
Supervised and Unsupervised
Methods for Learning

Representations of
Linguistic Units

Sascha Rothe

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

München, den 12. Dezember 2016

Supervised and Unsupervised
Methods for Learning

Representations of
Linguistic Units

Sascha Rothe

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

Erstgutachter: Prof. Dr. Hinrich Schütze
Zweitgutachter: Prof. Dr. Roberto Navigli

Drittgutachterin: Prof. Dr. Vera Demberg

Tag der Einreichung: 12. Dezember 2016
Tag der Disputation: 14. Juni 2017

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig
ohne unerlaubte Beihilfe angefertigt ist.

München, den 12.12.2016

Sascha Rothe

5

6

Abstract

Word representations, also called word embeddings, are generic representations,
often high-dimensional vectors. They map the discrete space of words into a
continuous vector space, which allows us to handle rare or even unseen events, e.g.
by considering the nearest neighbors. Many Natural Language Processing tasks
can be improved by word representations if we extend the task specific training
data by the general knowledge incorporated in the word representations.

The first publication investigates a supervised, graph-based method to create
word representations. This method leads to a graph-theoretic similarity measure,
CoSimRank, with equivalent formalizations that show CoSimRank’s close rela-
tionship to Personalized Page-Rank and SimRank. The new formalization is effi-
cient because it can use the graph-based word representation to compute a single
node similarity without having to compute the similarities of the entire graph. We
also show how we can take advantage of fast matrix multiplication algorithms.

In the second publication, we use existing unsupervised methods for word
representation learning and combine these with semantic resources by learning
representations for non-word objects like synsets and entities. We also investigate
improved word representations which incorporate the semantic information from
the resource. The method is flexible in that it can take any word representations
as input and does not need an additional training corpus. A sparse tensor forma-
lization guarantees efficiency and parallelizability.

In the third publication, we introduce a method that learns an orthogonal trans-
formation of the word representation space that focuses the information relevant
for a task in an ultradense subspace of a dimensionality that is smaller by a factor
of 100 than the original space. We use ultradense representations for a Lexicon
Creation task in which words are annotated with three types of lexical information
– sentiment, concreteness and frequency.

The final publication introduces a new calculus for the interpretable ultradense
subspaces, including polarity, concreteness, frequency and part-of-speech (POS).
The calculus supports operations like “−1× hate = love” and “give me a neutral
word for greasy” (i.e., oleaginous) and extends existing analogy computations like
“king− man + woman = queen”.

7

8

Zusammenfassung

Wortrepräsentationen, sogenannte Word Embeddings, sind generische Repräsen-
tationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der
Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungese-
hene Ereignisse zu behandeln – zum Beispiel durch die Betrachtung der nächsten
Nachbarn. Viele Probleme der Computerlinguistik können durch Wortrepräsenta-
tionen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen
Informationen erweitern, welche in den Wortrepräsentationen enthalten sind.

In der ersten Publikation untersuchen wir überwachte, graphenbasierte Metho-
denn um Wortrepräsentationen zu erzeugen. Diese Methoden führen zu einem
graphenbasierten Ähnlichkeitsmaß, CoSimRank, für welches zwei äquivalente
Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten
PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne
Knotenähnlichkeiten effektiv berechnen, da graphenbasierte Wortrepräsentatio-
nen benutzt werden können.

In der zweiten Publikation verwenden wir existierende Wortrepräsentationen
und kombinieren diese mit semantischen Ressourcen, indem wir Repräsentationen
für Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und En-
titäten. Die Flexibilität unserer Methode zeichnet sich dadurch aus, dass wir be-
liebige Wortrepräsentationen als Eingabe verwenden können und keinen zusätz-
lichen Trainingskorpus benötigen.

In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonal-
transformation des Vektorraums der Wortrepräsentationen lernt. Diese Transfor-
mation fokussiert relevante Informationen in einen ultra-kompakten Untervektor-
raum. Wir benutzen die ultra-kompakten Repräsentationen zur Erstellung von
Wörterbüchern mit drei verschiedene Angaben – Stimmung, Konkretheit und Häu-
figkeit.

Die letzte Publikation präsentiert eine neue Rechenmethode für die interpretier-
baren ultra-kompakten Untervektorräume – Stimmung, Konkretheit, Häufigkeit
und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass =
Liebe” und ”neutrales Wort für Winkeladvokat” (d.h., Anwalt) und erweitert exis-
tierende Rechenmethoden, wie ”Onkel−Mann + Frau = Tante”.

9

10

Contents

Publications and Declaration of Co-Authorship 15

1 Introduction 19
1.1 Unsupervised Training Methods 20

1.1.1 Continuous Bag of Words 20
1.1.2 Skip-Gram . 22
1.1.3 Global Vectors . 23

1.2 Graph-Based Word Embeddings 23
1.2.1 PageRank . 24
1.2.2 Personalized PageRank 25
1.2.3 SimRank . 26

1.3 Intrinsic Evaluation . 27
1.3.1 Word Similarity . 27
1.3.2 Word Analogy . 28

1.4 Task Specific Embeddings . 30
1.4.1 Word Embeddings . 32
1.4.2 Word-level Embeddings 32
1.4.3 Sentence Embeddings . 33
1.4.4 Document Embeddings 34

2 CoSimRank 37
2.1 Introduction . 38
2.2 Related Work . 38
2.3 CoSimRank . 40

2.3.1 Personalized PageRank 40
2.3.2 Similarity of Vectors . 40
2.3.3 Matrix Formulation . 41
2.3.4 Convergence Properties 41

2.4 Comparison to SimRank . 41
2.5 Extensions . 42

11

CONTENTS

2.5.1 Weighted Edges . 42
2.5.2 CoSimRank Across Graphs 42
2.5.3 Typed Edges . 42
2.5.4 Similarity of Sets of Nodes 43

2.6 Experiments . 43
2.6.1 Baselines . 43
2.6.2 Synonym Extraction . 43
2.6.3 Lexicon Extraction . 44
2.6.4 Run Time Performance 45
2.6.5 Comparison with WINTIAN 45
2.6.6 Error Analysis . 46

2.7 Summary . 46

3 AutoExtend for Synsets and Lexemes 49
3.1 Introduction . 50
3.2 Model . 51

3.2.1 Learning . 52
3.2.2 Matrix Formalization . 53
3.2.3 Lexeme Embeddings . 53
3.2.4 WordNet Relations . 53
3.2.5 Implementation . 53
3.2.6 Column Normalization 54

3.3 Data Experiments and Evaluation 54
3.3.1 Word Sense Disambiguation 54
3.3.2 Synset and Lexeme Similarity 56

3.4 Analysis . 56
3.5 Resources other than WordNet 57
3.6 Related Work . 57
3.7 Conclusion . 58

4 Ultradense Word Embeddings 61
4.1 Introduction . 62
4.2 Model . 63

4.2.1 Separating Words of Different Groups 63
4.2.2 Aligning Words of the Same Group 63
4.2.3 Training . 64
4.2.4 Orthogonalization . 64

4.3 Lexicon Creation . 64
4.4 Evaluation . 65

4.4.1 Top-Ranked Words . 65

12

CONTENTS

4.4.2 Quality of Predictions . 66
4.4.3 Determining Association Strength 66
4.4.4 Text Polarity Classification 67

4.5 Parameter Analysis . 68
4.5.1 Size of Subspace . 68
4.5.2 Size of Training Resource 69

4.6 Related Work . 69
4.7 Conclusion . 70

5 Word Embedding Calculus 73
5.1 Introduction . 74
5.2 Word Embedding Transformation 74
5.3 Setup and Method . 75
5.4 Evaluation . 76

5.4.1 Antonym Classification 76
5.4.2 Polarity Spectrum Creation 76
5.4.3 Morphological Analogy 77
5.4.4 POS Tagging . 78

5.5 Related Work . 78
5.6 Conclusion . 78

6 AutoExtend with Semantic Resources 81
6.1 Introduction . 82
6.2 Model . 83

6.2.1 General Framework . 84
6.2.2 Additive Edges . 86
6.2.3 Learning Through Autoencoding 88
6.2.4 Matrix Formulation . 89
6.2.5 Lexeme Embeddings . 90
6.2.6 Similarity Edges . 90
6.2.7 Column Normalization 91
6.2.8 Implementation . 91

6.3 Data . 91
6.3.1 WordNet . 92
6.3.2 GermaNet . 92
6.3.3 Freebase . 93

6.4 Experiments and Evaluation . 94
6.4.1 Word Sense Disambiguation 94
6.4.2 Entity Linking . 96
6.4.3 Word-in-Context Similarity 96

13

CONTENTS

6.4.4 Word Similarity . 97
6.4.5 Synset Alignment . 98
6.4.6 Analysis . 99

6.5 Related Work . 100
6.6 Conclusion . 102

Bibliography 109

Curriculum Vitae 123

14

Publications and Declaration of
Co-Authorship

Chapter 2

Chapter 2 corresponds to the following publication:

Sascha Rothe and Hinrich Schütze; CoSimRank: A Flexible & Ef-
ficient Graph-Theoretic Similarity Measure; Proceedings of the
52nd Annual Meeting of the Association for Computational Linguis-
tics (Baltimore, Maryland, USA, June, 2014) Volume 1: Long Papers,
pages 1392–1402

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 3

Chapter 3 corresponds to the following publication:

Sascha Rothe and Hinrich Schütze; AutoExtend: Extending Word
Embeddings to Embeddings for Synsets and Lexemes; Proceed-
ings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natu-
ral Language Processing (Beijing, China, July, 2015) Volume 1: Long
Papers, pages 1793–1803. IBM Best Student Paper Award

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

15

Chapter 4

Chapter 4 corresponds to the following publication:

Sascha Rothe and Sebastian Ebert and Hinrich Schütze; Ultradense
Word Embeddings by Orthogonal Transformation; Proceedings
of the 2016 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics (San Diego, California, USA,
June, 2016), pages 767–777

Section 4.4 “Text Polarity Classification” of Chapter 4 is Sebastian Ebert’s work. I
also regularly discussed this work with my coauthors. Apart from these explicitly
declared exceptions, I conceived of the original research contributions and per-
formed implementation and evaluation. I wrote the initial draft of the article and
did most of the subsequent corrections. My coauthors assisted me in improving
the draft.

Chapter 5

Chapter 5 corresponds to the following publication:

Sascha Rothe and Hinrich Schütze; Word Embedding Calculus in
Meaningful Ultradense Subspaces; Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Berlin,
Germany, August, 2016) Volume 2: Short Papers, pages 512–517

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 6

Chapter 6 corresponds to the following publication:

Sascha Rothe and Hinrich Schütze; AutoExtend: Combining Word
Embeddings with Semantic Resources; Computational Linguistics
(forthcoming 2017)

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

16

This chapter is the draft of an article that I submitted in 2016 to the journal
Computational Linguistics. A revised version of this chapter was accepted for
publication on 2017-03-13. This chapter is an extended version of the conference
paper reproduced as Chapter 3.

München, 12.12.2016

Sascha Rothe

17

Introduction

18

Chapter 1

Introduction

Word representations, also called word embeddings, are representations of words
as mathematical objects. They allow us to use words in Natural Language Process-
ing, e.g., as input to neural networks. An additional benefit is that we can handle
rare or even unseen events, e.g., by considering nearest neighbors. The formal
definition of an embedding is often given as an injective and structure-preserving
map f : V → U where V is the discrete space of words – the vocabulary.

A simple word embedding is a one-hot vector. In this case, we create a vo-
cabulary of the n most frequent words. Typical values for n are between 10,000
and 100,000. The word embedding of word v is then given by the canonical unit
vector ev ∈ R|V |. We can now use these embeddings in neural networks or other
applications.

