enrich Input Representation

The pioneering work (Collobert and Weston, 2008; Collobert et al., 2011) ob-
tained great success by presenting words into word embeddings. This kind of
initialization afterwards acts as a mainstream in downstream NLP tasks (Kalch-
brenner et al., 2014). Some work (Kim, 2014; Yin and Schütze, 2015; Zhang
et al., 2016) explored initializing word by multiple pretrained word embeddings,
as different pretrained embedding versions are supposed to provide complemen-
tary information.

However, recognizing and representing language units at word level brings
challenges in processing rare words and morphological variants. Recently, in-
creasing numbers of work pay attention to studying the subword structures. A
typical stream of work lies in character-level sentence encoding. It does not re-
quire word segmentation any more, instead, treating a sentence, or more generally
a piece of text, as a sequence of characters. Examples include encoding character
sequences (dos Santos and Guimarães, 2015; Ling et al., 2015; Ballesteros et al.,

34

1.4 Tasks for Sentential Relation Identification

2015; Zhang et al., 2015b; Kim et al., 2016), encoding character n-grams (Wi-
eting et al., 2016) and encoding morphology (Cotterell et al., 2016; Kann et al.,
2016) etc.

In addition to the word embeddings at input layer, linguistic features are often
incorporated into DNNs for better performance. For example, Yu et al. (2016)
add part-of-speech tags to the words in machine comprehension task. Vu et al.
(2016) consider position features between generic words and entity mentions for
relation classification. Chapter 8 also introduces our work which considered ques-
tion types, i.e., “wh-” words, to promote the representation learning of question
sentences in question answering. Generally, linguistic features can provide strong
support to the DNN systems, especially in the case of limited training set.

Enrich DNN

Collobert and Weston (2008) and Collobert et al. (2011) used basic convolution
layer and max-pooling layer to model sentences. Kalchbrenner et al. (2014) pro-
posed k-max pooling for CNN. Mou et al. (2015) built CNN upon constituency
trees and dependency trees of a sentence. Palangi et al. (2016) modeled sentences
by LSTMs. Vu et al. (2016) combined CNN and RNN for sentence-level rela-
tion classification. Yin and Schütze (2017) equipped CNNs with the commonly
employed attention mechanism in RNNs to get outstanding performance in text
classification task.

Improve Objective Functions

For sentence classification tasks, the most commonly-used loss function is nega-
tive likelihood (a.k.a “softmax loss”). dos Santos et al. (2015) presented a ranking
loss to make the true label score above a positive threshold and the false label score
below a negative threshold. Liu et al. (2016) proposed a generalized large-margin
softmax loss which explicitly encourages intra-class compactness and inter-class
separability between learned features. The purpose is to generalize the softmax
loss to a more general large-margin softmax loss in terms of angular similarity,
leading to potentially larger angular separability between learned features.

1.4 Tasks for Sentential Relation Identification

The main content of this dissertation summarizes our work in addressing senten-
tial relation identification problem. Sentences can have various relation types.
This section first gives an overview of some typical sentential relation identifica-
tion tasks, then presents their comparison and potential challenges.

35

1. Introduction

1.4.1 Task Introduction

Answer Selection (AS)

When a question meets multiple answer candidates, a system needs to pick out
the correct one. Considering the following example:

Q: what bird family is the owl

C1: Most are solitary and nocturnal, with some exceptions (e.g., the Northern Hawk
Owl).

C2: Owls hunt mostly small mammals, insects, and other birds, although a few species
specialize in hunting fish.

C3: Owls are a group of birds that belong to the order Strigiformes, constituting 200
extant bird of prey species.

C4: They are found in all regions of the Earth except Antarctica, most of Greenland and
some remote islands.

The question Q needs to pick up the correct answer (C3 here) from some
candidates Ci (i=1,2,3,4).

In above example, the relation (Q, Ci) can be recognized based on the con-
tent within the sentences. In certain scenarios, their relation can only be inferred
through extra knowledge. For example, in the machine comprehension task de-
picted in Figure 1.11, a question can only find the right answer based on correct
comprehension of the passage. We call this situation as “sentential relation iden-
tification in background” which will be introduced in Section 1.5.4

Paraphrase Identification (PI)

A paraphrase is a restatement of the meaning of a text or passage using other
words. Paraphrase identification therefore is the task of examining two text en-
tities (e.g., sentence) and determining whether they have the same meaning. In
order to obtain high accuracy on this task, thorough syntactic and semantic analy-
sis of the two text entities is required.

According to granularity, paraphrases are of four types: i) Lexical level, such
as “solve” and “resolve”; ii) Phrase level, such as “look after” and “take care of”;
iii) Sentence level, such as “the table was set up in the carriage shed” and “the
table was laid under the cart-shed”; iv) Discourse level. In this dissertation, we
focus on the sentential paraphrase identification – given any pair of sentences,
automatically identify whether these two sentences are paraphrases.

Paraphrase identification is potentially important for simplifying input sen-
tences and alleviating data sparseness in machine translation (Callison-Burch et al.,

36

1.4 Tasks for Sentential Relation Identification

Figure 1.11 – Machine Comprehension task

2006; Marton et al., 2009), question reformulation in question answering (To-
muro, 2003) and information retrieval (Zhang et al., 2015a), sentence clustering
in summarization (Radev et al., 2004), sentence rewriting in natural language gen-
eration (Barzilay and Lee, 2003; Mitchell et al., 2014) and so on.

Textual Entailment (TE)

TE in natural language processing is a directional relation between text fragments.
The relation holds whenever the truth of one text fragment follows from another
text. In the TE framework, the entailing and entailed texts are termed premise (t)
and hypothesis (h), respectively. And there are, as a result, three classes: entail-
ment, neutral and contradiction. Contrary to paraphrase, TE is similar but weakens
the relationship to be unidirectional.

Many NLP applications, like question answering, information extraction, (multi-
document) summarization and machine translation evaluation, need to recognize
that a particular target meaning can be inferred from different text variants. Typ-
ically entailment is used as part of a larger system, for example in a prediction
system to filter out trivial or obvious predictions (Mombourquette et al., 2017;
Chang et al., 2017).

37

1. Introduction

1.4.2 Task Analysis

This dissertation mainly discusses textual entailment, paraphrase identification
and answer sentence selection tasks.

Both textual entailment and answer sentence selection tasks are directional
relations, i.e., the relation can not hold if we exchange the two text pieces. Two
paraphrasing sentences have also entailment relationship towards each other. In
the machine comprehension task depicted in Figure 1.11, the document should
be able to entail the information in the combination of question and the correct
answer sentence.

Both textual entailment and paraphrase identification tasks are mostly treated
as classification problem, while the answer sentence selection and machine com-
prehension tasks are treated as ranking problems – picking the top-1 ranked sen-
tence as the predicted answer. In addition, badly-matched n-grams are observed
to be more decisive in textual entailment task while well-matched n-grams are
found more decisive in paraphrase identification and answer selection tasks. Con-
sidering textual entailment example “a couple is eating inside at a table || a couple
is eating outside at a table”, the word pair “(inside, outside)” is badly-matched
as other words are overlapping words, so the relation of these two sentences are
essentially determined by the pair “(inside, outside)”. Considering an answer sen-
tence selection example “how big is Munich || according to the Wikipedia 2005,
the city had a population of 1,700,381”, the two pairs “(how big, a population
of)” and “(Munich, city)” are better-matched than other n-grams, and the sys-
tem can very likely determine the sentence relation even though there are some
badly-matched n-grams such as “according to the Wikipedia 2005”.

Consistently, all these tasks face the challenges – various relation types, open
domain sentences. Textual entailment mostly have three relation types – en-
tailment, contradictory, neutral, paraphrase identification has binary relations –
paraphrasing or not, question answering (answer sentence selection and machine
comprehension) include more unexpected relation types and descriptions. DNN
systems are expected to have good representations and strong generalization.

1.5 Systems for Sentential Relation Identification

1.5.1 Independent Sentence Modeling

The most basic framework to identify sentential relations is to examine two sen-
tence representations which are derived separately like we introduced in Section
1.3. Figure 1.12 depicts the Siamese architecture (Bromley et al., 1993) in which
pairs of inputs are processed by two copies of a neural network. The pair of

38

1.5 Systems for Sentential Relation Identification

Figure 1.12 – Siamese architecture for modeling sentential relations

networks are trained to make their output vectors similar for input pairs that are
labeled as similar, and dissimilar for input pairs that are labeled as dissimilar. Ex-
amples include (Yu et al., 2014; Yang et al., 2015; Hosseini-Asl and Guha, 2015)
etc. However, an apparent shortcoming of this Siamese system is that sentences
are encoded independently, without considering the mutual impact. This is not
beneficial for identifying sentential relations.

Next we use three subsections to elaborate our work in this sentential relation
identification task.

1.5.2 Sentence Interaction
In our first three publications in Chapters 2-4, we will introduce our first effort to
better model a sentence by considering its counterpart. Considering the following
sentences S1 and S2:

S1: please turn the light off

S2: please unplug the light

They can only be correctly recognized as paraphrase if the discontinuous phrase
“turn · · · off” in S1 can be figured out semantically equivalent to “unplug” in S2.
Based on this observation, we realize that successful sentential relation detection
first relies on representation of phrases of arbitrary granularity. A primary at-
tempt, to the end, is to detect those phrases, learning embeddings for them in a
large corpus. Based on representations of words and phrasal units, a sentence can
be better represented as its components are more semantic-complete units now.

Detecting phrases in large corpus is not trivial in practical, and pre-detected
phrases may not cover the phrases appearing in the sentences. A more desirable

39

1. Introduction

Figure 1.13 – Stacked CNN for phrase representation

way is to explore DNN to detect phrases automatically. Socher et al. (2011) used
parser to split a sentence, then phrases lie in leaves of the parsing trees, finally
recursive neural network was employed to encode the parsing trees. However,
parsing is not totally reliable in open-domain applications, and only detects lim-
ited phrases based on the sentence structure. The 3rd and 4th chapters of this
dissertation introduce how we develop stacked CNN systems to detect multigran-
ular and hierarchical phrases from sentences. The benefit of CNN over recursive
NN is that CNN does not depend on any toolkits, totally training from scratch.

Figure 1.13 depicts stacked CNN layers, with filter width 2, to detect and
represent phrases in sentences “please turn the light off” and “please unplug the
light”. As a result, the top blue block on the left figure represents the phrase “turn
the light off” and the top blue block on the right figure represent the phrase “un-
plug the light”. Our work in Chapters 3-4 will elaborate how to make use of their
interaction to enhance the sentential relation identification problems. Figure 1.14
depicts using RNN to encode the sentence from left to right, then choosing the
hidden states of head word and tail word of a phrase to form the phrase represen-
tation.

Based on phrase representations detected by CNN or RNN, we can model the
sentence interaction by comparing any phrases of one sentence with any phrases
of the other sentence. This fine-grained comparison is supposed to provide more
detailed information than the Siamese framework introduced in Section 1.5.1.

1.5.3 Attention Mechanism
Conventional sentential relation identification does not distinguish which parts
are more indicative for the task. Human beings, instead, can figure out which part
of a sentence matches well to a specific part of the other sentence. For exam-

40

1.5 Systems for Sentential Relation Identification

Figure 1.14 – RNN for phrase representation

Figure 1.15 – Attention example for answer selection task

ple, in answer selection task for multi-choice question answering shown in Figure
1.15, to successfully identify the relationship between the question “How big is
Auburndale Florida” and the answer candidate “According to the U.S. Census es-
timates of 2005, the city had a population of 12,381”, we should mainly compare
the phrase pairs (How big, a population of 12,381) and (Auburndale Florida, the
city), the long phrase “According to the U.S. Census estimates of 2005” has no
semantically matching counterpart, hence it can be neglected without influencing
the decision.

Instead, in the textual entailment example in Figure 1.16, a correct decision
between S1 “the kids are playing outdoors and the man is smiling nearby” and
S2 “the kids are playing in a yard and an old man is standing in the background”
depends on attention over the match between phrase pairs (outdoors, in a yard)
and (the man is smiling nearby, an old man is standing in the background), the re-
peating part “the kids are playing” in both sentences is less indicative – discarding
its two occurrences in the two sentences will not influence the result.

So, attention mechanism is intensively explored recently. A representative

41

1. Introduction

Figure 1.16 – Attention example for textual entailment task

attention mechanism in sentential relation identification is by Rocktäschel et al.
(2016), depicted in Figure 1.17, in which premise and hypothesis are concatenated
to be forwarded into RNN, then word-by-word attention decides which words in
Premise match well to the words in Hypothesis. Such kind of inspiration was also
explored in machine translation community (Bahdanau et al., 2015) – attention is
employed to determine which phrases in source language are more important for
the current phrase generation in target language side.

In our publications in Chapters 5-7, we will have three aspects of contributions
about attention mechanism:

1. Based on the study of answer selection task in Figure 1.15 and textual en-
tailment task in Figure 1.16, we realize that it is feasible and reasonable
to match cross-sentence phrases locally. For example, we can match “out-
doors” and “in a yard” without considering their context. This match is al-
ready a strong indicator. Most attention mechanism are implemented based
on RNN system which models long-range context representation rather than
a local representation. CNN, instead, can model the representation of local
regions by sliding filters. Hence, we proposed the first attention mechanism
in CNN architectures for natural language processing, in Chapter 5.

2. A further study of the attention distribution in AS task in Figure 1.15 and
TE task in Figure 1.16 demonstrates that AS benefits more if we focus
on strongly aligned phrases, TE instead prefers to compare those weakly-
aligned phrases. Motivated, in our publication described in Chapter 6, we
have different attentive pooling in CNN systems. More specifically, we
proposed a k-min-max-pooling for TE task so that phrases that are badly
aligned can contribute more to the sentence representations; we proposed a
k-max-max-pooling for AS so that phrases that are well aligned can act a
dominant role in the final sentence representations. These kind of refined
sentence representations are supposed to provide more informative infor-
mation for the identification task.

3. In some applications, a sentence in the pair may be a structured one. For ex-
ample, in factoid question answering, a single-relation question of raw text

42

1.5 Systems for Sentential Relation Identification

Figure 1.17 – Attention example (Rocktäschel et al., 2016)

needs to match with lots of one-hop facts in knowledge graph (KG). For in-
stance, question “who is the president of U.S?” can match fact (United States,
President of Country,?). So, in this kind of sentential relation identification,
one sentence can be highly-structured. The publication in Chapter 7 tries to
solve the single-relation question answering problem by a two-part CNN.
One character-level CNN matches the KG entity “United States” with top-
ical entity “U.S.”, and another word-level CNN matches the KG relation
“President of Country” with the question pattern “who is the president of
<e>”. Observing that KG relations are mostly the paraphrase or key-
phrases of raw questions, we come up with a novel attentive max-pooling
so that the n-gram in question which matches KG relations well can have
higher probability to be selected by the max-pooling operation.

1.5.4 Sentential Relation Identification in Background
Above subsections introduced some sentential relation identification tasks in which
only two target sentences are involved in the decision. In some scenarios, we can
only determine the relationship of two sentences by the background knowledge.
Considering the machine comprehension task in Figure 1.11, given a piece of
passage and some questions for this passage, multiple answer candidates are pro-
vided to each question, a system is required to figure out which answer candidate
is the correct one. In this application, passage knowledge is necessary to discover
correctly the relationship between the question and each answer candidate. The
same case can also happen in visual question answering in which the question and

43

1. Introduction

answer candidates are describing something about images, videos etc.
The publication in Chapter 8 introduces two paradigms to handle this task:

• Treating the passage background as a “translation” medium, which trans-
lates the question into the answer. So, the basic idea is to learn spaces
for question, passage and answer candidates separately, finally use passage
space to project question space into answer space;

• Treating the whole task as textual entailment – combining the passage and
question as a big Premise and those answer candidates as Hypotheses, then
our textual entailment approaches mentioned in above subsection can be
employed to solve this task.

In this scenario, we have to handle another new challenge that does not exist
in the conventional TE task – one sentence is too long (passage plus question), so
the approaches for two simple sentences entailment can not work well in this case.
Considering again the example in Figure 1.11, only the blue and red sentences
are directly related to the question answering problem. Other sentences can be
neglected. To this end, we proposed an attentive pooling at both word level and
sentence level so that the most informative part of the passage can be refined to
guide the task learning.

1.6 Summary
In this chapter, we first introduced some basic knowledge of deep neural net-
works, including feedforward phase, error backpropagation and gradient descent
optimization etc; then we elaborated the sentence representation learning in both
unsupervised and supervised training schemes; finally, sentence representation
learning was extended to identify sentential relations in three novelties: employ-
ing sentence interaction, developing attention mechanisms and sentential relation
identification in background.

In the following Chapters 2-8, each one describes one publication in this re-
search topic. Specifically, Chapter 2 explores representation learning of phrases
for sentential relation identification, Chapter 3 shows the first CNN for paraphrase
identification task, Chapter 4 extends the model in Chapter 3 and tests in more
tasks, Chapter 5 demonstrates the first attention mechanism in CNN for sentential
relation identification, Chapter 6 develops the attention mechanism in Chapter 5
more fine-grained, so that different sentential relation identification tasks, such as
answer selection and textual entailment, have more appropriate attention mech-
anisms, Chapter 7 develops attentive CNN for a sentential relation identification
problem in which one sentence in the pair can be structured, such as a fact in

44

1.6 Summary

knowledge graphs, Chapter 8 illustrates how the sentential relations are detected
in background knowledge, such as a passage.

45

46

Chapter 2

Discriminative Phrase Embedding
for Paraphrase Identification

47

Discriminative Phrase Embedding for Paraphrase Identification

Wenpeng Yin and Hinrich Schütze
Center for Information and Language Processing

University of Munich, Germany
wenpeng@cis.lmu.de

Abstract

This work, concerning paraphrase identifica-
tion task, on one hand contributes to expand-
ing deep learning embeddings to include con-
tinuous and discontinuous linguistic phrases.
On the other hand, it comes up with a new
scheme TF-KLD-KNN to learn the discrimi-
native weights of words and phrases specific
to paraphrase task, so that a weighted sum of
embeddings can represent sentences more ef-
fectively. Based on these two innovations we
get competitive state-of-the-art performance
on paraphrase identification.

1 Introduction

This work investigates representation learning via
deep learning in paraphrase identification task,
which aims to determine whether two sentences
have the same meaning. One main innovation of
deep learning is that it learns distributed word repre-
sentations (also called “word embeddings”) to deal
with various Natural Language Processing (NLP)
tasks. Our goal is to use and refine embeddings to
get competitive performance.

We adopt a supervised classification approach to
paraphrase identification like most top performing
systems. Our focus is representation learning of sen-
tences. Following prior work (e.g., Blacoe and Lap-
ata (2012)), we compute the vector of a sentence as
the sum of the vectors of its components. But unlike
prior work we use single words, continuous phrases
and discontinuous phrases as the components, not
just single words. Our rationale is that many seman-
tic units are formed by multiple words – e.g., the

continuous phrase “side effects” and the discontin-
uous phrase “pick . . . off”. The better we can dis-
cover and represent such components, the better the
compositional sentence vector should be. We use
the term unit to refer to single words, continuous
phrases and discontinuous phrases.

Ji and Eisenstein (2013) show that not all words
are equally important for paraphrase identification.
They propose TF-KLD, a discriminative weighting
scheme to address this problem. While they do not
represent sentences as vectors composed of other
vectors, TF-KLD is promising for a vector-based
approach as well since the insight that units are of
different importance still applies. A shortcoming of
TF-KLD is its failure to define weights for words
that do not occur in the training set. We propose
TF-KLD-KNN, an extension of TF-KLD that com-
putes the weight of an unknown unit as the average
of the weights of its k nearest neighbors. We de-
termine nearest neighbors by cosine measure over
embedding space. We then represent a sentence as
the sum of the vectors of its units, weighted by TF-
KLD-KNN.

We use (Madnani et al., 2012) as our baseline
system. They used simple features – eight dif-
ferent machine translation metrics – yet got good
performance. Based on above new sentence rep-
resentations, we compute three kinds of features
to describe a pair of sentences – cosine similarity,
element-wise sum and absolute element-wise differ-
ence – and show that combining them with the fea-
tures from Madnani et al. (2012) gets state-of-the-art
performance on the Microsoft Research Paraphrase
(MSRP) corpus (Dolan et al., 2004).

48

In summary, our first contribution lies in em-
bedding learning of continuous and discontinuous
phrases. Our second contribution is the weighting
scheme TF-KLD-KNN.

This paper is structured as follows. Section 2 re-
views related work. Section 3 describes our method
for learning embeddings of units. Section 4 intro-
duces a measure of unit discriminativity that can be
used for differential weighting of units. Section 5
presents experimental setup and results. Section 6
concludes.

2 Related work

The key for good performance in paraphrase iden-
tification is the design of good features. We now
discuss relevant prior work based on the linguistic
granularity of feature learning.

The first line is compositional semantics, which
learns representations for words and then composes
them to representations of sentences. Blacoe and La-
pata (2012) carried out a comparative study of three
word representation methods (the simple distribu-
tional semantic space (Mitchell and Lapata, 2010),
distributional memory tensor (Baroni and Lenci,
2010) and word embedding (Collobert and Weston,
2008)), along with three composition methods (ad-
dition, point-wise multiplication, and recursive auto-
encoder (Socher et al., 2011)). They showed that ad-
dition over word embeddings is competitive, despite
its simplicity.

The second category directly seeks sentence-level
features. Ji and Eisenstein (2013) explored uni-
grams, bigrams and dependency pairs as sentence
features. They proposed TF-KLD to weight fea-
tures and used non-negative factorization to learn la-
tent sentence representations. Our method TF-KLD-
KNN is an extension of their work.

The third line directly computes features for sen-
tence pairs. Wan et al. (2006) used N-gram overlap,
dependency relation overlap, dependency tree-edit
distance and difference of sentence lengths. Finch
et al. (2005) and Madnani et al. (2012) combined
several machine translation metrics. Das and Smith
(2009) presented a generative model over two sen-
tences’ dependency trees, incorporating syntax, lex-
ical semantics, and hidden loose alignments between
the trees to model generating a paraphrase of a given

sentence. Socher et al. (2011) used recursive autoen-
coders to learn representations for words and word
sequences on each layer of the sentence parsing tree,
and then proposed dynamic pooling layer to form
a fixed-size matrix as the representation of the two
sentences. Other work representative of this line is
by Kozareva and Montoyo (2006), Qiu et al. (2006),
Ul-Qayyum and Altaf (2012).

Our work, first learning unit embeddings, then
adding them to form sentence representations, fi-
nally calculating pair features (cosine similarity, ab-
solute difference and MT metrics) actually is a com-
bination of above three lines.

3 Embedding learning for units

As explained in Section 1, “units” in this work in-
clude single words, continuous phrases and discon-
tinuous phrases. Phrases have a larger linguistic
granularity than words and thus will in general con-
tain more meaning aspects for a sentence. For ex-
ample, successful detection of continuous phrase
“side effects” and discontinuous phrase “pick · · ·
off” is helpful to understand the sentence meaning
correctly. This section focuses on how to detect
phrases and how to represent them.

3.1 Phrase collection

Phrases defined by a lexicon have not been inves-
tigated extensively before in deep learning. To
collect canonical phrase set, we extract two-word
phrases defined in Wiktionary1 and Wordnet (Miller
and Fellbaum, 1998) to form a collection of size
95,218. This collection contains continuous phrases
– phrases whose parts always occur next to each
other (e.g., “side effects”) – and discontinuous
phrases – phrases whose parts more often occur sep-
arated from each other (e.g., “pick . . . off”).

3.2 Identification of phrase continuity

Wiktionary and WordNet do not categorize phrases
as continuous or discontinuous. So we need a
heuristic to determine this automatically.

For each phrase “A B”, we compute [c1, c2, c3,
c4, c5] where ci, 1 ≤ i ≤ 5, indicates there are ci
occurrences of A and B in that order with a distance

1http://en.wiktionary.org

49

of i. We compute these statistics for a corpus con-
sisting of English Gigaword (Graff et al., 2003) and
Wikipedia. We set the maximal distance to 5 be-
cause discontinuous phrases are rarely separated by
more than 5 tokens.

If c1 is 10 times higher than (c2+c3+c4+c5)/4,
we classify “A B” as continuous, otherwise as dis-
continuous. For example, [c1, . . . , c5] is [1121, 632,
337, 348, 4052] for “pick off”, so c1 is smaller than
the average 1342.25 and “pick off” is set as “discon-
tinuous”; [c1, . . . , c5] is [14831, 16, 177, 331, 3471]
for “Cornell University”, c1 is 10 times larger than
the average and this phrase is set to “continuous”.

We found that that this heuristic for distinguish-
ing between continuous and discontinuous phrases
works well and leave the development of a more
principled method for future work.

3.3 Sentence reformatting
Sentence “. . . A . . . B . . . ” is

• reformatted as “. . . A B . . . ” if A and B form a
continuous phrase and no word intervenes be-
tween them and

• reformatted as “. . . A B . . . A B . . . ” if A and
B form a discontinuous phrase and are sepa-
rated by 1 to 4 words. We replace each of
the two component words with A B to make
the context of both constituents available to the
phrase in learning.

This method of phrase detection will generate
some false positives, e.g., if “pick” and “off” occur
in a context like “she picked an island off the coast
of Maine”. However, our experimental results indi-
cate that it is robust enough for our purposes.

We run word2vec (Mikolov et al., 2013) on the
reformatted Wikipedia corpus to learn embeddings
for all units. Embedding size is set to 200.

4 Measure of unit discriminativity

We will represent a sentence as the sum of the em-
beddings of its units. Building on Ji and Eisenstein
(2013)’s TF-KLD, we want to weight units accord-
ing to their ability to discriminate two sentences spe-
cific to the paraphrase task.

TF-KLD assumes a training set of sentence pairs
in the form 〈ui, vi, ti〉, where ui and vi denote the

binary unit occurrence vectors for the sentences in
the ith pair and ti ∈ {0, 1} is the gold tag. Then, we
define pk and qk as follows.

• pk = P (uik|vik = 1, ti = 1). This is the prob-
ability that unit wk occurs in sentence ui given
that wk occurs in its counterpart vi and they are
paraphrases.

• qk = P (uik|vik = 1, ti = 0). This is the prob-
ability that unit wk occurs in sentence ui given
that wk occurs in its counterpart vi and they are
not paraphrases.

TF-KLD computes the discriminativity of unit wk

as the Kullback-Leibler divergence of the Bernoulli
distributions (pk, 1-pk) and (qk, 1-qk)

TF-KLD has a serious shortcoming for unknown
units. Unfortunately, the test data of the commonly
used MSPR corpus in paraphrase task has about 6%
unknown words and 62.5% of its sentences contain
unknown words. It motivates us to design an im-
proved scheme TF-KLD-KNN to reweight the fea-
tures.

TF-KLD-KNN weights are the same as TF-KLD
weights for known units. For a unit that did not oc-
cur in training, TF-KLD-KNN computes its weight
as the average of the weights of its k nearest neigh-
bors in embedding space, where unit similarity is
calculated by cosine measure.2

Word2vec learns word embeddings based on the
word context. The intuition of TF-KLD-KNN is
that words with similar context have similar discrim-
inativities. This enables us to transfer the weights
of features in training data to the unknown features
in test data, greatly helping to address problems of
sparseness.

5 Experiments

5.1 Data and baselines

We use the MSRP corpus (Dolan et al., 2004) for
evaluation. It consists of a training set of 2753 true
paraphrase pairs and 1323 false paraphrase pairs and
a test set of 1147 true and 578 false pairs.

2Unknown words without embeddings (only seven cases in
our experiments) are ignored. This problem can be effectively
relieved by training embedding on larger corpora.

50

For our new method, it is interesting to measure
the improvement on the subset of those MSRP sen-
tences that contain at least one phrase. In the stan-
dard MSRP corpus, 3027 training pairs (2123 true,
904 false) and 1273 test pairs (871 true, 402 false)
contain phrases; we denote this subset as subset.
We carry out experiments on overall (all MSRP sen-
tences) as well as subset cases.

We compare six methods for paraphrase identifi-
cation.

• NOWEIGHT. Following Blacoe and Lapata
(2012), we simply represent a sentence as the
unweighted sum of the embeddings of all its
units.

• MT is the method proposed by Madnani et
al. (2012): the sentence pair is represented as
a vector of eight different machine translation
metrics.

• Ji and Eisenstein (2013). We reimplemented
their “inductive” setup which is based on ma-
trix factorization and is the top-performing sys-
tem in paraphrasing task.3

The following three methods not only use this
vector of eight MT metrics, but use three
kinds of additional features given two sentence
representations s1 and s2: cosine similarity,
element-wise sum s1+s2 and element-wise ab-
solute difference |s1 − s2|. We now describe
how each of the three methods computes the
sentence vectors.

• WORD. The sentence is represented as the sum
of all single-word embeddings, weighted by
TF-KLD-KNN.

• WORD+PHRASE. The sentence is repre-
sented as the sum of the embeddings of all
its units (including phrases), weighted by TF-
KLD-KNN.

• WORD+GOOGLE. Mikolov et al. (2013)
use a data-driven method to detect statistical
phrases which are mostly continuous bigrams.

3They report even better performance in a “transductive”
setup that makes use of test data. We only address paraphrase
identification for the case that the test data are not available for
training the model in this paper.

We implement their system by first exploiting
word2phrase4 to reformat Wikipedia, then us-
ing word2vec skip-gram model to train phrase
embeddings.

We use the same weighting scheme TF-KLD-
KNN for the three weighted sum approaches:
WORD, WORD+PHRASE and WORD+GOOGLE.
Note however that there is an interaction be-
tween representation space and nearest neighbor
search. We limit the neighbor range of unknown
words for WORD to single words; in contrast, we
search the space of all single words and linguistic
(resp. Google) phrases for WORD+PHRASE (resp.
WORD+GOOGLE).

We use LIBLINEAR (Fan et al., 2008) as our lin-
ear SVM implementation. 20% training data is used
as development data. Parameter k is fine-tuned on
development set and the best value 3 is finally used
in following reported results.

5.2 Experimental results
Table 1 shows performance for the six methods as
well as for the majority baseline. In the overall (resp.
subset) setup, WORD+PHRASE performs best and
outperforms (Ji and Eisenstein, 2013) by .009 (resp.
.052) on accuracy. Interestingly, Ji and Eisen-
stein (2013)’s method obtains worse performance on
subset. This can be explained by the effect of ma-
trix factorization in their work: it works less well
for smaller datasets like subset. This is a short-
coming of their approach. WORD+GOOGLE has a
slightly worse performance than WORD+PHRASE;
this suggests that linguistic phrases might be more
effective than statistical phrases in identifying para-
phrases.

Cases overall and subset both suggest that phrase
embeddings improve sentence representations. The
accuracy of WORD+PHRASE is lower on overall
than on subset because WORD+PHRASE has no ad-
vantage over WORD for sentences without phrases.

5.3 Effectiveness of TF-KLD-KNN
The key contribution of TF-KLD-KNN is that it
achieves full coverage of feature weights in the face
of data sparseness. We now compare four weight-
ing methods on overall corpus and with the combi-

4https://code.google.com/p/word2vec/

51

overall subset
method acc F1 acc F1

baseline .665 .799 .684 .812
NOWEIGHT .708 .809 .713 .823
MT .774 .841 .772 .839
Ji and Eisenstein (2013) .778 .843 .749 .827
WORD .775 .839 .776 .843
WORD+GOOGLE .780 .843 .795 .853
WORD+PHRASE .787 .848∗ .801 .857∗

Table 1: Results on overall and subset corpus. Significant
improvements over MT are marked with ∗ (approximate
randomization test, Padó (2006), p < .05).

method acc F1

NOWEIGHT .746 .815
TF-IDF .752 .821
TF-KLD .774 .842
TF-KLD-KNN .787 .848

Table 2: Effects of different reweighting methods on
overall.

nation of MT features: NOWEIGHT, TF-IDF, TF-
KLD, TF-KLD

Table 2 suggests that task-specific reweighting ap-
proaches (including TF-KLD and TF-KLD-KNN)
are superior to unspecific schemes (NOWEIGHT
and TF-IDF). Also, it demonstrates the effectiveness
of our weight learning solution for unknown units in
paraphrase task.

5.4 Reweighting schemes for unseen units

We compare our reweighting scheme KNN (i.e., TF-
KLD-KNN) with three other reweighting schemes.
Zero: zero weight, i.e., ignore unseen units; Type-
average: take the average of weights of all known
unit types in test set; Context-average: average of
the weights of the adjacent known units of the un-
known unit (two, one or defaulting to Zero, depend-
ing on how many there are). Figure 1 shows that
KNN performs best.

6 Conclusion

This work introduced TF-KLD-KNN, a new
reweighting scheme that learns the discriminativi-
ties of known as well as unknown units effectively.
We further improved paraphrase identification per-

KNN Zero Type−average Context−average
0.78

0.781

0.782

0.783

0.784

0.785

0.786

0.787

0.788

Reweighting methods for unseen units

A
c
c
u

ra
c
y

Figure 1: Performance of different reweighting schemes
for unseen units on overall.

formance by the utilization of continuous and dis-
continuous phrase embeddings.

In future, we plan to do experiments in a cross-
domain setup and enhance our algorithm for domain
adaptation paraphrase identification.

Acknowledgments

We are grateful to members of CIS for com-
ments on earlier versions of this paper. This
work was supported by Baidu (through a Baidu
scholarship awarded to Wenpeng Yin) and by
Deutsche Forschungsgemeinschaft (grant DFG
SCHU 2246/8-2, SPP 1335).

References
Marco Baroni and Alessandro Lenci. 2010. Distribu-

tional memory: A general framework for corpus-based
semantics. Computational Linguistics, 36(4):673–
721.

William Blacoe and Mirella Lapata. 2012. A compari-
son of vector-based representations for semantic com-
position. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 546–556. Association for Computational Lin-
guistics.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167. ACM.

Dipanjan Das and Noah A Smith. 2009. Paraphrase iden-
tification as probabilistic quasi-synchronous recogni-
tion. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-

52

cessing of the AFNLP: Volume 1-Volume 1, pages 468–
476. Association for Computational Linguistics.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Pro-
ceedings of the 20th international conference on Com-
putational Linguistics, pages 350–356. Association for
Computational Linguistics.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. Liblinear: A library
for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874.

Andrew Finch, Young-Sook Hwang, and Eiichiro
Sumita. 2005. Using machine translation evalua-
tion techniques to determine sentence-level semantic
equivalence. In Proceedings of the Third International
Workshop on Paraphrasing (IWP2005), pages 17–24.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
2003. English gigaword. Linguistic Data Consortium,
Philadelphia.

Yangfeng Ji and Jacob Eisenstein. 2013. Discriminative
improvements to distributional sentence similarity. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Zornitsa Kozareva and Andrés Montoyo. 2006. Para-
phrase identification on the basis of supervised ma-
chine learning techniques. In Advances in natural lan-
guage processing, pages 524–533. Springer.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining machine translation metrics for
paraphrase identification. In Proceedings of the 2012
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 182–190. Association for
Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.

George Miller and Christiane Fellbaum. 1998. Wordnet:
An electronic lexical database.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive science,
34(8):1388–1429.

Sebastian Padó, 2006. User’s guide to sigf: Signifi-
cance testing by approximate randomisation.

Long Qiu, Min-Yen Kan, and Tat-Seng Chua. 2006.
Paraphrase recognition via dissimilarity significance
classification. In Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Process-
ing, pages 18–26. Association for Computational Lin-
guistics.

