Logo Logo
Hilfe
Kontakt
Switch language to English
Supervised and unsupervised methods for learning representations of linguistic units
Supervised and unsupervised methods for learning representations of linguistic units
Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”., Wortrepräsentationen, sogenannte Word Embeddings, sind generische Repräsentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nächsten Nachbarn. Viele Probleme der Computerlinguistik können durch Wortrepräsentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den Wortrepräsentationen enthalten sind. In der ersten Publikation untersuchen wir überwachte, graphenbasierte Methodenn um Wortrepräsentationen zu erzeugen. Diese Methoden führen zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, für welches zwei äquivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne Knotenähnlichkeiten effektiv berechnen, da graphenbasierte Wortrepräsentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende Wortrepräsentationen und kombinieren diese mit semantischen Ressourcen, indem wir Repräsentationen für Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und Entitäten. Die Flexibilität unserer Methode zeichnet sich dadurch aus, dass wir beliebige Wortrepräsentationen als Eingabe verwenden können und keinen zusätzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der Wortrepräsentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten Repräsentationen zur Erstellung von Wörterbüchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und Häufigkeit. Die letzte Publikation präsentiert eine neue Rechenmethode für die interpretierbaren ultra-kompakten Untervektorräume -- Stimmung, Konkretheit, Häufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort für Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”.
word, embeddings, simrank, wordnet, word2vec
Rothe, Sascha
2017
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Rothe, Sascha (2017): Supervised and unsupervised methods for learning representations of linguistic units. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik
[thumbnail of Rothe_Sascha.pdf]
Vorschau
PDF
Rothe_Sascha.pdf

1MB

Abstract

Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.

Abstract

Wortrepräsentationen, sogenannte Word Embeddings, sind generische Repräsentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nächsten Nachbarn. Viele Probleme der Computerlinguistik können durch Wortrepräsentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den Wortrepräsentationen enthalten sind. In der ersten Publikation untersuchen wir überwachte, graphenbasierte Methodenn um Wortrepräsentationen zu erzeugen. Diese Methoden führen zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, für welches zwei äquivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne Knotenähnlichkeiten effektiv berechnen, da graphenbasierte Wortrepräsentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende Wortrepräsentationen und kombinieren diese mit semantischen Ressourcen, indem wir Repräsentationen für Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und Entitäten. Die Flexibilität unserer Methode zeichnet sich dadurch aus, dass wir beliebige Wortrepräsentationen als Eingabe verwenden können und keinen zusätzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der Wortrepräsentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten Repräsentationen zur Erstellung von Wörterbüchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und Häufigkeit. Die letzte Publikation präsentiert eine neue Rechenmethode für die interpretierbaren ultra-kompakten Untervektorräume -- Stimmung, Konkretheit, Häufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort für Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”.