However, one-hot vectors do not have the advantage of generalization. For ex-
ample, given the phrase the fast car, we can learn that a car is an object that moves,
but this phrase would tell us nothing about the word cars. As all embeddings have
the same distance to each other it is impossible to incorporate information of the
nearest neighbors. In this thesis, we will use two methods to overcome this issue.

1. The first approach maps high dimensional sparse one-hot vectors to low
dimensional dense vectors. This forces the system to generalize. For exam-
ple, the system will learn that car and cars are very similar as they occur in
similar contexts. Because the generalization is automatically learned from
a training corpus, we call this method unsupervised.

2. The second approach generates a graph, where words are nodes and edges
are constructed by linguistic relationships like direct object (e.g., drive-car)
or hypernymy (e.g., vehicle-car). These relationships have to be defined
and we therefore call this method supervised. After defining the types of
relations we can manually create the graph using linguists or crowdsourc-
ing. We can also learn the edges and nodes by scanning through a large

19

1. Introduction

annotated corpus.

In Natural Language Processing, the mathematical definition we just gave is
not always applied strictly. For example, there is often no formal constraint that
two different words cannot be mapped to the same vector. This would violate the
injectivity. However, injectivity is still a useful property, as it guarantees that we
are still able to distinguish words. This also includes synonyms, where we want to
have the resulting objects to be similar but not identical. The property of structure
preservation is not clearly defined. For example, sometimes we want antonyms to
be similar and sometimes we want antonyms to be inverses of each other.

In this introduction, we will briefly cover unsupervised embedding learning
methods, some basics of graph theory to handle supervised embeddings and the
evaluation of word embeddings. Finally, we will introduce task specific embed-
dings which can be seen as building blocks of deep neural networks, a subject
currently undergoing intense study.

1.1 Unsupervised Training Methods

Among the earliest work on distributed word representations, usually called word
embeddings today, was (Rumelhart et al., 1988). Non-neural-network techniques
that create low-dimensional word representations also have been used widely, in-
cluding singular value decomposition (SVD) (Deerwester et al., 1990; Schütze,
1992) and random indexing (Kanerva, 1998, 2009). There has been a resurgence
of work on embeddings recently (e.g., Bengio et al. (2003a), Mnih and Hinton
(2007a), Collobert et al. (2011)), including methods that are SVD-based (Levy
and Goldberg, 2014; Stratos et al., 2015). We will cover the three most frequently
used word embedding methods in this section, namely Continuous Bag of Word
(CBOW), Skip-gram and Global Vectors (GloVe).

1.1.1 Continuous Bag of Words
The Continuous Bag of Word method, often just called CBOW, was introduced
together with Skip-gram (see next subsection) by Mikolov et al. (2013a). Both
methods are part of a highly optimized toolkit called word2vec (Mikolov et al.,
2013c) and are similar to an autoencoder. First, we have to define a vocabulary V
together with an index function v that maps from a position in the training corpus
to the index of the corresponding word in the vocabulary. We are able to set
the size of the vocabulary quite high. It typically includes 100,000 to 1,000,000
words. Out of vocabulary words (OOVs) can either be replaced by a special token
and mapped to the corresponding index or simply be removed from the training

20

1.1 Unsupervised Training Methods

Figure 1.1 – The CBOW algorithm takes the entire context to predict the word
in the middle word.

corpus. The method also defines a window size k around a word at position t.
CBOW then uses all words at position t + k′, with 0 < |k′| ≤ k, i.e., all words
inside the window excluding the middle word, to predict the word in the middle.

Let ev(t) ∈ R|V | be a canonical unit vector of length |V | where |V | is the
number of words in our vocabulary. This vector is also called the one-hot repre-
sentation of the word at position t. CBOW learns two matrices W,C ∈ Rd×|V |

where d is the dimensionality of the embedding space we want to learn. This
parameter has to be defined prior to the training. Typical values for the dimen-
sionality of the embeddings space are 50, 100, 300 or 500. We can now state the
learning objective of CBOW as follows:

argmin
W,C

∥∥∥∥∥∥

 ∑

0<|k′|≤k

1

2k
(Wev(t+k′))

− Cev(t)

∥∥∥∥∥∥
,∀t (1.1)

This is illustrated in Figure 1.1. As all neural networks, the training is per-
formed using the gradient descent algorithm. In contrast to most neural network
implementations which use batch gradient descent, a stochastic gradient descent
is used. However, the training can be parallelized to multiple GPUs. A corpus
of several billion words can therefore be processed in under one day. A word
embedding of word v is given by Wev, i.e., the columns of W define the word
embeddings. The values in C are discarded.

21

1. Introduction

Figure 1.2 – The Skip-gram algorithm iterates through all context words and
pairs one at a time with the middle word.

1.1.2 Skip-Gram

CBOW uses the context words to predict the word in the middle. Skip-gram vice
versa uses the word in the middle to predict surrounding words at position t+ k′,
with 0 < |k′| ≤ k. The learning objective of Skip-gram (Figure 1.2) is given as
follows:

argmin
W,C

∑

0<|k′|≤k
‖Wev(t) − Cev(t+k′)‖ ,∀t (1.2)

Theoretically Eq. 1.1 and Eq. 1.2 are equivalent when W and C are switched.
However, there are practical issues which further distinguish both methods:

1. The window size k is randomly sampled between 0 and k for each gradient
descent step.

2. Whereas W is initialized with a uniform distribution, C is set to a zero
matrix. This results in slightly shorter word embeddings for vectors in W .
However, this effect is negligible for frequent words or if the training lasts
for a lot of iterations.

3. CBOW performs one back propagation per middle word whereas Skip-gram
performs one for every word in the window. Because of this CBOW is also
notably faster than Skip-gram especially when the window size k is large.

22

1.2 Graph-Based Word Embeddings

4. To optimize the learning process, methods like hierarchical softmax or neg-
ative sampling are used. For details on these methods see (Mikolov et al.,
2013a) and (Mikolov et al., 2013c)

1.1.3 Global Vectors
Global Vectors, often just called GloVe, are embeddings that were introduced by
Pennington et al. (2014b) and aim to combine the advantages of matrix factoriza-
tion and local context windows. For this, a co-occurrence matrix X is defined,
with Xij being the number of times word j occurs in the context of word i. It
follows that the probability of word j occurring in the context of word i is given
by:

Pij =
Xij∑
kXik

(1.3)

The idea of the model is that word embeddings should be based on the ratio
of co-occurrence probabilities and not on the co-occurrence itself. That means if
we want to learn something about the relationship of word i and j we don’t look
at Pij but on Pik/Pjk for all k. Further constraints on the model are linearity and
homomorphy. This results in the final learning objective:

argmin
W,C

‖(Wei)
TCej + bi + bj − log(Xij)‖ ,∀i, j (1.4)

with bi and bj being bias terms. In this model, the context vectors are kept for
a small boost in performance. The final word embedding is a combination of both
vectors, i.e.:

(λW + (1− λ)C)ev

1.2 Graph-Based Word Embeddings
The first publication in Chapter 2 covers graph-based embeddings. In this section,
we will introduce some basics of graph theory and how graphs fit in our frame-
work of word embeddings. So be U = {1, 2, 3, . . . , n} the set of nodes. The set
of edges E is a subset of U × U . The pair G = (U,E) is called graph. The
edges can be defined by grammatical relationships, e.g., verb-object pairs or hy-
pernymy. Graphs based on these definitions were created by Dorow et al. (2009)
and called WordGraph. They used the following relationships for edges: adjec-
tival modifier (adjective-noun), direct object (verb-object) and noun coordination
(noun-noun). They were parsed from Wikipedia for two languages, English and
German. When a relationship is above a certain threshold an edge was created.

23

1. Introduction

The graphs also included node types, defined by POS; edge types, defined by the
different grammatical relationships; and edge weights, defined by the logarithm
of the log-likelihood score.

Another graph of words is WordNet by Fellbaum (1998). This graph was
manually created and the edges are defined by conceptual-semantic and lexical
relations. These include hypernymy (superset), hyponymy (subset), meronymy
(part-of), holonymy (opposite of meronymy). Additionally, words are grouped
into synsets, so we can easily construct a synonym relationships between words.
We will use WordNet in this thesis together with GermaNet by Hamp and Feldweg
(1997), which is a similar resource for German, and Freebase (Bollacker et al.,
2008), which is a graph-like resource with an emphasis on entities.

To fit in the framework of word embeddings we can simply define the embed-
ding map f : V → U . However, a mapping to nodes is only slightly useful as
most evaluations and applications, e.g., neural networks, rely on real-valued vec-
tors. To overcome this limitation we will propose a similarity measure based on
the Personalized PageRank. The Personalized PageRank assigns a vector to each
node. So we can also use this method in other evaluations or applications. The
new method is presented in Chapter 2 but we will introduce the basics – Page-
Rank and Personalized PageRank – in following two subsections. We will put
an emphasis on the mathematical foundations, i.e., existence and uniqueness of
solutions.

1.2.1 PageRank
PageRank was developed 1997 by Lawrence Page and Sergei Brin and registered
for patent. The name stands for his inventor as well as its primary usage, i.e.,
ranking web pages. The computation of the PageRank can be done analytically
by solving the eigenvalue problem of a matrix similar to an adjacency matrix. To
overcome time and space complexity an iterative computation is used in practice.
The PageRank of node i at iteration k + 1 is defined as:

P
(k+1)
i =

∑

(j,i)∈E

P
(k)
j

gout(j)
(1.5)

where gout(u) = |{x ∈ U |(u, x) ∈ E}| is the outdegree of node u. The
computation is started with P 0

i = 1
n

for all i ∈ E. The intuitive idea is that pages
(i.e., nodes) pass weight through links (i.e., edges) to other web pages. This means
that a web page is important if it has important web pages linking to it. Another
interpretation is the random surfer model, where an internet surfer randomly clicks
links on web pages. The PageRank then corresponds to the probability of that
surfer being on a certain page. We can rewrite Eq. 1.5 into a matrix formalization:

24

1.2 Graph-Based Word Embeddings

p(k+1) = Ap(k) (1.6)

p(0) =
1

n
jn =

(
1

n
, . . . ,

1

n

)T

(1.7)

The matrix A is the column normalized adjacency matrix and jn is a vector
of ones and length n. If a node has no outgoing edges we set the corresponding
column in A to 1

n
jn. To ensure fast convergence A must also be strictly positive,

which is why an additional damping factor d is introduced.

G = dA+ (1− d)
(
1

n
Jn

)
(1.8)

with Jn being a square matrix of ones and size n. The matrix G is also called
Google matrix. The iterative computation is then given by:

p(k+1) = Gp(k) (1.9)

p(0) =
1

n
jn =

(
1

n
, . . . ,

1

n

)T

(1.10)

with G being column normalized and strictly positive the following statements
hold true (Perron, 1907):

1. The spectral radius ρ(A) > 0

2. ρ(A) is a single eigenvalue

3. There exists a vector p so that Ap = ρ(A)p, p > 0 and ‖p‖1 = 1

4. A does not have other eigenvectors v > 0 (except for multiples of p)

It is also known that the iteration in Eq. 1.6 converges to the eigenvector
corresponding to the dominant eigenvalue, i.e., the spectral radius (Mises and
Pollaczek-Geiringer, 1929). We therefore have a unique and well-defined solution
p for the iterative computation of PageRank. The vector p is also called Perron
vector.