Richard Socher, Eric H Huang, Jeffrey Pennington, An-
drew Y Ng, and Christopher D Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural In-
formation Processing Systems, volume 24, pages 801–
809.

Zia Ul-Qayyum and Wasif Altaf. 2012. Paraphrase iden-
tification using semantic heuristic features. Research
Journal of Applied Sciences, Engineering and Tech-
nology, 4(22):4894–4904.

Stephen Wan, Mark Dras, Robert Dale, and Cécile Paris.
2006. Using dependency-based features to take the
para-farce out of paraphrase. In Proceedings of the
Australasian Language Technology Workshop, volume
2006, pages 131–138.

53

54

Chapter 3

Convolutional Neural Network for
Paraphrase Identification

55

Convolutional Neural Network for Paraphrase Identification

Wenpeng Yin and Hinrich Schütze
Center for Information and Language Processing

University of Munich, Germany
wenpeng@cis.uni-muenchen.de

Abstract

We present a new deep learning architecture
Bi-CNN-MI for paraphrase identification (PI).
Based on the insight that PI requires compar-
ing two sentences on multiple levels of granu-
larity, we learn multigranular sentence repre-
sentations using convolutional neural network
(CNN) and model interaction features at each
level. These features are then the input to a
logistic classifier for PI. All parameters of the
model (for embeddings, convolution and clas-
sification) are directly optimized for PI. To ad-
dress the lack of training data, we pretrain the
network in a novel way using a language mod-
eling task. Results on the MSRP corpus sur-
pass that of previous NN competitors.

1 Introduction

In this paper, we address the problem of paraphrase
identification. It is usually formalized as a binary
classification task: for two sentences (S1, S2), deter-
mine whether they roughly have the same meaning.

Inspired by recent successes of deep neural
networks (NNs) in fields like computer vision
(Neverova et al., 2014), speech recognition (Deng
et al., 2013) and natural language processing (Col-
lobert and Weston, 2008), we adopt a deep learning
approach to paraphrase identification in this paper.

The key observation that motivates our NN archi-
tecture is that the identification of a paraphrase rela-
tionship between S1 and S2 requires an analysis at
multiple levels of granularity.

(A1) “Detroit manufacturers have raised vehicle
prices by ten percent.” – (A2) “GM, Ford and
Chrysler have raised car prices by five percent.”

Example A1/A2 shows that paraphrase identifica-
tion requires comparison at the word level. A1 can-
not be a paraphrase of A2 because the numbers “ten”
and “five” are different.

(B1) “Mary gave birth to a son in 2000.” – (B2)
“He is 14 years old and his mother is Mary.”

PI for B1/B2 can only succeed at the sentence
level since B1/B2 express the same meaning using
very different means.

Most work on paraphrase identification has fo-
cused on only one level of granularity: either on low-
level features (e.g., Madnani et al. (2012)) or on the
sentence level (e.g., ARC-I, Hu et al. (2014)).

An exception is the RAE model (Socher et al.,
2011). It computes representations on all levels of
a parse tree: each node – including nodes corre-
sponding to words, phrases and the entire sentence
– is represented as a vector. RAE then computes
a n1 × n2 comparison matrix of the two trees de-
rived from S1 and S2 respectively, where n1, n2 are
the number of nodes and each comparison is the Eu-
clidean distance between two vectors. This is then
the basis for paraphrase classification.

RAE (Socher et al., 2011) is one of three prior NN
architectures that we draw on to design our system.
It embodies the key insight that paraphrase identi-
fication involves analysis of information at multiple
levels of granularity. However, relying on parsing
has limitations for noisy text and for other applica-
tions in which highly accurate parsers are not avail-
able. We extend the basic idea of RAE by explor-
ing stacked convolution layers which on one hand
use sliding windows to split sentences into flexible
phrases, furthermore, higher layers are able to ex-

56

tract more abstract features of longer-range phrases
by combining phrases in lower layers.

A representative way of doing this in deep learn-
ing is the work by Kalchbrenner et al. (2014), the
second prior NN architecture that we draw on. They
use convolution to learn representations at multiple
levels (Collobert and Weston, 2008). The motiva-
tion for convolution is that natural language con-
sists of long sequences in which many short sub-
sequences contribute in a stable way to the struc-
ture and meaning of the long sequence regardless
of the position of the subsequence within the long
sequence. Thus, it is advantageous to learn con-
volutional filters that detect a particular feature re-
gardless of position. Kalchbrenner et al. (2014)’s ar-
chitecture extends this idea in two important ways.
First, k-max pooling extracts the k top values from
a sequence of convolutional filter applications and
guarantees a fixed length output. Second, they stack
several levels of convolutional filters, thus achieving
multigranularity. We incorporate this architecture as
the part that analyzes an individual sentence.

The third prior NN architecture we draw on is
ARC proposed by Hu et al. (2014) who also attempt
to exploit convolution for paraphrase identification.
Their key insight is that we want to be able to di-
rectly optimize the entire system for the task we are
addressing, i.e., for paraphrase identification. Hu et
al. (2014) do this by adopting a Siamese architec-
ture: their NN consists of two shared-weight sen-
tence analysis NNs that feed into a binary classi-
fier that is directly trained on labeled sentence pairs.
As we will show below, this is superior to separat-
ing the two steps: first learning sentence represen-
tations, then training binary classification for fixed,
learned sentence representations as Bromley et al.
(1993), Socher et al. (2011) and many others do.

We can now give an overview of our NN architec-
ture (Figure 1). We call it Bi-CNN-MI: “Bi-CNN”
stands for double CNNs used in Siamese frame-
work, “MI” for multigranular interaction features.
Bi-CNN-MI has three parts: (i) the sentence anal-
ysis network CNN-SM, (ii) the sentence interaction
model CNN-IM and (iii) a logistic regression on top
of the network that performs paraphrase identifica-
tion. We now describe these three parts in detail.

(i) Following Kalchbrenner et al. (2014), we de-
sign CNN-SM, a convolutional sentence analysis

NN that computes representations at four different
levels: word, short ngram, long ngram and sentence.
This multigranularity is important because para-
phrase identification benefits from analyzing sen-
tences at multiple levels.

(ii) Following Socher et al. (2011), CNN-IM, the
interaction model, computes interaction features as
s1 × s2 matrices, where si is the number of items of
a certain granularity in Si. In contrast to Socher et
al. (2011), CNN-IM computes these features at fixed
levels and only for comparable units; e.g., we do not
compare single words with entire sentences.

(iii) Following Hu et al. (2014), we integrate two
copies of CNN-SM into a Siamese architecture that
allows to optimize all parameters of the NN for para-
phrase identification. In our case, these parameters
include parameters for word embedding, for convo-
lution filters, and for the classification of paraphrase
candidate pairs. In contrast to Hu et al. (2014), the
inputs to the final paraphrase candidate pair classifi-
cation layer are interaction feature matrices at mul-
tiple levels – as opposed to single-level features that
do not directly compare an element of S1 with a po-
tentially corresponding element of S2.

There is one other problem we have to address to
get good performance. Training sets for paraphrase
identification are small in comparison with the high
complexity of the task. Training a complex network
like Bi-CNN-MI with a large number of parameters
on a small training set is not promising due to sparse-
ness and likely overfitting.

In order to make full use of the training data, we
propose a new unsupervised training scheme CNN-
LM (CNN Language Model) to pretrain the largest
part of the model, the sentence analysis network
CNN-SM. The key innovation is that we use a lan-
guage modeling task in a setup similar to autoen-
coding for pretraining (see below for details). This
means that embedding and convolutional parameters
can be pretrained on very large corpora since no hu-
man labels are required for pretraining.

We will show below that this pretraining is critical
for getting good performance in the paraphrase task.
However, the general design principle of this type of
unsupervised pretraining should be widely applica-
ble given that next-word prediction training is possi-
ble in many NLP applications. Thus, this new way
of unsupervised pretraining could be an important

57

contribution of the paper independent of paraphrase
identification.

Section 2 discusses related work. Sections 3 and
4 introduce the sentence model CNN-SM and the
sentence interaction model CNN-IM. Section 5 de-
scribes the training regime. The experiments are
presented in Section 6. Section 7 concludes.

2 Related work

Bi-CNN-MI is closely related to NN models for sen-
tence representations and for text matching.

A pioneering work using CNN to model sentences
is (Collobert and Weston, 2008). They conducted
convolutions on sliding windows of a sentence and
finally use max pooling to form a sentence represen-
tation. Kalchbrenner et al. (2014) introduce k-max
pooling and stacking of several CNNs as discussed
in Section 1.

Lu and Li (2013) developed a deep NN to match
short texts, where interactions between components
within the two objects were considered. These inter-
actions were obtained via LDA (Blei et al., 2003).
A two-dimensional interaction space is formed, then
those local decisions will be sent to the correspond-
ing neurons in upper layers to get rounds of fusion,
finally logistic regression in the output layer pro-
duces the final matching score. Drawbacks of this
approach are that LDA parameters are not optimized
for the paraphrase task and that the interactions are
formed on the level of single words only.

Gao et al. (2014) model interestingness between
two documents with deep NNs. They map source-
target document pairs to feature vectors in a latent
space in such a way that the distance between the
source document and its corresponding interesting
target in that space is minimized. Interestingness
is more like topic relevance, based mainly on the
aggregate meaning of lots of keywords. Addition-
ally, their model is a document-level model and is
not multigranular.

Madnani et al. (2012) treated paraphrase relation-
ship as a kind of mutual translation, hence combined
eight kinds of machine translation metrics including
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), TER (Snover et al., 2006), TERp (Snover
et al., 2009), METEOR (Denkowski and Lavie,
2010), SEPIA (Habash and Elkholy, 2008), BAD-

GER (Parker, 2008) and MAXSIM (Chan and Ng,
2008). These features are not multigranular; rather
they are low-level only; high-level features – e.g., a
representation of the entire sentence – are not con-
sidered.

Bach et al. (2014) claimed that elementary dis-
course units obtained by segmenting sentences play
an important role in paraphrasing. Their conclu-
sion also endorses Socher et al. (2011)’s and our
work, for both take similarities between component
phrases into account.

We discussed Socher et al. (2011)’s RAE and Hu
et al. (2014)’s ARC-I in Section 1. In addition to
similarity matrices there are two other important as-
pects of (Socher et al., 2011). First, the similarity
matrices are converted to a fixed size feature vector
by dynamic pooling. We adopt this approach in Bi-
CNN-MI; see Section 4.2 for details.

Second, (Socher et al., 2011) is partially based on
parsing as is some other work on paraphrase iden-
tification (e.g., Wan et al. (2006), Ji and Eisenstein
(2013)). Parsing is a potentially powerful tool for
identifying the important meaning units of a sen-
tence, which can then be the basis for determining
meaning equivalence. However, reliance on parsing
makes these approaches less flexible. For example,
there are no high-quality parsers available for some
domains and some languages. Our approach is in
principle applicable for any domain and language.
It is also unclear how we would identify compara-
ble units in the parse trees of S1 and S2 if the parse
trees have different height and the sentences differ-
ent lengths. A key property of Bi-CNN-MI is that it
is designed to produce units at fixed levels and only
units at the same level are compared with each other.

3 Convolution sentence model CNN-SM

Our network Bi-CNN-MI for paraphrase detection
(Figure 1) consists of four parts. On the left and
on the right there are two multilayer NNs with seven
layers, from “initialized word embeddings: sentence
1/2” to “k-max pooling”. The weights of these two
NNs are shared. This part of Bi-CNN-MI is based
on (Kalchbrenner et al., 2014) and we refer to it as
convolutional sentence model CNN-SM.

Between the two CNN-SMs there is the interac-
tion model CNN-IM, consisting of four feature ma-

58

Figure 1: The paraphrase identification architecture Bi-CNN-MI

59

trices (unigram, short ngram, long ngram, sentence).
CNN-IM feeds into a logistic classifier that performs
paraphrase detection. See Sections 4 and 5 for these
two parts of Bi-CNN-MI.

3.1 Wide convolution
We use Kalchbrenner et al. (2014)’s wide one-
dimensional convolution. Denoting the number of
tokens of Si as |Si|, we convolve weight matrix
M ∈ Rd×m over sentence representation matrix S ∈
Rd×|Si| and generate a matrix C ∈ Rd×(|Si|+m−1)

each column of which is the representation of an m-
gram. d is the dimension of word (and also ngram)
embeddings. m is filter width.

Our motivation for using convolution is that af-
ter training, a convolutional filter corresponds to a
feature detector that learns to recognize a class of
m-grams that is useful for paraphrase detection.

3.2 Averaging
After convolution, to build simple relations across
rows, each odd row and the row behind im-
mediately are averaged, generating matrix A ∈
R

d
2
×(|Si|+m−1). Namely:

A = (Codd +Ceven)/2 (1)

where Codd, Ceven denote the odd and even rows of
C, respectively. Finally, this convolution layer will
output matrix B whose jth column is defined thus:

B:,j = tanh(A:,j + bT) 0 ≤ j < (|Si|+m− 1)
(2)

b is a bias vector with dimension d/2, same for each
column.

3.3 Dynamic k-max pooling
We use Kalchbrenner et al. (2014)’s dynamic k-
max pooling to extract features for variable-length
sentences. It extracts kdy top values from each di-
mension after the first layer of averaging and ktop =
4 top values after the top layer of averaging. We set

kdy = max(ktop, |Si|/2 + 1) (3)

Thus, kdy depends on the length of Si.
The sequence of layers in (Kalchbrenner et al.,

2014) is convolution, folding, k-max pooling, tanh.
We experimented with this sequence and found that

after k-max pooling many tanh units had an input
close to 1, in the nondynamic range of the function
(since the input is the addition of several values).
This makes learning difficult. We therefore changed
the sequence to convolution, averaging, tanh, k-max
pooling. This makes it less likely that tanh units will
be saturated.

We have described convolution, averaging and k-
max pooling. We can stack several blocks of these
three layers to form deep architectures, as the two
blocks (marked “first block” and “top block”) in Fig-
ure 1.

4 Convolution interaction model CNN-IM

After the introduction in the previous section of the
CNN-SM part of our architecture for processing an
individual sentence, we now turn to the CNN-IM in-
teraction model that computes the four feature ma-
trices in Figure 1 to assess the interactions between
the two sentences.

4.1 Feature matrices
One key innovation of our approach is multigranu-
larity: we compute similarity between the two para-
phrase candidates on multiple levels. Specifically,
we compute similarity at four levels in this paper:
unigram, short ngram, long ngram and sentence. We
use notation l ∈ {u, sn, ln, s} to refer to the four lev-
els, and use Si,l to denote the matrix representing
sentence Si at level l. For level l, we compute fea-
ture matrices F̂l as follows:

F̂ij
l = exp(

−||S1,l
:,i − S2,l

:,j ||2
2β

) (4)

where ||S1,l
:,i − S2,l

:,j ||2 is the Euclidean distance be-
tween the representations of the ith item of S1 and
the jth item of S2 on level l. We set β = 2 (cf. Wu
et al. (2013)).

We do not use cosine because the magnitude of
the activations of hidden units is important, not just
the overall direction; e.g., if S1,l

:,i and S2,l
:,j point in

the same direction, but activations are much larger
in S2,l

:,j , then the two vectors are very dissimilar.
The lowest level feature matrix (l = u) is the un-

igram similarity matrix F̂u. It has size |S1| × |S2|.
The feature entry F̂u

ij is the similarity between the
ith word of S1 and the jth word of S2 where each

60

word is represented by a d-dimensional word em-
bedding (d = 100 in our experiments).

The next level feature matrix is the short ngram
similarity matrix F̂sn. It has size (|S1|+msn− 1)×
(|S2|+msn−1) wheremsn = 3 is the filter width in
this convolution layer and |Si|+msn−1 is the num-
ber of short ngrams in Si. The feature entry F̂sn

ij is
the similarity between two d/2-dimensional vectors
representing two short ngrams from S1 and S2.

We use multiple feature maps to improve the sys-
tem performance. Different feature maps are ex-
pected to extract different kinds of sentence features,
and can be implemented in the same convolution
layer in parallel. Specifically, we use f sn = 6 fea-
ture maps on this level following Kalchbrenner et al.
(2014). Thus, we actually compute six feature ma-
trices F̂sn,i (i = 1, · · · , f sn), one for each pair of
feature maps that share convolution weights while
derived from S1 and S2 respectively. (Figure 1 only
shows one of those six matrices.)

The next level feature matrix is the long ngram
similarity matrix F̂ln. It has size (kdy,1+mln− 1)×
(kdy,2 + mln − 1) where kdy,i (Equation 3) is the
k value in dynamic k-max pooling for sentence i,
kdy,i + mln − 1 is the number of long ngrams in
Si and mln = 5 is the filter width in this convolu-
tion layer. The feature entry F̂ln

ij is the similarity
between two d/4-dimensional vectors representing
two long ngrams from S1 and S2.

We use f ln = 14 feature maps on this level fol-
lowing Kalchbrenner et al. (2014). Thus, we com-
pute 14 feature matrices F̂ln,i (i = 1, · · · , f ln), in a
way analogous to the f sn = 6 feature maps F̂sn,i.

The last feature matrix is the sentence similarity
matrix F̂s. It has size ktop × ktop where ktop = 4
is the parameter in k-max pooling at the last max
pooling layer. The feature entry F̂s

ij is the similarity
between two d/4-dimensional vectors computed by
max pooling from S1 and S2.

For l = s, there are also f ln = 14 feature matrices
F̂s,i (i = 1, · · · , f ln), analogous to the f ln = 14
feature matrices F̂ln,i.

A general design principle of the architecture is
that we compute each interaction feature matrix be-
tween two feature maps that share the same convo-
lution weights. Two feature maps learned with the
same filter will contain the same kinds of features
derived from the input.

4.2 Dynamic pooling of feature matrices

As sentence lengths vary, feature matrices F̂l have
different sizes, which makes it impossible to use
them directly as input of the last layer.

That means we need to map F̂l ∈ Rr×c into a
matrix Fl of fixed size r′ × c′ (l ∈ {u, sn, ln, s};
r′, c′ are parameters and are the same for all sen-
tence pairs while r, c depend on |S1| and |S2|). Dy-
namic pooling divides F̂l into r′×c′ nonoverlapping
(dynamic) pools and copies the maximum value in
each dynamic pool to Fl. Our method is similar to
(Socher et al., 2011), but preserves locality better.
F̂l can be split into equal regions only if r (resp.

c) is divisible by r′ (resp. c′). Otherwise, for r > r′

and if r mod r′ = b, the dynamic pools in the first
r′−b splits each have

⌊
r
r′
⌋

rows while the remaining
b splits each have

⌊
r
r′
⌋
+ 1 rows. In Figure 2, a r ×

c = 4 × 5 matrix (left) is split into r′ × c′ = 3 × 3
dynamic pools (middle): each row is split into [1, 1,
2] and each column is split into [1, 2, 2].

If r < r′, we first repeat all rows until no fewer
than r′ rows remain. Then first r′ rows are kept
and split into r′ dynamic pools. The same princi-
ple applies to the partitioning of columns. In Fig-
ure 2 (right), the areas with dashed lines and dotted
lines are repeated parts for rows and columns, re-
spectively; each cell is its own dynamic pool.

5 Training

5.1 Supervised training

Dynamic pooling gives us fixed size interaction fea-
ture matrices for sentence, ngram and unigram lev-
els. As shown in Figure 1, the concatenation of these
features (Fs, Fln, Fsn and Fu) is the input to a logis-
tic regression layer for paraphrase classification. We
have now described all three parts of Bi-CNN-MI:
CNN-SM, CNN-IM and logistic regression.

Bi-CNN-MI with all its parameters – includ-
ing word embeddings and convolution weights – is
trained on MSRP. We initialize embeddings with
those provided by Turian et al. (2010)1 (based on
Collobert and Weston (2008)). For layer sn, we have
f sn = 6 feature maps and set filter width msn = 3.
For layer ln, we have f ln = 14 feature maps and set
filter width mln = 5 and ktop = 4. Dynamic pooling

1metaoptimize.com/projects/wordreprs/

61

Figure 2: Partition methods in dynamic pooling. Original matrix with size 4× 5 is mapped into matrix with size 3× 3
and matrix with size 6× 7, respectively. Each dynamic pool is distinguished by a border of empty white space around
it.

Figure 3: Unsupervised architecture: CNN-LM

sizes are 10× 10, 10× 10, 6× 6, 2× 2 for unigram,
short ngram, long ngram and sentence, respectively.
For training, we employ mini-batch of size 70, L2

regularization with weight 5 × 10−4 and Adagrad
(Duchi et al., 2011).

5.2 Unsupervised pretraining

One of the key contributions of this paper is the ar-
chitecture CNN-LM shown in Figure 3. CNN-LM
is used to pretrain the convolutional filters on unla-
beled data. This addresses sparseness and limited
training data for paraphrase identification.

The convolution sentence model CNN-SM (Sec-
tion 3) is part of CNN-LM (“CNN-SM” in Figure 3).
The input to CNN-SM is the entire sentence (“the
cat sat on the mat”); its output (“sentence represen-
tation” in the leftmost rectangle in Figure 3 and the

two grids labeled “sentence representation” in the
top layer of the top block in Figure 1) is concate-
nated with a history consisting of the embeddings
of the h = 3 preceding words (“the”, “cat”, “sat”) as
the input of a fully connected layer to generate a pre-
dicted representation for the next word (“on”). We
employ noise-contrastive estimation (NCE) (Mnih
and Teh, 2012; Mnih and Kavukcuoglu, 2013) to
compute the cost: the model learns to discriminate
between true next words and noise words. NCE al-
lows us to fit unnormalized models making the train-
ing time effectively independent of the vocabulary
size.

In experiments, CNN-LM is trained on unlabeled
MSRP data and an additional 100,000 sentences
from English Gigaword (Graff et al., 2003). In prin-
ciple, sentences from any source, not just English
Gigaword, can be used to train this model. In NCE,
20 noise words are sampled for each true example.

So training has two parts: unsupervised, CNN-
LM (Figure 3) and supervised, Bi-CNN-MI (Fig-
ure 1). In the first phase, the unsupervised training
phase, we adopt a language modeling approach be-
cause it does not require human labels and can use
large corpora to pretrain word embeddings and con-
volution weights. The goal is to learn sentence fea-
tures that are unbiased and reflect useful attributes of
the input sentence. More importantly, pretraining is
useful to relieve overfitting, which is a severe prob-
lem when building deep NNs on small corpora like
MSRP (cf. Hu et al. (2014)).

In the second phase, the supervised training
phase, pretrained word embeddings and convolution

62

weights are tuned for optimal performance on PI.
In CNN-LM, we have combined several architec-

tural elements to pretrain a high-quality sentence
analysis NN despite the lack of training data. (i)
Similar to PV-DM (Le and Mikolov, 2014), we in-
tegrate global context (CNN-SM) and local context
(the history of size h) into one model – although
our global context consists only of a sentence, not
of a paragraph or document. (ii) Similar to work
on autoencoding (Vincent et al., 2010), the output
that is to be predicted is part of the input. Au-
toencoding is a successful approach to learning rep-
resentations and we adapt it here to pretrain good
sentence representations. (iii) A second successful
approach to learning embeddings is neural network
language modeling (Bengio et al., 2003; Mikolov,
2012). Again, we adopt this by including in CNN-
LM an ngram language modeling part to predict the
next word. The great advantage of this type of em-
bedding learning is that no labels are needed. (iv)
CNN-LM only adds one hidden layer over CNN-
SM. It keeps simple architecture like PV-DM (Le
and Mikolov, 2014), CBOW (Mikolov et al., 2013)
and LBL (Mnih and Teh, 2012), enabling the CNN-
SM as main training target.

In summary, the key contribution of CNN-LM is
that we pretrain convolutional filters. Architectural
elements from the literature are combined to support
effective pretraining of convolutional filters.

6 Experiments

6.1 Data set and evaluation metrics

We use the Microsoft Research Paraphrase Corpus
(MSRP) (Dolan et al., 2004; Das and Smith, 2009).
The training set contains 2753 true and 1323 false
paraphrase pairs; the test set contains 1147 and 578
pairs, respectively. For each triple (label, S1, S2) in
the training set we also add (label, S2, S1) to make
best use of the training data; these additions are
nonredundant because the interaction feature matri-
ces (Section 4.1) are asymmetric. Systems are eval-
uated by accuracy and F1.

6.2 Paraphrase detection systems

Since we want to show that Bi-CNN-MI performs
better than previous NN work, we compare with
three NN approaches: NLM, ARC and RAE (Ta-

ble 1).2 We also include the majority baseline
(“baseline”) and MT (Madnani et al., 2012). RAE
(Socher et al., 2011) and MT were discussed in Sec-
tions 1 and 2. We now briefly describe the other
prior work.

Blacoe and Lapata (2012) compute the vector
representation of a sentence from the neural lan-
guage model (NLM) embeddings (computed based
on (Collobert and Weston, 2008)) of the words of
the sentence as the sum of the word embeddings
(NLM+), as the element-wise multiplication of the
word embeddings (NLM�), or by means of the
recursive autoencoder (NLM RAE, Socher et al.
(2011)). The representations of the two paraphrase
candidates are then concatenated as input to an SVM
classifier. See Blacoe and Lapata (2012) for details.

The ARC model (Hu et al., 2014) is a convolu-
tional architecture similar to (Collobert and Weston,
2008). ARC-I is a Siamese architecture in which
two shared-weight convolutional sentence models
are trained on the binary paraphrase detection task.
Hu et al. (2014) find that ARC-I is suboptimal in
that it defers the interaction between S1 and S2 to
the very end of processing: only after the vectors
representing S1 and S2 have been computed does an
interaction occur. To remedy this problem, they pro-
pose ARC-II in which the Siamese architecture is
replaced by a multilayer NN that processes a single
representation produced by interleaving S1 and S2.

We also evaluate Bi-CNN-MI–, an NN identical
to Bi-CNN-MI, except that it is not pretrained in un-
supervised training.

6.3 Results

Table 1 shows that Bi-CNN-MI outperforms all
other systems. The comparison with Bi-CNN-MI–
indicates that this is partly due to one major in-
novation we introduced: unsupervised pretraining.
Bi-CNN-MI–, the model without unsupervised pre-
training, performs badly. Thus, unsupervised train-
ing is helpful to pretrain parameters in paraphrase

2A reviewer suggests an additional experiment to directly
evaluate the importance of multigranularity: a “system that puts
all unigrams, short ngrams, long ngrams, and sentence repre-
sentations into one interaction matrix.” This would indeed be
an interesting baseline, but there is no obvious way to conduct
this experiment since vectors from different levels are not com-
parable; e.g., they have different dimensionality.

63

method acc F1

baseline 66.5 79.9
NLM+ 69.0 80.1
NLM� 67.8 79.3
NLM RAE 70.3 81.3
ARC-I 69.6 80.3
ARC-II 69.9 80.9
RAE 76.7 83.6
MT 77.4 84.1
Bi-CNN-MI– 72.5 81.4
Bi-CNN-MI 78.1 84.4

Table 1: Performance of different systems on MSRP

features used acc F1

1 no features 66.5 79.9
2 + u: unigram 68.4 79.7
3 + sn: short ngram 75.3 82.8
4 + ln: long ngram 76.2 83.1
5 + s: sentence 73.4 82.3
6 – u: unigram 77.8 84.3
7 – sn: short ngram 76.3 83.5
8 – ln: long ngram 75.6 83.2
9 – s: sentence 77.6 84.2

10 all features 78.1 84.4

Table 2: Analysis of impact of the four feature classes.
Line 1: majority baseline. Line 10: Bi-CNN-MI result
from Table 1. Lines 2–5: Bi-CNN-MI when only one
feature class is used. Line 6–9: ablation experiment: on
each line one feature class is removed.

detection, especially when the training set is small.
RAE also uses pretraining, but not as effectively as
Bi-CNN-MI as Table 1 indicates. Hu et al. (2014)
also suggest that training complex NNs only with
supervised training runs the risk of overfitting on the
small MSRP corpus.

Table 2 looks at the relative importance of the four
feature matrices shown in Figure 1. (The unsuper-
vised part of the training regime is not changed for
this experiment.) The results indicate that levels sn
and ln are most informative: F1 scores are highest
if only these two levels are used (lines 3&4: 82.8,
83.1) and performance drops most when they are re-
moved (lines 7&8: 83.5, 83.2).

Unigrams contribute little to overall performance
(lines 2&6), probably because the paraphrases in the

corpus typically do not involve individual words (re-
placing one word by its synonym); rather, the para-
phrase relationship involves larger context, which
can only be judged by the higher-level features.

Just using the sentence matrix by itself performs
well (line 5), but less well than using only levels sn
or ln (lines 3&4). Most prior NN work on PI has
taken the sentence-level approach. Our results indi-
cate that combining this with the more fine-grained
comparison on the ngram-level is superior.

Removing the sentence matrix results in a small
drop in performance (line 9). The reason is that sen-
tence representations are computed by k-max pool-
ing from level ln. Thus, we can roughly view the
sentence-level feature matrix Fs as a subset of Fln.

Adding (Madnani et al., 2012)’s MT metrics as
input to the Bi-CNN-MI logistic regression further
improves performance: accuracy of 78.4 and F1 of
84.6.

7 Conclusion and future work

We presented the deep learning architecture Bi-
CNN-MI for paraphrase identification (PI). Based
on the insight that PI requires comparing two sen-
tences on multiple levels of granularity, we learn
multigranular sentence representations using convo-
lution and compute interaction feature matrices at
each level. These matrices are then the input to a
logistic classifier for PI. All parameters of the model
(for embeddings, convolution and classification) are
directly optimized for PI. To address the lack of
training data, we pretrain the network in a novel way
for a language modeling task. Results on MSRP are
state of the art.

In the future, we plan to apply Bi-CNN-MI to sen-
tence matching, question answering and other tasks.

Acknowledgments

We are grateful to Thang Vu, Irina Sergienya and
Sebastian Ebert for comments on earlier versions
of this paper. This work was supported by Baidu
(through a Baidu scholarship awarded to Wen-
peng Yin) and by Deutsche Forschungsgemeinschaft
(grant DFG SCHU 2246/8-2, SPP 1335).

64

References
Ngo Xuan Bach, Nguyen Le Minh, and Akira Shi-

mazu. 2014. Exploiting discourse information to
identify paraphrases. Expert Systems with Applica-
tions, 41(6):2832–2841.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Research,
3:1137–1155.

William Blacoe and Mirella Lapata. 2012. A compari-
son of vector-based representations for semantic com-
position. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 546–556.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993–1022.

Jane Bromley, James W Bentz, Léon Bottou, Isabelle
Guyon, Yann LeCun, Cliff Moore, Eduard Säckinger,
and Roopak Shah. 1993. Signature verification using
a “siamese” time delay neural network. International
Journal of Pattern Recognition and Artificial Intelli-
gence, 7(04):669–688.

Yee Seng Chan and Hwee Tou Ng. 2008. Maxsim:
A maximum similarity metric for machine translation
evaluation. In ACL, pages 55–62.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167.

Dipanjan Das and Noah A Smith. 2009. Paraphrase iden-
tification as probabilistic quasi-synchronous recogni-
tion. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1-Volume 1, pages 468–
476.

Li Deng, Geoffrey Hinton, and Brian Kingsbury. 2013.
New types of deep neural network learning for speech
recognition and related applications: An overview. In
Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pages 8599–
8603.

Michael Denkowski and Alon Lavie. 2010. Extending
the meteor machine translation evaluation metric to the
phrase level. In Human Language Technologies: The
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 250–253.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence

statistics. In Proceedings of the second interna-
tional conference on Human Language Technology
Research, pages 138–145.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Pro-
ceedings of the 20th international conference on Com-
putational Linguistics, page 350.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong
He, Li Deng, and Yelong Shen. 2014. Modeling inter-
estingness with deep neural networks. In Proceedings
of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
2003. English gigaword. Linguistic Data Consortium,
Philadelphia.

Nizar Habash and Ahmed Elkholy. 2008. Sepia: sur-
face span extension to syntactic dependency precision-
based mt evaluation. In Proceedings of the NIST met-
rics for machine translation workshop at the associ-
ation for machine translation in the Americas confer-
ence, AMTA-2008. Waikiki, HI.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Advances in
Neural Information Processing Systems.

Yangfeng Ji and Jacob Eisenstein. 2013. Discriminative
improvements to distributional sentence similarity. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Proceed-
ings of the 31th international conference on Machine
learning.

Zhengdong Lu and Hang Li. 2013. A deep architecture
for matching short texts. In Advances in Neural Infor-
mation Processing Systems, pages 1367–1375.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining machine translation metrics for
paraphrase identification. In Proceedings of the 2012
NAACL-HLT, pages 182–190.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop at
ICLR.

65

Tomáš Mikolov. 2012. Statistical language models
based on neural networks. Ph.D. thesis, Ph. D. the-
sis, Brno University of Technology.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive es-
timation. In Advances in Neural Information Process-
ing Systems, pages 2265–2273.

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic language
models. In Proceedings of the 29th International Con-
ference on Machine Learning, pages 1751–1758.

N Neverova, C Wolf, GW Taylor, and F Nebout. 2014.
Multi-scale deep learning for gesture detection and lo-
calization. In European Conference on Computer Vi-
sion (ECCV) 2014 ChaLearn Workshop. Zurich.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of the 40th
ACL, pages 311–318.

Steven Parker. 2008. Badger: A new machine translation
metric. Metrics for Machine Translation Challenge.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine translation
in the Americas, pages 223–231.

Matthew G Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2009. Ter-plus: paraphrase, se-
mantic, and alignment enhancements to translation
edit rate. Machine Translation, 23(2-3):117–127.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dynamic
pooling and unfolding recursive autoencoders for para-
phrase detection. In Advances in Neural Information
Processing Systems, pages 801–809.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 384–394.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua
Bengio, and Pierre-Antoine Manzagol. 2010. Stacked
denoising autoencoders: Learning useful representa-
tions in a deep network with a local denoising cri-
terion. The Journal of Machine Learning Research,
11:3371–3408.

Stephen Wan, Mark Dras, Robert Dale, and Cécile Paris.
2006. Using dependency-based features to take the
“para-farce” out of paraphrase. In Proceedings of the
Australasian Language Technology Workshop, volume
2006.

Pengcheng Wu, Steven CH Hoi, Hao Xia, Peilin Zhao,
Dayong Wang, and Chunyan Miao. 2013. Online

multimodal deep similarity learning with application
to image retrieval. In Proceedings of the 21st ACM in-
ternational conference on Multimedia, pages 153–162.
ACM.

66

Chapter 4

MultiGranCNN: An Architecture
for General Matching of Text
Chunks on Multiple Levels of
Granularity

67

MultiGranCNN: An Architecture for General Matching of Text Chunks
on Multiple Levels of Granularity

Wenpeng Yin and Hinrich Schütze
Center for Information and Language Processing

University of Munich, Germany
wenpeng@cis.uni-muenchen.de

Abstract

We present MultiGranCNN, a general
deep learning architecture for matching
text chunks. MultiGranCNN supports
multigranular comparability of represen-
tations: shorter sequences in one chunk
can be directly compared to longer se-
quences in the other chunk. Multi-
GranCNN also contains a flexible and
modularized match feature component
that is easily adaptable to different types
of chunk matching. We demonstrate state-
of-the-art performance of MultiGranCNN
on clause coherence and paraphrase iden-
tification tasks.

1 Introduction

Many natural language processing (NLP) tasks
can be posed as classifying the relationship be-
tween two TEXTCHUNKS (cf. Li et al. (2012),
Bordes et al. (2014b)) where a TEXTCHUNK can
be a sentence, a clause, a paragraph or any other
sequence of words that forms a unit.

Paraphrasing (Figure 1, top) is one task that we
address in this paper and that can be formalized
as classifying a TEXTCHUNK relation. The two
classes correspond to the sentences being (e.g.,
the pair <p, q+>) or not being (e.g., the pair
<p, q−>) paraphrases of each other. Another
task we look at is clause coherence (Figure 1, bot-
tom). Here the two TEXTCHUNK relation classes
correspond to the second clause being (e.g., the
pair <x, y+>) or not being (e.g., the pair <x,
y−>) a discourse-coherent continuation of the
first clause. Other tasks that can be formalized
as TEXTCHUNK relations are question answering
(QA) (is the second chunk an answer to the first?),
textual inference (does the first chunk imply the
second?) and machine translation (are the two
chunks translations of each other?).

p
PDC will also almost certainly fan the flames of
speculation about Longhorn’s release.

q+ PDC will also almost certainly reignite speculation
about release dates of Microsoft ’s new products.

q− PDC is indifferent to the release of Longhorn.
x The dollar suffered its worst one-day loss in a month,
y+ falling to 1.7717 marks . . . from 1.7925 marks yesterday.
y− up from 112.78 yen in late New York trading yesterday.

Figure 1: Examples for paraphrasing and clause
coherence tasks

In this paper, we present MultiGranCNN, a gen-
eral architecture for TEXTCHUNK relation classi-
fication. MultiGranCNN can be applied to a broad
range of different TEXTCHUNK relations. This is
a challenge because natural language has a com-
plex structure – both sequential and hierarchical –
and because this structure is usually not parallel
in the two chunks that must be matched, further
increasing the difficulty of the task. A successful
detection algorithm therefore needs to capture not
only the internal structure of TEXTCHUNKS, but
also the rich pattern of their interactions.

MultiGranCNN is based on two innovations
that are critical for successful TEXTCHUNK re-
lation classification. First, the architecture is de-
signed to ensure multigranular comparability. For
general matching, we need the ability to match
short sequences in one chunk with long sequences
in the other chunk. For example, what is expressed
by a single word in one chunk (“reignite” in q+

in the figure) may be expressed by a sequence of
several words in its paraphrase (“fan the flames
of” in p). To meet this objective, we learn rep-
resentations for words, phrases and the entire sen-
tence that are all mutually comparable; in particu-
lar, these representations all have the same dimen-
sionality and live in the same space.

Most prior work (e.g., Blacoe and Lapata (2012;
Hu et al. (2014)) has neglected the need for multi-
granular comparability and performed matching
within fixed levels only, e.g., only words were

68

matched with words or only sentences with sen-
tences. For a general solution to the problem of
matching, we instead need the ability to match a
unit on a lower level of granularity in one chunk
with a unit on a higher level of granularity in the
other chunk. Unlike (Socher et al., 2011), our
model does not rely on parsing and it can more ex-
haustively search the hypothesis space of possible
matchings, including matchings that correspond to
conflicting segmentations of the input chunks (see
Section 5).

Our second contribution is that MultiGranCNN
contains a flexible and modularized match feature
component. This component computes the ba-
sic features that measure how well phrases of the
two chunks match. We investigate three different
match feature models that demonstrate that a wide
variety of different match feature models can be
implemented. The match feature models can be
swapped in and out of MultiGranCNN, depending
on the characteristics of the task to be solved.

Prior work that has addressed matching tasks
has usually focused on a single task like QA (Bor-
des et al., 2014a; Yu et al., 2014) or paraphrasing
(Socher et al., 2011; Madnani et al., 2012; Ji and
Eisenstein, 2013). The ARC architectures pro-
posed by Hu et al. (2014) are intended to be more
general, but seem to be somewhat limited in their
flexibility to model different matching relations;
e.g., they do not perform well for paraphrasing.

Different match feature models may also be re-
quired by factors other than the characteristics of
the task. If the amount of labeled training data is
small, then we may prefer a match feature model
with few parameters that is robust against overfit-
ting. If there is lots of training data, then a richer
match feature model may be the right choice.
This motivates the need for an architecture like
MultiGranCNN that allows selection of the task-
appropriate match feature model from a range of
different models and its seamless integration into
the architecture.

In remaining parts, Section 2 introduces some
related work; Section 3 gives an overview of the
proposed MultiGranCNN; Section 4 shows how to
learn representations for generalized phrases (g-
phrases); Section 5 describes the three matching
models: DIRECTSIM, INDIRECTSIM and CON-
CAT; Section 6 describes the two 2D pooling
methods: grid-based pooling and phrase-based
pooling; Section 7 describes the match feature

CNN; Section 8 summarizes the architecture of
MultiGran CNN; and Section 9 presents experi-
ments; finally, Section 10 concludes.

2 Related Work

Paraphrase identification (PI) is a typical task of
sentence matching and it has been frequently stud-
ied (Qiu et al., 2006; Blacoe and Lapata, 2012;
Madnani et al., 2012; Ji and Eisenstein, 2013).
Socher et al. (2011) utilized parsing to model the
hierarchical structure of sentences and uses un-
folding recursive autoencoders to learn represen-
tations for single words and phrases acting as non-
leaf nodes in the tree. The main difference to
MultiGranCNN is that we stack multiple convo-
lution layers to model flexible phrases and learn
representations for them, and aim to address more
general sentence correspondence. Bach et al.
(2014) claimed that elementary discourse units ob-
tained by segmenting sentences play an important
role in paraphrasing. Their conclusion also en-
dorses (Socher et al., 2011)’s and our work, for
both take interactions between component phrases
into account.

QA is another representative sentence matching
problem. Yu et al. (2014) modeled sentence rep-
resentations in a simplified CNN, finally finding
the match score by projecting question and answer
candidates into the same space. Other relevant QA
work includes (Bordes et al., 2014c; Bordes et al.,
2014a; Yang et al., 2014; Iyyer et al., 2014)

For more general matching, Chopra et al. (2005)
and Liu (2013) used a Siamese architecture of
shared-weight neural networks (NNs) to model
two objects simultaneously, matching their repre-
sentations and then learning a specific type of sen-
tence relation. We adopt parts of their architec-
ture, but we model phrase representations as well
as sentence representations.

Li and Xu (2012) gave a comprehensive intro-
duction to query-document matching and argued
that query and document match at different levels:
term, phrase, word sense, topic, structure etc. This
also applies to sentence matching.

Lu and Li (2013) addressed matching of short
texts. Interactions between the two texts were ob-
tained via LDA (Blei et al., 2003) and were then
the basis for computing a matching score. Com-
pared to MultiGranCNN, drawbacks of this ap-
proach are that LDA parameters are not optimized
for the specific task and that the interactions are

69

formed on the level of single words only.
Gao et al. (2014) modeled interestingness be-

tween two documents with deep NNs. They
mapped source-target document pairs to feature
vectors in a latent space in such a way that the dis-
tance between the source document and its corre-
sponding interesting target in that space was min-
imized. Interestingness is more like topic rele-
vance, based mainly on the aggregated meaning
of keywords, as opposed to more structural rela-
tionships as is the case for paraphrasing and clause
coherence.

We briefly discussed (Hu et al., 2014)’s ARC in
Section 1. MultiGranCNN is partially inspired by
ARC, but introduces multigranular comparability
(thus enabling crosslevel matching) and supports
a wider range of match feature models.

Our unsupervised learning component (Sec-
tion 4, last paragraph) resembles word2vec
CBOW (Mikolov et al., 2013), but learns repre-
sentations of TEXTCHUNKS as well as words. It
also resembles PV-DM (Le and Mikolov, 2014),
but our TEXTCHUNK representation is derived us-
ing a hierarchical architecture based on convolu-
tion and pooling.

3 Overview of MultiGranCNN

We use convolution-plus-pooling in two differ-
ent components of MultiGranCNN. The first com-
ponent, the generalized phrase CNN (gpCNN),
will be introduced in Section 4. This component
learns representations for generalized phrases (g-
phrases) where a generalized phrase is a general
term for subsequences of all granularities: words,
short phrases, long phrases and the sentence itself.
The gpCNN architecture has L layers of convolu-
tion, corresponding (for L = 2) to words, short
phrases, long phrases and the sentence. We test
different values of L in our experiments. We train
gpCNN on large data in an unsupervised manner
and then fine-tune it on labeled training data.

Using a Siamese configuration, two copies
of gpCNN, one for each of the two input
TEXTCHUNKS, are the input to the match feature
model, presented in Section 5. This model pro-
duces s1× s2 matching features, one for each pair
of g-phrases in the two chunks, where s1, s2 are
the number of g-phrases in the two chunks, respec-
tively.

The s1×s2 match feature matrix is first reduced
to a fixed size by dynamic 2D pooling. The re-

sulting fixed size matrix is then the input to the
second convolution-plus-pooling component, the
match feature CNN (mfCNN) whose output is fed
to a multilayer perceptron (MLP) that produces
the final match score. Section 6 will give details.

We use convolution-plus-pooling for both word
sequences and match features because we want to
compute increasingly abstract features at multiple
levels of granularity. To ensure that g-phrases are
mutually comparable when computing the s1× s2
match feature matrix, we impose the constraint
that all g-phrase representations live in the same
space and have the same dimensionality.

Figure 2: gpCNN: learning g-phrase representa-
tions. This figure only shows two convolution lay-
ers (i.e., L = 2) for saving space.

4 gpCNN: Learning Representations for
g-Phrases

We use several stacked blocks, i.e., convolution-
plus-pooling layers, to extract increasingly ab-
stract features of the TEXTCHUNK. The input to
the first block are the words of the TEXTCHUNK,
represented by CW (Collobert and Weston, 2008)
embeddings. Given a TEXTCHUNK of length |S|,
let vector ci ∈ Rwd be the concatenated embed-
dings of words vi−w+1, . . . , vi where w = 5 is the
filter width, d = 50 is the dimensionality of CW
embeddings and 0 < i < |S| + w. Embeddings
for words vi, i < 1 and i > |S|, are set to zero.
We then generate the representation pi ∈ Rd of
the g-phrase vi−w+1, . . . , vi using the convolution

70

matrix Wl ∈ Rd×wd:

pi = tanh(Wlci + bl) (1)

where block index l = 1, bias bl ∈ Rd. We use
wide convolution (i.e., we apply the convolution
matrix Wl to words vi, i < 1 and i > |S|) because
this makes sure that each word vi, 1 ≤ i ≤ |S|,
can be detected by all weights of Wl – as opposed
to only the rightmost (resp. leftmost) weights for
initial (resp. final) words in narrow convolution.

The configuration of convolution layers in fol-
lowing blocks (l > 1) is exactly the same except
that the input vectors ci are not words, but the out-
put of pooling from the previous layer of convo-
lution – as we will explain presently. The con-
figuration is the same (e.g., all Wl ∈ Rd×wd) be-
cause, by design, all g-phrase representations have
the same dimensionality d. This also ensures that
each g-phrase representation can be directly com-
pared with each other g-phrase representation.

We use dynamic k-max pooling to extract the kl
top values from each dimension after convolution
in the lth block and the kL top values in the final
block. We set

kl = max(α, dL− l
L
|S|e) (2)

where l = 1, · · · , L is the block index, and α = 4
is a constant (cf. Kalchbrenner et al. (2014)) that
makes sure a reasonable minimum number of val-
ues is passed on to the next layer. We set kL = 1
(not 4, cf. Kalchbrenner et al. (2014)) because our
design dictates that all g-phrase representations,
including the representation of the TEXTCHUNK

itself, have the same dimensionality. Example: for
L = 4, |S| = 20, the ki are [15, 10, 5, 1].

Dynamic k-max pooling keeps the most impor-
tant features and allows us to stack multiple blocks
to extract hiearchical features: units on consec-
utive layers correspond to larger and larger parts
of the TEXTCHUNK thanks to the subset selection
property of pooling.

For many tasks, labeled data for training
gpCNN is limited. We therefore employ unsu-
pervised training to initialize gpCNN as shown in
Figure 2. Similar to CBOW (Mikolov et al., 2013),
we predict a sampled middle word vi from the av-
erage of seven vectors: the TEXTCHUNK repre-
sentation (the final output of gpCNN) and the three
words to the left and to the right of vi. We use
noise-contrastive estimation (Mnih and Teh, 2012)
for training: 10 noise words are sampled for each
true example.

Figure 3: General illustration of match feature
model. In this example, both S1 and S2 have 10 g-
phrases, so the match feature matrix F̂ ∈ Rs1×s2

has size 10× 10.

5 Match Feature Models

Let g1, . . . , gsk be an enumeration of the sk g-
phrases of TEXTCHUNK Sk. Let Sk ∈ Rsk×d be
the matrix, constructed by concatenating the four
matrices of unigram, short phrase, long phrase and
sentence representations shown in Figure 2 that
contain the learned representations from Section 4
for these sk g-phrases; i.e., row Ski is the learned
representation of gi.

The basic design of a match feature model is
that we produce an s1 × s2 matrix F̂ for a pair
of TEXTCHUNKS S1 and S2, shown in Figure 3.
F̂i,j is a score that assesses the relationship be-
tween g-phrase gi of S1 and g-phrase gj of S2
with respect to the TEXTCHUNK relation of in-
terest (paraphrasing, clause coherence etc). This
score F̂i,j is computed based on the vector repre-
sentations S1i and S2j of the two g-phrases.1

We experiment with three different feature
models to compute the match score F̂i,j because
we would like our architecture to address a wide
variety of different TEXTCHUNK relations. We
can model a TEXTCHUNK relation like paraphras-
ing as “for each meaning element in one sentence,
there must be a similar meaning element in the
other sentence”; thus, a good candidate for the
match score F̂i,j is simply vector similarity. In
contrast, similarity is a less promising match score
for clause coherence; for clause coherence, we
want a score that models how good a continuation
one g-phrase is for the other. These considerations
motivate us to define three different match feature
models that we will introduce now.

The first match feature model is DIRECTSIM.
1In response to a reviewer question, recall that si is the

total number of g-phrases of Si, so there is only one s1 × s2
matrix, not several on different levels of granularity.

71

Figure 4: CONCAT match feature model

This model computes the match score of two g-
phrases as their similarity using a radial basis
function kernel:

F̂i,j = exp(
−||S1i − S2j ||2

2β
) (3)

where we set β = 2 (cf. Wu et al. (2013)).
DIRECTSIM is an appropriate feature model for
TEXTCHUNK relations like paraphrasing because
in that case direct similarity features are helpful in
assessing meaning equivalence.

The second match feature model is INDIRECT-
SIM. Instead of computing the similarity di-
rectly as we do for DIRECTSIM, we first trans-
form the representation of the g-phrase in one
TEXTCHUNK using a transformation matrix M ∈
Rd×d, then compute the match score by inner
product and sigmoid activation:

F̂i,j = σ(S1iMST
2j + b), (4)

Our motivation is that for a TEXTCHUNK rela-
tion like clause coherence, the two TEXTCHUNKS

need not have any direct similarity. However, if we
map the representations of TEXTCHUNK S1 into
an appropriate space then we can hope that sim-
ilarity between these transformed representations
of S1 and the representations of TEXTCHUNK S2
do yield useful features. We will see that this hope
is borne out by our experiments.

The third match feature model is CONCAT. This
is a general model that can learn any weighted
combination of the values of the two vectors:

F̂i,j = σ(wTei,j + b) (5)

where ei,j ∈ R2d is the concatenation of S1i and
S2j . We can learn different combination weights
w to solve different types of TEXTCHUNK match-
ing.

We call this match feature model CONCAT be-
cause we implement it by concatenating g-phrase
vectors to form a tensor as shown in Figure 4.

The match feature models implement multi-
granular comparability: they match all units in
one TEXTCHUNK with all units in the other
TEXTCHUNK. This is necessary because a gen-
eral solution to matching must match a low-level
unit like “reignite” to a higher-level unit like “fan
the flames of” (Figure 1). Unlike (Socher et al.,
2011), our model does not rely on parsing; there-
fore, it can more exhaustively search the hypoth-
esis space of possible matchings: mfCNN covers
a wide variety of different, possibly overlapping
units, not just those of a single parse tree.

6 Dynamic 2D Pooling

The match feature models generate an s1×s2 ma-
trix. Since it has variable size, we apply two dif-
ferent dynamic 2D pooling methods, grid-based
pooling and phrase-focused pooling, to transform
it to a fixed size matrix.

6.1 Grid-based pooling

We need to map F̂ ∈ Rs1×s2 into a matrix F of
fixed size s∗ × s∗ where s∗ is a parameter. Grid-
based pooling divides F̂ into s∗ × s∗ nonover-
lapping (dynamic) pools and copies the maximum
value in each dynamic pool to F. This method is
similar to (Socher et al., 2011), but preserves lo-
cality better.
F̂ can be split into equal regions only if both s1

and s2 are divisible by s∗. Otherwise, for s1 > s∗

and if s1 mod s∗ = b, the dynamic pools in the
first s∗ − b splits each have

⌊
s1
s∗
⌋

rows while the
remaining b splits each have

⌊
s1
s∗
⌋
+ 1 rows. In

Figure 5, a s1 × s2 = 4 × 5 matrix (left) is split
into s∗×s∗ = 3×3 dynamic pools (middle): each
row is split into [1, 1, 2] and each column is split
into [1, 2, 2].

If s1 < s∗, we first repeat all rows in batch style
with size s1 until no fewer than s∗ rows remain.
Then the first s∗ rows are kept and split into s∗

dynamic pools. The same principle applies to the
partitioning of columns. In Figure 5 (right), the ar-
eas with dashed lines and dotted lines are repeated
parts for rows and columns, respectively; each cell
is its own dynamic pool.

6.2 Phrase-focused pooling

In the match feature matrix F̂ ∈ Rs1×s2 , row i
(resp. column j) contains all feature values for g-
phrase gi of S1 (resp. gj of S2). Phrase-focused
pooling attempts to pick the largest match features

72

Figure 5: Partition methods in grid-based pooling. Original matrix with size 4× 5 is mapped into matrix
with size 3× 3 and matrix with size 6× 7, respectively. Each dynamic pool is distinguished by a border
of empty white space around it.

for a g-phrase g on the assumption that they are the
best basis for assessing the relation of g with other
g-phrases. To implement this, we sort the values
of each row i (resp. each column j) in decreasing
order giving us a matrix F̂r ∈ Rs1×s2 with sorted
rows (resp. F̂c ∈ Rs1×s2 with sorted columns).
Then we concatenate the columns of F̂r (resp. the
rows of F̂c) resulting in list Fr = {f r1 , . . . , f rs1s2}
(resp. Fc = {f c1 , . . . , f cs1s2}) where each f r (f c) is
an element of F̂r (F̂c). These two lists are merged
into a list F by interleaving them so that members
from Fr and Fc alternate. F is then used to fill the
rows of F from top to bottom with each row being
filled from left to right.2

7 mfCNN: Match feature CNN

The output of dynamic 2D pooling is further pro-
cessed by the match feature CNN (mfCNN) as de-
picted in Figure 6. mfCNN extracts increasingly
abstract interaction features from lower-level in-
teraction features, using several layers of 2D wide
convolution and fixed-size 2D pooling.

We call the combination of a 2D wide convo-
lution layer and a fixed-size 2D pooling layer a
block, denoted by index b (b = 1, 2 . . .). In gen-
eral, let tensor Tb ∈ Rcb×sb×sb denote the fea-
ture maps in block b; block b has cb feature maps,
each of size sb × sb (T1 = F ∈ R1×s∗×s∗). Let
Wb ∈ Rcb+1×cb×fb×fb be the filter weights of 2D
wide convolution in block b, fb×fb is then the size
of sliding convolution regions. Then the convolu-
tion is performed as element-wise multiplication

2If F̂ has fewer cells than F, then we simply repeat the
filling procedure to fill all cells.

between Wb and Tb as follows:

T̂b+1
m,i−1,j−1 = σ(

∑
Wb

m,:,:,:T
b
:,i−fb:i,j−fb:j+bb

m)
(6)

where 0≤m<cb+1, 1 ≤ i, j < sb+fb, bb ∈ Rcb+1 .
Subsequently, fixed-size 2D pooling selects

dominant features from kb × kb non-overlapping
windows of T̂b+1 to form a tensor as input of
block b+ 1:

Tb+1
m,i,j = max(T̂b+1

m,ikb:(i+1)kb,jkb:(j+1)kb
) (7)

where 0 ≤ i, j < b sb+fb−1
kb
c.

Hu et al. (2014) used narrow convolution which
would limit the number of blocks. 2D wide convo-
lution in this work enables to stack multiple blocks
of convolution and pooling to extract higher-level
interaction features. We will study the influence of
the number of blocks on performance below.

For the experiments, we set s∗ = 40, cb =
50, fb = 5, kb = 2 (b = 1, 2, · · ·).

8 MultiGranCNN

We can now describe the overall architecture of
MultiGranCNN. First, using a Siamese configu-
ration, two copies of gpCNN, one for each of
the two input TEXTCHUNKS, produce g-phrase
representations on different levels of abstraction
(Figure 2). Then one of the three match feature
models (DIRECTSIM, CONCAT or INDIRECTSIM)
produces an s1 × s2 match feature matrix, each
cell of which assesses the match of a pair of g-
phrases from the two chunks. This match feature
matrix is reduced to a fixed size matrix by dy-
namic 2D pooling (Section 6). As shown in Fig-
ure 6, the resulting fixed size matrix is the input
for mfCNN, which extracts interaction features of

73

Figure 6: mfCNN & MLP for matching score learning. s∗ = 10, fb = 5, kb = 2, cb = 4 in this example.

increasing complexity from the basic interaction
features computed by the match feature model. Fi-
nally, the output of the last block of mfCNN is the
input to an MLP that computes the match score.

MultiGranCNN bears resemblance to previous
work on clause and sentence matching (e.g., Hu
et al. (2014), Socher et al. (2011)), but it is more
general and more flexible. It learns representa-
tions of g-phrases, i.e., representations of parts of
the TEXTCHUNK at multiple granularities, not just
for a single level such as the sentence as ARC-I
does (Hu et al., 2014). MultiGranCNN explores
the space of interactions between the two chunks
more exhaustively by considering interactions be-
tween every unit in one chunk with every other
unit in the other chunk, at all levels of granular-
ity. Finally, MultiGranCNN supports a number of
different match feature models; the corresponding
module can be instantiated in a way that ensures
that match features are best suited to support ac-
curate decisions on the TEXTCHUNK relation task
that needs to be addressed.

9 Experimental Setup and Results

9.1 Training
Suppose the triple (x,y+,y−) is given and x
matches y+ better than y−. Then our objective
is the minimization of the following ranking loss:

l(x,y+,y−) = max(0, 1 + s(x,y−)− s(x,y+))

where s(x,y) is the predicted match score for
(x,y). We use stochastic gradient descent with
Adagrad (Duchi et al., 2011), L2 regularization
and minibatch training.

We set initial learning rate to 0.05, batch size to
70, L2 weight to 5 · 10−4.

Recall that we employ unsupervised pretraining
of representations for g-phrases. We can either

freeze these representations in subsequent super-
vised training; or we can fine-tune them. We study
the performance of both regimes.

9.2 Clause Coherence Task

As introduced by Hu et al. (2014), the clause
coherence task determines for a pair (x,y) of
clauses if the sentence “xy” is a coherent sen-
tence. We construct a clause coherence dataset
as follows (the set used by Hu et al. (2014) is not
yet available). We consider all sentences from En-
glish Gigaword (Parker et al., 2009) that consist of
two comma-separated clauses x and y, with each
clause having between five and 30 words. For each
y, we choose four clauses y′ . . .y′′′′ randomly
from the 1000 second clauses that have the highest
similarity to y, where similarity is cosine similar-
ity of TF-IDF vectors of the clauses; restricting
the alternatives to similar clauses ensures that the
task is hard. The clause coherence task then is to
select y from the set y,y′, . . . ,y′′′′ as the correct
continuation of x. We create 21 million examples,
each consisting of a first clause x and five second
clauses. This set is divided into a training set of
19 million and development and test sets of one
million each. An example from the training set is
given in Figure 1.

Then, we study the performance variance of
different MultiGranCNN setups from three per-
spectives: a) layers of CNN in both unsuper-
vised (gpCNN) and supervised (mfCNN) training
phases; b) different approaches for clause relation
feature modeling; c) dynamic pooling methods for
generating same-sized feature matrices.

Figure 7 (top table) shows that (Hu et al.,
2014)’s parameters are good choices for our setup
as well. We get best result when both gpCNN
and mfCNN have three blocks of convolution and

74

pooling. This suggests that multiple layers of con-
volution succeed in extracting high-level features
that are beneficial for clause coherence.

Figure 7 (2nd table) shows that INDIRECTSIM

and CONCAT have comparable performance and
both outperform DIRECTSIM. DIRECTSIM is ex-
pected to perform poorly because the contents in
the two clauses usually have little or no overlap-
ping meaning. In contrast, we can imagine that
INDIRECTSIM first transforms the first clause x
into a counterpart and then matches this counter-
part with the second clause y. In CONCAT, each
of s1×s2 pairs of g-phrases is concatentated and
supervised training can then learn an unrestricted
function to assess the importance of this pair for
clause coherence (cf. Eq. 5). Again, this is clearly
a more promising TEXTCHUNK relation model for
clause coherence than one that relies on DIRECT-
SIM.

acc
mfCNN

0 1 2 3

gp
C

N
N 0 38.02 44.08 47.81 48.43

1 40.91 45.31 51.73 52.13
2 43.10 48.06 54.14 54.86
3 45.62 51.77 55.97 56.31

match feature model acc
DIRECTSIM 25.40
INDIRECTSIM 56.31
CONCAT 56.12

freeze g-phrase represenations or not acc
MultiGranCNN (freeze) 55.79
MultiGranCNN (fine-tune) 56.31

pooling method acc
dynamic (Socher et al., 2011) 55.91
grid-based 56.07
phrase-focused 56.31

Figure 7: Effect on dev acc (clause coherence) of
different factors: # convolution blocks, match fea-
ture model, freeze vs. fine-tune, pooling method.

Figure 7 (3rd table) demonstrates that fine-
tuning g-phrase representations gives better per-
formance than freezing them. Also, grid-based
and phrase-focused pooling outperform dynamic
pooling (Socher et al., 2011) (4th table). Phrase-
focused pooling performs best.

Table 1 compares MultiGranCNN to ARC-I and
ARC-II, the architectures proposed by Hu et al.

(2014). We also test the five baseline systems
from their paper: DeepMatch, WordEmbed, SEN-
MLP, SENNA+MLP, URAE+MLP. For Multi-
GranCNN, we use the best dev set settings: num-
ber of convolution layers in gpCNN and mfCNN
is 3; INDIRECTSIM; phrase-focused pooling. Ta-
ble 1 shows that MultiGranCNN outperforms all
other approaches on clause coherence test set.

9.3 Paraphrase Identification Task

We evaluate paraphrase identification (PI) on the
PAN corpus (http://bit.ly/mt-para, (Madnani et al.,
2012)), consisting of training and test sets of
10,000 and 3000 sentence pairs, respectively. Sen-
tences are about 40 words long on average.

Since PI is a binary classification task, we re-
place the MLP with a logistic regression layer. As
phrase-focused pooling was proven to be optimal,
we directly use phrase-focused pooling in PI task
without comparison, assuming that the choice of
dynamic pooling is task independent.

For parameter selection, we split the PAN train-
ing set into a core training set (core) of size 9000
and a development set (dev) of size 1000. We
then train models on core and select parameters
based on best performance on dev. The best re-
sults on dev are obtained for the following param-
eters: freezing g-phrase representations, DIRECT-
SIM, two convolution layers in gpCNN, no convo-
lution layers in mfCNN. We use these parameter
settings to train a model on the entire training set
and report performance in Table 2.

We compare MultiGranCNN to ARC-I/II (Hu
et al., 2014), and two previous papers reporting
performance on PAN. Madnani et al. (2012) used
a combination of three basic MT metrics (BLEU,
NIST and TER) and five complex MT met-
rics (TERp, METEOR, BADGER, MAXISIM,

model acc
Random Guess 20.00
DeepMatch 34.17
WordEmbed 38.28
SENMLP 34.57
SENNA+MLP 42.09
URAE+MLP 27.41
ARC-I 45.04
ARC-II 50.18
MultiGranCNN 56.27

Table 1: Performance on clause coherence test set.

75

SEPIA), computed on entire sentences. Bach et
al. (2014) applied MT metrics to elementary dis-
course units. We integrate these eight MT metrics
from prior work.

method acc F1

ARC-I 61.4 60.3
ARC-II 64.9 63.5
basic MT metrics 88.6 87.8
+ TERp 91.5 91.2
+ METEOR 92.0 91.8
+ Others 92.3 92.1
(Bach et al., 2014) 93.4 93.3
8MT+MultiGranCNN (fine-tune) 94.1 94.0
8MT+MultiGranCNN (freeze) 94.9 94.7

Table 2: Results on PAN. “8MT” = 8 MT metrics

Table 2 shows that MultiGranCNN in combina-
tion with MT metrics obtains state-of-the-art per-
formance on PAN. Freezing weights learned in
unsupervised training (Figure 2) performs better
than fine-tuning them; also, Table 3 shows that the
best result is achieved if no convolution is used
in mfCNN. Thus, the best configuration for para-
phrase identification is to “forward” fixed-size in-
teraction matrices as input to the logistic regres-
sion, without any intermediate convolution layers.

Freezing weights learned in unsupervised train-
ing and no convolution layers in mfCNN both pro-
tect against overfitting. Complex deep neural net-
works are in particular danger of overfitting when
training sets are small as in the case of PAN (cf. Hu
et al. (2014)). In contrast, fine-tuning weights and
several convolution layers were the optimal setup
for clause coherence. For clause coherence, we
have a much larger training set and therefore can
successfully train a much larger number of param-
eters.

Table 3 shows that CONCAT performs badly for
PI while DIRECTSIM and INDIRECTSIM perform
well. We can conceptualize PI as the task of deter-
mining if each meaning element in S1 has a simi-
lar meaning element in S2. The s1 × s2 DIRECT-
SIM feature model directly models this task and
the s1×s2 INDIRECTSIM feature model also mod-
els it, but learning a transformation of g-phrase
representations before applying similarity. In con-
trast, CONCAT can learn arbitrary relations be-
tween parts of the two sentences, a model that
seems to be too unconstrained for PI if insufficient
training resources are available.

In contrast, for the clause coherence task, con-
catentation worked well and DIRECTSIM worked
poorly and we provided an explanation based on
the specific properties of clause coherence (see
discussion of Figure 7). We conclude from these
results that it is dependent on the task what the best
feature model is for matching two linguistic ob-
jects. Interestingly, INDIRECTSIM performs well
on both tasks. This suggests that INDIRECTSIM is
a general feature model for matching, applicable
to tasks with very different properties.

10 Conclusion

In this paper, we present MultiGranCNN, a gen-
eral deep learning architecture for classifying the
relation between two TEXTCHUNKS. Multi-
GranCNN supports multigranular comparabil-
ity of representations: shorter sequences in one
TEXTCHUNK can be directly compared to longer
sequences in the other TEXTCHUNK. Multi-
GranCNN also contains a flexible and modu-
larized match feature component that is eas-
ily adaptable to different TEXTCHUNK relations.
We demonstrated state-of-the-art performance of
MultiGranCNN on paraphrase identification and
clause coherence tasks.

Acknowledgments

Thanks to CIS members and anonymous re-
viewers for constructive comments. This work
was supported by Baidu (through a Baidu
scholarship awarded to Wenpeng Yin) and by
Deutsche Forschungsgemeinschaft (grant DFG
SCHU 2246/8-2, SPP 1335).

F1
mfCNN

0 1 2 3

gp
C

N
N 0 92.7 92.9 92.9 93.9

1 93.2 93.5 93.9 93.5
2 94.7 94.2 93.7 93.3
3 94.5 94.0 93.6 92.9

match feature model acc F1

DIRECTSIM 94.9 94.7
INDIRECTSIM 94.7 94.5
CONCAT 93.0 92.9

Table 3: Effect on dev F1 (PI) of different factors:
convolution blocks, match feature model.

76

References
Ngo Xuan Bach, Nguyen Le Minh, and Akira Shi-

mazu. 2014. Exploiting discourse information to
identify paraphrases. Expert Systems with Applica-
tions, 41(6):2832–2841.

William Blacoe and Mirella Lapata. 2012. A com-
parison of vector-based representations for semantic
composition. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 546–556. Association for Compu-
tational Linguistics.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993–1022.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014a. Question answering with subgraph embed-
dings. Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2014b. A semantic matching en-
ergy function for learning with multi-relational data.
Machine Learning, 94(2):233–259.

Antoine Bordes, Jason Weston, and Nicolas Usunier.
2014c. Open question answering with weakly su-
pervised embedding models. Proceedings of 2014
European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in
Databases.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
539–546. IEEE.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, 12:2121–2159.

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xi-
aodong He, Li Deng, and Yelong Shen. 2014. Mod-
eling interestingness with deep neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences.
In Advances in Neural Information Processing Sys-
tems, pages 2042–2050.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino,
Richard Socher, and Hal Daumé III. 2014. A neural
network for factoid question answering over para-
graphs. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing, pages 633–644.

Yangfeng Ji and Jacob Eisenstein. 2013. Discrimi-
native improvements to distributional sentence sim-
ilarity. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 891–896.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. Proceed-
ings of The 31st International Conference on Ma-
chine Learning, pages 1188–1196.

Hang Li and Jun Xu. 2012. Beyond bag-of-words:
machine learning for query-document matching in
web search. In Proceedings of the 35th international
ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 1177–1177.
ACM.

Xutao Li, Michael K Ng, and Yunming Ye. 2012.
Har: Hub, authority and relevance scores in multi-
relational data for query search. In Proceedings of
the 12th SIAM International Conference on Data
Mining, pages 141–152. SIAM.

Chen Liu. 2013. Probabilistic Siamese Network for
Learning Representations. Ph.D. thesis, University
of Toronto.

Zhengdong Lu and Hang Li. 2013. A deep architec-
ture for matching short texts. In Advances in Neural
Information Processing Systems, pages 1367–1375.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining machine translation metrics
for paraphrase identification. In Proceedings of the
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 182–190. Asso-
ciation for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Andriy Mnih and Yee Whye Teh. 2012. A fast and
simple algorithm for training neural probabilistic
language models. In Proceedings of the 29th In-
ternational Conference on Machine Learning, pages
1751–1758.

77

Robert Parker, Linguistic Data Consortium, et al.
2009. English gigaword fourth edition. Linguistic
Data Consortium.

Long Qiu, Min-Yen Kan, and Tat-Seng Chua. 2006.
Paraphrase recognition via dissimilarity significance
classification. In Proceedings of the 2006 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 18–26. Association for Compu-
tational Linguistics.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural In-
formation Processing Systems, pages 801–809.

Pengcheng Wu, Steven CH Hoi, Hao Xia, Peilin Zhao,
Dayong Wang, and Chunyan Miao. 2013. Online
multimodal deep similarity learning with application
to image retrieval. In Proceedings of the 21st ACM
international conference on Multimedia, pages 153–
162. ACM.