1.2.2 Personalized PageRank
The PageRank assigns each node in the graph a positive value. We want to have
a more discrete variable and define the Personalized PageRank pi. We change
Eq. 1.6 as follows:

25

1. Introduction

p
(k+1)
i = dAp

(k)
i + (1− d)ei (1.11)

p
(0)
i = ei (1.12)

with ei being the canonical unit vector. Note that this would result in a non-
negative but not strictly positive matrix for the vector iteration. However, we
can postulate the same conclusions as in the previous section if A is irreducible
(Frobenius, 1912). The adjacency matrix of a graph G is irreducible if and only
if G is connected, i.e., there is a path between every pair of nodes. WordGraph
is undirected and in WordNet, every edge type also has an inverse type, e.g., hy-
pernymy and hyponymy. This condition can be considered to be fulfilled for the
graphs we are using.

1.2.3 SimRank

In the previous subsection, we described how to map nodes in a graph to a real-
valued vector. These vectors can already be used to compute the similarity be-
tween nodes, by using an arbitrary metric of the vector space. We will cover this
in more detail in the next section. However, we can also apply a similarity mea-
sure directly to the graph. The most used methods for this is SimRank developed
by Jeh and Widom (2002) and the idea is similar to PageRank. The intuition that
important nodes are connected to important nodes translates to nodes are similar
if their neighbors are similar. We can write the iterative matrix formalization as
follows:

S(k+1) = dAS(k)AT (1.13)

S(0) = E (1.14)

withE being the identity matrix and d being a decay factor similar to the decay
factor used in Eq. 1.8. Obviously, this computation converges to zero if d < 1.
To prevent this the diagonal of Sk is set to one after each iteration. It is now easy
to see that SimRank converges to a nontrivial matrix. For a proof please see (Jeh
and Widom, 2002) or chapter 2 of this thesis where we prove the convergence of
CoSimRank from which the convergence of SimRank immediately follows. The
downside of resetting the diagonal after each iteration is that we do not have a
local formulation of SimRank, i.e., we always have to compute all similarities in
the graph. We will overcome this by introducing CoSimRank.

26

1.3 Intrinsic Evaluation

1.3 Intrinsic Evaluation

As we already mentioned word embeddings shall preserve the structure of the
word space. There is no clear definition of the structure of a word space but we
might want to preserve similarity, i.e., similar words are mapped to similar word
embeddings. This is the basis for the first popular intrinsic task to evaluate word
embeddings (Miller and Charles, 1991). The second evaluation, namely Word
Analogy, tests the preservation of relations (Mikolov et al., 2013a). We will cover
these two evaluation methods in the following subsections. Other evaluations
include Word Categorization, i.e., clustering the words into different categories,
and selectional preference. Here the task is to determine if a verb-noun pair is a
verb-object or a verb-subject pair. For example, is it drive a car or a car drives.
Another task is to find an outlier among a group of words, e.g., apple, banana,
moon and peach.

1.3.1 Word Similarity
In this task, a set of word pairs is given together with human-assigned similarity
scores. Word Similarity test sets for the English language include MC (Miller
and Charles, 1991), MEN (Bruni et al., 2014), RG (Rubenstein and Goodenough,
1965), SIMLEX (Hill et al., 2014), RW (Luong et al., 2013) and WordSim-353
(Finkelstein et al., 2001). Table 1.1 gives some examples. The human assigned
score is usually based on several annotators. To evaluate the word embeddings we
have to define a similarity measure in the embedding space. A frequent choice is
the cosine similarity defined by:

simcos(v, w) =
vTw

‖v‖‖w‖ (1.15)

or euclidean similarity defined by:

simL2(v, w) =
1

1 + ‖v − w‖ (1.16)

After this, we compute a correlation between the human scores and the word
embedding based scores. The most basic correlation is Pearson’s r (Galton, 1888).

ρp(X, Y) =
cov(X, Y)

σXσY
(1.17)

The downside of the Pearson’s r is, that it measures the linear dependency
between two variables. This is an unnecessary constraint to our models and we
therefore use rank correlations. A lot of publications report the Spearman’s rho

27

1. Introduction

word 1 word 2 similarity
coast shore 9.10

money dollar 8.42
tiger cat 7.35

psychology clinic 6.58
energy crisis 5.94

word similarity 4.75
situation isolation 3.88

opera industry 2.63
stock egg 1.81

professor cucumber 0.31

Table 1.1 – Examples of word similarity test pairs, taken out of WordSim-353.

(Spearman, 1904) which is defined by computing Pearson’s r of the ranked vari-
ables:

ρs(X, Y) = ρp(rgX , rgY) =
cov(rgX , rgY)

σrgXσrgY
(1.18)

where rg converts scores to ranks, cov is the covariance and σ is the standard
deviation. Sometimes also Kendall’s tau is reported (Kendall, 1948). For this, we
consider all pairs of observations (xi, yi) and (xj, yj). With no loss of generality,
we set xi < xj . We call a pair concordant if yi < yj and discordant if yi > yj .
If xi = xj or yi = yj the pair is called neither concordant nor discordant. With n
being the number of observations, Kendall’s tau is defined as follows:

τ(X, Y) =
(# of concordant pairs)− (# of discordant pairs)

n(n− 1)/2
(1.19)

A high correlation indicates high-quality word embeddings. While we already
discard absolute values by using a rank correlation this still yields problems. For
example, it is obvious that the word pair car-bus shall get a higher similarity than
car-table. However, depending on the context we want to investigate, it is unclear
if bus-train (both a transportation vehicle) or bus-truck (both a big vehicle driving
on a road) shall get a higher similarity. Further problems were highlighted by
Faruqui et al. (2016).

1.3.2 Word Analogy
For this task, two pairs of words were grouped together. Each pair is related
through the same relationship, e.g., country-capital or adjective-comparative. One

28

1.3 Intrinsic Evaluation

word 1A word 1B word 2A word 2B
Paris France Berlin Germany
Europe euro USA dollar
brother sister policeman policewoman
amazing amazingly obvious obviously
slow slower cold colder
fast fastest tasty tastiest
discover discovering swim swimming
China Chinese Mexico Mexican
predicting predicted going went
man men eye eyes
work works go goes

Table 1.2 – Examples of word analogy test cases. The upper part is of seman-
tic nature whereas the lower part is of syntactic nature.

out of the four words is hidden and the task is to predict the hidden word. This
can be solved by computing an offset vector between one pair and adding it to the
single word. A well-known example is the set king-men and queen-women. The
word queen can be found by solving:

f(king)− f(men) + f(women) = f(queen) (1.20)

whereas f is the word embedding function that maps a word to a word embed-
ding. Note that we either compute the offset vector between men and women or
between men and king. Both variants lead to the same equation. More examples
can be seen in Table 1.2.

After computing the left side of Eq. 1.20 we have to find the nearest neighbors
to the result. Cosine distance or euclidean distance is used. If using the euclidean
distance this would result in the following optimization problem:

argmin
v∈V

‖f(a)− f(b) + f(c)− f(v)‖

To simplify the notation we will use v for a word as well as for the correspond-
ing word embedding f(v). Some implementations normalize all word embed-
dings first and compute the cosine similarity. This is equivalent to the following
optimization problem:

argmax
v∈V

simcos(v, a)− simcos(v, b) + simcos(v, c)

In our example, this means that we seek a word which is similar to king and

29

1. Introduction

woman but dissimilar to men. An alternative to the computation of the offset
vector was proposed by Levy et al. (2014).

argmax
v∈V

simcos(v, a) simcos(v, c)

simcos(v, b)

The method is designed to increase the differences between small quantities
and reducing the differences between larger ones. Extra care has to be taken to
avoid divisions by zero, e.g., by mapping all cosine similarities to [0, 1] and adding
ε to the division.

Table 1.3 gives examples of the nearest neighbors using the cosine distance.
The final evaluation score is simply the accuracy where the correct word was
found in position one. A higher accuracy indicates higher quality word embed-
dings. Current state-of-the-art models achieve an accuracy above 70%. Some-
times also acc@10 is reported, i.e., how often the correct word was found in the
list of top 10 candidates. If the list is of arbitrary size or there is more than one
correct answer, precision, recall and F1 are also common measures. As we have
to find the nearest neighbor the computation of Word Analogy is slightly more ex-
pensive than Word Similarity, where we just have to compute a cosine similarity.
Word Analogy tests are therefore often reduced to most frequent words, e.g., top
30,000.

Both evaluations, Word Similarity and Word Analogy, are appealing because
they are easy to implement and inexpensive to compute. They are also usually
a good first indicator. However, they may not always be consistent with perfor-
mance on downstream tasks (Schnabel et al., 2015). Because of this extrinsic
evaluations measure the performance on a certain task, e.g., POS Tagging or Sen-
timent Analysis (Nayak et al., 2016). On the other side, if word embeddings are
optimized for a certain task the embedding training can also be integrated into the
learning algorithm. This produces task specific embeddings, which we will cover
in the next section.

1.4 Task Specific Embeddings
We already showed how to learn word embeddings on unlabeled data. These em-
beddings were thought to be general and not specific to any task. The idea of
these embeddings is that unlabeled corpora are widely available and the infor-
mation contained in them can be transferred to tasks where less training data is
available. However, there are also tasks where we do have a lot of training data,
e.g., machine translation for popular languages or question answering. For these
applications, we can also learn task specific embeddings on the fly while training
an end-to-end system. In this section, we will briefly discuss word-, word-level-,

30

1.4 Task Specific Embeddings

query nearest neighbors
Paris Heidi, London, France, Dubai, Samuel, Hilton,

Rome, Toronto, Las Vegas, Lindsay Lohan
Europe European, Germany, Spain, England, America,

USA, France, Greece, Italy, Sweden, Africa
policeman policewomen, policemen, constable, cop, taxi

driver, soldier, sergeant, police, patrolman
amazing incredible, awesome, unbelievable, fantastic,

phenomenal, astounding, wonderful, remarkable,
marvelous, fabulous

fast quick, rapidly, quickly, slow, faster, rapid, speed
lightning + thunder thunderstorm, rain, heavy rain, roar, blazing

Friday + Sunday Saturday, Thursday, Monday, Wednesday, Tues-
day, afternoon

Berlin - Germany + France Paris, French, Brussels, Rome, Toulouse
king - man + woman queen, monarch, princess, prince, kings, monar-

chy
slower - slow + cold colder, warmer, cooler, chilly, frigid, chill

Table 1.3 – Examples for the nearest neighbors of word embedding expres-
sions. Note that nearest neighbors include synonyms and antonyms. Ambigu-
ous words include related words of both meanings.

31

1. Introduction

sentence- and document-embeddings for machine comprehension, i.e., where we
have a document a question and an answer.

Figure 1.3 gives an example of how such advanced embeddings can be used
in a question-answering system. We end this introduction with these advanced
embeddings and this architecture to give an outlook on where the area of natural
language processing is headed that this thesis makes a contribution on.

1.4.1 Word Embeddings
Word Embeddings can be learned in a downstream task by simply connecting the
one-hot vector corresponding to the word via a matrix multiplication to the input
of the neural network. Or equivalently we use a lookup table which stores a vector
for each word in the vocabulary. To use pre-trained word embedding, like CBOW,
we can initialize this lookup table with the pre-trained word embeddings. Often
both approaches are combined by initializing the lookup table with pre-trained
word embeddings but updating them via the training process.