Min-Chul Yang, Nan Duan, Ming Zhou, and Hae-
Chang Rim. 2014. Joint relational embeddings for
knowledge-based question answering. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 645–650.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep learning for answer
sentence selection. NIPS deep learning workshop.

78

Chapter 5

ABCNN: Attention-Based
Convolutional Neural Network for
Modeling Sentence Pairs

79

ABCNN: Attention-Based Convolutional Neural Network
for Modeling Sentence Pairs

Wenpeng Yin, Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
wenpeng@cis.lmu.de

Bing Xiang, Bowen Zhou
IBM Watson

Yorktown Heights, NY, USA
bingxia,zhou@us.ibm.com

Abstract

How to model a pair of sentences is a critical
issue in many NLP tasks such as answer selec-
tion (AS), paraphrase identification (PI) and
textual entailment (TE). Most prior work (i)
deals with one individual task by fine-tuning
a specific system; (ii) models each sentence’s
representation separately, rarely considering
the impact of the other sentence; or (iii) re-
lies fully on manually designed, task-specific
linguistic features. This work presents a gen-
eral Attention Based Convolutional Neural
Network (ABCNN) for modeling a pair of
sentences. We make three contributions. (i)
The ABCNN can be applied to a wide va-
riety of tasks that require modeling of sen-
tence pairs. (ii) We propose three attention
schemes that integrate mutual influence be-
tween sentences into CNNs; thus, the rep-
resentation of each sentence takes into con-
sideration its counterpart. These interdepen-
dent sentence pair representations are more
powerful than isolated sentence representa-
tions. (iii) ABCNNs achieve state-of-the-art
performance on AS, PI and TE tasks. We
release code at: https://github.com/
yinwenpeng/Answer_Selection.

1 Introduction

How to model a pair of sentences is a critical is-
sue in many NLP tasks such as answer selection
(AS) (Yu et al., 2014; Feng et al., 2015), paraphrase
identification (PI) (Madnani et al., 2012; Yin and
Schütze, 2015a), textual entailment (TE) (Marelli et
al., 2014a; Bowman et al., 2015a) etc.

A
S

s0 how much did Waterboy gross?
s+1 the movie earned $161.5 million
s−1 this was Jerry Reed’s final film appearance

PI
s0 she struck a deal with RH to pen a book today
s+1 she signed a contract with RH to write a book
s−1 she denied today that she struck a deal with RH

T
E

s0 an ice skating rink placed outdoors is full of people
s+1 a lot of people are in an ice skating park
s−1 an ice skating rink placed indoors is full of people

Figure 1: Positive (<s0, s
+
1 >) and negative (<s0, s

−
1 >)

examples for AS, PI and TE tasks. RH = Random House

Most prior work derives each sentence’s represen-
tation separately, rarely considering the impact of
the other sentence. This neglects the mutual influ-
ence of the two sentences in the context of the task.
It also contradicts what humans do when comparing
two sentences. We usually focus on key parts of one
sentence by extracting parts from the other sentence
that are related by identity, synonymy, antonymy
and other relations. Thus, human beings model the
two sentences together, using the content of one sen-
tence to guide the representation of the other.

Figure 1 demonstrates that each sentence of a pair
partially determines which parts of the other sen-
tence we must focus on. For AS, correctly answer-
ing s0 requires attention on “gross”: s+1 contains
a corresponding unit (“earned”) while s−1 does not.
For PI, focus should be removed from “today” to
correctly recognize < s0, s

+
1 > as paraphrases and

< s0, s
−
1 > as non-paraphrases. For TE, we need

to focus on “full of people” (to recognize TE for
<s0, s

+
1 >) and on “outdoors” / “indoors” (to recog-

nize non-TE for <s0, s
−
1 >). These examples show

the need for an architecture that computes different
representations of si for different s1−i (i ∈ {0, 1}).

80

Convolutional Neural Networks (CNNs) (LeCun
et al., 1998) are widely used to model sentences
(Kalchbrenner et al., 2014; Kim, 2014) and sen-
tence pairs (Socher et al., 2011; Yin and Schütze,
2015a), especially in classification tasks. CNNs
are supposed to be good at extracting robust and
abstract features of input. This work presents the
ABCNN, an attention-based convolutional neural
network, that has a powerful mechanism for mod-
eling a sentence pair by taking into account the
interdependence between the two sentences. The
ABCNN is a general architecture that can handle a
wide variety of sentence pair modeling tasks.

Some prior work proposes simple mechanisms
that can be interpreted as controlling varying atten-
tion; e.g., Yih et al. (2013) employ word alignment
to match related parts of the two sentences. In con-
trast, our attention scheme based on CNNs models
relatedness between two parts fully automatically.
Moreover, attention at multiple levels of granularity,
not only at word level, is achieved as we stack mul-
tiple convolution layers that increase abstraction.

Prior work on attention in deep learning (DL)
mostly addresses long short-term memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997).
LSTMs achieve attention usually in a word-to-word
scheme, and word representations mostly encode
the whole context within the sentence (Bahdanau et
al., 2015; Rocktäschel et al., 2016). It is not clear
whether this is the best strategy; e.g., in the AS ex-
ample in Figure 1, it is possible to determine that
“how much” in s0 matches “$161.5 million” in s1
without taking the entire sentence contexts into ac-
count. This observation was also investigated by
Yao et al. (2013b) where an information retrieval
system retrieves sentences with tokens labeled as
DATE by named entity recognition or as CD by POS
tagging if there is a “when” question. However, la-
bels or POS tags require extra tools. CNNs benefit
from incorporating attention into representations of
local phrases detected by filters; in contrast, LSTMs
encode the whole context to form attention-based
word representations – a strategy that is more com-
plex than the CNN strategy and (as our experiments
suggest) performs less well for some tasks.

Apart from these differences, it is clear that atten-
tion has as much potential for CNNs as it does for
LSTMs. As far as we know, this is the first NLP

paper that incorporates attention into CNNs. Our
ABCNNs get state-of-the-art in AS and TE tasks,
and competitive performance in PI, then obtains fur-
ther improvements over all three tasks when linguis-
tic features are used.

2 Related Work

Non-DL on Sentence Pair Modeling. Sentence
pair modeling has attracted lots of attention in the
past decades. Many tasks can be reduced to a se-
mantic text matching problem. Due to the variety
of word choices and inherent ambiguities in natu-
ral language, bag-of-word approaches with simple
surface-form word matching tend to produce brit-
tle results with poor prediction accuracy (Bilotti et
al., 2007). As a result, researchers put more empha-
sis on exploiting syntactic and semantic structure.
Representative examples include methods based on
deeper semantic analysis (Shen and Lapata, 2007;
Moldovan et al., 2007), tree edit-distance (Pun-
yakanok et al., 2004; Heilman and Smith, 2010) and
quasi-synchronous grammars (Wang et al., 2007)
that match the dependency parse trees of the two
sentences. Instead of focusing on the high-level se-
mantic representation, Yih et al. (2013) turn their
attention to improving the shallow semantic com-
ponent, lexical semantics, by performing semantic
matching based on a latent word-alignment struc-
ture (cf. Chang et al. (2010)). Lai and Hockenmaier
(2014) explore finer-grained word overlap and align-
ment between two sentences using negation, hyper-
nym, synonym and antonym relations. Yao et al.
(2013a) extend word-to-word alignment to phrase-
to-phrase alignment by a semi-Markov CRF. How-
ever, such approaches often require more computa-
tional resources. In addition, employing syntactic or
semantic parsers – which produce errors on many
sentences – to find the best match between the struc-
tured representations of two sentences is not trivial.

DL on Sentence Pair Modeling. To address
some of the challenges of non-DL work, much re-
cent work uses neural networks to model sentence
pairs for AS, PI and TE.

For AS, Yu et al. (2014) present a bigram CNN to
model question and answer candidates. Yang et al.
(2015) extend this method and get state-of-the-art
performance on the WikiQA dataset (Section 5.1).

81

Feng et al. (2015) test various setups of a bi-CNN ar-
chitecture on an insurance domain QA dataset. Tan
et al. (2016) explore bidirectional LSTMs on the
same dataset. Our approach is different because we
do not model the sentences by two independent neu-
ral networks in parallel, but instead as an interdepen-
dent sentence pair, using attention.

For PI, Blacoe and Lapata (2012) form sentence
representations by summing up word embeddings.
Socher et al. (2011) use recursive autoencoders
(RAEs) to model representations of local phrases
in sentences, then pool similarity values of phrases
from the two sentences as features for binary classi-
fication. Yin and Schütze (2015a) similarly replace
an RAE with a CNN. In all three papers, the rep-
resentation of one sentence is not influenced by the
other – in contrast to our attention-based model.

For TE, Bowman et al. (2015b) use recursive neu-
ral networks to encode entailment on SICK (Marelli
et al., 2014b). Rocktäschel et al. (2016) present an
attention-based LSTM for the Stanford natural lan-
guage inference corpus (Bowman et al., 2015a). Our
system is the first CNN-based work on TE.

Some prior work aims to solve a general sen-
tence matching problem. Hu et al. (2014) present
two CNN architectures, ARC-I and ARC-II, for sen-
tence matching. ARC-I focuses on sentence repre-
sentation learning while ARC-II focuses on match-
ing features on phrase level. Both systems were
tested on PI, sentence completion (SC) and tweet-
response matching. Yin and Schütze (2015b) pro-
pose the MultiGranCNN architecture to model gen-
eral sentence matching based on phrase matching on
multiple levels of granularity and get promising re-
sults for PI and SC. Wan et al. (2016) try to match
two sentences in AS and SC by multiple sentence
representations, each coming from the local repre-
sentations of two LSTMs. Our work is the first
one to investigate attention for the general sentence
matching task.

Attention-Based DL in Non-NLP Domains.
Even though there is little if any work on atten-
tion mechanisms in CNNs for NLP, attention-based
CNNs have been used in computer vision for visual
question answering (Chen et al., 2015), image clas-
sification (Xiao et al., 2015), caption generation (Xu
et al., 2015), image segmentation (Hong et al., 2016)
and object localization (Cao et al., 2015).

symbol description
s, s0, s1 sentence or sentence length
v word
w filter width
di dimensionality of input to layer i+ 1
W weight matrix

Table 1: Notation

Mnih et al. (2014) apply attention in recurrent
neural networks (RNNs) to extract information from
an image or video by adaptively selecting a se-
quence of regions or locations and only processing
the selected regions at high resolution. Gregor et al.
(2015) combine a spatial attention mechanism with
RNNs for image generation. Ba et al. (2015) inves-
tigate attention-based RNNs for recognizing multi-
ple objects in images. Chorowski et al. (2014) and
Chorowski et al. (2015) use attention in RNNs for
speech recognition.

Attention-Based DL in NLP. Attention-based
DL systems have been applied to NLP after their
success in computer vision and speech recognition.
They mainly rely on RNNs and end-to-end encoder-
decoders for tasks such as machine translation (Bah-
danau et al., 2015; Luong et al., 2015) and text re-
construction (Li et al., 2015; Rush et al., 2015). Our
work takes the lead in exploring attention mecha-
nisms in CNNs for NLP tasks.

3 BCNN: Basic Bi-CNN

We now introduce our basic (non-attention) CNN
that is based on the Siamese architecture (Brom-
ley et al., 1993), i.e., it consists of two weight-
sharing CNNs, each processing one of the two sen-
tences, and a final layer that solves the sentence pair
task. See Figure 2. We refer to this architecture as
the BCNN. The next section will then introduce the
ABCNN, an attention architecture that extends the
BCNN. Table 1 gives our notational conventions.

In our implementation and also in the mathemat-
ical formalization of the model given below, we
pad the two sentences to have the same length s =
max(s0, s1). However, in the figures we show dif-
ferent lengths because this gives a better intuition of
how the model works.

We now describe the BCNN’s four types of lay-
ers: input, convolution, average pooling and output.

Input layer. In the example in the figure, the two
input sentences have 5 and 7 words, respectively.

82

Figure 2: BCNN: ABCNN without Attention

Each word is represented as a d0-dimensional pre-
computed word2vec (Mikolov et al., 2013) embed-
ding, d0 = 300. As a result, each sentence is repre-
sented as a feature map of dimension d0 × s.

Convolution layer. Let v1, v2, . . . , vs be the
words of a sentence and ci ∈ Rw·d0 , 0 < i < s +
w, the concatenated embeddings of vi−w+1, . . . , vi
where embeddings for vj are set to zero when j < 1
or j > s. We then generate the representation
pi ∈ Rd1 for the phrase vi−w+1, . . . , vi using the
convolution weights W ∈ Rd1×wd0 as follows:

pi = tanh(W · ci + b)

where b ∈ Rd1 is the bias.
Average pooling layer. Pooling (including min,

max, average pooling) is commonly used to extract
robust features from convolution. In this paper, we
introduce attention weighting as an alternative, but
use average pooling as a baseline as follows.

For the output feature map of the last convolu-
tion layer, we do column-wise averaging over all
columns, denoted as all-ap. This generates a rep-
resentation vector for each of the two sentences,
shown as the top “Average pooling (all-ap)” layer

below “Logistic regression” in Figure 2. These two
vectors are the basis for the sentence pair decision.

For the output feature map of non-final convolu-
tion layers, we do column-wise averaging over win-
dows of w consecutive columns, denoted as w-ap;
shown as the lower “Average pooling (w-ap)” layer
in Figure 2. For filter width w, a convolution layer
transforms an input feature map of s columns into
a new feature map of s + w − 1 columns; average
pooling transforms this back to s columns. This ar-
chitecture supports stacking an arbitrary number of
convolution-pooling blocks to extract increasingly
abstract features. Input features to the bottom layer
are words, input features to the next layer are short
phrases and so on. Each level generates more ab-
stract features of higher granularity.

The last layer is an output layer, chosen accord-
ing to the task; e.g., for binary classification tasks,
this layer is logistic regression (see Figure 2). Other
types of output layers are introduced below.

We found that in most cases, performance is
boosted if we provide the output of all pooling lay-
ers as input to the output layer. For each non-final
average pooling layer, we perform w-ap (pooling
over windows of w columns) as described above, but
we also perform all-ap (pooling over all columns)
and forward the result to the output layer. This
improves performance because representations from
different layers cover the properties of the sentences
at different levels of abstraction and all of these lev-
els can be important for a particular sentence pair.

4 ABCNN: Attention-Based BCNN

We now describe three architectures based on the
BCNN, the ABCNN-1, the ABCNN-2 and the
ABCNN-3, that each introduces an attention mech-
anism for modeling sentence pairs; see Figure 3.

ABCNN-1. The ABCNN-1 (Figure 3(a)) em-
ploys an attention feature matrix A to influence con-
volution. Attention features are intended to weight
those units of si more highly in convolution that are
relevant to a unit of s1−i (i ∈ {0, 1}); we use the
term “unit” here to refer to words on the lowest level
and to phrases on higher levels of the network. Fig-
ure 3(a) shows two unit representation feature maps
in red: this part of the ABCNN-1 is the same as
in the BCNN (see Figure 2). Each column is the

83

(a) One block in ABCNN-1

(b) One block in ABCNN-2

(c) One block in ABCNN-3

Figure 3: Three ABCNN architectures

84

representation of a unit, a word on the lowest level
and a phrase on higher levels. We first describe the
attention feature matrix A informally (layer “Conv
input”, middle column, in Figure 3(a)). A is gener-
ated by matching units of the left representation fea-
ture map with units of the right representation fea-
ture map such that the attention values of row i in
A denote the attention distribution of the i-th unit of
s0 with respect to s1, and the attention values of col-
umn j in A denote the attention distribution of the
j-th unit of s1 with respect to s0. A can be viewed as
a new feature map of s0 (resp. s1) in row (resp. col-
umn) direction because each row (resp. column) is a
new feature vector of a unit in s0 (resp. s1). Thus, it
makes sense to combine this new feature map with
the representation feature maps and use both as in-
put to the convolution operation. We achieve this by
transforming A into the two blue matrices in Figure
3(a) that have the same format as the representation
feature maps. As a result, the new input of convolu-
tion has two feature maps for each sentence (shown
in red and blue). Our motivation is that the atten-
tion feature map will guide the convolution to learn
“counterpart-biased” sentence representations.

More formally, let Fi,r ∈ Rd×s be the represen-
tation feature map of sentence i (i ∈ {0, 1}). Then
we define the attention matrix A ∈ Rs×s as follows:

Ai,j = match-score(F0,r[:, i],F1,r[:, j]) (1)

The function match-score can be defined in a variety
of ways. We found that 1/(1 + |x− y|) works well
where | · | is Euclidean distance.

Given attention matrix A, we generate the atten-
tion feature map Fi,a for si as follows:

F0,a = W0 ·A>, F1,a = W1 ·A

The weight matrices W0 ∈ Rd×s, W1 ∈ Rd×s are
parameters of the model to be learned in training.1

We stack the representation feature map Fi,r and
the attention feature map Fi,a as an order 3 tensor
and feed it into convolution to generate a higher-
level representation feature map for si (i ∈ {0, 1}).
In Figure 3(a), s0 has 5 units, s1 has 7. The output
of convolution (shown in the top layer, filter width

1The weights of the two matrices are shared in our imple-
mentation to reduce the number of parameters of the model.

w = 3) is a higher-level representation feature map
with 7 columns for s0 and 9 columns for s1.

ABCNN-2. The ABCNN-1 computes attention
weights directly on the input representation with the
aim of improving the features computed by convolu-
tion. The ABCNN-2 (Figure 3(b)) instead computes
attention weights on the output of convolution with
the aim of reweighting this convolution output. In
the example shown in Figure 3(b), the feature maps
output by convolution for s0 and s1 (layer marked
“Convolution” in Figure 3(b)) have 7 and 9 columns,
respectively; each column is the representation of a
unit. The attention matrix A compares all units in s0
with all units of s1. We sum all attention values for a
unit to derive a single attention weight for that unit.
This corresponds to summing all values in a row of
A for s0 (“col-wise sum”, resulting in the column
vector of size 7 shown) and summing all values in a
column for s1 (“row-wise sum”, resulting in the row
vector of size 9 shown).

More formally, let A ∈ Rs×s be the attention
matrix, a0,j =

∑
A[j, :] the attention weight of unit

j in s0, a1,j =
∑

A[:, j] the attention weight of
unit j in s1 and Fc

i,r ∈ Rd×(si+w−1) the output of
convolution for si. Then the j-th column of the new
feature map Fp

i,r generated by w-ap is derived by:

Fp
i,r[:, j]=

∑

k=j:j+w

ai,kF
c
i,r[:, k], j = 1 . . . si

Note that Fp
i,r ∈ Rd×si , i.e., ABCNN-2 pooling

generates an output feature map of the same size as
the input feature map of convolution. This allows
us to stack multiple convolution-pooling blocks to
extract features of increasing abstraction.

There are three main differences between the
ABCNN-1 and the ABCNN-2. (i) Attention in the
ABCNN-1 impacts convolution indirectly while at-
tention in the ABCNN-2 influences pooling through
direct attention weighting. (ii) The ABCNN-1 re-
quires the two matrices Wi to convert the attention
matrix into attention feature maps; and the input to
convolution has two times as many feature maps.
Thus, the ABCNN-1 has more parameters than the
ABCNN-2 and is more vulnerable to overfitting.
(iii) As pooling is performed after convolution, pool-
ing handles larger-granularity units than convolu-
tion; e.g., if the input to convolution has word level

85

granularity, then the input to pooling has phrase level
granularity, the phrase size being equal to filter size
w. Thus, the ABCNN-1 and the ABCNN-2 imple-
ment attention mechanisms for linguistic units of
different granularity. The complementarity of the
ABCNN-1 and the ABCNN-2 motivates us to pro-
pose the ABCNN-3, a third architecture that com-
bines elements of the two.

ABCNN-3 (Figure 3(c)) combines the ABCNN-1
and the ABCNN-2 by stacking them; it combines the
strengths of the ABCNN-1 and -2 by allowing the
attention mechanism to operate (i) both on the con-
volution and on the pooling parts of a convolution-
pooling block and (ii) both on the input granularity
and on the more abstract output granularity.

5 Experiments

We test the proposed architectures on three tasks:
answer selection (AS), paraphrase identification (PI)
and textual entailment (TE).

Common Training Setup. Words are initialized
by 300-dimensional word2vec embeddings and not
changed during training. A single randomly initial-
ized embedding is created for all unknown words by
uniform sampling from [-.01,.01]. We employ Ada-
grad (Duchi et al., 2011) and L2 regularization.

Network Configuration. Each network in the
experiments below consists of (i) an initialization
block b1 that initializes words by word2vec em-
beddings, (ii) a stack of k − 1 convolution-pooling
blocks b2, . . . , bk, computing increasingly abstract
features, and (iii) one final LR layer (logistic regres-
sion layer) as shown in Figure 2.

The input to the LR layer consists of kn features
– each block provides n similarity scores, e.g., n
cosine similarity scores. Figure 2 shows the two
sentence vectors output by the final block bk of the
stack (“sentence representation 0”, “sentence repre-
sentation 1”); this is the basis of the last n similarity
scores. As we explained in the final paragraph of
Section 3, we perform all-ap pooling for all blocks,
not just for bk. Thus we get one sentence representa-
tion each for s0 and s1 for each block b1, . . . , bk. We
compute n similarity scores for each block (based
on the block’s two sentence representations). Thus,
we compute a total of kn similarity scores and these
scores are input to the LR layer.

AS PI TE

#C
L

lr w L2 lr w L2 lr w L2

ABCNN-1 1 .08 4 .0004 .08 3 .0002 .08 3 .0006
ABCNN-1 2 .085 4 .0006 .085 3 .0003 .085 3 .0006
ABCNN-2 1 .05 4 .0003 .085 3 .0001 .09 3 .00065
ABCNN-2 2 .06 4 .0006 .085 3 .0001 .085 3 .0007
ABCNN-3 1 .05 4 .0003 .05 3 .0003 .09 3 .0007
ABCNN-3 2 .06 4 .0006 .055 3 .0005 .09 3 .0007

Table 2: Hyperparameters. lr: learning rate. #CL: num-
ber convolution layers. w: filter width. The number of
convolution kernels di (i > 0) is 50 throughout.

Depending on the task, we use different methods
for computing the similarity score: see below.

Layerwise Training. In our training regime,
we first train a network consisting of just one
convolution-pooling block b2. We then create a
new network by adding a block b3, initialize its b2
block with the previously learned weights for b2 and
train b3 keeping the previously learned weights for
b2 fixed. We repeat this procedure until all k − 1
convolution-pooling blocks are trained. We found
that this training regime gives us good performance
and shortens training times considerably. Since sim-
ilarity scores of lower blocks are kept unchanged
once they have been learned, this also has the nice
effect that “simple” similarity scores (those based
on surface features) are learned first and subsequent
training phases can focus on complementary scores
derived from more complex abstract features.

Classifier. We found that performance increases
if we do not use the output of the LR layer as the
final decision, but instead train a linear SVM or a
logistic regression with default parameters2 directly
on the input to the LR layer (i.e., on the kn similarity
scores that are generated by the k-block stack after
network training is completed). Direct training of
SVMs/LR seems to get closer to the global optimum
than gradient descent training of CNNs.

Table 2 shows hyperparameters, tuned on dev.
We use addition and LSTMs as two shared base-

lines for all three tasks, i.e., for AS, PI and TE. We
now describe these two shared baselines.

(i) Addition. We sum up word embeddings
element-wise to form each sentence representation.
The classifier input is then the concatenation of the
two sentence representations. (ii) A-LSTM. Be-
fore this work, most attention mechanisms in NLP

2 http://scikit-learn.org/stable/ for both.

86

were implemented in recurrent neural networks for
text generation tasks such as machine translation
(e.g., Bahdanau et al. (2015), Luong et al. (2015)).
Rocktäschel et al. (2016) present an attention-LSTM
for natural language inference. Since this model is
the pioneering attention based RNN system for sen-
tence pair classification, we consider it as a baseline
system (“A-LSTM”) for all our three tasks. The A-
LSTM has the same configuration as our ABCNNs
in terms of word initialization (300-dimensional
word2vec embeddings) and the dimensionality of all
hidden layers (50).

5.1 Answer Selection

We use WikiQA,3 an open domain question-answer
dataset. We use the subtask that assumes that there
is at least one correct answer for a question. The
corresponding dataset consists of 20,360 question-
candidate pairs in train, 1,130 pairs in dev and 2,352
pairs in test where we adopt the standard setup of
only considering questions with correct answers in
test. Following Yang et al. (2015), we truncate an-
swers to 40 tokens.

The task is to rank the candidate answers based
on their relatedness to the question. Evaluation mea-
sures are mean average precision (MAP) and mean
reciprocal rank (MRR).

Task-Specific Setup. We use cosine similarity as
the similarity score for AS. In addition, we use sen-
tence lengths, WordCnt (count of the number of non-
stopwords in the question that also occur in the an-
swer) and WgtWordCnt (reweight the counts by the
IDF values of the question words). Thus, the final
input to the LR layer has size k + 4: one cosine for
each of the k blocks and the four additional features.

We compare with seven baselines. The first three
are considered by Yang et al. (2015): (i) WordCnt;
(ii) WgtWordCnt; (iii) CNN-Cnt (the state-of-the-
art system): combine CNN with (i) and (ii). Apart
from the baselines considered by Yang et al. (2015),
we compare with two Addition baselines and two
LSTM baselines. Addition and A-LSTM are the
shared baselines described before. We also combine
both with the four extra features; this gives us two
additional baselines that we refer to as Addition(+)
and A-LSTM(+).

3http://aka.ms/WikiQA (Yang et al., 2015)

method MAP MRR

B
as

el
in

es

WordCnt 0.4891 0.4924
WgtWordCnt 0.5099 0.5132
CNN-Cnt 0.6520 0.6652
Addition 0.5021 0.5069
Addition(+) 0.5888 0.5929
A-LSTM 0.5347 0.5483
A-LSTM(+) 0.6381 0.6537

BCNN
one-conv 0.6629 0.6813
two-conv 0.6593 0.6738

ABCNN-1
one-conv 0.6810∗ 0.6979∗

two-conv 0.6855∗ 0.7023∗

ABCNN-2
one-conv 0.6885∗ 0.7054∗

two-conv 0.6879∗ 0.7068∗

ABCNN-3
one-conv 0.6914∗ 0.7127∗

two-conv 0.6921∗ 0.7108∗

Table 3: Results on WikiQA. Best result per column
is bold. Significant improvements over state-of-the-art
baselines (underlined) are marked with ∗ (t-test, p < .05).

Results. Table 3 shows performance of the base-
lines, of the BCNN and of the three ABCNNs. For
CNNs, we test one (one-conv) and two (two-conv)
convolution-pooling blocks.

The non-attention network BCNN already per-
forms better than the baselines. If we add attention
mechanisms, then the performance further improves
by several points. Comparing the ABCNN-2 with
the ABCNN-1, we find the ABCNN-2 is slightly
better even though the ABCNN-2 is the simpler ar-
chitecture. If we combine the ABCNN-1 and the
ABCNN-2 to form the ABCNN-3, we get further
improvement.4

This can be explained by the ABCNN-3’s abil-
ity to take attention of finer-grained granularity into
consideration in each convolution-pooling block
while the ABCNN-1 and the ABCNN-2 consider at-
tention only at convolution input or only at pooling
input, respectively. We also find that stacking two
convolution-pooling blocks does not bring consis-
tent improvement and therefore do not test deeper
architectures.

5.2 Paraphrase Identification

We use the Microsoft Research Paraphrase (MSRP)
corpus (Dolan et al., 2004). The training set contains
2753 true / 1323 false and the test set 1147 true /
578 false paraphrase pairs. We randomly select 400

4If we limit the input to the LR layer to the k similarity
scores in the ABCNN-3 (two-conv), results are .660 (MAP) /
.677 (MRR).

87

pairs from train and use them as dev; but we still
report results for training on the entire training set.
For each triple (label, s0, s1) in the training set, we
also add (label, s1, s0) to the training set to make
best use of the training data. Systems are evaluated
by accuracy and F1.

Task-Specific Setup. In this task, we add the
15 MT features from (Madnani et al., 2012) and
the lengths of the two sentences. In addition, we
compute ROUGE-1, ROUGE-2 and ROUGE-SU4
(Lin, 2004), which are scores measuring the match
between the two sentences on (i) unigrams, (ii) bi-
grams and (iii) unigrams and skip-bigrams (maxi-
mum skip distance of four), respectively. In this
task, we found transforming Euclidean distance into
similarity score by 1/(1 + |x − y|) performs better
than cosine similarity. Additionally, we use dynamic
pooling (Yin and Schütze, 2015a) of the attention
matrix A in Equation (1) and forward pooled val-
ues of all blocks to the classifier. This gives us bet-
ter performance than only forwarding sentence-level
matching features.

We compare our system with representative DL
approaches: (i) A-LSTM; (ii) A-LSTM(+): A-
LSTM plus handcrafted features; (iii) RAE (Socher
et al., 2011), recursive autoencoder; (iv) Bi-CNN-
MI (Yin and Schütze, 2015a), a bi-CNN architec-
ture; and (v) MPSSM-CNN (He et al., 2015), the
state-of-the-art NN system for PI, and the follow-
ing four non-DL systems: (vi) Addition; (vii) Ad-
dition(+): Addition plus handcrafted features; (viii)
MT (Madnani et al., 2012), a system that combines
machine translation metrics;5 (ix) MF-TF-KLD (Ji
and Eisenstein, 2013), the state-of-the-art non-NN
system.

Results. Table 4 shows that the BCNN is slightly
worse than the state-of-the-art whereas the ABCNN-
1 roughly matches it. The ABCNN-2 is slightly
above the state-of-the-art. The ABCNN-3 outper-
forms the state-of-the-art in accuracy and F1.6 Two
convolution layers only bring small improvements
over one.

5For better comparability of approaches in our experiments,
we use a simple SVM classifier, which performs slightly worse
than Madnani et al. (2012)’s more complex meta-classifier.

6Improvement of .3 (acc) and .1 (F1) over state-of-the-art is
not significant. The ABCNN-3 (two-conv) without “linguistic”
features (i.e., MT and ROUGE) achieves 75.1/82.7.

method acc F1

B
as

el
in

es

majority voting 66.5 79.9
RAE 76.8 83.6
Bi-CNN-MI 78.4 84.6
MPSSM-CNN 78.6 84.7
MT 76.8 83.8
MF-TF-KLD 78.6 84.6
Addition 70.8 80.9
Addition (+) 77.3 84.1
A-LSTM 69.5 80.1
A-LSTM (+) 77.1 84.0

BCNN
one-conv 78.1 84.1
two-conv 78.3 84.3

ABCNN-1
one-conv 78.5 84.5
two-conv 78.5 84.6

ABCNN-2
one-conv 78.6 84.7
two-conv 78.8 84.7

ABCNN-3
one-conv 78.8 84.8
two-conv 78.9 84.8

Table 4: Results for PI on MSRP

5.3 Textual Entailment

SemEval 2014 Task 1 (Marelli et al., 2014a) eval-
uates system predictions of textual entailment (TE)
relations on sentence pairs from the SICK dataset
(Marelli et al., 2014b). The three classes are entail-
ment, contradiction and neutral. The sizes of SICK
train, dev and test sets are 4439, 495 and 4906 pairs,
respectively. We call this dataset ORIG.

We also create NONOVER, a copy of ORIG in
which words occurring in both sentences are re-
moved. A sentence in NONOVER is denoted by the
special token <empty> if all words are removed.
Table 5 shows three pairs from ORIG and their trans-
formation in NONOVER. We observe that focusing
on the non-overlapping parts provides clearer hints
for TE than ORIG. In this task, we run two copies of
each network, one for ORIG, one for NONOVER;
these two networks have a single common LR layer.

Like Lai and Hockenmaier (2014), we train our
final system (after fixing hyperparameters) on train
and dev (4934 pairs). Eval measure is accuracy.

Task-Specific Setup. We found that for this task
forwarding two similarity scores from each block
(instead of just one) is helpful. We use cosine sim-
ilarity and Euclidean distance. As we did for para-
phrase identification, we add the 15 MT features for
each sentence pair for this task as well; our motiva-
tion is that entailed sentences resemble paraphrases
more than contradictory sentences do.

88

ORIG NONOVER

0
children in red shirts are children red shirts
playing in the leaves playing
three kids are sitting in the leaves three kids sitting

1
three boys are jumping in the leaves boys
three kids are jumping in the leaves kids

2
a man is jumping into an empty pool an empty
a man is jumping into a full pool a full

Table 5: SICK data: Converting the original sentences
(ORIG) into the NONOVER format

We use the following linguistic features. Nega-
tion is important for detecting contradiction. Fea-
ture NEG is set to 1 if either sentence contains “no”,
“not”, “nobody”, “isn’t” and to 0 otherwise. Fol-
lowing Lai and Hockenmaier (2014), we use Word-
Net (Miller, 1995) to detect nyms: synonyms, hy-
pernyms and antonyms in the pairs. But we do this
on NONOVER (not on ORIG) to focus on what
is critical for TE. Specifically, feature SYN is the
number of word pairs in s0 and s1 that are syn-
onyms. HYP0 (resp. HYP1) is the number of words
in s0 (resp. s1) that have a hypernym in s1 (resp.
s0). In addition, we collect all potential antonym
pairs (PAP) in NONOVER. We identify the matched
chunks that occur in contradictory and neutral, but
not in entailed pairs. We exclude synonyms and hy-
pernyms and apply a frequency filter of n = 2. In
contrast to Lai and Hockenmaier (2014), we con-
strain the PAP pairs to cosine similarity above 0.4
in word2vec embedding space as this discards many
noise pairs. Feature ANT is the number of matched
PAP antonyms in a sentence pair. As before we use
sentence lengths, both for ORIG (LEN0O: length
s0, LEN1O: length s1) and for NONOVER (LEN0N:
length s0, LEN1N: length s1).

On the whole, we have 24 extra features: 15
MT metrics, NEG, SYN, HYP0, HYP1, ANT, LEN0O,
LEN1O, LEN0N and LEN1N.

Apart from the Addition and LSTM baselines, we
further compare with the top-3 systems in SemEval
and TrRNTN (Bowman et al., 2015b), a recursive
neural network developed for this SICK task.

Results. Table 6 shows that our CNNs outper-
form A-LSTM (with or without linguistic features
added) and the top three SemEval systems. Compar-
ing ABCNNs with the BCNN, attention mechanisms
consistently improve performance. The ABCNN-1
has performance comparable to the ABCNN-2 while

method acc

Se
m

-
E

va
l

To
p3

(Jimenez et al., 2014) 83.1
(Zhao et al., 2014) 83.6
(Lai and Hockenmaier, 2014) 84.6

TrRNTN (Bowman et al., 2015b) 76.9

Addition
no features 73.1
plus features 79.4

A-LSTM
no features 78.0
plus features 81.7

BCNN
one-conv 84.8
two-conv 85.0

ABCNN-1
one-conv 85.6
two-conv 85.8

ABCNN-2
one-conv 85.7
two-conv 85.8

ABCNN-3
one-conv 86.0∗

two-conv 86.2∗

Table 6: Results on SICK. Significant improvements over
(Lai and Hockenmaier, 2014) are marked with ∗ (test of
equal proportions, p < .05).

the ABCNN-3 is better still: a boost of 1.6 points
compared to the previous state of the art.7

Visual Analysis. Figure 4 visualizes the attention
matrices for one TE sentence pair in the ABCNN-
2 for blocks b1 (unigrams), b2 (first convolutional
layer) and b3 (second convolutional layer). Darker
shades of blue indicate stronger attention values.

In Figure 4 (top), each word corresponds to ex-
actly one row or column. We can see that words in
si with semantic equivalents in s1−i get high atten-
tion while words without semantic equivalents get
low attention, e.g., “walking” and “murals” in s0 and
“front” and “colorful” in s1. This behavior seems
reasonable for the unigram level.

Rows/columns of the attention matrix in Figure 4
(middle) correspond to phrases of length three since
filter width w = 3. High attention values generally
correlate with close semantic correspondence: the
phrase “people are” in s0 matches “several people
are” in s1; both “are walking outside” and “walking
outside the” in s0 match “are in front” in s1; “the
building that” in s0 matches “a colorful building” in
s1. More interestingly, looking at the bottom right
corner, both “on it” and “it” in s0 match “building”
in s1; this indicates that ABCNNs are able to detect
some coreference across sentences. “building” in
s1 has two places in which higher attentions appear,
one is with “it” in s0, the other is with “the building

7If we run the ABCNN-3 (two-conv) without the 24 linguis-
tic features, performance is 84.6.

89

several people are in front of a colorful building

people

are

walking

outside

the

building

that

has

several

murals

on

it

se
ve

ra
l

se
ve

ra
l p

eo
pl
e

se
ve

ra
l p

eo
pl
e

ar
e

 p
eo

pl
e

ar
e

in

ar
e

in
 fr

on
t

in
 fr

on
t o

f

fro
nt

 o
f a

of
 a

 c
ol
or

fu
l

a
co

rlo
rfu

l b
ui
ld
in
g

co
rlo

rfu
l b

ui
ld
in
g

bu
ild

in
g

people

people are

people are walking

are walking outside

walking outside the

outside the building

the building that

building that has

that has several

has several murals

several murals on

murals on it

on it

it

se
ve

ra
l

se
ve

ra
l p

eo
pl
e

se
ve

ra
l..
.a

re

se
ve

ra
l..
.in

se
ve

ra
l..
.fr

on
t

pe
op

le
...

of

ar
e.

..a

in
...

co
lo
rfu

l

fro
nt

...
bu

ild
in
g

of
...

bu
ild

in
g

a.
..b

ui
ld
in
g

people

people are

people...walking

people...outside

people...the

are...building

walking...that

outside...has

the...several

building...murals

that...on

has...it

several...it

murals...it

Figure 4: Attention visualization for TE. Top: unigrams,
b1. Middle: conv1, b2. Bottom: conv2, b3.

that” in s0. This may indicate that ABCNNs recog-
nize that “building” in s1 and “the building that” /
“it” in s0 refer to the same object. Hence, corefer-
ence resolution across sentences as well as within a
sentence both are detected. For the attention vectors
on the left and the top, we can see that attention has
focused on the key parts: “people are walking out-
side the building that” in s0, “several people are in”
and “of a colorful building” in s1.

Rows/columns of the attention matrix in Figure 4
(bottom, second layer of convolution) correspond
to phrases of length 5 since filter width w = 3 in
both convolution layers (5 = 1 + 2 ∗ (3 − 1)). We
use “. . .” to denote words in the middle if a phrase

like “several...front” has more than two words. We
can see that attention distribution in the matrix has
focused on some local regions. As granularity of
phrases is larger, it makes sense that the attention
values are smoother. But we still can find some
interesting clues: at the two ends of the main di-
agonal, higher attentions hint that the first part of
s0 matches well with the first part of s1; “several
murals on it” in s0 matches well with “of a color-
ful building” in s1, which satisfies the intuition that
these two phrases are crucial for making a decision
on TE in this case. This again shows the potential
strength of our system in figuring out which parts of
the two sentences refer to the same object. In ad-
dition, in the central part of the matrix, we can see
that the long phrase “people are walking outside the
building” in s0 matches well with the long phrase
“are in front of a colorful building” in s1.

6 Summary

We presented three mechanisms to integrate atten-
tion into CNNs for general sentence pair modeling
tasks.

Our experiments on AS, PI and TE show that
attention-based CNNs perform better than CNNs
without attention mechanisms. The ABCNN-2 gen-
erally outperforms the ABCNN-1 and the ABCNN-
3 surpasses both.

In all tasks, we did not find any big improvement
of two layers of convolution over one layer. This is
probably due to the limited size of training data. We
expect that, as larger training sets become available,
deep ABCNNs will show even better performance.

In addition, linguistic features contribute in all
three tasks: improvements by 0.0321 (MAP) and
0.0338 (MRR) for AS, improvements by 3.8 (acc)
and 2.1 (F1) for PI and an improvement by 1.6 (acc)
for TE. But our ABCNNs can still reach or surpass
state-of-the-art even without those features in AS
and TE tasks. This indicates that ABCNNs are gen-
erally strong NN systems.

Attention-based LSTMs are especially successful
in tasks with a strong generation component like ma-
chine translation (discussed in Sec. 2). CNNs have
not been used for this type of task. This is an inter-
esting area of future work for attention-based CNNs.

90

Acknowledgments

We gratefully acknowledge the support of Deutsche
Forschungsgemeinschaft (DFG): grant SCHU
2246/8-2.

We would like to thank the anonymous reviewers
for their helpful comments.

References

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu.
2015. Multiple object recognition with visual atten-
tion. In Proceedings of ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Matthew W. Bilotti, Paul Ogilvie, Jamie Callan, and Eric
Nyberg. 2007. Structured retrieval for question an-
swering. In Proceedings of SIGIR, pages 351–358.

William Blacoe and Mirella Lapata. 2012. A comparison
of vector-based representations for semantic composi-
tion. In Proceedings of EMNLP-CoNLL, pages 546–
556.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015a. A large anno-
tated corpus for learning natural language inference.
In Proceedings of EMNLP, pages 632–642.

Samuel R. Bowman, Christopher Potts, and Christo-
pher D. Manning. 2015b. Recursive neural networks
can learn logical semantics. In Proceedings of CVSC
Workshop, pages 12–21.

Jane Bromley, James W. Bentz, Léon Bottou, Isabelle
Guyon, Yann LeCun, Cliff Moore, Eduard Säckinger,
and Roopak Shah. 1993. Signature verification us-
ing A “siamese” time delay neural network. IJPRAI,
7(4):669–688.

Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu,
Jiang Wang, Zilei Wang, Yongzhen Huang, Liang
Wang, Chang Huang, Wei Xu, Deva Ramanan, and
Thomas S. Huang. 2015. Look and think twice: Cap-
turing top-down visual attention with feedback con-
volutional neural networks. In Proceedings of ICCV,
pages 2956–2964.

Ming-Wei Chang, Dan Goldwasser, Dan Roth, and Vivek
Srikumar. 2010. Discriminative learning over con-
strained latent representations. In Proceedings of
NAACL-HLT, pages 429–437.

Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan
Gao, Wei Xu, and Ram Nevatia. 2015. ABC-CNN:
An attention based convolutional neural network for
visual question answering. CoRR, abs/1511.05960.

Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio. 2014. End-to-end continuous speech
recognition using attention-based recurrent NN: First
results. In Proceedings of Deep Learning and Repre-
sentation Learning Workshop, NIPS.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition. In
Proceedings of NIPS, pages 577–585.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Pro-
ceedings of COLING, pages 350–356.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12:2121–2159.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep learn-
ing to answer selection: A study and an open task.
In Proceedings of IEEE ASRU Workshop, pages 813–
820.

Karol Gregor, Ivo Danihelka, Alex Graves,
Danilo Jimenez Rezende, and Daan Wierstra.
2015. DRAW: A recurrent neural network for
image generation. In Proceedings of ICML, pages
1462–1471.

Hua He, Kevin Gimpel, and Jimmy J. Lin. 2015. Multi-
perspective sentence similarity modeling with convo-
lutional neural networks. In Proceedings of EMNLP,
pages 1576–1586.

Michael Heilman and Noah A. Smith. 2010. Tree
edit models for recognizing textual entailments, para-
phrases, and answers to questions. In Proceedings of
NAACL-HLT, pages 1011–1019.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Seunghoon Hong, Junhyuk Oh, Honglak Lee, and Bo-
hyung Han. 2016. Learning transferrable knowl-
edge for semantic segmentation with deep convolu-
tional neural network. In Proceedings of CVPR.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Proceedings
of NIPS, pages 2042–2050.

Yangfeng Ji and Jacob Eisenstein. 2013. Discriminative
improvements to distributional sentence similarity. In
Proceedings of EMNLP, pages 891–896.

Sergio Jimenez, George Dueñas, Julia Baquero, and
Alexander Gelbukh. 2014. UNAL-NLP: Combining
soft cardinality features for semantic textual similar-
ity, relatedness and entailment. In Proceedings of Se-
mEval, pages 732–742.

91

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of ACL, pages 655–
665.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of EMNLP, pages
1746–1751.

Alice Lai and Julia Hockenmaier. 2014. Illinois-LH: A
denotational and distributional approach to semantics.
In Proceedings of SemEval, pages 329–334.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE,
pages 2278–2324.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs and
documents. In Proceedings of ACL, pages 1106–1115.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Proceedings of the ACL
Text Summarization Workshop.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of EMNLP, pages
1412–1421.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining machine translation metrics for
paraphrase identification. In Proceedings of NAACL-
HLT, pages 182–190.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zampar-
elli. 2014a. Semeval-2014 task 1: Evaluation of com-
positional distributional semantic models on full sen-
tences through semantic relatedness and textual entail-
ment. In Proceedings of SemEval, pages 1–8.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014b. A SICK cure for the evaluation of com-
positional distributional semantic models. In Proceed-
ings of LREC, pages 216–223.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their composi-
tionality. In Proceedings of NIPS, pages 3111–3119.

George A. Miller. 1995. WordNet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Ko-
ray Kavukcuoglu. 2014. Recurrent models of visual
attention. In Proceedings of NIPS, pages 2204–2212.

Dan Moldovan, Christine Clark, Sanda Harabagiu, and
Daniel Hodges. 2007. Cogex: A semantically and
contextually enriched logic prover for question an-
swering. Journal of Applied Logic, 5(1):49–69.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2004.
Mapping dependencies trees: An application to ques-
tion answering. In Proceedings of AI&Math 2004
(Special session: Intelligent Text Processing).

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about entailment with neural attention. In Pro-
ceedings of ICLR.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of EMNLP,
pages 379–389.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In Proceedings
of EMNLP-CoNLL, pages 12–21.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Proceedings of NIPS,
pages 801–809.

Ming Tan, Bing Xiang, and Bowen Zhou. 2016. LSTM-
based deep learning models for non-factoid answer se-
lection. In Proceedings of ICLR Workshop.

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang
Pang, and Xueqi Cheng. 2016. A deep architecture for
semantic matching with multiple positional sentence
representations. In Proceedings of AAAI, pages 2835–
2841.

Mengqiu Wang, Noah A. Smith, and Teruko Mitamura.
2007. What is the jeopardy model? A quasi-
synchronous grammar for QA. In Proceedings of
EMNLP-CoNLL, pages 22–32.

Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing
Zhang, Yuxin Peng, and Zheng Zhang. 2015. The
application of two-level attention models in deep con-
volutional neural network for fine-grained image clas-
sification. In Proceedings of CVPR, pages 842–850.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In Proceedings of ICML, pages 2048–2057.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of EMNLP, pages
2013–2018.

Xuchen Yao, Benjamin Van Durme, Chris Callison-
Burch, and Peter Clark. 2013a. Semi-markov phrase-
based monolingual alignment. In Proceedings of
EMNLP, pages 590–600.

Xuchen Yao, Benjamin Van Durme, and Peter Clark.
2013b. Automatic coupling of answer extraction and
information retrieval. In Proceedings of ACL, pages
159–165.

92

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and
Andrzej Pastusiak. 2013. Question answering using
enhanced lexical semantic models. In Proceedings of
ACL, pages 1744–1753.

Wenpeng Yin and Hinrich Schütze. 2015a. Convolu-
tional neural network for paraphrase identification. In
Proceedings of NAACL-HLT, pages 901–911.

Wenpeng Yin and Hinrich Schütze. 2015b. Multi-
GranCNN: An architecture for general matching of
text chunks on multiple levels of granularity. In Pro-
ceedings of ACL-IJCNLP, pages 63–73.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep learning for answer sen-
tence selection. In Proceedings of Deep Learning and
Representation Learning Workshop, NIPS.

Jiang Zhao, Tiantian Zhu, and Man Lan. 2014. ECNU:
One stone two birds: Ensemble of heterogenous mea-
sures for semantic relatedness and textual entailment.
In Proceedings of SemEval, pages 271–277.

93

94

Chapter 6

Task-Specific Attentive Pooling of
Phrase Alignments Contributes to
Sentence Matching

95

Task-Specific Attentive Pooling of Phrase Alignments
Contributes to Sentence Matching

Wenpeng Yin, Hinrich Schütze
The Center for Information and Language Processing

LMU Munich, Germany
wenpeng@cis.lmu.de

Abstract

This work studies comparatively two typ-
ical sentence matching tasks: textual en-
tailment (TE) and answer selection (AS),
observing that weaker phrase alignments
are more critical in TE, while stronger
phrase alignments deserve more attention
in AS. The key to reach this observation
lies in phrase detection, phrase represen-
tation, phrase alignment, and more im-
portantly how to connect those aligned
phrases of different matching degrees with
the final classifier.

Prior work (i) has limitations in phrase
generation and representation, or (ii) con-
ducts alignment at word and phrase lev-
els by handcrafted features or (iii) utilizes
a single framework of alignment without
considering the characteristics of specific
tasks, which limits the framework’s effec-
tiveness across tasks.

We propose an architecture based on
Gated Recurrent Unit that supports (i) rep-
resentation learning of phrases of arbi-
trary granularity and (ii) task-specific at-
tentive pooling of phrase alignments be-
tween two sentences. Experimental results
on TE and AS match our observation and
show the effectiveness of our approach.

1 Introduction

How to model a pair of sentences is a critical is-
sue in many NLP tasks, including textual entail-
ment (Marelli et al., 2014a; Bowman et al., 2015a;
Yin et al., 2016a) and answer selection (Yu et al.,
2014; Yang et al., 2015; Santos et al., 2016). A
key challenge common to these tasks is the lack
of explicit alignment annotation between the sen-
tences of the pair. Thus, inferring and assessing
the semantic relations between words and phrases
in the two sentences is a core issue.

Figure 1: Alignment examples in TE (top) and AS
(bottom). Green color: identical (subset) align-
ment; blue color: relatedness alignment; red color:
unrelated alignment. Q: the first sentence in TE or
the question in AS; C+, C−: the correct or incor-
rect counterpart in the sentence pair (Q, C).

Figure 1 shows examples of human annotated
phrase alignments. In the TE example, we try to
figure out Q entails C+ (positive) or C− (nega-
tive). As human beings, we discover the relation-
ship of two sentences by studying the alignments
between linguistic units. We see that some phrases
are kept: “are playing outdoors” (between Q and
C+), “are playing ” (between Q and C−). Some
phrases are changed into related semantics on pur-
pose: “the young boys” (Q)→ “the kids” (C+ &
C−), “the man is smiling nearby” (Q) → “near
a man with a smile” (C+) or → “an old man is
standing in the background” (C−) . We can see
that the kept parts have stronger alignments (green
color), and changed parts have weaker alignments
(blue color). Here, by “strong” / “weak” we mean
how semantically close the two aligned phrases
are. To successfully identify the relationships of
(Q, C+) or (Q, C−), studying the changed parts is
crucial. Hence, we argue that TE should pay more
attention to weaker alignments.

96

In AS, we try to figure out: does sentence C+

or sentence C− answer question Q? Roughly, the
content in candidatesC+ andC− can be classified
into aligned part (e.g., repeated or relevant parts)
and negligible part. This differs from TE, in which
it is hard to claim that some parts are negligible or
play a minor role, as TE requires to make clear
that each part can entail or be entailed. Hence, TE
is considerably sensitive to those “unseen” parts.
In contrast, AS is more tolerant of negligible parts
and less related parts. From the AS example in
Figure 1, we see that “Auburndale Florida” (Q)
can find related part “the city” (C+), and “Auburn-
dale”, “a city” (C−) ; “how big” (Q) also matches
“had a population of 12,381” (C+) very well. And
some unaligned parts exist, denoted by red color.
Hence, we argue that stronger alignments in AS
deserve more attention.

The above analysis suggests that: (i) alignments
connecting two sentences can happen between
phrases of arbitrary granularity; (ii) phrase align-
ments can have different intensities; (iii) tasks of
different properties require paying different atten-
tion to alignments of different intensities.

Alignments at word level (Yih et al., 2013) or
phrase level (Yao et al., 2013) both have been stud-
ied before. For example, Yih et al. (2013) make
use of WordNet (Miller, 1995) and Probase (Wu
et al., 2012) for identifying hyper- and hyponymy.
Yao et al. (2013) use POS tags, WordNet and para-
phrase database for alignment identification. Their
approaches rely on manual feature design and lin-
guistic resources. We develop a deep neural net-
work (DNN) to learn representations of phrases of
arbitrary lengths. As a result, alignments can be
searched in a more automatic and exhaustive way.

DNNs have been intensively investigated in
sentence pair classifications (Blacoe and Lapata,
2012; Socher et al., 2011; Yin and Schütze,
2015b), and attention mechanisms are also ap-
plied to individual tasks (Santos et al., 2016;
Rocktäschel et al., 2016; Wang and Jiang, 2016);
however, most attention-based DNNs have im-
plicit assumption that stronger alignments deserve
more attention (Yin et al., 2016a; Santos et al.,
2016; Yin et al., 2016b). Our examples in Fig-
ure 1, instead, show that this assumption does
not hold invariably. Weaker alignments in certain
tasks such as TE can be the indicator of the final
decision. Our inspiration comes from the analy-
sis of some prior work. For TE, Yin et al. (2016a)

show that considering the pairs in which overlap-
ping tokens are removed can give a boost. This
simple trick matches our motivation that weaker
alignment should be given more attention in TE.
However, Yin et al. (2016a) remove overlapping
tokens completely, potentially obscuring complex
alignment configurations. In addition, Yin et al.
(2016a) use the same attention mechanism for TE
and AS, which is less optimal based on our obser-
vations.

This motivates us in this work to introduce
DNNs with a flexible attention mechanism that
is adaptable for specific tasks. For TE, it can
make our system pay more attention to weaker
alignments; for AS, it enables our system to fo-
cus on stronger alignments. We can treat the
pre-processing in (Yin et al., 2016a) as a hard
way, and ours as a soft way, as our phrases have
more flexible lengths and the existence of overlap-
ping phrases decreases the risk of losing impor-
tant alignments. In experiments, we will show that
this attention scheme is very effective for different
tasks.

We make the following contributions. (i) We
use GRU (Gated Recurrent Unit (Cho et al., 2014))
to learn representations for phrases of arbitrary
granularity. Based on phrase representations, we
can detect phrase alignments of different intensi-
ties. (ii) We propose attentive pooling to achieve
flexible choice among alignments, depending on
the characteristics of the task. (iii) We achieve
state-of-the-art on TE task.

2 Related Work

Non-DNN for sentence pair modeling. Heil-
man and Smith (2010) describe tree edit mod-
els that generalize tree edit distance by allow-
ing operations that better account for complex re-
ordering phenomena and by learning from data
how different edits should affect the model’s de-
cisions about sentence relations. Wang and Man-
ning (2010) cope with the alignment between a
sentence pair by using a probabilistic model that
models tree-edit operations on dependency parse
trees. Their model treats alignments as structured
latent variables, and offers a principled framework
for incorporating complex linguistic features. Guo
and Diab (2012) identify the degree of sentence
similarity by modeling the missing words (words
that are not in the sentence) so as to relieve the
sparseness issue of sentence modeling. Yih et

97

al. (2013) try to improve the shallow semantic
component, lexical semantics, by formulating sen-
tence pair as a semantic matching problem with
a latent word-alignment structure as in (Chang et
al., 2010). More fine-grained word overlap and
alignment between two sentences are explored in
(Lai and Hockenmaier, 2014), in which negation,
hypernym/hyponym, synonym and antonym rela-
tions are used. Yao et al. (2013) extend word-to-
word alignment to phrase-to-phrase alignment by
a semi-Markov CRF. Such approaches often re-
quire more computational resources. In addition,
using syntactic/semantic parsing during run-time
to find the best matching between structured rep-
resentation of sentences is not trivial.

DNN for sentence pair classification. There
recently has been great interest in using DNNs for
classifying sentence pairs as they can reduce the
burden of feature engineering.

For TE, Bowman et al. (2015b) employ recur-
sive DNN to encode entailment on SICK (Marelli
et al., 2014b). Rocktäschel et al. (2016) present an
attention-based LSTM (long short-term memory,
Hochreiter and Schmidhuber (1997)) for the SNLI
corpus (Bowman et al., 2015a).

For AS, Yu et al. (2014) present a bigram
CNN (convolutional neural network (LeCun et
al., 1998)) to model question and answer candi-
dates. Yang et al. (2015) extend this method and
get state-of-the-art performance on the WikiQA
dataset. Feng et al. (2015) test various setups of a
bi-CNN architecture on an insurance domain QA
dataset. Tan et al. (2015) explore bidirectional
LSTM on the same dataset. Other sentence match-
ing tasks such as paraphrase identification (Socher
et al., 2011; Yin and Schütze, 2015a), question –
Freebase fact matching (Yin et al., 2016b) etc. are
also investigated.

Some prior work aims to solve a general sen-
tence matching problem. Hu et al. (2014) present
two CNN architectures for paraphrasing, sen-
tence completion (SC), tweet-response matching
tasks. Yin and Schütze (2015b) propose the Multi-
GranCNN architecture to model general sentence
matching based on phrase matching on multiple
levels of granularity. Wan et al. (2016) try to
match two sentences in AS and SC by multiple
sentence representations, each coming from the lo-
cal representations of two LSTMs.

Attention-based DNN for alignment. DNNs
have been successfully developed to detect align-

Figure 2: Gated Recurrent Unit

ments, e.g., in machine translation (Bahdanau et
al., 2015; Luong et al., 2015) and text reconstruc-
tion (Li et al., 2015; Rush et al., 2015). In addi-
tion, attention-based alignment is also applied in
natural language inference (e.g., Rocktäschel et al.
(2016),Wang and Jiang (2016)). However, most
of this work aligns word-by-word. As Figure 1
shows, many sentence relations can be better iden-
tified through phrase level alignments. This is one
motivation of our work.

3 Model

This section first gives a brief introduction of GRU
and how it performs phrase representation learn-
ing, then describes the different attentive poolings
for phrase alignments w.r.t TE and AS tasks.

3.1 GRU Introduction
GRU is a simplified version of LSTM. Both are
found effective in sequence modeling, as they are
order-sensitive and can capture long-range con-
text. The tradeoffs between GRU and its com-
petitor LSTM have not been fully explored yet.
According to empirical evaluations in (Chung et
al., 2014; Jozefowicz et al., 2015), there is not
a clear winner. In many tasks both architectures
yield comparable performance and tuning hyper-
parameters like layer size is probably more impor-
tant than picking the ideal architecture. GRU have
fewer parameters and thus may train a bit faster or
need less data to generalize. Hence, we use GRU,
as shown in Figure 2, to model text:

z = σ(xtU
z + st−1W

z) (1)

r = σ(xtU
r + st−1W

r) (2)

ht = tanh(xtU
h + (st−1 ◦ r)Wh) (3)

st = (1− z) ◦ ht + z ◦ st−1 (4)

x is the input sentence with token xt ∈ Rd at posi-
tion t, st ∈ Rh is the hidden state at t, supposed to

98

Figure 3: Phrase representation learning by GRU
(left), sentence reformatting (right)

encode the history x1, · · · , xt−1. z and r are two
gates. All U ∈ Rd×h,W ∈ Rh×h are parameters
in GRU.

3.2 Representation Learning for Phrases

For a general sentence s with five consecutive
words: ABCDE, with each word represented by
a word embedding of dimensionality d, we first
create four fake sentences, s1: “BCDEA”, s2:
“CDEAB”, s3: “DEABC” and s4: “EABCD”,
then put them in a matrix (Figure 3, left).

We run GRUs on each row of this matrix in
parallel. As GRU is able to encode the whole
sequence up to current position, this step gener-
ates representations for any consecutive phrases in
original sentence s. For example, the GRU hid-
den state at position “E” at coordinates (1,5) (i.e.,
1st row, 5th column) denotes the representation of
the phrase “ABCDE” which in fact is s itself, the
hidden state at “E” (2,4) denotes the representa-
tion of phrase “BCDE”, . . . , the hidden state of
“E” (5,1) denotes phrase representation of “E” it-
self. Hence, for each token, we can learn the rep-
resentations for all phrases ending with this token.
Finally, all phrases of any lengths in s can get a
representation vector. GRUs in those rows are set
to share weights so that all phrase representations
are comparable in the same space.

Now, we reformat sentence “ABCDE” into s∗ =
“(A) (B) (AB) (C) (BC) (ABC) (D) (CD) (BCD)
(ABCD) (E) (DE) (CDE) (BCDE) (ABCDE)”, as
shown by arrows in Figure 3 (right), the arrow
direction means phrase order. Each sequence in
parentheses is a phrase (we use parentheses just
for making the phrase boundaries clear). Ran-
domly taking a phrase “CDE” as an example, its
representation comes from the hidden state at “E”
(3,3) in Figure 3 (left). Shaded parts are dis-
carded. The main advantage of reformatting sen-
tence “ABCDE” into the new sentence s∗ is to cre-

ate phrase-level semantic units, but at the same
time we maintain the order information.

Hence, the sentence “how big is Auburndale
Florida” in Figure 1 will be reformatted into
“(how) (big) (how big) (is) (big is) (how big is)
(Auburndale) (is Auburndale) (big is Auburndale)
(how big is Auburndale) (Florida) (Auburndale
Florida) (is Auburndale Florida) (big is Auburn-
dale Florida) (how big is Auburndale Florida)”.
We can see that phrases are exhaustively detected
and represented.

In the experiments of this work, we explore the
phrases of maximal length 7 instead of arbitrary
lengths.

3.3 Attentive Pooling

As each sentence s∗ consists of a sequence of
phrases, and each phrase is denoted by a represen-
tation vector generated by GRU, we can compute
an alignment matrix A between two sentences s∗1
and s∗2, by comparing each two phrases, one from
s∗1 and one from s∗2. Let s∗1 and s∗2 also denote
lengths respectively, thus A ∈ Rs∗1×s∗2 . While
there are many ways of computing the entries of
A, we found that cosine works well in our setting.

The first step then is to detect the best alignment
for each phrase by leveraging A. To be concrete,
for sentence s∗1, we do row-wise max-pooling over
A as attention vector a1:

a1,i = max(A[i, :]) (5)

In a1, the entry a1,i denotes the best alignment
for ith phrase in sentence s∗1. Similarly, we can
do column-wise max-pooling to generate attention
vector a2 for sentence s∗2.

Now, the problem is that we need to pay
most attention to the phrases aligned very well or
phrases aligned badly. According to the analysis
of the two examples in Figure 1, we need to pay
more attention to weaker (resp. stronger) align-
ments in TE (resp. AS). To this end, we adopt dif-
ferent second step over attention vector ai (i =
1, 2) for TE and AS.

For TE, in which weaker alignments are sup-
posed to contribute more, we do k-min-pooling
over ai, i.e., we only keep the k phrases which
are aligned worst. For the (Q, C+) pair in TE ex-
ample of Figure 1, we expect this step is able to
put most of our attention to the phrases “the kids”,
“the young boys”, “near a man with a smile” and
“and the man is smiling nearby” as they have rela-

99

Figure 4: The whole architecture

tively weaker alignments while their relations are
the indicator of the final decision.

For AS, in which stronger alignments are sup-
posed to contribute more, we do k-max-pooling
over ai, i.e., we only keep the k phrases which are
aligned best. For the (Q, C+) pair in AS example
of Figure 1, we expect this k-max-pooling is able
to put most of our attention to the phrases “how
big” “Auburndale Florida”, “the city” and “had
a population of 12,381” as they have relatively
stronger alignments and their relations are the in-
dicator of the final decision. We keep the orig-
inal order of extracted phrases after k-min/max-
pooling.

In summary, for TE, we first do row-wise max-
pooling over alignment matrix, then do k-min-
pooling over generated alignment vector; we use
k-min-max-pooling to denote the whole process.
In contrast, we use k-max-max-pooling for AS.
We refer to this method of using two successive
min or max pooling steps as attentive pooling.

3.4 The Whole Architecture

Now, we present the whole system in Figure 4.
We take sentences s1 “ABC” and s2 “DEFG” as
illustration. Each token, i.e., A to F, in the fig-
ure is denoted by an embedding vector, hence each
sentence is represented as an order-3 tensor as in-
put (they are depicted as rectangles just for sim-
plicity). Based on tensor-style sentence input, we
have described the phrase representation learning
by GRU1 in Section 3.2 and attentive pooling in
Section 3.3.

Attentive pooling generates a new feature map
for each sentence, as shown in Figure 4 (the third
layer from the bottom), and each column repre-
sentation in the feature map denotes a key phrase
in this sentence that, based on our modeling as-
sumptions, should be a good basis for the correct
final decision. For instance, we expect such a fea-
ture map to contain representations of “the young
boys”, “outdoors” and “and the man is smiling
nearby” for the sentence Q in the TE example of
Figure 1.

Now, we do another GRU2 step for: 1) the new

100

d lr bs L2 div k

TE [256,256] .0001 1 .0006 .06 5
AS [50,50] .0001 1 .0006 .06 6

Table 1: Hyperparameters. d: dimensionality of
hidden states in GRU layers; lr: learning rate; bs:
mini-batch size; L2: L2 normalization; div: diver-
sity regularizer; k: k-min/max-pooling.

feature map of each sentence mentioned above, to
encode all the key phrases as the sentence repre-
sentation; 2) a concatenated feature map of the two
new sentence feature maps, to encode all the key
phrases in the two sentences sequentially as the
representation of the sentence pair. As GRU gen-
erates a hidden state at each position, we always
choose the last hidden state as the representation
of the sentence or sentence pair. In Figure 4 (the
fourth layer), these final GRU-generated represen-
tations for sentence s1, s2 and the sentence pair
are depicted as green columns: s1, s2 and sp re-
spectively.

As for the input of the final classifier, it can be
flexible, such as representation vectors (rep), sim-
ilarity scores between s1 and s2 (simi), and extra
linguistic features (extra). This can vary based on
the specific tasks. We give details in Section 4.

4 Experiments

We test the proposed architectures on TE and AS
benchmark datasets.

4.1 Common Setup

For both TE and AS, words are initialized by 300-
dimensional GloVe embeddings1 (Pennington et
al., 2014) and not changed during training. A
single randomly initialized embedding is created
for all unknown words by uniform sampling from
[−.01, .01]. We use ADAM (Kingma and Ba,
2015), with a first momentum coefficient of 0.9
and a second momentum coefficient of 0.999,2 L2

regularization and Diversity Regularization (Xie et
al., 2015). Table 1 shows the values of the hyper-
parameters, tuned on dev.

Classifier. Following Yin et al. (2016a), we use
three classifiers – logistic regression in DNN, lo-
gistic regression and linear SVM with default pa-
rameters3 directly on the feature vector – and re-
port performance of the best.

1nlp.stanford.edu/projects/glove/
2Standard configuration recommended by Kingma and Ba
3http://scikit-learn.org/stable/ for both.

Common Baselines. (i) Addition. We sum up
word embeddings element-wise to form sentence
representation, then concatenate two sentence rep-
resentation vectors (s01, s02) as classifier input. (ii)
A-LSTM. The pioneering attention based LSTM
system for a specific sentence pair classification
task “natural language inference” (Rocktäschel et
al., 2016). A-LSTM has the same dimension-
ality as our GRU system in terms of initialized
word representations and the hidden states. (iii)
ABCNN (Yin et al., 2016a). The state-of-the-art
system in both TE and AS.

Based on the motivation in Section 1, the main
hypothesis to be tested in experiments is: k-min-
max-pooling is superior for TE and k-max-max-
pooling is superior for AS. In addition, we would
like to determine whether the second pooling step
in attention pooling, i.e., the k-min/max-pooling,
is more effective than a “full-pooling” in which all
the generated phrases are forwarded into the next
layer.

4.2 Textual Entailment

SemEval 2014 Task 1 (Marelli et al., 2014a) evalu-
ates system predictions of textual entailment (TE)
relations on sentence pairs from the SICK dataset
(Marelli et al., 2014b). The three classes are en-
tailment, contradiction and neutral. The sizes of
SICK train, dev and test sets are 4439, 495 and
4906 pairs, respectively. We choose SICK bench-
mark dataset so that our result is directly compa-
rable with that of (Yin et al., 2016a), in which non-
overlapping text are utilized explicitly to boost the
performance. That trick inspires this work.

Following Lai and Hockenmaier (2014), we
train our final system (after fixing of hyperparame-
ters) on train and dev (4,934 pairs). Our evaluation
measure is accuracy.

4.2.1 Feature Vector

The final feature vector as input of classifier con-
tains three parts: rep, simi, extra.

Rep. Totally five vectors, three are the top sen-
tence representation s1, s2 and the top sentence
pair representation sp (shown in green in Fig-
ure 4), two are s01, s02 from Addition baseline.

Simi. Four similarity scores, cosine similarity
and euclidean distance between s1 and s2, cosine
similarity and euclidean distance between s01 and
s02. Euclidean distance ‖ · ‖ is transformed into
1/(1+ ‖ · ‖).

101

method acc
Se

m
E

va
l

To
p3

(Jimenez et al., 2014) 83.1
(Zhao et al., 2014) 83.6
(Lai and Hockenmaier, 2014) 84.6

TrRNTN (Bowman et al., 2015b) 76.9

Addition
no features 73.1
plus features 79.4

A-LSTM
no features 78.0
plus features 81.7

ABCNN (Yin et al., 2016a) 86.2

GRU
k-min-max
ablation

– rep 86.4
– simi 85.1
– extra 85.5

GRU
k-max-max-pooling 84.9
full-pooling 85.2
k-min-max-pooling 87.1∗

Table 2: Results on SICK. Significant improve-
ment over both k-max-max-pooling and full-
pooling is marked with ∗ (test of equal propor-
tions, p < .05).

Extra. We include the same 22 linguistic fea-
tures as Yin et al. (2016a). They cover 15 machine
translation metrics between the two sentences;
whether or not the two sentences contain negation
tokens like “no”, “not” etc; whether or not they
contain synonyms, hypernyms or antonyms; two
sentence lengths. See Yin et al. (2016a) for de-
tails.

4.2.2 Results
Table 2 shows that GRU with k-min-max-pooling
gets state-of-the-art performance on SICK and
significantly outperforms k-max-max-pooling and
full-pooling. Full-pooling has more phrase input
than the combination of k-max-max-pooling and
k-min-max-pooling, this might bring two prob-
lems: (i) noisy alignments increase; (ii) sentence
pair representation sp is no longer discriminative
– sp does not know its semantics comes from
phrases of s1 or s2: as different sentences have
different lengths, the boundary location separating
two sentences varies across pairs. However, this is
crucial to determine whether s1 entails s2.