1.4.2 Word-level Embeddings
In contrast to word embeddings, word-level embeddings are not unique for all
occurrences of one word. Instead, they also depend on the context. In terms of
precise notation, we have to be careful as this embedding is not a function with the
vocabulary V as the domain but only a relation between vocabulary and embed-
ding space or alternative a function f : V l → Rd. The most common approaches
to generating these embeddings are Long-Short-Term-Memories (LSTMs) and
Convolutional Neural Networks (CNNs). LSTMs can, in theory, have an unlim-
ited context length l but in practice, the context is truncated to the length of an
average sentence or document. We will focus on an LSTM implementation by
Graves (2013). This architecture is based on the work by Hochreiter and Schmid-
huber (1997) which in turn is a modified version of a Recurrent Neural Network
(RNN). The implementation is based on several functions using the logistic sig-
moid function:

σ(x) =
1

1 + ex
(1.21)

The input gate controls the information each cell lets in:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1.22)

The forget gate controls the information each cell maintains over time:

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (1.23)

32

1.4 Task Specific Embeddings

After this the following function can be used to compute the cell state:

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (1.24)

And finally an output gate controls the information that leaves the cell:

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (1.25)

All vectors are the same size as the hidden state vector h. The next hidden
state is computed by:

ht = ot tanh(ct) (1.26)

These hidden state vectors ht are word-level embeddings where xt are normal
word embeddings. A sentence respectively a document is once read from left to
right. We call this the Forward LSTM with the corresponding hidden states

−→
ht .

We can also read the sentence, respectively document from right to left. This is
our Backward LSTM with hidden states

←−
ht . The Bidirectional LSTM is defined

by the concatenation of both:

ht = (
−→
ht ,
←−
ht) (1.27)

So depending on our needs we can use word-level embeddings which incor-
porate the left context, the right context or both.

1.4.3 Sentence Embeddings

A sentence embedding encodes an entire sentence. In our framework, we can use
them to encode a question. A simple approach is to use the word-level embedding
of the first word concatenated with the word-level embedding of the last word.
Thus, a sentence embedding is given by:

s = (
−→
hT ,
←−
h1) (1.28)

with T being the sentence length.
Other more sophisticated strategies include encoder-decoder (Bahdanau et al.,

2014) or seq2seq models (Sutskever et al., 2014) to auto-encode the sentence.
Encoder and decoder are usually LSTMs (see previous subsection). Kiros et al.
(2015b) try to mimic the Skip-gram model by predicting surrounding sentences,
also using an encoder-decoder model.

33

1. Introduction

1.4.4 Document Embeddings
Document embeddings must be able to either store a lot of information or to con-
centrate on the relevant information. In theory, we can use the same technique we
used for the sentence embedding for an entire document. In practice, this does not
work very well, as a document has too much information to encode it into a single
vector. We use an attention mechanism which uses the question to concentrate on
the relevant information. It can be seen as a forked neural network with the hidden
state of the LSTM ht and the sentence encoding of the question sq as input:

aht = σ(Whaht +Wqasq + ba) (1.29)

After the hidden layer aht follows we compute a scalar value aot as output:

aot = σ(Waaa
h
t + ba′) (1.30)

A softmax function over the output of all hidden states gives us the final atten-
tion weight at:

at =
exp(aot)∑T
k=1 exp(a

o
k)

(1.31)

Instead of using a forked neural network with one hidden layer, we can also
use a bilinear term to compute aot :

aot = hTt WBLsq (1.32)

This method seems to be preferable if we assume sq and ht to live in a sim-
ilar space (Luong et al., 2015). To get the document embedding we compute a
weighted sum over all word-level embeddings:

d =
T∑

t=1

atht (1.33)

We can now train a neural network, which minimizes the differences between
the document embedding and the correct answer. See (Hermann et al., 2015)
for more details. By doing so we are able to learn document embeddings that
capture the information relevant to the question. The entire system is visualized
in Figure 1.3.

This is a fast-pacing field of research but LSTMs with attention mechanisms
together with CNNs are the basis for an increasing number of state-of-the-art sys-
tems in Natural Language Processing. While it is feasible to derive the gradient
of the models we introduced in the beginning of the introduction, this might be
cumbersome for an advanced deep neural network like Figure 1.3. Libraries like

34

1.4 Task Specific Embeddings

Figure 1.3 – An end-to-end system for question answering.

35

1. Introduction

Theano (Theano Development Team, 2016) or TensorFlow (Abadi et al., 2015)
take over this task by automatic differentiation, i.e., applying the chain rule to all
operation.

36

Chapter 2

CoSimRank: A Flexible & Efficient
Graph-Theoretic Similarity
Measure

37

CoSimRank: A Flexible & Efficient Graph-Theoretic Similarity Measure

Sascha Rothe and Hinrich Schütze
Center for Information & Language Processing

University of Munich
sascha@cis.lmu.de

Abstract

We present CoSimRank, a graph-theoretic
similarity measure that is efficient because
it can compute a single node similarity
without having to compute the similarities
of the entire graph. We present equivalent
formalizations that show CoSimRank’s
close relationship to Personalized Page-
Rank and SimRank and also show how
we can take advantage of fast matrix mul-
tiplication algorithms to compute CoSim-
Rank. Another advantage of CoSimRank
is that it can be flexibly extended from ba-
sic node-node similarity to several other
graph-theoretic similarity measures. In an
experimental evaluation on the tasks of
synonym extraction and bilingual lexicon
extraction, CoSimRank is faster or more
accurate than previous approaches.

1 Introduction

Graph-theoretic algorithms have been successfully
applied to many problems in NLP (Mihalcea and
Radev, 2011). These algorithms are often based on
PageRank (Brin and Page, 1998) and other central-
ity measures (e.g., (Erkan and Radev, 2004)). An
alternative for tasks involving similarity is Sim-
Rank (Jeh and Widom, 2002). SimRank is based
on the simple intuition that nodes in a graph should
be considered as similar to the extent that their
neighbors are similar. Unfortunately, SimRank
has time complexity O(n3) (where n is the num-
ber of nodes in the graph) and therefore does not
scale to the large graphs that are typical of NLP.

This paper introduces CoSimRank,1 a new
graph-theoretic algorithm for computing node
similarity that combines features of SimRank and
PageRank. Our key observation is that to compute
the similarity of two nodes, we need not consider

1Code available at code.google.com/p/cistern

all other nodes in the graph as SimRank does; in-
stead, CoSimRank starts random walks from the
two nodes and computes their similarity at each
time step. This offers large savings in computa-
tion time if we only need the similarities of a small
subset of all n2 node similarities.

These two cases – computing a few similari-
ties and computing many similarities – correspond
to two different representations we can compute
CoSimRank on: a vector representation, which is
fast for only a few similarities, and a matrix repre-
sentation, which can take advantage of fast matrix
multiplication algorithms.

CoSimRank can be used to compute many vari-
ations of basic node similarity – including similar-
ity for graphs with weighted and typed edges and
similarity for sets of nodes. Thus, CoSimRank has
the added advantage of being a flexible tool for dif-
ferent types of applications.

The extension of CoSimRank to similarity
across graphs is important for the application of
bilingual lexicon extraction: given a set of corre-
spondences between nodes in two graphsA andB
(corresponding to two different languages), a pair
of nodes (a ∈ A, b ∈ B) is a good candidate for a
translation pair if their node similarity is high. In
an experimental evaluation, we show that CoSim-
Rank is more efficient and more accurate than both
SimRank and PageRank-based algorithms.

This paper is structured as follows. Section 2
discusses related work. Section 3 introduces
CoSimRank. In Section 4, we compare CoSim-
Rank and SimRank. By providing some useful
extensions, we demonstrate the great flexibility of
CoSimRank (Section 5). We perform an exper-
imental evaluation of CoSimRank in Section 6.
Section 7 summarizes the paper.

2 Related Work

Our work is unsupervised. We therefore do not
review graph-based methods that make extensive

38

use of supervised learning (e.g., de Melo and
Weikum (2012)).

Since the original version of SimRank (Jeh and
Widom, 2002) has complexity O(n4), many ex-
tensions have been proposed to speed up its calcu-
lation. A Monte Carlo algorithm, which is scalable
to the whole web, was suggested by Fogaras and
Rácz (2005). However, in an evaluation of this al-
gorithm we found that it does not give competitive
results (see Section 6). A matrix representation of
SimRank called SimFusion (Xi et al., 2005) im-
proves the computational complexity from O(n4)
to O(n3). Lizorkin et al. (2010) also reduce com-
plexity to O(n3) by selecting essential node pairs
and using partial sums. They also give a useful
overview of SimRank, SimFusion and the Monte
Carlo methods of Fogaras and Rácz (2005). A
non-iterative computation for SimRank was intro-
duced by Li et al. (2010). This is especially useful
for dynamic graphs. However, all of these meth-
ods have to run SimRank on the entire graph and
are not efficient enough for very large graphs. We
are interested in applications that only need a frac-
tion of all O(n2) pairwise similarities. The algo-
rithm we propose below is an order of magnitude
faster in such applications because it is based on a
local formulation of the similarity measure.2

Apart from SimRank, many other similarity
measures have been proposed. Leicht et al. (2006)
introduce a similarity measure that is also based on
the idea that nodes are similar when their neigh-
bors are, but that is designed for bipartite graphs.
However, most graphs in NLP are not bipartite and
Jeh and Widom (2002) also proposed a SimRank
variant for bipartite graphs.

Another important similarity measure is cosine
similarity of Personalized PageRank (PPR) vec-
tors. We will refer to this measure as PPR+cos.
Hughes and Ramage (2007) find that PPR+cos
has high correlation with human similarity judg-
ments on WordNet-based graphs. Agirre et al.
(2009) use PPR+cos for WordNet and for cross-
lingual studies. Like CoSimRank, PPR+cos is
efficient when computing single node pair simi-
larities; we therefore use it as one of our base-
lines below. This method is also used by Chang
et al. (2013) for semantic relatedness. They also
experimented with Euclidean distance and KL-

2A reviewer suggests that CoSimRank is an efficient ver-
sion of SimRank in a way analogous to SALSA’s (Lempel
and Moran, 2000) relationship to HITS (Kleinberg, 1999) in
that different aspects of similarity are decoupled.

divergence. Interestingly, a simpler method per-
formed best when comparing with human simi-
larity judgments. In this method only the entries
corresponding to the compared nodes are used for
a similarity score. Rao et al. (2008) compared
PPR+cos to other graph based similarity mea-
sures like shortest-path and bounded-length ran-
dom walks. PPR+cos performed best except for
a new similarity measure based on commute time.
We do not compare against this new measure as it
uses the graph Laplacian and so cannot be com-
puted for a single node pair.

One reason CoSimRank is efficient is that we
need only compute a few iterations of the random
walk. This is often true of this type of algorithm;
cf. (Schütze and Walsh, 2008).

LexRank (Erkan and Radev, 2004) is similar to
PPR+cos in that it combines PageRank and cosine;
it initializes the sentence similarity matrix of a
document using cosine and then applies PageRank
to compute lexical centrality. Despite this superfi-
cial relatedness, applications like lexicon extrac-
tion that look for similar entities and applications
that look for central entities are quite different.

In addition to faster versions of SimRank, there
has also been work on extensions of SimRank.
Dorow et al. (2009) and Laws et al. (2010) ex-
tend SimRank to edge weights, edge labels and
multiple graphs. We use their Multi-Edge Extrac-
tion (MEE) algorithm as one of our baselines be-
low. A similar graph of dependency structures was
built by Minkov and Cohen (2008). They applied
different similarity measures, e.g., cosine of de-
pendency vectors or a new algorithm called path-
constrained graph walk, on synonym extraction
(Minkov and Cohen, 2012). We compare CoSim-
Rank with their results in our experiments (see
Section 6).

Some other applications of SimRank or other
graph based similarity measures in NLP include
work on document similarity (Li et al., 2009),
the transfer of sentiment information between lan-
guages (Scheible et al., 2010) and named entity
disambiguation (Han and Zhao, 2010). Hoang and
Kan (2010) use SimRank for related work sum-
marization. Muthukrishnan et al. (2010) combine
link based similarity and content based similarity
for document clustering and classification.

These approaches use at least one of cosine sim-
ilarity, PageRank and SimRank. CoSimRank can
either be interpreted as an efficient version of Sim-

39

Rank or as a version of Personalized PageRank
for similarity measurement. The novelty is that
we compute similarity for vectors that are induced
using a new algorithm, so that the similarity mea-
surement is much more efficient when an applica-
tion only needs a fraction of all O(n2) pairwise
similarities.