ABCNN (Yin et al., 2016a) is based on
assumptions similar to k-max-max-pooling:
words/phrases with higher matching values
should contribute more in this task. However,
ABCNN gets the optimal performance by com-
bining a reformatted SICK version in which

method MAP MRR

B
as

el
in

es

CNN-Cnt 0.6520 0.6652
Addition 0.5021 0.5069
Addition-Cnt 0.5888 0.5929
A-LSTM 0.5321 0.5469
A-LSTM-Cnt 0.6388 0.6529
AP-CNN 0.6886 0.6957
ABCNN 0.6921 0.7127

G
R

U
k

-m
ax

-m
ax

ab
la

tio
n – rep 0.6913 0.6994

– simi 0.6764 0.6875
– extra 0.6802 0.6899

GRU
k-min-max-pooling 0.6674 0.6791
full-pooling 0.6693 0.6785
k-max-max-pooling 0.7124∗ 0.7237∗

Table 3: Results on WikiQA. Significant im-
provement over both k-min-max-pooling and full-
pooling is marked with ∗ (t-test, p < .05). STOA:
74.17 (MAP)/75.88 (MRR) in (Tymoshenko et al.,
2016)

overlapping tokens in two sentences are removed.
This instead hints that non-overlapping units can
do a big favor for this task, which is indeed the
superiority of our “k-min-max-pooling”.

4.3 Answer Selection

We use WikiQA4 subtask that assumes there
is at least one correct answer for a question.
This dataset consists of 20,360, 1130 and 2352
question-candidate pairs in train, dev and test, re-
spectively. Following Yang et al. (2015), we trun-
cate answers to 40 tokens and report mean av-
erage precision (MAP) and mean reciprocal rank
(MRR).

Apart from the common baselines Addition, A-
LSTM and ABCNN, we compare further with: (i)
CNN-Cnt (Yang et al., 2015): combine CNN with
two linguistic features “WordCnt” (the number
of non-stopwords in the question that also occur
in the answer) and “WgtWordCnt” (reweight the
counts by the IDF values of the question words);
(ii) AP-CNN (Santos et al., 2016).

4.3.1 Feature Vector
The final feature vector in AS has the same (rep,
simi, extra) structure as TE, except that simi con-
sists of only two cosine similarity scores, and ex-
tra consists of four entries: two sentence lengths,
WordCnt and WgtWordCnt.

4http://aka.ms/WikiQA (Yang et al., 2015)

102

th
e

yo
un

g

th
e

yo
un

g
bo

ys

yo
un

g
bo

ys

th
e.

..b
oy

s
ar

e

bo
ys

 a
re

yo
un

g.
..a

re

th
e.

..a
re

pl
ay

in
g

ar
e

pl
ay

in
g

bo
ys

...
pl
ay

in
g

yo
un

g.
..p

la
yi
ng

th
e.

..p
la
yi
ng

ou
td

oo
rs

pl
ay

in
g

ou
td

oo
rs

ar
e.

..o
ut

do
or

s

bo
ys

...
ou

td
oo

rs

yo
un

g.
..o

ut
do

or
s

th
e.

..o
ut

do
or

s
an

d

ou
td

oo
rs

 a
nd

pl
ay

in
g.

..a
nd

ar
e.

..a
nd

bo
ys

...
an

d

yo
un

g.
..a

nd

th
e.

..a
nd th

e

an
d

th
e

ou
td

oo
rs

...
th

e

pl
ay

in
g.

..t
he

ar
e.

..t
he

bo
ys

...
th

e

yo
un

g.
..t

he

th
e.

..t
he

m
an

th
e

m
an

an
d.

..m
an

ou
td

oo
rs

...
m

an

pl
ay

in
g.

..m
an

ar
e.

..m
an

bo
ys

...
m

an

yo
un

g.
..m

an

th
e.

..m
an is

m
an

 is

th
e.

..i
s

an
d.

..i
s

ou
td

oo
rs

...
is

pl
ay

in
g.

..i
s

ar
e.

..i
s

bo
ys

...
is

yo
un

g.
..i
s

th
e.

..i
s

sm
ilin

g

is
 s
m

ilin
g

m
an

...
sm

ilin
g

th
e.

..s
m

ilin
g

an
d.

..s
m

ilin
g

ou
td

oo
rs

...
sm

ilin
g

pl
ay

in
g.

..s
m

ilin
g

ar
e.

..s
m

ilin
g

bo
ys

...
sm

ilin
g

yo
un

g.
..s

m
ilin

g

th
e.

..s
m

ilin
g

ne
ar

by

sm
ilin

g
ne

ar
by

is
...

ne
ar

by

m
an

...
ne

ar
by

th
e.

..n
ea

rb
y

an
d.

..n
ea

rb
y

ou
td

oo
rs

...
ne

ar
by

pl
ay

in
g.

..n
ea

rb
y

ar
e.

..n
ea

rb
y

bo
ys

...
ne

ar
by

yo
un

g.
..n

ea
rb

y

th
e.

..n
ea

rb
y

a
tt
e
n
ti
o
n
 v

a
lu

e
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Attention distribution for phrases in “Q” of TE example in Figure 1

th
e

ki
ds

th
e

ki
ds ar

e

ki
ds

 a
re

th
e.

..a
re

pl
ay

in
g

ar
e

pl
ay

in
g

ki
ds

...
pl
ay

in
g

th
e.

..p
la
yi
ng

ou
td

oo
rs

pl
ay

in
g

ou
td

oo
rs

ar
e.

..o
ut

do
or

s

ki
ds

...
ou

td
oo

rs

th
e.

..o
ut

do
or

s
ne

ar

ou
td

oo
rs

 n
ea

r

pl
ay

in
g.

..n
ea

r

ar
e.

..n
ea

r

ki
ds

...
ne

ar

th
e.

..n
ea

r a

ne
ar

 a

ou
td

oo
rs

...
a

pl
ay

in
g.

..a

ar
e.

..a

ki
ds

...
a

th
e.

..a
m

an

a
m

an

ne
ar

...
m

an

ou
td

oo
rs

...
m

an

pl
ay

in
g.

..m
an

ar
e.

..m
an

ki
ds

...
m

an

th
e.

..m
an

w
ith

m
an

 w
ith

a.
..w

ith

ne
ar

...
w
ith

ou
td

oo
rs

...
w
ith

pl
ay

in
g.

..w
ith

ar
e.

..w
ith

ki
ds

...
w
ith

th
e.

..w
ith a

w
ith

 a

m
an

...
a

a.
..a

ne
ar

...
a

ou
td

oo
rs

...
a

pl
ay

in
g.

..a

ar
e.

..a

ki
ds

...
a

th
e.

..a

sm
ile

a
sm

ile

w
ith

...
sm

ile

m
an

...
sm

ile

a.
..s

m
ile

ne
ar

...
sm

ile

ou
td

oo
rs

...
sm

ile

pl
ay

in
g.

..s
m

ile

ar
e.

..s
m

ile

ki
ds

...
sm

ile

th
e.

..s
m

ile

a
tt
e
n
ti
o
n
 v

a
lu

e
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Attention distribution for phrases in “C+” of TE example in Figure 1

Figure 5: Attention Visualization

4.3.2 Results
Table 3 shows that GRU with k-max-max-pooling
is significantly better than its k-min-max-pooling
and full-pooling versions. GRU with k-max-max-
pooling has similar assumption with ABCNN (Yin
et al., 2016a) and AP-CNN (Santos et al., 2016):
units with higher matching scores are supposed to
contribute more in this task. Our improvement

can be due to that: i) our linguistic units cover
more exhaustive phrases, it enables alignments in
a wider range; ii) we have two max-pooling steps
in our attention pooling, especially the second one
is able to remove some noisily aligned phrases.
Both ABCNN and AP-CNN are based on convo-
lutional layers, the phrase detection is constrained
by filter sizes. Even though ABCNN tries a second

103

CNN layer to detect bigger-granular phrases, their
phrases in different CNN layers cannot be aligned
directly as they are in different spaces. GRU in
this work uses the same weights to learn repre-
sentations of arbitrary-granular phrases, hence, all
phrases can share the representations in the same
space and can be compared directly.

4.4 Visual Analysis

In this subsection, we visualize the attention dis-
tributions over phrases, i.e., ai in Equation 5, of
example sentences in Figure 1 (for space limit,
we only show this for TE example). Figures 5(a)-
5(b) respectively show the attention values of each
phrase in (Q, C+) pair in TE example in Figure 1.
We can find that k-min-pooling over this distribu-
tions can indeed detect some key phrases that are
supposed to determine the pair relations. Taking
Figure 5(a) as an example, phrases “young boys”,
phrases ending with “and”, phrases “smiling”, “is
smiling”, “nearby” and a couple of phrases ending
with “nearby” have lowest attention values. Ac-
cording to our k-min-pooling step, these phrases
will be detected as key phrases. Considering fur-
ther the Figure 5(b), phrases “kids”, phrases end-
ing with “near”, and a couple of phrases ending
with “smile” are detected as key phrases.

If we look at the key phrases in both sen-
tences, we can find that the discovering of those
key phrases matches our analysis in Section 1 for
TE example: “kids” corresponds to “young boys”,
“smiling nearby” corresponds to “near...smile”.

Another interesting phenomenon is that, taking
Figure 5(b) as example, even though “are play-
ing outdoors” can be well aligned as it appears in
both sentences, nevertheless the visualization fig-
ures show that the attention values of “are play-
ing outdoors and” in Q and “are playing outdoors
near” drop dramatically. This hints that our model
can get rid of some surface matching, as the key
token “and” or “near” makes the semantics of “are
playing outdoors and” and “are playing outdoors
near” be pretty different with their sub-phrase “are
playing outdoors”. This is important as “and” or
“near” is crucial unit to connect the following key
phrases “smiling nearby” in Q or “a smile” in C+.
If we connect those key phrases sequentially as a
new fake sentence, as we did in attentive pooling
layer of Figure 4, we can see that the fake sentence
roughly “reconstructs” the meaning of the original
sentence while it is composed of phrase-level se-

k

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
a

n
c
e

 o
n

 d
e

v
 (

%
)

55

60

65

70

75

80

85

90

WikiQA (MAP)

SICK (acc)

Figure 6: Effects of pooling size k (cf. Table Ta-
ble 1)

mantic units now.

4.5 Effects of Pooling Size k

The key idea of the proposed method is achieved
by the k-min/max pooling. We show how the hy-
perparameter k influences the results by tuning on
the dev sets.

In Figure 6, we can see the performance trends
of changing k value between 1 and 10 in the two
tasks. Roughly k > 4 can give competitive results,
but larger values bring performance drop.

5 Conclusion

In this work, we investigate the contribution of dif-
ferent intensities of phrase alignments for differ-
ent tasks. We argue that it is not true that stronger
alignments always matter more. We found TE task
prefers weaker alignments while AS task prefers
stronger alignments. We proposed flexible atten-
tive poolings in GRU system to satisfy the differ-
ent requirements of different tasks. Experimental
results show the soundness of our argument and
the effectiveness of our attention pooling based
GRU systems.

As future work, we plan to investigate phrase
representation learning in context and how to con-
duct the attentive pooling automatically regardless
of the categories of the tasks.

Acknowledgments

We gratefully acknowledge the support of
Deutsche Forschungsgemeinschaft for this work
(SCHU 2246/8-2).

104

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

William Blacoe and Mirella Lapata. 2012. A com-
parison of vector-based representations for seman-
tic composition. In Proceedings of EMNLP-CoNLL,
pages 546–556.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015a. A large anno-
tated corpus for learning natural language inference.
In Proceedings of EMNLP, pages 632–642.

Samuel R Bowman, Christopher Potts, and Christo-
pher D Manning. 2015b. Recursive neural net-
works can learn logical semantics. In Proceedings
of CVSC workshop, pages 12–21.

Ming-Wei Chang, Dan Goldwasser, Dan Roth, and
Vivek Srikumar. 2010. Discriminative learning over
constrained latent representations. In Proceedings
of NAACL-HLT, pages 429–437.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Minwei Feng, Bing Xiang, Michael R Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep
learning to answer selection: A study and an open
task. Proceedings of IEEE ASRU Workshop.

Weiwei Guo and Mona Diab. 2012. Modeling sen-
tences in the latent space. In Proceedings of ACL,
pages 864–872.

Michael Heilman and Noah A Smith. 2010. Tree edit
models for recognizing textual entailments, para-
phrases, and answers to questions. In Proceedings
of NAACL-HLT, pages 1011–1019.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences. In
Proceedings of NIPS, pages 2042–2050.

Sergio Jimenez, George Duenas, Julia Baquero,
Alexander Gelbukh, Av Juan Dios Bátiz, and
Av Mendizábal. 2014. Unal-nlp: Combining soft
cardinality features for semantic textual similarity,
relatedness and entailment. SemEval, pages 732–
742.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In Proceedings of ICML,
pages 2342–2350.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Alice Lai and Julia Hockenmaier. 2014. Illinois-lh: A
denotational and distributional approach to seman-
tics. SemEval, pages 329–334.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. In Proceedings of ACL, pages
1106–1115.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
EMNLP, pages 1412–1421.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014a. Semeval-2014 task 1: Evaluation
of compositional distributional semantic models on
full sentences through semantic relatedness and tex-
tual entailment. SemEval, pages 1–8.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014b. A sick cure for the evaluation of
compositional distributional semantic models. In
Proceedings of LREC, pages 216–223.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of EMNLP, pages
1532–1543.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In Proceedings of ICLR.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of EMNLP,
pages 379–389.

Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen
Zhou. 2016. Attentive pooling networks. arXiv
preprint arXiv:1602.03609.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Proceedings of NIPS,
pages 801–809.

105

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. Lstm-
based deep learning models for non-factoid answer
selection. arXiv preprint arXiv:1511.04108.

Kateryna Tymoshenko, Daniele Bonadiman, and
Alessandro Moschitti. 2016. Convolutional neural
networks vs. convolution kernels: Feature engineer-
ing for answer sentence reranking. In Proceedings
of NAACL-HLT, pages 1268–1278.

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu,
Liang Pang, and Xueqi Cheng. 2016. A deep ar-
chitecture for semantic matching with multiple po-
sitional sentence representations. In Proceedings of
AAAI, pages 2835–2841.

Shuohang Wang and Jing Jiang. 2016. Learning natu-
ral language inference with LSTM. In Proceedings
of NAACL, pages 1442–1451.

Mengqiu Wang and Christopher D Manning. 2010.
Probabilistic tree-edit models with structured latent
variables for textual entailment and question answer-
ing. In Proceedings of Coling, pages 1164–1172.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q
Zhu. 2012. Probase: A probabilistic taxonomy
for text understanding. In Proceedings of SIGMOD,
pages 481–492.

Pengtao Xie, Yuntian Deng, and Eric Xing. 2015. On
the generalization error bounds of neural networks
under diversity-inducing mutual angular regulariza-
tion. arXiv preprint arXiv:1511.07110.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of EMNLP, pages
2013–2018.

Xuchen Yao, Benjamin Van Durme, Chris Callison-
Burch, and Peter Clark. 2013. Semi-markov phrase-
based monolingual alignment. In Proceedings of
EMNLP, pages 590–600.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and
Andrzej Pastusiak. 2013. Question answering using
enhanced lexical semantic models. In Proceedings
of ACL, pages 1744–1753.

Wenpeng Yin and Hinrich Schütze. 2015a. Convolu-
tional neural network for paraphrase identification.
In Proceedings of NAACL, pages 901–911, May–
June.

Wenpeng Yin and Hinrich Schütze. 2015b. Multi-
grancnn: An architecture for general matching of
text chunks on multiple levels of granularity. In Pro-
ceedings of ACL-IJCNLP, pages 63–73.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2016a. ABCNN: Attention-based
convolutional neural network for modeling sentence
pairs. TACL, 4:259–272.

Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, and
Hinrich Schütze. 2016b. Simple question answer-
ing by attentive convolutional neural network. In
Proceedings of COLING, pages 1746–1756.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep learning for answer
sentence selection. NIPS Deep Learning Workshop.

Jiang Zhao, Tian Tian Zhu, and Man Lan. 2014. Ecnu:
One stone two birds: Ensemble of heterogenous
measures for semantic relatedness and textual entail-
ment. SemEval, pages 271–277.

106

Chapter 7

Simple Question Answering by
Attentive Convolutional Neural
Network

107

Simple Question Answering by Attentive Convolutional Neural Network∗

Wenpeng Yin∗, Mo Yu†, Bing Xiang†,
∗Center for Information and Language Processing

LMU Munich, Germany
wenpeng@cis.lmu.de

Bowen Zhou†, Hinrich Schütze∗
†IBM Watson

Yorktown Heights, NY, USA
{yum,bingxia,zhou}@us.ibm.com

Abstract

This work focuses on answering single-relation factoid questions over Freebase. Each question
can acquire the answer from a single fact of form (subject, predicate, object) in Freebase. This
task, simple question answering (SimpleQA), can be addressed via a two-step pipeline: entity
linking and fact selection. In fact selection, we match the subject entity in a fact candidate with
the entity mention in the question by a character-level convolutional neural network (char-CNN),
and match the predicate in that fact with the question by a word-level CNN (word-CNN). This
work makes two main contributions. (i) A simple and effective entity linker over Freebase is
proposed. Our entity linker outperforms the state-of-the-art entity linker over SimpleQA task. 1

(ii) A novel attentive maxpooling is stacked over word-CNN, so that the predicate representation
can be matched with the predicate-focused question representation more effectively. Experiments
show that our system sets new state-of-the-art in this task.

1 Introduction

Factoid question answering (QA) over knowledge bases such as Freebase (Bollacker et al., 2008) has
been intensively studied recently (e.g., Bordes et al. (2014), Yao et al. (2014), Bast and Haussmann
(2015), Yih et al. (2015), Xu et al. (2016)). Answering a question can require reference to multiple related
facts in Freebase or reference to a single fact. This work studies simple question answering (SimpleQA)
based on the SimpleQuestions benchmark (Bordes et al., 2015) in which answering a question does not
require reasoning over multiple facts. Single-relation factual questions are the most common type of
question observed in various community QA sites (Fader et al., 2013) and in search query logs. Even
though this task is called “simple”, it is in reality not simple at all and far from solved.

In SimpleQA, a question, such as “what’s the hometown of Obama?”, asks a single and direct topic of
an entity. In this example, the entity is “Obama” and the topic is hometown. So our task is reduced to
finding one fact (subject, predicate, object) in Freebase that answers the question, which roughly means
the subject and predicate are the best matches for the topical entity “Obama” and for the topic description
“what’s the hometown of”, respectively. Thus, we aim to design a method that picks a fact from Freebase,
so that this fact matches the question best. This procedure resembles answer selection (Yu et al., 2014)
in which a system, given a question, is asked to choose the best answer from a list of candidates. In this
work, we formulate the SimpleQA task as a fact selection problem and the key issue lies in the system
design for how to match a fact candidate to the question.

The first obstacle is that Freebase has an overwhelming number of facts. A common and effective way
is to first conduct entity linking of a question over Freebase, so that only a small subset of facts remain
as candidates. Prior work achieves entity linking by searching word n-grams of a question among all
entity names (Bordes et al., 2015; Golub and He, 2016). Then, facts whose subject entities match those
n-grams are kept. Our first contribution in this work is to present a simple while effective entity linker

∗This work was conducted during the first author’s internship at IBM Watson Group.
1We release our entity linking results at: https://github.com/Gorov/SimpleQuestions-EntityLinking

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

108

to this task. Our entity linker first uses each word of a question (or of an entity mention in the question)
to search in the entity vocabulary, all entities are kept if their names contain one of the query words.
Then, we design three simple factors to give a raw ranking score for each entity candidate: (i) the ratio
of words in the entity name that are covered by the question; (ii) the ratio of words in the question that
are covered by the entity name; (iii) the position of the entity mention in the question. We choose top-N
ranked entities as candidates. Our entity linker does not consider the semantics or topic of an entity; it
considers only the string surface. Nevertheless, experiments show that these three factors are the basis
for a top-performing entity linker for SimpleQA.

Based on entity linking results, we consider each fact as a fact candidate that has one of the entity
candidates as subject. Then our system solves the task of fact selection, i.e., matching the question with
each fact candidate and picking the best one. Our system is built based on two observations. (i) Surface-
form match between a subject entity and its mention in the question provides more straight-forward
and effective clue than their semantic match. For example, “Barack Obama” matches with “Obama”
in surface-form, which acts as a fundamental indicator that the corresponding fact and the question are
possibly about the same “Obama”. (ii) Predicate in a fact is a paraphrase of the question’s pattern where
we define the pattern to be the topic asked by the question about the entity, and represent it as the question
in which the entity mention has been replaced by a special symbol. Often the predicate corresponds to a
keyword or a rephrased token of the pattern, this means we need to create a flexible model to handle this
relationship.

These observations motivate us to include two kinds of convolutional neural networks (CNN, LeCun
et al. (1998)) in our deep learning system. (i) A character-level CNN (char-CNN) that models the match
between an Freebase entity and its mention in the question on surface-form. We consider CNN over
character-level rather than the commonly-used word-level, so that the generated representation is more
robust even in the presence of typos, spaces and other character violations. (ii) A word-level CNN (word-
CNN) with attentive maxpooling that learns the match of the Freebase predicate with the question’s
pattern. A Freebase predicate is a predefined relation, mostly consisting of a few words: “place of birth”,
“nationality”, “author editor” etc. In contrast, a pattern is highly variable in length and word choice, i.e.,
the subsequence of the question that represents the predicate in a question can take many different forms.
Convolution-maxpooling slides a window over the input and identifies the best matching subsequence
for a task, using a number of filters that support flexible matching. Thus, convolution-maxpooling is an
appropriate method for finding the pattern subsequence that best matches the predicate description. We
add attention to this basic operation of convolution-maxpooling. Attentions are guided by the predicate
over all n-gram phrases in the pattern, finally system pools phrase features by considering the feature
values as well as the attentions towards those features. Phrases more similar to the predicate, i.e., with
higher attention values, will be selected with higher probability than other phrases to represent the
pattern.2

Our overall approach is for the entity linker to identify top-N entity candidates for a question. All
facts that contain one of these entities as subject are then the fact search space for this question. Char-
CNN and word-CNN decompose each question-fact match into an entity-mention surface-form match
and a predicate-pattern semantic match. Our approach has a simple architecture, but it outperforms the
state-of-the-art, a system that has a much more complicated structure.

2 Related Work

As mentioned in Section 1, factoid QA against Freebase can be categorized into single-relation QA and
multi-relation QA. Much work has been done on multi-relation QA in the past decade, especially after
the release of benchmark WebQuestions (Berant et al., 2013). Most state-of-the-art approaches (Berant
et al., 2013; Yahya et al., 2013; Yao and Van Durme, 2014; Yih et al., 2015) are based on semantic
parsing, where a question is mapped to its formal meaning representation (e.g., logical form) and then
translated to a knowledge base (KB) query. The answers to the question can then be retrieved simply

2Surface-form entity linking has limitations in candidate collection as some entities have the same names. We tried another
word-CNN to match the pattern to the entity description provided by Freebase, but no improvement is observed.

109

by executing the query. Other approaches retrieve a set of candidate answers from KB using relation
extraction (Yao and Van Durme, 2014; Yih et al., 2014; Yao, 2015; Bast and Haussmann, 2015) or
distributed representations (Bordes et al., 2014; Dong et al., 2015; Xu et al., 2016). Our method in this
work explores CNN to learn distributed representations for Freebase facts and questions.

SimpleQA was first investigated in (Fader et al., 2013) through PARALEX dataset against knowledge
base Reverb (Fader et al., 2011). Yih et al. (2014) also investigate PARALEX by a system with some
similarity to ours – they employ CNNs to match entity-mention and predicate-pattern. Our model differs
in two-fold. (i) They use the same CNN architecture based on a word-hashing technique (Huang et
al., 2013) for both entity-mention and predicate-pattern matches. Each word is first preprocessed into a
count vector of character-trigram vocabulary, then forwarded into the CNN as input. We treat entities and
mentions as character sequences. Our char-CNN for entity-mention match is more end-to-end without
data preprocessing. (ii) We introduce attentive maxpooling for better predicate-pattern match.

The latest benchmark SimpleQuestions in SimpleQA is introduced by Bordes et al. (2015). Bordes
et al. (2015) tackle this problem by an embedding-based QA system developed under the framework of
Memory Networks (Weston et al., 2015; Sukhbaatar et al., 2015). The setting of the SimpleQA corre-
sponds to the elementary operation of performing a single lookup in the memory. They investigate the
performance of training on the combination of SimpleQuestions, WebQuestions and Reverb training sets.
Golub and He (2016) propose a character-level attention-based encoder-decoder framework to encode the
question and subsequently decode into (subject, predicate) tuple. Our model in this work is much simpler
than these prior systems. Dai et al. (2016) combine a unified conditional probabilistic framework with
deep recurrent neural networks and neural embeddings to get state-of-the-art performance.

Treating SimpleQA as fact selection is inspired by work on answer selection (e.g., Yu et al. (2014),
Yin et al. (2016b), Santos et al. (2016)) that looks for the correct answer(s) from some candidates for a
given question. The answer candidates in those tasks are raw text, not structured information as facts in
Freebase are. We are also inspired by work that generates natural language questions given knowledge
graph facts (Seyler et al., 2015; Serban et al., 2016). It hints that there exists a kind of match between
natural language questions and FB facts.

3 Task Definition and Data Introduction

We first describe the Freebase (Bollacker et al., 2008) and SimpleQuestions task (Berant et al., 2013).
Freebase is a structured knowledge base in which entities are connected by predefined predicates or

“relations”. All predicates are directional, connecting from the subject to the object. A triple (subject,
predicate, object), denoted as (h, p, t), describes a fact; e.g., (U.S. Route 2, major cities, Kalispell) refers
to the fact that U.S. Route 2 runs through the city of Kalispell.

SimpleQuestions benchmark, a typical SimpleQA task, provides a set of single-relation questions;
each question is accompanied by a ground truth fact. The object entity in the fact is the answer by default.
The dataset is split into train (75,910), dev (10,845) and test (21,687) sets. This benchmark also provides
two subsets of Freebase: FB2M (2,150,604 entities, 6,701 predicates, 14,180,937 atomic facts), FB5M
(4,904,397 entities, 7,523 predicates, 22,441,880 atomic facts). While single-relation questions are easier
to handle than questions with more complex and multiple relations, single-relation question answering
is still far from being solved. Even in this restricted domain there are a large number of paraphrases of
the same question. Thus, the problem of mapping from a question to a particular predicate and entity in
Freebase is hard.

The task assumes that single-relation questions can be answered by querying a knowledge base such
as Freebase with a single subject and predicate argument. Hence, only the tuple (h, p) is used to match
the question. The evaluation metric is accuracy. Only a fact that matches the ground truth in both subject
and predicate is counted as correct.

4 Entity Linking

Given a question, the entity linker provides a set of top-N entity candidates. The input of our deep
learning model are (subject, predicate) and (mention, pattern) pairs. Thus, given a question, two problems

110

we have to solve are (i) identifying candidate entities in Freebase that the question refers to and (ii)
identifying the span (i.e., mention) in the question that refers to the entity. Each problem can be handled
before the other, which results in two entity linkers. (i) Passive Entity Linker: First search for entity
candidates by all question words, then use returned entities to guide the mention detection; (ii) Active
Entity Linker: First identify the entity mention in the question, then use the mention span to search for
entity candidates. We now introduce them in detail.

Passive Entity Linker. We perform entity linking by deriving the longest consecutive common subse-
quence (LCCS) between a question and entity candidates and refer to it as σ. Given a question q and all
entity names from Freebase, we perform the following three steps.

(i) Lowercase/tokenize entity names and question
(ii) Use each component word of q to retrieve entities whose names contain this word. We refer to the

set of all these entities as Ce.
(iii) For each entity candidate e in Ce, compute its LCCS σ with the question q. Let p be the position

of the last token of σ in q. Compute a = |σ|/|q|, b = |σ|/|e| and c = p/|q| where | · | is length in words.
Finally, entity candidate e is scored by the weighted sum se = αa + βb + (1 − α − β)c. Parameters α
and β are tuned on dev. Top-N ranked entities are kept for each question.

Discussion. Factor a = |σ|/|q| means we prefer candidates that cover more consecutive words of the
question. Factor b = |σ|/|e| means that we prefer the candidates that cover more consecutive words of
the entity. Factor c = p/|q| means that we prefer candidates that appear close to the end of the question;
this is based on the observation that most entity mentions are far from the beginning of the question.
Despite the simplicity of this passive entity linker, it outperforms other state-of-the-art entity linkers of
this SimpleQuestions task by a big margin. Besides, this entity linker is unsupervised and runs fast. We
will show its promise and investigate the individual contributions of the three factors in experiments.

Each question q is provided top-N entity candidates from Freebase by entity linker. Then for mention
detection, we first compute the LCCS σ on word level between q and entity e. If the entity is longer
than σ and has l (resp. r) words on the left (resp. right) of σ, then we extend σ in the question by l left
(resp. r right) words and select this subsequence as the candidate mention. For example, entity “U.S.
Route 2” and question “what major cities does us route 2 run through” have LCCS σ “route 2”. The FB
entity “U.S. Route 2” has one extra word “u.s.” on the left of σ, so we extend σ by one left word and the
candidate mention is “us route 2”. We do this so that the mention has the same word size as the entity
string.3

In rare cases that the LCCS on the word level has length 0, we treat both entity string and question as
character sequence, then compute LCCS σ on character level. Finally, mention is formed by expanding
σ on both sides up to a space or the text boundary.

For each question, this approach to mention detection usually produces more than one (mention, pat-
tern) pair.

Active Entity Linker. In the training set of SimpleQuestions, the topic entity of each question is la-
beled. Active entity linker is then achieved by detecting mention in a question by sequential labeling.
The key idea is to train a model to predict the text span of the topic entity which can match the gold
entity. This is inspired by some prior work. For example, Dai et al. (2016) map the gold entity back to
the text to label the text span for each question and then train a BiGRU-CRF model to do the mention
detection. Golub and He (2016) propose a generative model which generates the topic entity based on
character-level text spans with soft attention scores. Similar to the work (Dai et al., 2016), we trained a
BiLSTM-CRF model to detect the entity mentions.

This approach to mention detection produces only one (mention, pattern) pair for each question. Then,
based on this detected mention, we use each word of it to search for the entity candidates via the three
steps in “Passive Entity Linker”.

We presented two styles of mention detection in questions – passive or active. In passive mention
detection, the mention of a question depends on the entity candidates returned by an entity linker. Due

3Only using LCCS as mention performed worse.

111

(a) The whole system. Question: what major cities does us route 2 run through; Tuple: (“u.s.
route 2”, “major cities”)

(b) Convolution for rep-
resentation learning

Figure 1: CNN System for SimpleQA

to the different furface-forms of entity candidates, a question can be detected in different spans as men-
tions. Instead, active mention detection is conducted in a similar way with Name Entity Recognition.
Hence, the mention does not depend on the returned entity candidates, a single-relation question has only
one mention. Our experiments will show that active entity linker bring better coverage of ground truth
entities, nevertheless this method requires the availability of entity-labeled questions as training data.

After mention detection, we then convert the question into the tuple (mention, pattern) where pattern
is created by replacing the mention in the question with <e>.

5 Fact Selection

Entity linker provides top-N entity candidates for each question. All facts having those entities as subject
form a fact pool, then we build the system to seek the best.

Our whole system is depicted in Figure 1(a). It consists of match from two aspects: (i) a CNN on
character level (char-CNN) to detect the similarity of entity string and the mention string in surface-form
(the left column); (ii) a CNN with attentive maxpooling (AMP) in word level (word-AMPCNN) to detect
if the predicate is a paraphrase of the pattern.

Word-AMPCNN is motivated by the observation that the FB predicate name is short and fixed whereas
the corresponding pattern in the question is highly variable in length and word choice. Our hypothesis
is that the predicate-pattern match is best done based on keywords in the pattern (and perhaps humans
also do something similar) and that the CNN therefore should identify helpful keywords. Traditional
maxpooling treats all n-grams equally. In this work, we propose attentive maxpooling (AMP). AMP
gives higher weights to n-grams that better match the predicate. As a result, the predicate-pattern match
computed by the CNN is more likely to be correct.

Next, we introduce the CNN combined with maxpooling for both char-CNN and word-CNN, then
present AMPCNN. Figure 1(b) shows the common framework of char-CNN and word-CNN; only input
granularity and maxpooling are different.

112

Figure 2: Traditional maxpooling vs. Attentive maxpooling

5.1 Framework of CNN-Maxpooling

Both char-CNN and word-CNN have two weight-sharing CNNs, as they model two pieces of text. In
what follows, we use “entry” as a general term for both character and word.

The input layer is a sequence of entries of length swhere each entry is represented by a d-dimensional
randomly initialized embedding; thus the sequence is represented as a feature map of dimensionality
d× s. Figure 1(b) shows the input layer as the lower rectangle with multiple columns.

Convolution Layer is used for representation learning from sliding n-grams. For an input se-
quence with s entries: v1, v2, . . . , vs, let vector ci ∈ Rnd be the concatenated embeddings of n entries
vi−n+1, . . . , vi where n is the filter width and 0 < i < s + n. Embeddings for vi, i < 1 or i > s,
are zero padded. We then generate the representation pi ∈ Rd for the n-gram vi−n+1, . . . , vi using the
convolution weights W ∈ Rd×nd:

pi = tanh(W · ci + b) (1)

where bias b ∈ Rd.
Maxpooling. All n-gram representations pi (i = 1 · · · s+n−1) are used to generate the representation

of input sequence s by maxpooling: sj = max(pj1,pj2, · · ·) (j = 1, · · · , d).

113

5.2 AMPCNN: CNN-Attentive-Maxpooling

Figure 2 shows TMP (Traditional MaxPooling) and AMP (Attentive MaxPooling) as we apply them to
SimpleQA. Recall that we use standard CNNs to produce (i) the predicate representation vp (see Fig-
ure 1(a)) and (ii) a feature map of the pattern, i.e., a matrix with columns denoting n-gram representations
(shown in Figure 1(b), the matrix below “row-wise (attentive) maxpooling”). In Figure 2, we refer to the
feature map as Fpattern and to the predicate representation as vp.

TMPCNN, i.e., traditional maxpooling, outputs the vector shown as vTMP; the same vTMP is produced
for different vp. The basic idea of AMPCNN is to let the predicate vp bias the selection and weighting of
subsequences of the question to compute the representation of the pattern. The first step in doing that is
to compute similarity scores s between the predicate representation vp and each column vector of Fpattern:

si = cos(vp,Fpattern[:, i]) (2)

These cosines are then transformed into decay values by setting negative values to 0 (negatively corre-
lated column vectors are likely to be unrelated to the predicate) and normalizing the positive values by
dividing them by the largest cosine (.97 in this case), so that the largest decay value is 1.0. This is shown
as “decay” and s in the figure. Finally, we compute the reweighted feature map Fdecay as follows:

Fdecay[:, i] = Fpattern[:, i] ∗ si (3)

In Fdecay, the matrix with four green values, we can locate the maximal values in each dimension.
Notice that they are not the true features by CNN any more, instead, they convey the original feature
values as well as their importance to be considered. In Fdecay, we can see that the maximal values in
each dimension mostly come from the first column and the third column which have relatively higher
similarity scores 0.97 and 0.76 respectively to the predicate. We use the coordinates of those maximal
values to retrieve features from Fpattern as a final pattern representation vAMP, the blue column vector4.

In summary, TMP has no notion of context. The novelty of AMP is that it is guided by attentions from
the context, in this case attentions from the predicate. In contrast to TMP, we expect AMP to mainly
extract features that come from n-grams that are related to the predicate.