3 CoSimRank

We first first give an intuitive introduction of
CoSimRank as a Personalized PageRank (PPR)
derivative. Later on, we will give a matrix formu-
lation to compare CoSimRank with SimRank.

3.1 Personalized PageRank

Haveliwala (2002) introduced Personalized Page-
Rank – or topic-sensitive PageRank – based on the
idea that the uniform damping vector p(0) can be
replaced by a personalized vector, which depends
on node i. We usually set p(0)(i) = ei, with ei be-
ing a vector of the standard basis, i.e., the ith entry
is 1 and all other entries are 0. The PPR vector of
node i is given by:

p(k)(i) = dAp(k−1)(i) + (1− d)p(0)(i) (1)

where A is the stochastic matrix of the Markov
chain, i.e., the row normalized adjacency matrix.
The damping factor d ∈ (0, 1) ensures that the
computation converges. The PPR vector after k
iterations is given by p(k).

To visualize this formula, one can imagine a
random surfer starting at node i and following one
of the links with probability d or jumping back to
the starting node i with probability (1− d). Entry
i of the converged PPR vector represents the prob-
ability that the random surfer is on node i after an
unlimited number of steps.

To simulate the behavior of SimRank we will
simplify this equation and set the damping factor
d = 1. We will re-add a damping factor later in
the calculation.

p(k) = Ap(k−1) (2)

Note that the personalization vector p(0) was elim-
inated, but is still present as the starting vector of
the iteration.

3.2 Similarity of vectors

Let p(i) be the PPR vector of node i. The cosine
of two vectors u and v is computed by dividing

Figure 1: Graph motivating CoSimRank algo-
rithm. Whereas PPR gives relatively high similar-
ity to the pair (law,suit), CoSimRank assigns the
pair similarity 0.

the inner product 〈u, v〉 by the lengths of the vec-
tors. The cosine of two PPR vectors can be used as
a similarity measure for the corresponding nodes
(Hughes and Ramage, 2007; Agirre et al., 2009):

s(i, j) =
〈p(i), p(j)〉
|p(i)||p(j)| (3)

This measure s(i, j) looks at the probability that
a random walker is on a certain edge after an un-
limited number of steps. This is potentially prob-
lematic as the example in Figure 1 shows. The
PPR vectors of suit and dress will have some
weight on tailor, which is good. However, the
PPR vector of law will also have a non-zero weight
for tailor. So law and dress are similar because of
the node tailor. This is undesirable.

We can prevent this type of spurious similarity
by taking into account the path the random surfer
took to get to a particular node. We formalize this
by defining CoSimRank s(i, j) as follows:

s(i, j) =

∞∑

k=0

ck〈p(k)(i), p(k)(j)〉 (4)

where p(k)(i) is the PPR vector of node i from
Eq. 2 after k iterations. We compare the PPR vec-
tors at each time step k. The sum of all similarities
is the value of CoSimRank, i.e., the final similar-
ity. We add a damping factor c, so that early meet-
ings are more valuable than later meetings.

To compute the similarity of two vectors u and
v we use the inner product 〈·, ·〉 in Eq. 4 for two
reasons:

1. This is similar to cosine similarity except that
the 1-norm is used instead of the 2-norm.
Since our vectors are probability vectors, we
have

〈p(i), p(j)〉
|p(i)||p(j)| = 〈p(i), p(j)〉

40

for the 1-norm.3

2. Without expensive normalization, we can
give a simple matrix formalization of CoSim-
Rank and compute it efficiently using fast
matrix multiplication algorithms.

Later on, the following iterative computation of
CoSimRank will prove useful:

s(k)(i, j) = ck〈p(k)(i), p(k)(j)〉+ s(k−1)(i, j)
(5)

3.3 Matrix formulation
The matrix formulation of CoSimRank is:

S(0) = E

S(1) = cAAT + S(0)

S(2) = c2A2(AT)2 + S(1)

. . .

S(k) = ckAk(AT)k + S(k−1) (6)

We will see in Section 5 that this formulation is the
basis for a very efficient version of CoSimRank.

3.4 Convergence properties
As the PPR vectors have only positive values, we
can easily see in Eq. 4 that the CoSimRank of
one node pair is monotonically non-decreasing.
For the dot product of two vectors, the Cauchy-
Schwarz inequality gives the upper bound:

〈u, v〉 ≤ ‖u‖ ‖v‖

where ‖x‖ is the norm of x. From Eq. 2 we get∥∥p(k)
∥∥
1
= 1, where ‖·‖1 is the 1-norm. We also

know from elementary functional analysis that the
1-norm is the biggest of all p-norms and so one
has
∥∥p(k)

∥∥ ≤ 1. It follows that CoSimRank grows
more slowly than a geometric series and converges
if |c| < 1:

s(i, j) ≤
∞∑

k=0

ck =
1

1− c

If an upper bound of 1 is desired for s(i, j) (in-
stead of 1/(1− c)), then we can use s′:

s′(i, j) = (1− c)s(i, j)
3This type of similarity measure has also been used and

investigated by Ó Séaghdha and Copestake (2008), Cha
(2007), Jebara et al. (2004) (probability product kernel) and
(Jaakkola et al., 1999) (Fisher kernel) among others.

4 Comparison to SimRank

The original SimRank equation can be written as
follows (Jeh and Widom, 2002):

r(i, j) =

1, if i = j
c

|N(i)||N(j)|
∑

k∈N(i)
l∈N(j)

r(k, l), else

where N(i) denotes the nodes connected to i.
SimRank is computed iteratively. With A be-
ing the normalized adjacency matrix we can write
SimRank in matrix formulation:

R(0) = E

R(k) = max{cAR(k−1)AT , R(0)} (7)

where the maximum of two matrices refers to the
element-wise maximum. We will now prove by in-
duction that the matrix formulation of CoSimRank
(Eq. 6) is equivalent to:

S′(k) = cAS′(k−1)AT + S(0) (8)

and thus very similar to SimRank (Eq. 7).
The base case S(1) = S′(1) is trivial. Inductive

step:

S′(k)
(8)
= cAS′(k−1)AT + S(0)

= cA(ck−1Ak−1(AT)k−1 + S(k−2))AT + S(0)

= ckAk(AT)k + cAS(k−2)AT + S(0)

= ckAk(AT)k + S(k−1) (6)
= S(k)

Comparing Eqs. 7 and 8, we see that SimRank
and CoSimRank are very similar except that they
initialize the similarities on the diagonal differ-
ently. Whereas SimRank sets each of these en-
tries back to one at each iteration, CoSimRank
adds one. Thus, when computing the two similar-
ity measures iteratively, the diagonal element (i, i)
will be set to 1 by both methods for those initial it-
erations for which this entry is 0 for cAS(k−1)AT

(i.e., before applying either max or add). The
methods diverge when the entry is 6= 0 for the first
time.

Complexity of computing all n2 similarities.
The matrix formulas of both SimRank (Eq. 7)
and CoSimRank (Eq. 8) have time complexity
O(n3) or – if we want to take the higher efficiency
of computation for sparse graphs into account –
O(dn2) where n is the number of nodes and d the

41

average degree. Space complexity is O(n2) for
both algorithms.

Complexity of computing k2 � n2 similar-
ities. In most cases, we only want to compute
k2 similarities for k nodes. For CoSimRank, we
compute the k PPR vectors inO(kdn) (Eq. 2) and
compute the k2 similarities in O(k2n) (Eq. 5). If
d < k, then the time complexity of CoSimRank
is O(k2n). If we only compute a single similar-
ity, then the complexity is O(dn). In contrast, the
complexity of SimRank is the same as in the all-
similarities case: O(dn2). It is not obvious how to
design a lower-complexity version of SimRank for
this case. Thus, we have reduced SimRank’s cu-
bic time complexity to a quadratic time complex-
ity for CoSimRank or – assuming that the aver-
age degree d does not depend on n – SimRank’s
quadratic time complexity to linear time complex-
ity for the case of computing few similarities.

Space complexity for computing k2 similarities
is O(kn) since we need only store k vectors, not
the complete similarity matrix. This complexity
can be exploited even for the all similarities appli-
cation: If the matrix formulation cannot be used
because the O(n2) similarity matrix is too big for
available memory, then we can compute all sim-
ilarities in batches – and if desired in parallel –
whose size is chosen such that the vectors of each
batch still fit in memory.

In summary, CoSimRank and SimRank have
similar space and time complexities for comput-
ing all n2 similarities. For the more typical case
that we only want to compute a fraction of all sim-
ilarities, we have recast the global SimRank for-
mulation as a local CoSimRank formulation. As a
result, time and space complexities are much im-
proved. In Section 6, we will show that this is also
true in practice.

5 Extensions

We will show now that the basic CoSimRank algo-
rithm can be extended in a number of ways and is
thus a flexible tool for different NLP applications.

5.1 Weighted edges

The use of weighted edges was first proposed in
the PageRank patent. It is straightforward and
easy to implement by replacing the row normal-
ized adjacency matrixA with an arbitrary stochas-
tic matrix P . We can use this edge weighted Page-
Rank for CoSimRank.

5.2 CoSimRank across graphs

We often want to compute the similarity of nodes
in two different graphs with a known node-node
correspondence; this is the scenario we are faced
with in the lexicon extraction task (see Section 6).
A variant of SimRank for this task was presented
by Dorow et al. (2009). We will now present an
equivalent method for CoSimRank. We denote the
number of nodes in the two graphs U and V by
|U | and |V |, respectively. We compute PPR vec-
tors p ∈ R|U | and q ∈ R|V | for each graph. Let
S(0) ∈ R|U |×|V | be the known node-node corre-
spondences. The analog of CoSimRank (Eq. 4)
for two graphs is then:

s(i, j) =

∞∑

k=0

ck
∑

(u,v)∈S(0)

p(k)u (i)q(k)v (j) (9)

The matrix formulation (cf. Eq. 6) is:

S(k) = ckAkS(0)(BT)k + S(k−1) (10)

whereA andB are row-normalized adjacency ma-
trices. We can interpret S(0) as a change of basis.
A similar approach for word embeddings was pub-
lished by Mikolov et al. (2013). They call S(0) the
translation matrix.

5.3 Typed edges

To be able to directly compare to prior work in our
experiments, we also present a method to integrate
a set of typed edges T in the CoSimRank calcula-
tion. For this we will compute a similarity matrix
for each edge type τ and merge them into one ma-
trix for the next iteration:

S(k) =

(
c

|T |
∑

τ∈T
AτS

(k−1)BT
τ

)
+ S(0) (11)

This formula is identical to the random surfer
model where two surfers only meet iff they are
on the same node and used the same edge type to
get there. A more strict claim would be to use the
same edge type at any time of their journey:

S(k) =
ck

|T |k
∑

τ∈T k

(
k∏

i=1

Aτi

)
S(0)

(
k−1∏

i=0

BT
τk−i

)

+ S(k−1) (12)

We will not use Eq. 12 due to its space complexity.

42

5.4 Similarity of sets of nodes
CoSimRank can also be used to compute the sim-
ilarity s(V,W) of two sets V and W of nodes,
e.g., short text snippets. We are not including this
method in our experiments, but we will give the
equation here, as traditional document similarity
measures (e.g., cosine similarity) perform poorly
on this task although there also are known alter-
natives with good results (Sahami and Heilman,
2006). For a set V , the initial PPR vector is given
by:

p
(0)
i (V) =

{
1
|V | , if i ∈ V
0, else

We then reuse Eq. 4 to compute s(V,W):

s(V,W) =
∞∑

k=0

ck〈p(k)(V), p(k)(W)〉

In summary, modifications proposed for Sim-
Rank (weighted and typed edges, similarity across
graphs) as well as modifications proposed for
PageRank (sets of nodes) can also be applied to
CoSimRank. This makes CoSimRank a very flex-
ible similarity measure.