6 Experiments

6.1 Training Setup

Our fact pool consists of all facts whose subject entity is in the top-N entity candidates. For train, we
sample 99 negative facts for each ground truth fact; for dev and test, all fact candidates are kept.

Figure 1(a) shows two-way match between a tuple t and a question q: entity-mention match by char-
CNN (score me), predicate-pattern match by word-AMPCNN (score mr). The overall ranking score of
the pair is st(q, t) = me +mr + se where se is the entity ranking score in entity linking phase.

Our objective is to minimize ranking loss:

l(q, t+, t−) = max(0, λ+ st(q, t
−)− st(q, t+)) (4)

where λ is a constant.
We build word and character vocabularies on train. OOV words and characters from dev and test are

mapped to an OOV index. Then, words (resp. characters) are randomly initialized into dword-dimensional
(resp. dchar-dimensional) embeddings. The output dimensionality in convolution, i.e., Equation 1, is the
same as input dimensionality. We employ Adagrad (Duchi et al., 2011), L2 regularization and diversity
regularization (Xie et al., 2015). Hyperparameters (Table 1) are tuned on dev. For active mention de-
tection, we trained a two-layer BiLSTM followed by a CRF, the hidden layer sizes of both BiLSTM are
200.

4We tried max-pooling over Fdecay as vAMP directly, but much worse performance was observed.

114

dword dchar lr L2 div k λ

500 100 0.1 .0003 .03 [3,3] 0.5

Table 1: Hyperparameters. dword/dchar: embedding dimensionality; lr: learning rate; L2: L2 normaliza-
tion; div: diversity regularizer; k: filter width in char/word-CNN. λ: see Eq. 4

baseline Ours
N raw rerank passive-linker -a -b -c active-linker
1 40.9 52.9 56.6 11.0 34.9 52.3 73.6
5 – – 71.1 29.5 49.5 67.7 85.0

10 64.3 74.0 75.2 40.7 56.6 72.8 87.4
20 69.3 77.8 81.0 63.3 62.4 78.6 88.8
50 75.7 82.0 85.7 77.1 67.1 84.2 90.4

100 79.6 85.4 87.9 81.2 70.4 87.0 91.6

Table 2: Experimental results for entity linking

6.2 Entity Linking

In Table 2, we compare our (passive and active) entity linkers with the state-of-the-art entity linker
(Golub and He, 2016) in this SimpleQA task. Golub and He (2016) report the coverage of ground truth
by top-N cases (N ∈ {1, 10, 20, 50, 100}). In addition, they explore a reranking algorithm to refine the
entity ranking list.

Table 2 first shows the overall performance of our passive entity linker and its performance without
factor a, b or c (-a, -b, -c). Our passive entity linker outperforms the baseline’s raw results by big
margins and is 2–3 percent above their reranked scores. This shows the outstanding performance of our
passive entity linker despite its simplicity. The table also shows that all three factors (a, b, c) matter.
Observations: (i) Each factor matters more when N is smaller. This makes sense because when N
reaches the entity vocabulary size, all methods will have coverage 100%. (ii) The position-related factor
c has less influence. From top1 to top100, its contribution decreases from 4.3 to .9. Our linker still
outperforms the reranked baseline for N ≥ 20. (iii) Factor a is dominant for small N , presumably
because it chooses the longer one when two candidates exist, which is critical for small N . (iv) Factor b
plays a more consistent role across different N .

The last column of Table 2 shows the overall results of our active entity linker, which are significantly
better than the results of baseline linker and our passive linker. We release our entity linking results for
follow-up work to make better comparison.

6.3 SimpleQuestions

Table 3 compares AMPCNN with two baselines. (i) MemNN (Bordes et al., 2015), an implementation of
memory network for SimpleQuestions task. (ii) Encoder-Decoder (Golub and He, 2016), a character-
level, attention-based encoder-decoder LSTM (Hochreiter and Schmidhuber, 1997) model. (iii) CFO
(Dai et al., 2016), the state-of-the-art system in this task with CNN or BiGRU subsystem.

We report results for both passive entity linker and active entity linker. Furthermore, we compare
AMPCNN to TMPCNN, i.e., we remove attention and representations for the predicate-pattern match
are computed without attention. We choose top-20 (i.e., N = 20) entities returned by entity linker. Table
3 shows that AMPCNN with active entity linker has optimal performance for FB2M and FB5M. Perfor-
mance on FB5M is slightly lower than on FB2M, which should be mainly due to the lower coverage for
entity linking on FB5M – about 2% below that on FB2M. In addition, our CNN can still get competitive
performance even if the attention mechanism is removed (TMPCNN result). This hints that CNN is
promising for SimpleQA.

115

Settings Methods FB2M FB5M

passive entity linker

baseline

random guess 4.9 4.9
MemNN 62.7 63.9
CFO w/ CNN - 56.0
CFO w/ BiGRU - 62.6

CNN
TMPCNN 67.5∗ 66.6∗
AMPCNN 68.3∗ 67.2∗

active entity linker

baseline

Encoder-Decoder 70.9 70.3
CFO w/ CNN - 71.1
CFO w/ BiGRU - 75.7

CNN
TMPCNN 75.4 74.6
AMPCNN 76.4∗ 75.9

Table 3: Experimental results for SimpleQuestions. Significant improvements over top baseline are
marked with * (test of equal proportions, p < .05).

RC Para
OWA-HABCNN (Yin et al., 2016a) .847 0
OWA-ABCNN (Yin et al., 2016b) .902 0
OWA-APCNN (Santos et al., 2016) .905 Rd×d

AMPCNN .913 0

Table 4: Comparing different attention schemes of CNN in terms of RC, extra parameters brought (Para).

6.4 Effect of Attentive Maxpooling (AMP)

We compare AMP (one main contribution of this work) with three CNN attention mechanisms that are
representative of related work in modeling two pieces of text: (i) HABCNN: Hierarchical attention-
based CNN (Yin et al., 2016a); (ii) ABCNN: Attention-based CNN (Yin et al., 2016b); (iii) APCNN:
CNN with attentive pooling (Santos et al., 2016).

Since attentive matching of predicate-pattern is only one part of our jointly trained system, it is hard to
judge whether or not an attentive CNN performs better than alternatives. We therefore create a relation
classification (RC) subtask to compare AMP with baseline schemes directly. RC task is created based
on SimpleQuestions: label each question (converted into a pattern first) with the ground truth predicate;
all other predicates of the gold subject entity are labeled as negative. The resulting datasets have sizes
72,239 (train), 10,310 (dev) and 20,610 (test). It is worth mentioning that this relation classification task
is not unspecific to the SimpleQA task, as RC is actually the predict-pattern match part. Hence, this
RC subtask can be viewed to check how well the predict-pattern subsystem performs within the whole
architecture, and the effectiveness of various attention mechanisms is more clear.

In the three baselines, two pieces of text apply attention to each other. We adapt them into one-way
attention (OWA) as AMP does in this work: fix predicate representation, and use it to guide the learning
of pattern representation. To be specific, ABCNN first gets predicate representation by mean pooling,
then uses this representation to derive similarity scores of each n-gram in pattern as attention scores,
finally averages all n-gram embeddings weighted by attentions as pattern representation. HABCNN first
gets predicate representation by max pooling, then computes attention scores the same way as ABCNN,
finally does maxpooling over representations of top-k similar n-grams. APCNN is similar to ABCNN
except that the similarity scores are computed by a nonlinear bilinear form.

Table 4 shows that AMPCNN performs well on relation classification, outperforming the best baseline
APCNN by 0.8%. AMPCNN also has fewer parameters and runs faster than APCNN.

116

7 Conclusion

This work explored CNNs for the SimpleQA task. We made two main contributions. (i) A simple and
effective entity linker that brings higher coverage of ground truth entities. (ii) An attentive maxpooling
stacked above convolution layer that models the relationship between predicate and question pattern more
effectively. Our model shows outstanding performance on both simpleQA and relation classification.

Acknowledgments. Wenpeng Yin and Hinrich Schütze were partially supported by DFG (grant
SCHU 2246/8-2).

References
Hannah Bast and Elmar Haussmann. 2015. More accurate question answering on freebase. In Proceedings of

CIKM, pages 1431–1440.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-
answer pairs. In Proceedings of EMNLP, pages 1533–1544.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: a collaboratively
created graph database for structuring human knowledge. In Proceedings of SIGMOD, pages 1247–1250.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014. Question answering with subgraph embeddings. In
Proceedings of EMNLP, pages 615–620.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. 2015. Large-scale simple question answering
with memory networks. arXiv preprint arXiv:1506.02075.

Zihang Dai, Lei Li, and Wei Xu. 2016. CFO: Conditional focused neural question answering with large-scale
knowledge bases. In Proceedings of ACL, pages 800–810.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Question answering over freebase with multi-column convolu-
tional neural networks. In Proceedings of ACL-IJCNLP, volume 1, pages 260–269.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochas-
tic optimization. JMLR, 12:2121–2159.

Anthony Fader, Stephen Soderland, and Oren Etzioni. 2011. Identifying relations for open information extraction.
In Proceedings of EMNLP, pages 1535–1545.

Anthony Fader, Luke S Zettlemoyer, and Oren Etzioni. 2013. Paraphrase-driven learning for open question
answering. In Proceedings of ACL, pages 1608–1618.

David Golub and Xiaodong He. 2016. Character-level question answering with attention. In Proceedings of
EMNLP.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. 2013. Learning deep struc-
tured semantic models for web search using clickthrough data. In Proceedings of CIKM, pages 2333–2338.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to docu-
ment recognition. In Proceedings of the IEEE, pages 2278–2324.

Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. 2016. Attentive pooling networks. arXiv preprint
arXiv:1602.03609.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Caglar Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron Courville, and
Yoshua Bengio. 2016. Generating factoid questions with recurrent neural networks: The 30m factoid question-
answer corpus. In Proceedings of ACL, pages 588–598.

Dominic Seyler, Mohamed Yahya, and Klaus Berberich. 2015. Generating quiz questions from knowledge graphs.
In Proceedings of WWW, pages 113–114.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. 2015. End-to-end memory networks. In Proceedings of
NIPS, pages 2431–2439.

117

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015. Memory networks. In Proceedings of ICLR.

Pengtao Xie, Yuntian Deng, and Eric Xing. 2015. On the generalization error bounds of neural networks under
diversity-inducing mutual angular regularization. arXiv preprint arXiv:1511.07110.

Kun Xu, Yansong Feng, Siva Reddy, Songfang Huang, and Dongyan Zhao. 2016. Enhancing freebase question
answering using textual evidence. arXiv preprint arXiv:1603.00957.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, and Gerhard Weikum. 2013. Robust question answering
over the web of linked data. In Proceedings of CIKM, pages 1107–1116.

Xuchen Yao and Benjamin Van Durme. 2014. Information extraction over structured data: Question answering
with Freebase. In Proceedings of ACL, pages 956–966.

Xuchen Yao, Jonathan Berant, and Benjamin Van Durme. 2014. Freebase QA: Information extraction or semantic
parsing? In Proceedings of ACL Workshop on Semantic Parsing, pages 82–86.

Xuchen Yao. 2015. Lean question answering over freebase from scratch. In Proceedings of NAACL-HLT, pages
66–70.

Wen-tau Yih, Xiaodong He, and Christopher Meek. 2014. Semantic parsing for single-relation question answer-
ing. In Proceedings of ACL, pages 643–648.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. 2015. Semantic parsing via staged query graph
generation: Question answering with knowledge base. In Proceedings of ACL, pages 1321–1331.

Wenpeng Yin, Sebastian Ebert, and Hinrich Schütze. 2016a. Attention-based convolutional neural network for
machine comprehension. In Proceedings of NAACL Human-Computer QA Workshop.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. 2016b. ABCNN: Attention-based convolutional
neural network for modeling sentence pairs. TACL.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. 2014. Deep learning for answer sentence
selection. Proceedings of ICLR Workshop.

118

Chapter 8

Attention-Based Convolutional
Neural Network for Machine
Comprehension

119

Attention-Based Convolutional Neural Network
for Machine Comprehension

Wenpeng Yin, Sebastian Ebert, Hinrich Schütze
LMU Munich, Germany

wenpeng, ebert@cis.lmu.de

Abstract

Understanding open-domain text is one of the
primary challenges in NLP. Machine com-
prehension benchmarks evaluate a system’s
ability to understand text based on the text
content only. In this work, we investi-
gate machine comprehension on MCTest, a
question answering (QA) benchmark. Prior
work is mainly based on feature engineer-
ing approaches. We come up with a neu-
ral network framework, named hierarchical
attention-based convolutional neural network
(HABCNN), to address this task without any
manually designed features. Specifically,
we explore HABCNN for this task by two
routes, one is through traditional joint mod-
eling of document, question and answer, one
is through textual entailment. HABCNN em-
ploys an attention mechanism to detect key
phrases, key sentences and key snippets that
are relevant to answering the question. Exper-
iments show that HABCNN outperforms prior
deep learning approaches by a big margin.

1 Introduction

Machine comprehension is an open-domain
question-answering problem which contains factoid
questions, but the answers can be derived by extrac-
tion or induction of key clues. Figure 1 shows one
example in MCTest (Richardson et al., 2013). Each
example consists of one document, four associated
questions; each question is followed by four answer
candidates of which only one is correct. Questions
in MCTest have two categories; “one” questions can
be answered based on a single sentence from doc-
ument where “multiple” questions require several

Figure 1: One example with 2 out of 4 questions in the MCTest.

“*” marks correct answer.

sentences. To correctly answer the first question in
the example, the two blue sentences are required;
for the second question instead, we only need the
red sentence. The following observations hold for
the whole MCTest. (i) Most of the sentences in
the document are irrelevant for a given question.
It hints that we need to pay attention to just some
key regions. (ii) Answer candidates vary in length
and abstraction level and usually do not appear in
the document. For example, candidate B for the
second question is “outside”, which is one word and
does not exist in the document, while the answer
candidates for the first question are longer texts
with some auxiliary words like “Because” in the
text. This requires our system to handle flexible
texts via extraction as well as abstraction. (iii)
Some questions require multiple sentences to infer
the answer, and those vital sentences mostly appear
close to each other (we call them snippet). Hence,
our system should be able to make a choice or
compromise between potential single-sentence clue

120

and snippet clue.
Prior work is mostly based on feature engineering.

We take the lead in presenting a deep neural network
without linguistic feature engineering.

Concretely, we propose HABCNN, a hierarchical
attention-based convolutional neural network, to ad-
dress this task in two roadmaps. In the first one,
we project the document in two different ways, one
based on question-attention, one based on answer-
attention and then compare the two projected doc-
ument representations to determine whether the an-
swer matches the question. In the second one, every
question-answer pair is reformatted into a statement,
then the whole task reduces to textual entailment.

In both roadmaps, convolutional neural network
(CNN) is explored to model all types of text. As
human beings usually do for such a QA task, our
model is expected to be able to detect the key snip-
pets, key sentences, and key words or phrases in
the document. In order to detect those informative
parts required by questions, we explore an attention
mechanism to model the document so that in its rep-
resentation the required information is emphasized.
In practice, instead of imitating human beings in
QA task top-down, our system models the document
bottom-up, through accumulating the most relevant
information from word level to snippet level.

Our approach is novel in three aspects. (i) A doc-
ument is modeled by a hierarchical CNN for differ-
ent granularity, from word to sentence level, then
from sentence to snippet level. (ii) In the exam-
ple in Figure 1, apparently not all sentences are re-
quired given a question, and usually different snip-
pets are required by different questions. Hence,
the same document should have different represen-
tations based on what the question is. To this end, at-
tention is incorporated into the hierarchical CNN to
guide the learning of dynamic document representa-
tions which closely match the information require-
ments by questions. (iii) Document representations
at sentence and snippet levels both are informative
for the question. Therefore a highway network is
developed to combine them, enabling our system to
make a flexible tradeoff.

Overall, we make three contributions. (i) We
present a hierarchical attention-based CNN system
“HABCNN”. It is, to our knowledge, the first deep
learning (DL) based system for this MCTest task.

Figure 2: Illustrations of HABCNN-QAP (top), HABCHH-QP

(middle) and HABCNN-TE (bottom). Q, A, S: question, an-

swer, statement; D: document

(ii) Prior document modeling systems based on deep
neural networks mostly generate generic representa-
tion, this work is the first to incorporate attention so
that document representation is biased towards the
question requirement. (iii) Our HABCNN systems
outperform other DL competitors by big margins.

2 Related Work

Existing systems for MCTest are mostly based on
manually engineered features, e.g., (Narasimhan
and Barzilay, 2015; Sachan et al., 2015; Wang et al.,
2015; Smith et al., 2015). In these works, a common
route is first to define a loss function based on fea-
ture vectors, then the effort focuses on designing ef-
fective features based on various rules. Even though
this research is groundbreaking for this task, its flex-
ibility and capacity for generalization is limited.

DL approaches appeal to increasing interest in
analogous tasks. Weston et al., (2014) introduce
memory networks for factoid QA. Memory network
framework is extended in (Weston et al., 2015; Ku-
mar et al., 2015) for Facebook bAbI dataset. Peng
et al. (2015)’s Neural Reasoner infers over multiple
supporting facts to generate an entity answer for a
given question and it is also tested on bAbI. All of
this work deals with short texts with simple gram-
mar, aiming to generate an answer that is restricted
to be one word denoting a location, a person etc.

There is also work on other kinds of QA, e.g.,
(Iyyer et al., 2014; Hermann et al., 2015). Overall,
for open-domain MCTest machine comprehension
task, we are the first to use deep neural networks.

HABCNN shares similarities with the model pub-
lished by Trischler et al. (2016) six weeks after our
submission on arxiv. It considers multiple levels of
granularity in a way that is similar to our approach.

121

Figure 3: HABCNN. Feature maps for phrase representations pi and the max pooling steps that create sentence representations

out of phrase representations are omitted for simplification. Each snippet covers three sentences in snippet-CNN. Symbols ◦ mean

cosine similarity calculation.

Trischler et al. (2016) achieve better performance
than HABCNN, but they still use linguistically engi-
neered features like Stanford dependencies whereas
our approach is more truly end-to-end.

3 Model

We investigate this task by three approaches, illus-
trated in Figure 2. (i) We can compute two different
document (D) representations in a common space,
one based on question (Q) attention, one based on
answer (A) attention, and compare them. This ar-
chitecture is named HABCNN-QAP. (ii) We com-
pute a representation of D based on Q attention
(as before), but now we compare it directly with
a representation of A. We name this architecture
HABCNN-QP. (iii) We treat this QA task as textual
entailment (TE), first reformatting Q-A pair into a
statement (S), then matching S and D directly. This
architecture we name HABCNN-TE. All three ap-
proaches are implemented in the common frame-
work HABCNN.

3.1 HABCNN

Recall that we use the abbreviations A (answer), Q
(question), S (statement), D (document). HABCNN
performs representation learning for triple (Q, A,
D) in HABCNN-QP and HABCNN-QAP, for tuple
(S, D) in HABCNN-TE. For convenience, we use
“query” to refer to Q, A, or S uniformly. HABCNN,

depicted in Figure 3, has the following phases.
Input Layer. The input is (query, D). Query

is two individual sentences (for Q, A) or one sin-
gle sentence (for S), D is a sequence of sentences.
Words are initialized by d-dimensional pre-trained
word embeddings. As a result, each sentence is
represented as a feature map with dimensionality of
d × s (s is sentence length). In Figure 3, each sen-
tence in the input layer is depicted by a rectangle
with multiple columns.

Sentence-CNN is used for sentence representa-
tion learning from word level. Given a sentence of
length s with a word sequence: v1, v2, . . . , vs, let
vector ci ∈ Rwd be the concatenated embeddings of
w words vi−w+1, . . . , vi where w is the filter width,
d is the dimensionality of word representations and
0 < i < s+w. Embeddings for words vi, i < 1 and
i > s, are zero padding. We then generate the rep-
resentation pi ∈ Rd1 for the phrase vi−w+1, . . . , vi
using the convolution weights W ∈ Rd1×wd:

pi = tanh(W · ci + b) (1)

where bias b ∈ Rd1 . d1 = s + w − 1 is the CNN’s
“kernel size”. Sentence-CNNs for query and all doc-
ument sentences share the same weights, so that the
generated representations are comparable.

Sentence-Level Representation. The sentence-
CNN generates a new feature map (omitted in Fig-
ure 3) for each input sentence, one column in the

122

feature map denotes a phrase representation (i.e., pi

in Equation (1)).
For the query and each sentence of D, we

do element-wise 1-max-pooling (“max-pooling” for
short) (Collobert and Weston, 2008) over phrase
representations to form their representations at this
level.

We now treat D as a set of “vital” sentences and
“noise” sentences. We propose attention-pooling to
learn the sentence-level representation of D as fol-
lows: first identify vital sentences by computing at-
tention for each of D’s sentences as the cosine sim-
ilarity between its representation and the query rep-
resentation, then select the k highest-attention sen-
tences to do max-pooling over them. Taking Figure
3 as an example, based on the output of the sentence-
CNN layer, k = 2 important sentences with blue
color are combined by max-pooling as the sentence-
level representation vs of D; the other – white-color
– sentence representations are neglected as they have
low attention. (If k = all, attention-pooling returns
to the common max-pooling in (Collobert and We-
ston, 2008).) When the query is (Q, A), this step will
be repeated, once for Q, once for A, to compute rep-
resentations of D at the sentence level that are biased
with respect to Q and A, respectively.

Snippet-CNN. As the example in Figure 1 shows,
to answer the first question “why did Grandpa an-
swer the door?”, it does not suffice to compare this
question only to the sentence “Grandpa answered
the door with a smile and welcomed Jimmy in-
side”; instead, the snippet “Finally, Jimmy arrived at
Grandpa’s house and knocked. Grandpa answered
the door with a smile and welcomed Jimmy inside”
should be used to compare. To this end, it is nec-
essary to stack another CNN layer, snippet-CNN, to
learn representations of snippets, i.e., units of one
or more sentences. Thus, input to snippet-CNN
(resp. sentence-CNN) are sentences (resp. words)
and the output is representations of snippets (resp.
sentences).

Concretely, snippet-CNN puts all sentence rep-
resentations in column sequence as a feature map
and conducts another convolution operation over
it. With filter width w, this step generates repre-
sentation of snippet with w consecutive sentences.
Similarly, we use the same CNN to learn higher-
abstraction query representations, treating query as

a document with one sentence, so that the higher-
abstraction query representation is in the same space
with corresponding snippet representations.

Snippet-Level Representation. For the output of
snippet-CNN, each representation is more abstract
and denotes bigger granularity. We apply the same
attention-pooling process to snippet level represen-
tations: attention values are computed as cosine sim-
ilarities between query and snippets and the snip-
pets with the k largest attention are retained. Max-
pooling over the k selected snippet representations
then creates the snippet-level representation vt of D.
Two selected snippets are shown as red in Figure 3.

Overall Representation. Based on convolution
layers at two different granularity, we have derived
query-biased representations of D at sentence (vs)
and snippet (vt) levels. In order to create a flexible
choice for open QA, we develop a highway network
(Srivastava et al., 2015) to combine the two levels of
representations as an overall representation vo of D:

vo = (1− h)� vs + h� vt (2)

where highway network weights h are learned by

h = σ(Whvs + b) (3)

where Wh ∈ Rd1×d1 . With the same highway net-
work, we can generate the overall query representa-
tion, ri in Figure 3, by combining query’s represen-
tation at sentence level rs and at snippet level rt.

3.2 HABCNN-QP & HABCNN-QAP
HABCNN-QP/QAP computes the representation of
D as a projection of D, either based on attention
from Q or based on attention from A. We hope that
these two projections of the document are close for
a correct A and less close for an incorrect A. As we
said in related work, machine comprehension can be
viewed as an answer selection task using the docu-
ment D as critical background information. Here,
HABCNN-QP/QAP do not compare Q and A di-
rectly, but they use Q and A to filter the document
differently, extracting what is critical for the Q/A
match by attention-pooling. Then they match the
two document representations in the new space.

For simplicity, we have used the symbol vo so
far, but in HABCNN-QP/QAP we compute two dif-
ferent document representations: voq, for which at-
tention is computed with respect to Q; and voa for

123

which attention is computed with respect to A. ri
also has two versions, one for Q: riq, one for A: ria.

HABCNN-QP and HABCNN-QAP make differ-
ent use of voq. HABCNN-QAP projects D twice,
once based on attention from Q, once based on at-
tention from A and compares the two projected rep-
resentations, voq and voa, shown in Figure 2 (top).
HABCNN-QP only utilizes the Q-based projection
of D and then compares the projected document voq

with the answer representation ria, shown in Figure
2 (middle).

3.3 HABCNN-TE

HABCNN-TE treats machine comprehension as tex-
tual entailment. We use the statements that are pro-
vided in MCTest. Each statement corresponds to a
question-answer pair; e.g., the Q/A pair “Why did
Grandpa answer the door?” / “Because he saw the
insects” (Figure 1) is reformatted into the statement
“Grandpa answered the door because he saw the in-
sects”. The question answering task is then cast as:
“does the document entail the statement?”

For HABCNN-TE, shown in Figure 2 (bottom),
the input for Figure 3 is the pair (S, D). HABCNN-
TE tries to match S’s representation ri with D’s rep-
resentation vo.

4 Experiments

4.1 Dataset

MCTest1 has two subsets. MCTest-160 contains 160
items (70 train, 30 dev, 60 test), each consisting of
a document, four questions followed by one correct
anwer and three incorrect answers and MCTest-500
500 items (300 train, 50 dev, 150 test).

4.2 Training Setup

Our training objective is to minimize the following
ranking loss function:

L(d, a+, a−) = max(0, α+ S(d, a−)− S(d, a+))
(4)

where S(·, ·) is a matching score between two repre-
sentation vectors. Cosine similarity is used through-
out. α is a constant.

Multitask learning. Based on work showing that
question typing is helpful for QA (Sachan et al.,

1http://requery.microsoft.com/mct

k lr d1 bs w L2 α

[1,3] 0.05 [90, 90] 1 [2,2] 0.0065 0.2
Table 1: Hyperparameters. k: top-k in attention-pooling for

both CNN layers; lr: learning rate; d1: kernel size in CNN lay-

ers; bs: mini-batch size; w: filter width; L2: L2 regularization;

α: constant in loss function.

2015), we stack a logistic regression layer over ques-
tion representation riq, with the purpose that this
subtask can favor the parameter tuning of the whole
system, and finally the question is better recognized
and answer identification is more accurate.

To be specific, we classify questions into 12
classes: “how”, “how much”, “how many”, “what”,
“who”, “where”, “which”, “when”, “whose”,
“why”, “will” and “other”. The question label is
created by querying for the label keyword in the
question. If more than one keyword appears in a
question, we adopt the one appearing earlier and the
more specific one (e.g., “how much”, not “how”). In
case there is no match, the class “other” is assigned.

We train with AdaGrad (Duchi et al., 2011) and
use 50-dimensional GloVe embeddings (Pennington
et al., 2014) to initialize word representations,2 kept
fixed during training. Table 1 gives hyperparameter
values, tuned on dev.

We consider two evaluation metrics: accuracy
(proportion of questions correctly answered) and
NDCG4 (Järvelin and Kekäläinen, 2002). Unlike ac-
curacy which evaluates if the question is correctly
answered or not, NDCG4, being a measure of rank-
ing quality, evaluates the position of the correct an-
swer in our predicted ranking.

4.3 Baseline Systems

(i) Addition. Directly compare question and an-
swers without considering the document. Sentence
representations are computed by element-wise addi-
tion over word representations. (ii) Addition-proj.
First compute sentence representations for Q, A and
all D sentences as in Addition. Then identify two
sentences from D, taking xq and xa as example, sat-
isfying that they are most similar to Q and A, re-
spectively. The match score between Q and A is
then the cosine similarity of xq and xa. (iii) NR.
The Neural Reasoner (Peng et al., 2015) has an en-

2http://nlp.stanford.edu/projects/glove/

124

MCTest-150 MCTest-500
method acc NDCG4 acc NDCG4

one mul all one mul all one mul all one mul all

B
as

el
in

es Addition 39.3 32.4 35.7 60.4 50.3 54.6 35.7 30.2 32.9 56.6 55.2 55.8
Addition-proj 42.1 38.7 40.3 65.3 61.3 63.2 39.4 36.7 38.0 63.3 60.1 61.7
AR 48.1 44.7 46.3 70.5 68.9 69.6 44.4 39.5 41.9 66.7 64.2 65.4
NR 48.4 46.8 47.6 70.7 68.2 69.7 45.7 45.6 45.6 71.9 69.5 70.6
HABCNN-QP 57.9 53.7 55.7 80.4 80.0 80.2 53.7 46.7 50.1 75.4 72.7 74.0
HABCNN-QAP 59.0 57.9 58.4 81.5 79.9 80.6 54.0 47.2 50.6 75.7 72.6 74.1
HABCNN-TE 63.3 62.9 63.1 86.6 85.9 86.2 54.2 51.7 52.9 76.1 74.4 75.2
Sachan et al. (2015) – – – – – – 67.6 67.9 67.8 86.7 86.9 86.8
Wang et al. (2015) 84.2 67.8 75.2 – – – 72.0 67.9 69.9 – – –

Table 2: Experimental results for one-sentence (one), multiple-sentence (mul) and all cases.

coding layer, multiple reasoning layers and a final
answer layer. The input for the encoding layer is a
question and the sentences of the document (called
facts); each sentence is encoded by a GRU into a
vector. In each reasoning layer, NR lets the question
representation interact with each fact representation
as reasoning process. Finally, all temporary reason-
ing clues are pooled as answer representation. (iv)
AR. The Attentive Reader (Hermann et al., 2015)
is implemented by modeling the whole D as a word
sequence – without specific sentence / snippet repre-
sentations – using an LSTM. Attention mechanism
is implemented at word representation level.

Baselines Addition(-proj) do not involve complex
composition and inference. NR and AR are the top-
performing deep neural networks for QA.

4.4 Results

Table 2 lists the performance of baselines,
HABCNN systems, and two top-performing
non-DL systems (Sachan et al. (2015), Wang et
al. (2015)) in the first, second, and last block,
respectively (we only report variants for top-
performing HABCNN-TE). Consistently, our
HABCNN systems outperform all baselines, espe-
cially surpass the two competitive deep learning
based systems AR and NR. The margin between our
best-performing ABHCNN-TE and NR is 15.5/16.5
(accuracy/NDCG) on MCTest-150 and 7.3/4.6 on
MCTest-500. This demonstrates the promise of our
architecture in this task.

As said before, both AR and NR systems aim
to generate answers in entity form. Their designs
might not suit this machine comprehension task, in
which the answers are openly-formed based on sum-

marizing or abstracting the clues. To be more spe-
cific, AR models D always at word level, atten-
tion is also paid to corresponding word representa-
tions, which is applicable for entity-style answers,
but is less suitable for comprehension at sentence
level or even snippet level. NR contrarily models
D in sentence level always, neglecting the discover-
ing of key phrases which however compose most of
the answers. In addition, the attention of AR system
and the question-fact interaction in NR system both
bring large numbers of parameters, this potentially
constrains their power in a dataset of limited size.

The size of MCTest is quite small. This is the
most likely reason for the inferior performance of
all deep learning approaches compared to non-deep-
learning approaches. If the amount of training data
is limited, then it may not be possible to get top per-
formance without a large feature engineering effort.

5 Conclusion

This work takes the lead in presenting a CNN based
neural network system for open-domain machine
comprehension task. Our systems try to solve this
task in a document projection way as well as a tex-
tual entailment way. The latter demonstrates slightly
better performance. Overall, our architecture, mod-
eling dynamic document representation by attention
scheme from sentence level to snippet level, shows
promising results in this task. In the future, more
fine-grained representation learning approaches are
expected to model complex answer types and ques-
tion types.

Acknowledgments. We thank DFG for support-
ing this work (grant SCHU 2246/4-2).

125

References
Ronan Collobert and Jason Weston. 2008. A unified ar-

chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167. ACM.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1684–1692.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino,
Richard Socher, and Hal Daumé III. 2014. A neu-
ral network for factoid question answering over para-
graphs. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 633–644.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cu-
mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS),
20(4):422–446.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury,
Robert English, Brian Pierce, Peter Ondruska, Ishaan
Gulrajani, and Richard Socher. 2015. Ask me any-
thing: Dynamic memory networks for natural lan-
guage processing. arXiv preprint arXiv:1506.07285.

Karthik Narasimhan and Regina Barzilay. 2015. Ma-
chine comprehension with discourse relations. In 53rd
Annual Meeting of the Association for Computational
Linguistics.

Baolin Peng, Zhengdong Lu, Hang Li, and Kam-Fai
Wong. 2015. Towards neural network-based reason-
ing. CoRR, abs/1508.05508.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of the Empiricial Meth-
ods in Natural Language Processing (EMNLP 2014),
12:1532–1543.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text. In
EMNLP, volume 1, page 2.

Mrinmaya Sachan, Avinava Dubey, Eric P Xing, and
Matthew Richardson. 2015. Learning answerentailing
structures for machine comprehension. In Proceed-
ings of ACL.

Ellery Smith, Nicola Greco, Matko Bosnjak, and Andreas
Vlachos. 2015. A strong lexical matching method for
the machine comprehension test. In Proceedings of

the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1693–1698.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmid-
huber. 2015. Training very deep networks. In
Advances in Neural Information Processing Systems,
pages 2368–2376.

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He, Phillip
Bachman, and Kaheer Suleman. 2016. A parallel-
hierarchical model for machine comprehension on
sparse data. arXiv preprint arXiv:1603.08884.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David A.
McAllester. 2015. Machine comprehension with syn-
tax, frames, and semantics. In Proceedings of ACL-
IJCNLP, pages 700–706.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2014.
Memory networks. arXiv preprint arXiv:1410.3916.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards ai-complete ques-
tion answering: a set of prerequisite toy tasks. arXiv
preprint arXiv:1502.05698.

126

Bibliography

David W. Aha, Dennis F. Kibler, and Marc K. Albert. Instance-based learning
algorithms. Machine Learning, 6:37–66, 1991.

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recog-
nition with visual attention. In Proceedings of International Conference on
Learning Representations, 2015.

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

Ngo Xuan Bach, Nguyen Le Minh, and Akira Shimazu. EDU-based similarity
for paraphrase identification. Natural Language Processing and Information
Systems, pages 65–76, 2013.

Ngo Xuan Bach, Nguyen Le Minh, and Akira Shimazu. Exploiting discourse
information to identify paraphrases. Expert Systems with Applications, 41(6):
2832–2841, 2014.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In Proceedings of International
Conference on Learning Representations, 2015.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Improved transition-based
parsing by modeling characters instead of words with LSTMs. In Proceedings
of Empirical Methods in Natural Language Processing, pages 349–359, 2015.

Marco Baroni and Alessandro Lenci. Distributional memory: A general frame-
work for corpus-based semantics. Computational Linguistics, 36(4):673–721,
2010.

Alberto Barrón-Cedeño, Marta Vila, Maria Antònia Martı́, and Paolo Rosso. Pla-
giarism meets paraphrasing: Insights for the next generation in automatic pla-
giarism detection. Computational Linguistics, 39(4):917–947, 2013.

127

BIBLIOGRAPHY

Regina Barzilay and Lillian Lee. Learning to paraphrase: An unsupervised ap-
proach using multiple-sequence alignment. In Proceedings of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 16–23, 2003.