We will test the first three extensions experi-
mentally in the next section and leave similarity
of node sets for future work.

6 Experiments

We evaluate CoSimRank for the tasks of syn-
onym extraction and bilingual lexicon extraction.
We use the basic version of CoSimRank (Eq. 4)
for synonym extraction and the two-graph version
(Eq. 9) for lexicon extraction, both with weighted
edges. Our motivation for this application is that
two words that are synonyms of each other should
have similar lexical neighbors and that two words
that are translations of each other should have
neighbors that correspond to each other; thus, in
each case the nodes should be similar in the graph-
theoretic sense and CoSimRank should be able to
identify this similarity.

We use the English and German graphs pub-
lished by Laws et al. (2010), including edge
weighting and normalization. Nodes are nouns,
adjectives and verbs occurring in Wikipedia.
There are three types of edges, corresponding to
three types of syntactic configurations extracted
from the parsed Wikipedias: adjective-noun, verb-
object and noun-noun coordination. Table 1 gives
examples and number of nodes and edges.

Edge types
relation entities description example

amod a, v adjective-noun a fast car
dobj v, n verb-object drive a car
ncrd n, n noun-noun cars and busses

Graph statistics
nodes nouns adjectives verbs

de 34,544 10,067 2,828
en 22,258 12,878 4,866

edges ncrd amod dobj

de 65,299 417,151 143,905
en 288,878 686,069 510,351

Table 1: Edge types (above) and number of nodes
and edges (below)

6.1 Baselines
We propose CoSimRank as an efficient algorithm
for computing the similarity of nodes in a graph.
Consequently, we compare against the two main
methods for this task in NLP: SimRank and exten-
sions of PageRank.

We also compare against the MEE (Multi-Edge
Extraction) variant of SimRank (Dorow et al.,
2009), which handles labeled edges more effi-
ciently than SimRank:

S′(k) =
c

|T |
∑

τ∈T
AτS

(k−1)BT
τ

S(k) = max{S′(k), S(0)}
where Aτ is the row-normalized adjacency matrix
for edge type τ (see edge types in Table 1).

Apart from SimRank, extensions of PageRank
are the main methods for computing the similar-
ity of nodes in graphs in NLP (e.g., Hughes and
Ramage (2007), Agirre et al. (2009) and other pa-
pers discussed in related work). Generally, these
methods compute the Personalized PageRank for
each node (see Eq. 1). When the computation has
converged, the similarity of two nodes is given by
the cosine similarity of the Personalized PageRank
vectors. We implemented this method for our ex-
periments and call it PPR+cos.

6.2 Synonym Extraction
We use TS68, a test set of 68 synonym pairs pub-
lished by Minkov and Cohen (2012) for evalua-
tion. This gold standard lists a single word as the

43

P@1 P@10 MRR

one-synonym

PPR+cos 20.6% 52.9% 0.32
SimRank 25.0% 61.8% 0.37
CoSimRank 25.0% 61.8% 0.37
Typed CoSimRank 23.5% 63.2% 0.37

extended

PPR+cos 32.6% 73.5% 0.48
SimRank 45.6% 83.8% 0.59
CoSimRank 45.6% 83.8% 0.59
Typed CoSimRank 44.1% 83.8% 0.59

Table 2: Results for synonym extraction on TS68.
Best result in each column in bold.

correct synonym even if there are several equally
acceptable near-synonyms (see Table 3 for exam-
ples). We call this the one-synonym evaluation.
Three native English speakers were asked to mark
synonyms, that were proposed by a baseline or by
CoSimRank, i.e. ranked in the top 10. If all three
of them agreed on one word as being a synonym
in at least one meaning, we added this as a correct
answer to the test set. We call this the “extended”
evaluation (see Table 2).

Synonym extraction is run on the English graph.
To calculate PPR+cos, we computed 20 iterations
with a decay factor of 0.8 and used the cosine sim-
ilarity with the 2-norm in the denominator to com-
pare two vectors. For the other three methods, we
also used a decay factor of 0.8 and computed 5 it-
erations. Recall that CoSimRank uses the simple
inner product 〈·, ·〉 to compare vectors.

Our evaluation measures are proportion of
words correctly translated by word in the top
position (P@1), proportion of words correctly
translated by a word in one of the top 10 posi-
tions (P@10) and Mean Reciprocal Rank (MRR).
CoSimRank’s MRR scores of 0.37 (one-synonym)
and 0.59 (extended) are the same or better than all
baselines (see Table 2). CoSimRank and SimRank
have the same P@1 and P@10 accuracy (although
they differed on some decisions). CoSimRank is
better than PPR+cos on both evaluations, but as
this test set is very small, the results are not signif-
icant. Table 3 shows a sample of synonyms pro-
posed by CoSimRank.

Minkov and Cohen (2012) tested cosine and
random-walk measures on grammatical relation-

keyword expected extracted

movie film film
modern contemporary contemporary
demonstrate protest show
attractive appealing beautiful
economic profitable financial
close shut open

Table 3: Examples for extracted synonyms. Cor-
rect synonyms according to extended evaluation in
bold.

ships (similar to our setup) as well as on cooccur-
rence statistics. The MRR scores for these meth-
ods range from 0.29 to 0.59. (MRR is equivalent
to MAP as reported by Minkov and Cohen (2012)
when there is only one correct answer.) Their
best number (0.59) is better than our one-synonym
result; however, they performed manual postpro-
cessing of results – e.g., discarding words that are
morphologically or semantically related to other
words in the list – so our fully automatic results
cannot be directly compared.

6.3 Lexicon Extraction

We evaluate lexicon extraction on TS1000, a test
set of 1000 items, (Laws et al., 2010) each con-
sisting of an English word and its German transla-
tions. For lexicon extraction, we use the same pa-
rameters as in the synonym extraction task for all
four similarity measures. We use a seed dictionary
of 12,630 word pairs to establish node-node corre-
spondences between the two graphs. We remove
a search keyword from the seed dictionary before
calculating similarities for it, something that the
architecture of CoSimRank makes easy because
we can use a different seed dictionary S(0) for ev-
ery keyword.

Both CoSimRank methods outperform Sim-
Rank significantly (see Table 4). The differ-
ence between CoSimRank with and without typed
edges is not significant. (This observation was also
made for SimRank on a smaller graph and test set
(Laws et al., 2010).)

PPR+cos’s performance at 14.8% correct trans-
lations is much lower than SimRank and CoSim-
Rank. The disadvantage of this similarity mea-
sure is significant and even more visible on bilin-
gual lexicon extraction than on synonym extrac-
tion (see Table 2). The reason might be that we
are not comparing the whole PPR vector anymore,

44

P@1 P@10

PPR+cos 14.8%† 45.7%†

SimRank MEE 48.0%† 76.0%†

CoSimRank 61.1% 84.0%
Typed CoSimRank 61.4% 83.9%

Table 4: Results for bilingual lexicon extraction
(TS1000 EN → DE). Best result in each column
in bold.

but only entries which occur in the seed dictionary
(see Eq. 9). As the seed dictionary contains 12,630
word pairs, this means that only every fourth entry
of the PPR vector (the German graph has 47,439
nodes) is used for similarity calculation. This is
also true for CoSimRank, but it seems that CoSim-
Rank is more stable because we compare more
than one vector.†

We also experimented with the method of Fog-
aras and Rácz (2005). We tried a number of differ-
ent ways of modifying it for weighted graphs: (i)
running the random walks with the weighted ad-
jacency matrix as Markov matrix, (ii) storing the
weight (product of each edge weight) of a random
walk and using it as a factor if two walks meet
and (iii) a combination of both. We needed about
10,000 random walks in all three conditions. As a
result, the computational time was approximately
30 minutes per test word, so this method is even
slower than SimRank for our application. The ac-
curacies P@1 and P@10 were worse in all experi-
ments than those of CoSimRank.

6.4 Run time performance
Table 5 compares the run time performance of
CoSimRank with the baselines. We ran all exper-
iments on a 64-bit Linux machine with 64 Intel
Xenon X7560 2.27Ghz CPUs and 1TB RAM. The
calculated time is the sum of the time spent in user
mode and the time spent in kernel mode. The ac-
tual wall clock time was significantly lower as we
used up to 64 CPUs.

Compared to SimRank, CoSimRank is more
than 40 times faster on synonym extraction and six
times faster on lexicon extraction. SimRank is at
a disadvantage because it computes all similarities
in the graph regardless of the size of the test set;
it is particularly inefficient on synonym extraction
because the English graph contains a large number
†significantly worse than CoSimRank (α = 0.05, one-

tailed Z-Test)

synonym extraction lexicon extraction
(68 word pairs) (1000 word pairs)

PPR+cos 2,228 2,195
SimRank 23,423 14,418
CoSimRank 524 2,342
Typed CoSimRank 615 6,108

Table 5: Execution times in minutes for CoSim-
Rank and the baselines. Best result in each column
in bold.

of edges (see Table 1).
Compared to PPR+cos, CoSimRank is roughly

four times faster on synonym extraction and has
comparable performance on lexicon extraction.
We compute 20 iterations of PPR+cos to reach
convergence and then calculate a single cosine
similarity. For CoSimRank, we need only com-
pute five iterations to reach convergence, but we
have to compute a vector similarity in each itera-
tion. The counteracting effects of fewer iterations
and more vector similarity computations can give
either CoSimRank or PPR+cos an advantage, as
is the case for synonym extraction and lexicon ex-
traction, respectively.

CoSimRank should generally be three times
faster than typed CoSimRank since the typed ver-
sion has to repeat the computation for each of
the three types. This effect is only visible on the
larger test set (lexicon extraction) because the gen-
eral computation overhead is about the same on a
smaller test set.

6.5 Comparison with WINTIAN

Here we address inducing a bilingual lexicon from
a seed set based on grammatical relations found
by a parser. An alternative approach is to in-
duce a bilingual lexicon from Wikipedia’s inter-
wiki links (Rapp et al., 2012). These two ap-
proaches have different strengths and weaknesses;
e.g., the interwiki-link-based approach does not
require a seed set, but it can only be applied to
comparable corpora that consist of corresponding
– although not necessarily “parallel” – documents.

Despite these differences it is still interesting to
compare the two algorithms. Rapp et al. (2012)
kindly provided their test set to us. It contains
1000 English words and a single correct German
translation for each. We evaluate on a subset we
call TS774 that consists of the 774 test word pairs
that are in the intersection of words covered by the

45

P@1 P@10

Wintian 43.8% 55.4%†

CoSimRank 43.0% 73.6%

Table 6: Results for bilingual lexicon extraction
(TS774 DE→ EN). Best result in each column in
bold.

WINTIAN Wikipedia data (Rapp et al., 2012) and
words covered by our data. Most of the 226 miss-
ing word pairs are adverbs, prepositions and plural
forms that are not covered by our graphs due to the
construction algorithm we use: lemmatization, re-
striction to adjectives, nouns and verbs etc.

Table 6 shows that CoSimRank is slightly, but
not significantly worse than WINTIAN on P@1
(43.0 vs 43.8), but significantly better on P@10
(73.6 vs 55.4).4 The reason could be that CoSim-
Rank is a more effective algorithm than WIN-
TIAN; but the different initializations (seed set vs
interwiki links) or the different linguistic represen-
tations (grammatical relations vs bag-of-words)
could also be responsible.

6.6 Error Analysis

The results on TS774 can be considered conserva-
tive since only one translation is accepted as being
correct. In reality other translations might also be
acceptable (e.g., both street and road for Straße).
In contrast, TS1000 accepts more than one cor-
rect translation. Additionally, TS774 was created
by translating English words into German (using
Google translate). We are now testing the reverse
direction. So we are doomed to fail if the original
English word is a less common translation of an
ambiguous German word. For example, the En-
glish word gulf was translated by Google to Golf,
but the most common sense of Golf is the sport.
Hence our algorithm will incorrectly translate it
back to golf.

As we can see in Table 7, we also face the prob-
lems discussed by Laws et al. (2010): the algo-
rithm sometimes picks cohyponyms (which can
still be seen as reasonable) and antonyms (which
are clear errors).

Contrary to our intuition, the edge-typed vari-
ant of CoSimRank did not perform significantly
better than the non-edge-typed version. Looking

4We achieved better results for CoSimRank by optimizing
the damping factor, but in this paper, we only present results
for a fixed damping factor of 0.8.

keyword gold standard CoSimRank

arm poor impoverished
erreichen reach achieve
gehen go walk
direkt directly direct
weit far further
breit wide narrow
reduzieren reduce increase
Stunde hour second
Westen west southwest
Junge boy child

Table 7: Examples for CoSimRank translation er-
rors on TS774. We counted translations as incor-
rect if they were not listed in the gold standard
even if they were correct translations according to
www.dict.cc (in bold).

at Table 1, we see that there is only one edge type
connecting adjectives. The same is true for verbs.
The random surfer only has a real choice between
different edge types when she is on a noun node.
Combined with the fact that only the last edge type
is important this has absolutely no effect for a ran-
dom surfer meeting at adjectives or verbs.

Two possible solutions would be (i) to use more
fine-grained edge types, (ii) to apply Eq. 12, in
which the edge type of each step is important.
However, this will increase the memory needed for
calculation.

7 Summary

We have presented CoSimRank, a new similar-
ity measure that can be computed for a single
node pair without relying on the similarities in the
whole graph. We gave two different formaliza-
tions of CoSimRank: (i) a derivation from Person-
alized PageRank and (ii) a matrix representation
that can take advantage of fast matrix multipli-
cation algorithms. We also presented extensions
of CoSimRank for a number of applications, thus
demonstrating the flexibility of CoSimRank as a
similarity measure.

We showed that CoSimRank is superior to
SimRank in time and space complexity; and
we demonstrated that CoSimRank performs bet-
ter than PPR+cos on two similarity computation
tasks.

Acknowledgments. This work was supported
by DFG (SCHU 2246/2-2).

46

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
NAACL ’09, pages 19–27.

Sergey Brin and Lawrence Page. 1998. The anatomy
of a large-scale hypertextual web search engine. In
WWW, pages 107–117.

Sung-Hyuk Cha. 2007. Comprehensive survey on dis-
tance/similarity measures between probability den-
sity functions. Mathematical Models and Methods
in Applied Sciences, 1(4):300–307.

Ching-Yun Chang, Stephen Clark, and Brian Harring-
ton. 2013. Getting creative with semantic similarity.
In Semantic Computing (ICSC), 2013 IEEE Seventh
International Conference on, pages 330–333.

Gerard de Melo and Gerhard Weikum. 2012. Uwn: A
large multilingual lexical knowledge base. In ACL
(System Demonstrations), pages 151–156.

Beate Dorow, Florian Laws, Lukas Michelbacher,
Christian Scheible, and Jason Utt. 2009. A graph-
theoretic algorithm for automatic extension of trans-
lation lexicons. In Proceedings of the Workshop on
Geometrical Models of Natural Language Seman-
tics, GEMS ’09, pages 91–95.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. J. Artif. Intell. Res. (JAIR), 22:457–
479.

Dániel Fogaras and Balázs Rácz. 2005. Scaling
link-based similarity search. In Proceedings of the
14th international conference on World Wide Web,
WWW ’05, pages 641–650.

Xianpei Han and Jun Zhao. 2010. Structural semantic
relatedness: a knowledge-based method to named
entity disambiguation. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, ACL ’10, pages 50–59.

Taher H. Haveliwala. 2002. Topic-sensitive pagerank.
In Proceedings of the 11th international conference
on World Wide Web, WWW ’02, pages 517–526.

Cong Duy Vu Hoang and Min-Yen Kan. 2010. To-
wards automated related work summarization. In
Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, COLING ’10,
pages 427–435.

Thad Hughes and Daniel Ramage. 2007. Lexical se-
mantic relatedness with random graph walks. In
EMNLP-CoNLL, pages 581–589.

Tommi Jaakkola, David Haussler, et al. 1999. Exploit-
ing generative models in discriminative classifiers.
Advances in neural information processing systems,
pages 487–493.

Tony Jebara, Risi Kondor, and Andrew Howard. 2004.
Probability product kernels. The Journal of Machine
Learning Research, 5:819–844.

Glen Jeh and Jennifer Widom. 2002. Simrank: a
measure of structural-context similarity. In Proceed-
ings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
KDD ’02, pages 538–543.

Jon M. Kleinberg. 1999. Authoritative sources in
a hyperlinked environment. Journal of the ACM,
46(5):604–632.

Florian Laws, Lukas ichelbacher, Beate Dorow, Chris-
tian Scheible, Ulrich Heid, and Hinrich Schütze.
2010. A linguistically grounded graph model
for bilingual lexicon extraction. In Coling 2010:
Posters, pages 614–622.

Elizabeth Leicht, Petter Holme, and Mark Newman.
2006. Vertex similarity in networks. Physical Re-
view E, 73(2):026120.

Ronny Lempel and Shlomo Moran. 2000. The
stochastic approach for link-structure analysis
(salsa) and the tkc effect. Computer Networks,
33(1):387–401.

Pei Li, Zhixu Li, Hongyan Liu, Jun He, and Xiaoy-
ong Du. 2009. Using link-based content analy-
sis to measure document similarity effectively. In
Proceedings of the Joint International Conferences
on Advances in Data and Web Management, AP-
Web/WAIM ’09, pages 455–467.

Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou
Sun, Yintao Yu, and Tianyi Wu. 2010. Fast com-
putation of simrank for static and dynamic informa-
tion networks. In Proceedings of the 13th Interna-
tional Conference on Extending Database Technol-
ogy, EDBT ’10, pages 465–476.

Dmitry Lizorkin, Pavel Velikhov, Maxim Grinev, and
Denis Turdakov. 2010. Accuracy estimate and op-
timization techniques for simrank computation. The
VLDB Journal—The International Journal on Very
Large Data Bases, 19(1):45–66.

Rada Mihalcea and Dragomir Radev. 2011. Graph-
based natural language processing and information
retrieval. Cambridge University Press.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168.

Einat Minkov and William W. Cohen. 2008. Learn-
ing graph walk based similarity measures for parsed
text. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP
’08, pages 907–916.

47

Einat Minkov and William W. Cohen. 2012. Graph
based similarity measures for synonym extraction
from parsed text. In Workshop Proceedings of
TextGraphs-7 on Graph-based Methods for Natural
Language Processing, TextGraphs-7 ’12, pages 20–
24.

Pradeep Muthukrishnan, Dragomir Radev, and
Qiaozhu Mei. 2010. Edge weight regularization
over multiple graphs for similarity learning. In Data
Mining (ICDM), 2010 IEEE 10th International
Conference on, pages 374–383.

Diarmuid Ó Séaghdha and Ann Copestake. 2008. Se-
mantic classification with distributional kernels. In
Proceedings of the 22nd International Conference
on Computational Linguistics-Volume 1, pages 649–
656.

Delip Rao, David Yarowsky, and Chris Callison-Burch.
2008. Affinity measures based on the graph Lapla-
cian. In Proceedings of the 3rd Textgraphs Work-
shop on Graph-Based Algorithms for Natural Lan-
guage Processing, TextGraphs-3, pages 41–48.

Reinhard Rapp, Serge Sharoff, and Bogdan Babych.
2012. Identifying word translations from compa-
rable documents without a seed lexicon. In LREC,
pages 460–466.

Mehran Sahami and Timothy D. Heilman. 2006. A
web-based kernel function for measuring the simi-
larity of short text snippets. In Proceedings of the
15th international conference on World Wide Web,
WWW ’06, pages 377–386.

Christian Scheible, Florian Laws, Lukas Michelbacher,
and Hinrich Schütze. 2010. Sentiment transla-
tion through multi-edge graphs. In Proceedings
of the 23rd International Conference on Compu-
tational Linguistics: Posters, COLING ’10, pages
1104–1112.

Hinrich Schütze and Michael Walsh. 2008. A graph-
theoretic model of lexical syntactic acquisition. In
EMNLP, pages 917–926.

Wensi Xi, Edward A. Fox, Weiguo Fan, Benyu Zhang,
Zheng Chen, Jun Yan, and Dong Zhuang. 2005.
Simfusion: measuring similarity using unified re-
lationship matrix. In Proceedings of the 28th an-
nual international ACM SIGIR conference on Re-
search and development in information retrieval, SI-
GIR ’05, pages 130–137.

48

Chapter 3

AutoExtend: Extending Word
Embeddings to Embeddings for
Synsets and Lexemes

49

AutoExtend: Extending Word Embeddings to Embeddings for Synsets
and Lexemes

Sascha Rothe and Hinrich Schütze
Center for Information & Language Processing

University of Munich
sascha@cis.lmu.de

Abstract

We present AutoExtend, a system to learn
embeddings for synsets and lexemes. It is
flexible in that it can take any word embed-
dings as input and does not need an addi-
tional training corpus. The synset/lexeme
embeddings obtained live in the same vec-
tor space as the word embeddings. A
sparse tensor formalization guarantees ef-
ficiency and parallelizability. We use
WordNet as a lexical resource, but Auto-
Extend can be easily applied to other
resources like Freebase. AutoExtend
achieves state-of-the-art performance on
word similarity and word sense disam-
biguation tasks.

1 Introduction

Unsupervised methods for word embeddings (also
called “distributed word representations”) have
become popular in natural language processing
(NLP). These methods only need very large cor-
pora as input to create sparse representations (e.g.,
based on local collocations) and project them into
a lower dimensional dense vector space. Examples
for word embeddings are SENNA (Collobert and
Weston, 2008), the hierarchical log-bilinear model
(Mnih and Hinton, 2009), word2vec (Mikolov et
al., 2013c) and GloVe (Pennington et al., 2014).
However, there are many other resources that are
undoubtedly useful in NLP, including lexical re-
sources like WordNet and Wiktionary and knowl-
edge bases like Wikipedia and Freebase. We will
simply call these resources in the rest of the pa-
per. Our goal is to enrich these valuable resources
with embeddings for those data types that are not
words; e.g., we want to enrich WordNet with em-
beddings for synsets and lexemes. A synset is a set
of synonyms that are interchangeable in some con-
text. A lexeme pairs a particular spelling or pro-

nunciation with a particular meaning, i.e., a lex-
eme is a conjunction of a word and a synset. Our
premise is that many NLP applications will bene-
fit if the non-word data types of resources – e.g.,
synsets in WordNet – are also available as embed-
dings. For example, in machine translation, en-
riching and improving translation dictionaries (cf.
Mikolov et al. (2013b)) would benefit from these
embeddings because they would enable us to cre-
ate an enriched dictionary for word senses. Gen-
erally, our premise is that the arguments for the
utility of embeddings for word forms should carry
over to the utility of embeddings for other data
types like synsets in WordNet.

The insight underlying the method we propose
is that the constraints of a resource can be formal-
ized as constraints on embeddings and then allow
us to extend word embeddings to embeddings of
other data types like synsets. For example, the hy-
ponymy relation in WordNet can be formalized as
such a constraint.