Regina Barzilay, Kathleen McKeown, and Michael Elhadad. Information fusion in
the context of multi-document summarization. In Proceedings of Annual Meet-
ing of the Association for Computational Linguistics, pages 550–557, 1999.

Hannah Bast and Elmar Haussmann. More accurate question answering on Free-
base. In Proceedings of ACM International Conference on Information and
Knowledge Management, pages 1431–1440, 2015.

Yoshua Bengio. Neural net language models. Scholarpedia, 3(1):3881, 2008.

Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1–127, 2009.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. Large-
scale kernel machines, 34(5):1–41, 2007.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of Machine Learning Research, 3:1137–
1155, 2003.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing
on Freebase from question-answer pairs. In Proceedings of Empirical Methods
in Natural Language Processing, pages 1533–1544, 2013.

Matthew W. Bilotti, Paul Ogilvie, Jamie Callan, and Eric Nyberg. Structured
retrieval for question answering. In Proceedings of Annual International ACM
Conference on Research and Development in Information Retrieval, pages 351–
358, 2007.

William Blacoe and Mirella Lapata. A comparison of vector-based representa-
tions for semantic composition. In Proceedings of the Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 546–556, 2012.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

Bernd Bohnet. Very high accuracy and fast dependency parsing is not a contradic-
tion. In Proceedings of International Conference on Computational Linguistics,
pages 89–97, 2010.

128

BIBLIOGRAPHY

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146, 2017.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: A collaboratively created graph database for structuring human
knowledge. In Proceedings of International Conference on Management of
Data, pages 1247–1250, 2008.

Danushka Bollegala, Kohei Hayashi, and Ken-ichi Kawarabayashi. Think
globally, embed locally - locally linear meta-embedding of words. CoRR,
abs/1709.06671, 2017.

Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering with sub-
graph embeddings. In Proceedings of Empirical Methods in Natural Language
Processing, pages 615–620, 2014a.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A seman-
tic matching energy function for learning with multi-relational data. Machine
Learning, 94(2):233–259, 2014b.

Antoine Bordes, Jason Weston, and Nicolas Usunier. Open question answering
with weakly supervised embedding models. In Proceedings of European Con-
ference on Machine Learning and Knowledge Discovery in Databases, pages
165–180, 2014c.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-
scale simple question answering with memory networks. arXiv preprint
arXiv:1506.02075, 2015.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. A large annotated corpus for learning natural language inference. In Pro-
ceedings of Empirical Methods in Natural Language Processing, pages 632–
642, 2015a.

Samuel R. Bowman, Christopher Potts, and Christopher D. Manning. Recursive
neural networks can learn logical semantics. In Proceedings of the 3rd Work-
shop on Continuous Vector Space Models and their Compositionality, pages
12–21, 2015b.

Jane Bromley, James W. Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff
Moore, Eduard Säckinger, and Roopak Shah. Signature verification using a
“siamese” time delay neural network. International Journal of Pattern Recog-
nition and Artificial Intelligence, 7(4):669–688, 1993.

129

BIBLIOGRAPHY

Chris Callison-Burch, Philipp Koehn, and Miles Osborne. Improved statistical
machine translation using paraphrases. In Proceedings of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 17–24, 2006.

Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei Wang,
Yongzhen Huang, Liang Wang, Chang Huang, Wei Xu, Deva Ramanan, and
Thomas S. Huang. Look and think twice: Capturing top-down visual attention
with feedback convolutional neural networks. In Proceedings of IEEE Interna-
tional Conference on Computer Vision, pages 2956–2964, 2015.

Yee Seng Chan and Hwee Tou Ng. MAXSIM: A maximum similarity metric
for machine translation evaluation. In Proceedings of Annual Meeting of the
Association for Computational Linguistics, pages 55–62, 2008.

Ming-Wei Chang, Dan Goldwasser, Dan Roth, and Vivek Srikumar. Discrimi-
native learning over constrained latent representations. In Proceedings of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 429–437, 2010.

Yung-Chun Chang, Cheng-Wei Shih, and Wen-Lian Hsu. Entailment-based in-
telligent system for software project monitoring and control. IEEE Systems
Journal, pages 1–12, 2017.

Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram
Nevatia. ABC-CNN: An attention based convolutional neural network for vi-
sual question answering. CoRR, abs/1511.05960, 2015.

Kyunghyun Cho. Foundations and Advances in Deep Learning. PhD thesis, Aalto
University, Helsinki, Finland, 2014.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
In Proceedings of Eighth Workshop on Syntax, Semantics and Structure in Sta-
tistical Translation, pages 103–111, 2014a.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine translation.
In Proceedings of Empirical Methods in Natural Language Processing, pages
1724–1734, 2014b.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric dis-
criminatively, with application to face verification. In Proceedings of IEEE

130

BIBLIOGRAPHY

Computer Society Conference on Computer Vision and Pattern Recognition,
volume 1, pages 539–546, 2005.

Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. End-
to-end continuous speech recognition using attention-based recurrent NN: First
results. In Proceedings of Deep Learning and Representation Learning Work-
shop, 2014.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-based models for speech recognition. In Proceed-
ings of Annual Conference on Neural Information Processing Systems, pages
577–585, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of
International Conference on Machine Learning, pages 160–167, 2008.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavuk-
cuoglu, and Pavel Kuksa. Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–2537, 2011.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner. Morphological smoothing and
extrapolation of word embeddings. In Proceedings of Annual Meeting of the
Association for Computational Linguistics, pages 1651–1660, 2016.

Silviu Cucerzan and Eugene Agichtein. Factoid question answering over unstruc-
tured and structured web content. In Proceedings of the Fourteenth Text RE-
trieval Conference, volume 72, pages 90–95, 2005.

George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

Zihang Dai, Lei Li, and Wei Xu. CFO: Conditional focused neural question an-
swering with large-scale knowledge bases. In Proceedings of Annual Meeting
of the Association for Computational Linguistics, pages 800–810, 2016.

Dipanjan Das and Noah A. Smith. Paraphrase identification as probabilistic quasi-
synchronous recognition. In Proceedings of Annual Meeting of the Association
for Computational Linguistics, pages 468–476, 2009.

131

BIBLIOGRAPHY

Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural net-
work learning for speech recognition and related applications: An overview. In
Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 8599–8603, 2013.

Michael Denkowski and Alon Lavie. Extending the meteor machine translation
evaluation metric to the phrase level. In Proceedings of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 250–253, 2010.

George Doddington. Automatic evaluation of machine translation quality using
n-gram co-occurrence statistics. In Proceedings of the Second International
Conference on Human Language Technology Research, pages 138–145, 2002.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel news sources. In Proceed-
ings of International Conference on Computational Linguistics, pages 350–356,
2004.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. Question answering over Freebase
with multi-column convolutional neural networks. In Proceedings of Annual
Meeting of the Association for Computational Linguistics, volume 1, pages
260–269, 2015.

Cı́cero Nogueira dos Santos and Victor Guimarães. Boosting named entity recog-
nition with neural character embeddings. In Proceedings of the Fifth Named
Entity Workshop, pages 25–33, 2015.

Cı́cero Nogueira dos Santos, Bing Xiang, and Bowen Zhou. Classifying relations
by ranking with convolutional neural networks. In Proceedings of Annual Meet-
ing of the Association for Computational Linguistics, pages 626–634, 2015.

Cı́cero Nogueira dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. Attentive
pooling networks. CoRR, abs/1602.03609, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Re-
search, 12:2121–2159, 2011.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,
1990.

Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for
open information extraction. In Proceedings of Empirical Methods in Natural
Language Processing, pages 1535–1545, 2011.

132

BIBLIOGRAPHY

Anthony Fader, Luke S. Zettlemoyer, and Oren Etzioni. Paraphrase-driven learn-
ing for open question answering. In Proceedings of Annual Meeting of the
Association for Computational Linguistics, pages 1608–1618, 2013.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open question answering
over curated and extracted knowledge bases. In Proceedings of ACM Inter-
national Conference on Knowledge Discovery and Data Mining, pages 1156–
1165, 2014.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. LIBLINEAR: A library for large linear classification. Journal of Machine
Learning Research, 9:1871–1874, 2008.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan Wang, and Bowen Zhou. Ap-
plying deep learning to answer selection: A study and an open task. In Proceed-
ings of IEEE Workshop on Automatic Speech Recognition and Understanding,
pages 813–820, 2015.

Andrew Finch, Young-Sook Hwang, and Eiichiro Sumita. Using machine trans-
lation evaluation techniques to determine sentence-level semantic equivalence.
In Proceedings of the Third International Workshop on Paraphrasing, pages
17–24, 2005.

Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. Incorporating
non-local information into information extraction systems by gibbs sampling.
In Proceedings of Annual Meeting of the Association for Computational Lin-
guistics, pages 363–370, 2005.

Juri Ganitkevitch, Chris Callison-Burch, Courtney Napoles, and Benjamin Van
Durme. Learning sentential paraphrases from bilingual parallel corpora for text-
to-text generation. In Proceedings of Empirical Methods in Natural Language
Processing, pages 1168–1179, 2011.

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong He, and Li Deng. Mod-
eling interestingness with deep neural networks. In Proceedings of Empirical
Methods in Natural Language Processing, pages 2–13, 2014.

Yoav Goldberg. A primer on neural network models for natural language process-
ing. Journal of Artificial Intelligence Research, 57:345–420, 2016.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English gigaword.
Linguistic Data Consortium, Philadelphia, 2003.

133

BIBLIOGRAPHY

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra. DRAW: A recurrent neural network for image generation. In Pro-
ceedings of International Conference on Machine Learning, pages 1462–1471,
2015.

Weiwei Guo and Mona Diab. Modeling sentences in the latent space. In Proceed-
ings of Annual Meeting of the Association for Computational Linguistics, pages
864–872, 2012.

Nizar Habash and Ahmed Elkholy. SEPIA: Surface span extension to syntactic de-
pendency precision-based MT evaluation. In Proceedings of the NIST Metrics
for Machine Translation Workshop at the Association for Machine Translation
in the Americas Conference, 2008.

Mark A. Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The WEKA data mining software: An update.
SIGKDD Explorations, 11(1):10–18, 2009.

Sanda Harabagiu and Finley Lacatusu. Topic themes for multi-document summa-
rization. In Proceedings of Annual International ACM Conference on Research
and Development in Information Retrieval, pages 202–209, 2005.

Hua He, Kevin Gimpel, and Jimmy J. Lin. Multi-perspective sentence similarity
modeling with convolutional neural networks. In Proceedings of Empirical
Methods in Natural Language Processing, pages 1576–1586, 2015.

Xiaodong He and David Golub. Character-level question answering with atten-
tion. In Proceedings of Empirical Methods in Natural Language Processing,
pages 1598–1607, 2016.

Michael Heilman and Noah A. Smith. Tree edit models for recognizing textual
entailments, paraphrases, and answers to questions. In Proceedings of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 1011–1019, 2010.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and
comprehend. In Proceedings of Annual Conference on Neural Information Pro-
cessing Systems, pages 1684–1692, 2015.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representa-
tions of sentences from unlabelled data. In Proceedings of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1367–1377, 2016.

134

BIBLIOGRAPHY

Geoffrey E. Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algo-
rithm for deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

Seunghoon Hong, Junhyuk Oh, Honglak Lee, and Bohyung Han. Learning trans-
ferrable knowledge for semantic segmentation with deep convolutional neural
network. In Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 3204–3212, 2016.

Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

Ehsan Hosseini-Asl and Angshuman Guha. Similarity-based text recognition by
deeply supervised siamese network. CoRR, abs/1511.04397, 2015.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural
network architectures for matching natural language sentences. In Proceedings
of Annual Conference on Neural Information Processing Systems, pages 2042–
2050, 2014.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. Learning deep structured semantic models for web search using click-
through data. In Proceedings of ACM International Conference on Information
and Knowledge Management, pages 2333–2338, 2013.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal
Daumé III. A neural network for factoid question answering over paragraphs.
In Proceedings of Empirical Methods in Natural Language Processing, pages
633–644, 2014.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Transactions on Information Systems, 20(4):422–446, 2002.

Yangfeng Ji and Jacob Eisenstein. Discriminative improvements to distributional
sentence similarity. In Proceedings of Empirical Methods in Natural Language
Processing, pages 891–896, 2013.

135

BIBLIOGRAPHY

Sergio Jimenez, George Dueñas, Julia Baquero, and Alexander Gelbukh. UNAL-
NLP: Combining soft cardinality features for semantic textual similarity, relat-
edness and entailment. In Proceedings of International Workshop on Semantic
Evaluation, pages 732–742, 2014.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical explo-
ration of recurrent network architectures. In Proceedings of International Con-
ference on Machine Learning, pages 2342–2350, 2015.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neu-
ral network for modelling sentences. In Proceedings of Annual Meeting of the
Association for Computational Linguistics, pages 655–665, 2014.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze. Neural morphological
analysis: Encoding-decoding canonical segments. In Proceedings of Empiri-
cal Methods in Natural Language Processing, pages 961–967, 2016.

S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and Karu-
turi Radha Krishna Murthy. Improvements to Platt’s SMO algorithm for SVM
classifier design. Neural Computation, 13(3):637–649, 2001.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceed-
ings of Empirical Methods in Natural Language Processing, pages 1746–1751,
2014.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-
aware neural language models. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 2741–2749, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Proceedings of International Conference on Learning Representations, 2015.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urta-
sun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In Proceedings
of Annual Conference on Neural Information Processing Systems, pages 3294–
3302, 2015.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Pro-
ceedings of Annual Meeting of the Association for Computational Linguistics,
pages 423–430, 2003.

Zornitsa Kozareva and Andrés Montoyo. Paraphrase identification on the basis
of supervised machine learning techniques. In Proceedings of 5th Interna-
tional Conference on Advances in Natural Language Processing, pages 524–
533, 2006.

136

BIBLIOGRAPHY

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me any-
thing: Dynamic memory networks for natural language processing. In Pro-
ceedings of International Conference on Machine Learning, pages 1378–1387,
2016.

Alice Lai and Julia Hockenmaier. Illinois-LH: A denotational and distributional
approach to semantics. In Proceedings of the 8th International Workshop on
Semantic Evaluation, pages 329–334, 2014.

Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and
documents. In Proceedings of International Conference on Machine Learning,
pages 1188–1196, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998.

Hang Li and Jun Xu. Beyond bag-of-words: Machine learning for query-
document matching in web search. In Proceedings of Annual International
ACM Conference on Research and Development in Information Retrieval,
pages 1177–1177, 2012.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A hierarchical neural autoen-
coder for paragraphs and documents. In Proceedings of Annual Meeting of the
Association for Computational Linguistics, pages 1106–1115, 2015.

Xutao Li, Michael K. Ng, and Yunming Ye. HAR: Hub, authority and relevance
scores in multi-relational data for query search. In Proceedings of the Twelfth
SIAM International Conference on Data Mining, pages 141–152, 2012.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In
Proceedings of the ACL Text Summarization Workshop, pages 74–81, 2004.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Trancoso, Ramon Fermandez,
Silvio Amir, Luı́s Marujo, and Tiago Luı́s. Finding function in form: Composi-
tional character models for open vocabulary word representation. In Proceed-
ings of Empirical Methods in Natural Language Processing, pages 1520–1530,
2015.

Seppo Linnainmaa. The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. Master’s Thesis,
University of Helsinki, 1970.

137

BIBLIOGRAPHY

Chen Liu. Probabilistic Siamese Network for Learning Representations. PhD
thesis, University of Toronto, 2013.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin soft-
max loss for convolutional neural networks. In Proceedings of International
Conference on Machine Learning, pages 507–516, 2016.

Zhengdong Lu and Hang Li. A deep architecture for matching short texts. In
Proceedings of Annual Conference on Neural Information Processing Systems,
pages 1367–1375, 2013.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In Proceedings of Empirical Meth-
ods in Natural Language Processing, pages 1412–1421, 2015.

Nitin Madnani, Joel R. Tetreault, and Martin Chodorow. Re-examining machine
translation metrics for paraphrase identification. In Proceedings of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 182–190, 2012.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano
Menini, and Roberto Zamparelli. Semeval-2014 task 1: Evaluation of com-
positional distributional semantic models on full sentences through semantic
relatedness and textual entailment. In Proceedings of International Workshop
on Semantic Evaluation, pages 1–8, 2014a.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella
Bernardi, and Roberto Zamparelli. A SICK cure for the evaluation of composi-
tional distributional semantic models. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation, pages 216–223, 2014b.

Yuval Marton, Chris Callison-Burch, and Philip Resnik. Improved statistical ma-
chine translation using monolingually-derived paraphrases. In Proceedings of
Empirical Methods in Natural Language Processing, pages 381–390, 2009.

Yuval Marton, Ahmed El Kholy, and Nizar Habash. Filtering antonymous, trend-
contrasting, and polarity-dissimilar distributional paraphrases for improving
statistical machine translation. In Proceedings of the Sixth Workshop on Statis-
tical Machine Translation, pages 237–249, 2011.

Dennis N Mehay and Michael White. Shallow and deep paraphrasing for im-
proved machine translation parameter optimization. In The AMTA 2012 Work-
shop on Monolingual Machine Translation, MONOMT, 2012.

138

BIBLIOGRAPHY

Rada Mihalcea. Measuring semantic relatedness using salient encyclopedic con-
cepts. PhD thesis, University of North Texas, 2011.

Tomáš Mikolov. Statistical language models based on neural networks. PhD
thesis, Brno University of Technology, 2012.

Tomáš Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In Proceedings of
Annual Conference of the International Speech Communication Association,
pages 1045–1048, 2010.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. In Proceedings of International
Conference on Learning Representations Workshop, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In
Proceedings of Annual Conference on Neural Information Processing Systems,
pages 3111–3119, 2013b.

George A. Miller. WordNet: A lexical database for english. Communications of
the ACM, 38(11):39–41, 1995.

Jeff Mitchell and Mirella Lapata. Composition in distributional models of seman-
tics. Cognitive Science, 34(8):1388–1429, 2010.

Margaret Mitchell, Dan Bohus, and Ece Kamar. Crowdsourcing language genera-
tion templates for dialogue systems. In Proceedings of the Eighth International
Natural Language Generation Conference, pages 16–24, 2014.

Andriy Mnih and Geoffrey E. Hinton. Three new graphical models for statis-
tical language modelling. In Proceedings of the Twenty-Fourth International
Conference on Machine Learning, pages 641–648, 2007.

Andriy Mnih and Geoffrey E. Hinton. A scalable hierarchical distributed language
model. In Proceedings of the Twenty-Second Annual Conference on Neural
Information Processing Systems, pages 1081–1088, 2008.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently
with noise-contrastive estimation. In Proceedings of Annual Conference on
Neural Information Processing Systems, pages 2265–2273, 2013.

Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural
probabilistic language models. In Proceedings of International Conference on
Machine Learning, pages 1751–1758, 2012.

139

BIBLIOGRAPHY

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recur-
rent models of visual attention. In Proceedings of Annual Conference on Neural
Information Processing Systems, pages 2204–2212, 2014.

Dan I. Moldovan, Christine Clark, Sanda M. Harabagiu, and Daniel Hodges. Co-
gex: A semantically and contextually enriched logic prover for question an-
swering. Journal of Applied Logic, 5(1):49–69, 2007.

Brent Mombourquette, Christian J. Muise, and Sheila A. McIlraith. Logical filter-
ing and smoothing: State estimation in partially observable domains. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, pages 3613–3621,
2017.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. Tree-based convolu-
tion: A new neural architecture for sentence modeling. CoRR, abs/1504.01106,
2015.

Avo Muromägi, Kairit Sirts, and Sven Laur. Linear ensembles of word embedding
models. CoRR, abs/1704.01419, 2017.

Karthik Narasimhan and Regina Barzilay. Machine comprehension with discourse
relations. In Proceedings of Annual Meeting of the Association for Computa-
tional Linguistics, pages 1253–1262, 2015.

Natalia Neverova, Christian Wolf, Graham W. Taylor, and Florian Nebout. Multi-
scale deep learning for gesture detection and localization. In Proceedings of
Computer Vision - ECCV Workshops, pages 474–490, 2014.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, San-
dra Kübler, Svetoslav Marinov, and Erwin Marsi. Maltparser: A language-
independent system for data-driven dependency parsing. Natural Language
Engineering, 13(2):95–135, 2007.

Sebastian Padó. User’s guide to sigf: Significance testing by approximate ran-
domisation, 2006.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu
Chen, Xinying Song, and Rabab Ward. Deep sentence embedding using
long short-term memory networks: Analysis and application to information
retrieval. IEEE/ACM Trans. Audio, Speech & Language Processing, 24(4):
694–707, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of Annual

140

BIBLIOGRAPHY

Meeting of the Association for Computational Linguistics, pages 311–318,
2002.

Steven Parker. BADGER: A new machine translation metric. Metrics for Machine
Translation Challenge, pages 21–25, 2008.

Baolin Peng, Zhengdong Lu, Hang Li, and Kam-Fai Wong. Towards neural
network-based reasoning. In Proceedings of NIPS Workshop on Reasoning,
Attention, Memory, 2015.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global
vectors for word representation. In Proceedings of Empirical Methods in Natu-
ral Language Processing, pages 1532–1543, 2014.

John C. Platt. Fast training of support vector machines using sequential minimal
optimization. Advances in kernel methods, pages 185–208, 1999.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. Mapping dependencies trees: An
application to question answering. In Proceedings of AI&Math 2004 (Special
session: Intelligent Text Processing), 2004.

Long Qiu, Min-Yen Kan, and Tat-Seng Chua. Paraphrase recognition via dis-
similarity significance classification. In Proceedings of Empirical Methods in
Natural Language Processing, pages 18–26, 2006.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

Dragomir R. Radev, Hongyan Jing, Magorzata Sty, and Daniel Tam. Centroid-
based summarization of multiple documents. Inf. Process. Manage., 40(6):
919–938, 2004.

Matthew Richardson, Christopher J. C. Burges, and Erin Renshaw. MCTest: A
challenge dataset for the open-domain machine comprehension of text. In Pro-
ceedings of Empirical Methods in Natural Language Processing, pages 193–
203, 2013.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ,
and Phil Blunsom. Reasoning about entailment with neural attention. In Pro-
ceedings of International Conference on Learning Representations, 2016.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning rep-
resentations by back-propagating errors. Nature, pages 533–536, 1986.

141

BIBLIOGRAPHY

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model
for abstractive sentence summarization. In Proceedings of Empirical Methods
in Natural Language Processing, pages 379–389, 2015.

Mrinmaya Sachan, Kumar Dubey, Eric P. Xing, and Matthew Richardson. Learn-
ing answer-entailing structures for machine comprehension. In Proceedings of
Annual Meeting of the Association for Computational Linguistics, pages 239–
249, 2015.

Ruslan Salakhutdinov and Geoffrey E. Hinton. Deep boltzmann machines. In
Proceedings of the Twelfth International Conference on Artificial Intelligence
and Statistics, pages 448–455, 2009.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

Tobias Schnabel and Hinrich Schütze. FLORS: Fast and simple domain adaptation
for part-of-speech tagging. Transactions of the Association for Computational
Linguistics, 2:15–26, 2014.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Caglar Gulcehre, Sungjin Ahn, Sarath
Chandar, Aaron Courville, and Yoshua Bengio. Generating factoid questions
with recurrent neural networks: The 30M factoid question-answer corpus. In
Proceedings of Annual Meeting of the Association for Computational Linguis-
tics, pages 588–598, 2016.

Aliaksei Severyn and Alessandro Moschitti. Learning to rank short text pairs
with convolutional deep neural networks. In Proceedings of Annual Inter-
national ACM Conference on Research and Development in Information Re-
trieval, pages 373–382, 2015.

Dominic Seyler, Mohamed Yahya, and Klaus Berberich. Generating quiz ques-
tions from knowledge graphs. In Proceedings of the 24th International Confer-
ence on World Wide Web Companion, pages 113–114, 2015.

Dan Shen and Mirella Lapata. Using semantic roles to improve question answer-
ing. In Proceedings of Empirical Methods in Natural Language Processing,
pages 12–21, 2007.

Yikang Shen, Wenge Rong, Zhiwei Sun, Yuanxin Ouyang, and Zhang Xiong.
Question/answer matching for CQA system via combining lexical and sequen-
tial information. In Proceedings of AAAI Conference on Artificial Intelligence,
pages 275–281, 2015.

142

BIBLIOGRAPHY

Ellery Smith, Nicola Greco, Matko Bosnjak, and Andreas Vlachos. A strong
lexical matching method for the machine comprehension test. In Proceedings of
Empirical Methods in Natural Language Processing, pages 1693–1698, 2015.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. A study of translation edit rate with targeted human annotation. In
Proceedings of Association for Machine Translation in the Americas, pages
223–231, 2006.

Matthew G. Snover, Nitin Madnani, Bonnie J. Dorr, and Richard M. Schwartz.
Ter-plus: Paraphrase, semantic, and alignment enhancements to translation edit
rate. Machine Translation, 23(2-3):117–127, 2009.

Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, and Christo-
pher D. Manning. Dynamic pooling and unfolding recursive autoencoders for
paraphrase detection. In Proceedings of Annual Conference on Neural Infor-
mation Processing Systems, pages 801–809, 2011.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very
deep networks. In Proceedings of Annual Conference on Neural Information
Processing Systems, pages 2377–2385, 2015.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end
memory networks. In Proceedings of Annual Conference on Neural Informa-
tion Processing Systems, pages 2440–2448, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Proceedings of Annual Conference on Neural Information
Processing Systems, pages 3104–3112, 2014.

Ming Tan, Bing Xiang, and Bowen Zhou. LSTM-based deep learning models for
non-factoid answer selection. In Proceedings of International Conference on
Learning Representations Workshop, 2016.

Noriko Tomuro. Interrogative reformulation patterns and acquisition of question
paraphrases. In Proceedings of the second international workshop on Para-
phrasing, pages 33–40, 2003.

143

BIBLIOGRAPHY

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network. In Pro-
ceedings of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 173–180, 2003.

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He, and Philip Bachman. A
parallel-hierarchical model for machine comprehension on sparse data. In Pro-
ceedings of Annual Meeting of the Association for Computational Linguistics,
pages 432–441, 2016.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: A sim-
ple and general method for semi-supervised learning. In Proceedings of An-
nual Meeting of the Association for Computational Linguistics, pages 384–394,
2010.

Kateryna Tymoshenko, Daniele Bonadiman, and Alessandro Moschitti. Convolu-
tional neural networks vs. convolution kernels: Feature engineering for answer
sentence reranking. In Proceedings of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages
1268–1278, 2016.

Zia Ul-Qayyum and Wasif Altaf. Paraphrase identification using semantic heuris-
tic features. Research Journal of Applied Sciences, Engineering and Technol-
ogy, 4(22):4894–4904, 2012.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11:3371–3408, 2010.

Ngoc Thang Vu, Heike Adel, Pankaj Gupta, and Hinrich Schütze. Combining
recurrent and convolutional neural networks for relation classification. In Pro-
ceedings of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 534–539, 2016.

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng.
A deep architecture for semantic matching with multiple positional sentence
representations. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 2835–2841, 2016.

Stephen Wan, Mark Dras, Robert Dale, and Cécile Paris. Using dependency-
based features to take the “para-farce” out of paraphrase. In Proceedings of the
Australasian Language Technology Workshop, volume 2006, pages 131–138,
2006.

144

BIBLIOGRAPHY

Baoxun Wang, Xiaolong Wang, Chengjie Sun, Bingquan Liu, and Lin Sun. Mod-
eling semantic relevance for question-answer pairs in web social communities.
In Proceedings of Annual Meeting of the Association for Computational Lin-
guistics, pages 1230–1238, 2010.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David A. McAllester. Machine com-
prehension with syntax, frames, and semantics. In Proceedings of Annual Meet-
ing of the Association for Computational Linguistics, pages 700–706, 2015.

Mengqiu Wang and Christopher D. Manning. Probabilistic tree-edit models with
structured latent variables for textual entailment and question answering. In
Proceedings of 23rd International Conference on Computational Linguistics,
pages 1164–1172, 2010.

Mengqiu Wang, Noah A. Smith, and Teruko Mitamura. What is the jeopardy
model? A quasi-synchronous grammar for QA. In Proceedings of Empirical
Methods in Natural Language Processing, pages 22–32, 2007.

Shuohang Wang and Jing Jiang. Learning natural language inference with LSTM.
In Proceedings of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 1442–1451, 2016.

Paul J. Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sciences. PhD thesis, Harvard University, 1974.

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards AI-
complete question answering: A set of prerequisite toy tasks. arXiv preprint
arXiv:1502.05698, 2015a.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In Pro-
ceedings of International Conference on Learning Representations, 2015b.

Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. 1960 IRE
WESCON Convention Record, pages 96–104, 1960.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Charagram:
Embedding words and sentences via character n-grams. In Proceedings of Em-
pirical Methods in Natural Language Processing, pages 1504–1515, 2016.

Pengcheng Wu, Steven CH Hoi, Hao Xia, Peilin Zhao, Dayong Wang, and Chun-
yan Miao. Online multimodal deep similarity learning with application to im-
age retrieval. In Proceedings of ACM Multimedia Conference, pages 153–162,
2013.

145

BIBLIOGRAPHY

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Qili Zhu. Probase: A proba-
bilistic taxonomy for text understanding. In Proceedings of International Con-
ference on Management of Data, pages 481–492, 2012.

Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng
Zhang. The application of two-level attention models in deep convolutional
neural network for fine-grained image classification. In Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pages 842–850, 2015.

Pengtao Xie, Yuntian Deng, and Eric Xing. On the generalization error bounds of
neural networks under diversity-inducing mutual angular regularization. arXiv
preprint arXiv:1511.07110, 2015.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Rus-
lan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. Show, attend and
tell: Neural image caption generation with visual attention. In Proceedings of
International Conference on Machine Learning, pages 2048–2057, 2015.

Kun Xu, Yansong Feng, Siva Reddy, Songfang Huang, and Dongyan Zhao. En-
hancing Freebase question answering using textual evidence. arXiv preprint
arXiv:1603.00957, 2016.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, and Gerhard Weikum. Ro-
bust question answering over the web of linked data. In Proceedings of ACM
International Conference on Information and Knowledge Management, pages
1107–1116, 2013.

Min-Chul Yang, Nan Duan, Ming Zhou, and Hae-Chang Rim. Joint relational
embeddings for knowledge-based question answering. In Proceedings of Em-
pirical Methods in Natural Language Processing, pages 645–650, 2014.

Yi Yang, Wen-tau Yih, and Christopher Meek. WikiQA: A challenge dataset
for open-domain question answering. In Proceedings of Empirical Methods in
Natural Language Processing, pages 2013–2018, 2015.

Xuchen Yao. Lean question answering over Freebase from scratch. In Proceed-
ings of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 66–70, 2015.

Xuchen Yao and Benjamin Van Durme. Information extraction over structured
data: Question answering with Freebase. In Proceedings of Annual Meeting of
the Association for Computational Linguistics, pages 956–966, 2014.

146

BIBLIOGRAPHY

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. Semi-
markov phrase-based monolingual alignment. In Proceedings of Empirical
Methods in Natural Language Processing, pages 590–600, 2013a.

Xuchen Yao, Benjamin Van Durme, and Peter Clark. Automatic coupling of an-
swer extraction and information retrieval. In Proceedings of Annual Meeting of
the Association for Computational Linguistics, pages 159–165, 2013b.

Xuchen Yao, Jonathan Berant, and Benjamin Van Durme. Freebase QA: Infor-
mation extraction or semantic parsing? In Proceedings of Annual Meeting of
the Association for Computational Linguistics Workshop on Semantic Parsing,
pages 82–86, 2014.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. Ques-
tion answering using enhanced lexical semantic models. In Proceedings of
Annual Meeting of the Association for Computational Linguistics, pages 1744–
1753, 2013.

Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-
relation question answering. In Proceedings of Annual Meeting of the Associa-
tion for Computational Linguistics, pages 643–648, 2014.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic pars-
ing via staged query graph generation: Question answering with knowledge
base. In Proceedings of Annual Meeting of the Association for Computational
Linguistics, pages 1321–1331, 2015.

Wenpeng Yin and Yulong Pei. Optimizing sentence modeling and selection for
document summarization. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 1383–1389, 2015.

Wenpeng Yin and Hinrich Schütze. An exploration of embeddings for generalized
phrases. In Proceedings of the ACL 2014 Student Research Workshop, pages
41–47, 2014.

Wenpeng Yin and Hinrich Schütze. Multichannel variable-size convolution for
sentence classification. In Proceedings of the 19th Conference on Computa-
tional Natural Language Learning, pages 204–214, 2015.

Wenpeng Yin and Hinrich Schütze. Learning word meta-embeddings. In Pro-
ceedings of Annual Meeting of the Association for Computational Linguistics,
pages 1351–1360, 2016.

147

BIBLIOGRAPHY

Wenpeng Yin and Hinrich Schütze. Attentive convolution. arXiv preprint
arXiv:1710.00519, 2017.

Wenpeng Yin, Tobias Schnabel, and Hinrich Schütze. Online updating of word
representations for part-of-speech tagging. In Proceedings of Empirical Meth-
ods in Natural Language Processing, pages 1329–1334, 2015.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. Deep learn-
ing for answer sentence selection. Proceedings of NIPS Deep Learning and
Representation Learning Workshop, 2014.

Yang Yu, Wei Zhang, Kazi Saidul Hasan, Mo Yu, Bing Xiang, and Bowen
Zhou. End-to-end reading comprehension with dynamic answer chunk rank-
ing. CoRR, abs/1610.09996, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. In Proceedings
of the International Conference on Learning Representations, 2017.

Weinan Zhang, Zhaoyan Ming, Yu Zhang, Ting Liu, and Tat-Seng Chua. Explor-
ing key concept paraphrasing based on pivot language translation for question
retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 410–416, 2015a.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional
networks for text classification. In Proceedings of Annual Conference on Neural
Information Processing Systems, pages 649–657, 2015b.

Ye Zhang, Stephen Roller, and Byron C. Wallace. MGNC-CNN: A simple ap-
proach to exploiting multiple word embeddings for sentence classification. In
Proceedings of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 1522–1527, 2016.

Jiang Zhao, Tiantian Zhu, and Man Lan. ECNU: One stone two birds: Ensemble
of heterogenous measures for semantic relatedness and textual entailment. In
Proceedings of International Workshop on Semantic Evaluation, pages 271–
277, 2014.

Lei Zou, Ruizhe Huang, Haixun Wang, Jeffer Xu Yu, Wenqiang He, and Dongyan
Zhao. Natural language question answering over RDF: A graph data driven
approach. In Proceedings of International Conference on Management of Data,
pages 313–324, 2014.

148

Curriculum Vitae

Education
09/2013 – 06/2017 Ph.D. Student (CIS, LMU Munich, Germany)

Research on Representation Learning

09/2010 – 06/2013 Master Student (Peking University, China)
Specializations: Computer Science

09/2006 – 07/2010 Bachelor Student (Northwestern Polytechnical University, China)
Specializations: Computer Science

Practical Experience
03/2016 - 05/2016 Intern Scientist (IBM Watson Research Center, U.S.)

Research on question answering via deep learning

Professional Activities
Program Committee Member NAACL’2016, ACL’2016, EMNLP’2016, COLING’2016

EACL’2017, IJCAI’2017, ACL’2017, EMNLP’2017
CCL’2017, IJCNLP’2017

Awards
2014 Baidu Fellowship
2014 Google Travel Grant for ACL

149