The advantage of our approach is that it de-
couples embedding learning from the extension of
embeddings to non-word data types in a resource.
If somebody comes up with a better way of learn-
ing embeddings, these embeddings become imme-
diately usable for resources. And we do not rely on
any specific properties of embeddings that make
them usable in some resources, but not in others.

An alternative to our approach is to train embed-
dings on annotated text, e.g., to train synset em-
beddings on corpora annotated with synsets. How-
ever, successful embedding learning generally re-
quires very large corpora and sense labeling is too
expensive to produce corpora of such a size.

Another alternative to our approach is to add up
all word embedding vectors related to a particular
node in a resource; e.g., to create the synset vector
of lawsuit in WordNet, we can add the word vec-
tors of the three words that are part of the synset
(lawsuit, suit, case). We will call this approach

50

naive and use it as a baseline (Snaive in Table 3).

We will focus on WordNet (Fellbaum, 1998) in
this paper, but our method – based on a formaliza-
tion that exploits the constraints of a resource for
extending embeddings from words to other data
types – is broadly applicable to other resources in-
cluding Wikipedia and Freebase.

A word in WordNet can be viewed as a compo-
sition of several lexemes. Lexemes from different
words together can form a synset. When a synset
is given, it can be decomposed into its lexemes.
And these lexemes then join to form words. These
observations are the basis for the formalization of
the constraints encoded in WordNet that will be
presented in the next section: we view words as
the sum of their lexemes and, analogously, synsets
as the sum of their lexemes.

Another motivation for our formalization stems
from the analogy calculus developed by Mikolov
et al. (2013a), which can be viewed as a group
theory formalization of word relations: we have
a set of elements (our vectors) and an operation
(addition) satisfying the properties of a mathemat-
ical group, in particular, associativity and invert-
ibility. For example, you can take the vector of
king, subtract the vector of man and add the vec-
tor of woman to get a vector near queen. In other
words, you remove the properties of man and add
the properties of woman. We can also see the vec-
tor of king as the sum of the vector of man and the
vector of a gender-neutral ruler. The next thing
to notice is that this does not only work for words
that combine several properties, but also for words
that combine several senses. The vector of suit can
be seen as the sum of a vector representing law-
suit and a vector representing business suit. Auto-
Extend is designed to take word vectors as input
and unravel the word vectors to the vectors of their
lexemes. The lexeme vectors will then give us the
synset vectors.

The main contributions of this paper are: (i)
We present AutoExtend, a flexible method that ex-
tends word embeddings to embeddings of synsets
and lexemes. AutoExtend is completely general in
that it can be used for any set of embeddings and
for any resource that imposes constraints of a cer-
tain type on the relationship between words and
other data types. (ii) We show that AutoExtend
achieves state-of-the-art word similarity and word
sense disambiguation (WSD) performance. (iii)
We publish the AutoExtend code for extending

word embeddings to other data types, the lexeme
and synset embeddings and the software to repli-
cate our WSD evaluation.

This paper is structured as follows. Section 2 in-
troduces the model, first as a general tensor formu-
lation then as a matrix formulation making addi-
tional assumptions. In Section 3, we describe data,
experiments and evaluation. We analyze Auto-
Extend in Section 4 and give a short summary on
how to extend our method to other resources in
Section 5. Section 6 discusses related work.

2 Model

We are looking for a model that extends standard
embeddings for words to embeddings for the other
two data types in WordNet: synsets and lexemes.
We want all three data types – words, lexemes,
synsets – to live in the same embedding space.

The basic premise of our model is: (i) words are
sums of their lexemes and (ii) synsets are sums of
their lexemes. We refer to these two premises as
synset constraints. For example, the embedding
of the word bloom is a sum of the embeddings of
its two lexemes bloom(organ) and bloom(period);
and the embedding of the synset flower-bloom-
blossom(organ) is a sum of the embeddings of
its three lexemes flower(organ), bloom(organ) and
blossom(organ).

The synset constraints can be argued to be the
simplest possible relationship between the three
WordNet data types. They can also be motivated
by the way many embeddings are learned from
corpora – for example, the counts in vector space
models are additive, supporting the view of words
as the sum of their senses. The same assumption
is frequently made; for example, it underlies the
group theory formalization of analogy discussed
in Section 1.

We denote word vectors as w(i) ∈ Rn, synset
vectors as s(j) ∈ Rn, and lexeme vectors as l(i,j) ∈
Rn. l(i,j) is that lexeme of wordw(i) that is a mem-
ber of synset s(j). We set lexeme vectors l(i,j) that
do not exist to zero. For example, the non-existing
lexeme flower(truck) is set to zero. We can then
formalize our premise that the two constraints (i)
and (ii) hold as follows:

w(i) =
∑

j

l(i,j) (1)

s(j) =
∑

i

l(i,j) (2)

51

These two equations are underspecified. We there-
fore introduce the matrix E(i,j) ∈ Rn×n:

l(i,j) = E(i,j)w(i) (3)

We make the assumption that the dimensions in
Eq. 3 are independent of each other, i.e., E(i,j)

is a diagonal matrix. Our motivation for this as-
sumption is: (i) This makes the computation tech-
nically feasible by significantly reducing the num-
ber of parameters and by supporting parallelism.
(ii) Treating word embeddings on a per-dimension
basis is a frequent design choice (e.g., Kalchbren-
ner et al. (2014)). Note that we allow E(i,j) < 0
and in general the distribution weights for each di-
mension (diagonal entries of E(i,j)) will be differ-
ent. Our assumption can be interpreted as word
w(i) distributing its embedding activations to its
lexemes on each dimension separately. Therefore,
Eqs. 1-2 can be written as follows:

w(i) =
∑

j

E(i,j)w(i) (4)

s(j) =
∑

i

E(i,j)w(i) (5)

Note that from Eq. 4 it directly follows that:
∑

j

E(i,j) = In ∀i (6)

with In being the identity matrix.
Let W be a |W | × n matrix where n is the di-

mensionality of the embedding space, |W | is the
number of words and each row w(i) is a word em-
bedding; and let S be a |S|×nmatrix where |S| is
the number of synsets and each row s(j) is a synset
embedding. W and S can be interpreted as linear
maps and a mapping between them is given by the
rank 4 tensor E ∈ R|S|×n×|W |×n. We can then
write Eq. 5 as a tensor product:

S = E⊗W (7)

while Eq. 6 states, that
∑

j

Ei,d1
j,d2

= 1 ∀i, d1, d2 (8)

Additionally, there is no interaction between dif-
ferent dimensions, so Ei,d1

j,d2
= 0 if d1 6= d2. In

other words, we are creating the tensor by stacking
the diagonal matrices E(i,j) over i and j. Another
sparsity arises from the fact that many lexemes do

not exist: Ei,d1
j,d2

= 0 if l(i,j) = 0; i.e., l(i,j) 6= 0
only if word i has a lexeme that is a member of
synset j. To summarize the sparsity:

Ei,d1
j,d2

= 0⇐ d1 6= d2 ∨ l(i,j) = 0 (9)

2.1 Learning
We adopt an autoencoding framework to learn em-
beddings for lexemes and synsets. To this end, we
view the tensor equation S = E ⊗W as the en-
coding part of the autoencoder: the synsets are the
encoding of the words. We define a corresponding
decoding part that decodes the synsets into words
as follows:

s(j) =
∑

i

l
(i,j)

, w(i) =
∑

j

l
(i,j)

(10)

In analogy toE(i,j), we introduce the diagonal ma-
trix D(j,i):

l
(i,j)

= D(j,i)s(j) (11)

In this case, it is the synset that distributes itself to
its lexemes. We can then rewrite Eq. 10 to:

s(j) =
∑

i

D(j,i)s(j), w(i) =
∑

j

D(j,i)s(j) (12)

and we also get the equivalent of Eq. 6 for D(j,i):
∑

i

D(j,i) = In ∀j (13)

and in tensor notation:

W = D⊗ S (14)

Normalization and sparseness properties for the
decoding part are analogous to the encoding part:

∑

i

Dj,d2
i,d1

= 1 ∀j, d1, d2 (15)

Dj,d2
i,d1

= 0⇐ d1 6= d2 ∨ l(i,j) = 0 (16)

We can state the learning objective of the autoen-
coder as follows:

argmin
E,D

‖D⊗E⊗W −W‖ (17)

under the conditions Eq. 8, 9, 15 and 16.
Now we have an autoencoder where input and

output layers are the word embeddings and the
hidden layer represents the synset vectors. A sim-
plified version is shown in Figure 1. The tensors E

52

and D have to be learned. They are rank 4 tensors
of size≈1015. However, we already discussed that
they are very sparse, for two reasons: (i) We make
the assumption that there is no interaction between
dimensions. (ii) There are only few interactions
between words and synsets (only when a lexeme
exists). In practice, there are only ≈107 elements
to learn, which is technically feasible.

2.2 Matrix formalization
Based on the assumption that each dimension is
fully independent from other dimensions, a sepa-
rate autoencoder for each dimension can be cre-
ated and trained in parallel. Let W ∈ R|W |×n be
a matrix where each row is a word embedding and
w(d) = W·,d the d-th column of W , i.e., a vector
that holds the d-th dimension of each word vector.
In the same way, s(d) = S·,d holds the d-th di-
mension of each synset vector and E(d) = E·,d·,d ∈
R|S|×|W |. We can write S = E⊗W as:

s(d) = E(d)w(d) ∀d (18)

withE(d)
i,j = 0 if l(i,j) = 0. The decoding equation

W = D⊗ S takes this form:

w(d) = D(d)s(d) ∀d (19)

where D(d) = D·,d·,d ∈ R|W |×|S| and D(d)
j,i = 0 if

l(i,j) = 0. So E and D are symmetric in terms
of non-zero elements. The learning objective be-
comes:

argmin
E(d),D(d)

‖D(d)E(d)w(d) − w(d)‖ ∀d (20)

2.3 Lexeme embeddings
The hidden layer S of the autoencoder gives us
synset embeddings. The lexeme embeddings are
defined when transitioning from W to S, or more
explicitly by:

l(i,j) = E(i,j)w(i) (21)

However, there is also a second lexeme embedding
in AutoExtend when transitioning form S to W :

l
(i,j)

= D(j,i)s(j) (22)

Aligning these two representations seems natural,
so we impose the following lexeme constraints:

argmin
E(i,j),D(j,i)

∥∥∥E(i,j)w(i) −D(j,i)s(j)
∥∥∥ ∀i, j (23)

noun verb adj adv
hypernymy 84,505 13,256 0 0
antonymy 2,154 1,093 4,024 712
similarity 0 0 21,434 0
verb group 0 1,744 0 0

Table 1: # of WN relations by part-of-speech

This can also be expressed dimension-wise. The
matrix formulation is given by:

argmin
E(d),D(d)

∥∥∥E(d) diag(w(d))−
(
D(d) diag(s(d))

)T∥∥∥∀d

(24)
with diag(x) being a square matrix having x
on the main diagonal and vector s(d) defined by
Eq. 18. While we try to align the embeddings,
there are still two different lexeme embeddings. In
all experiments reported in Section 4 we will use
the average of both embeddings and in Section 4
we will analyze the weighting in more detail.

2.4 WN relations
Some WordNet synsets contain only a single word
(lexeme). The autoencoder learns based on the
synset constraints, i.e., lexemes being shared by
different synsets (and also words); thus, it is dif-
ficult to learn good embeddings for single-lexeme
synsets. To remedy this problem, we impose the
constraint that synsets related by WordNet (WN)
relations should have similar embeddings. Table 1
shows relations we used. WN relations are entered
in a new matrixR ∈ Rr×|S|, where r is the number
of WN relation tuples. For each relation tuple, i.e.,
row in R, we set the columns corresponding to the
first and second synset to 1 and −1, respectively.
The values of R are not updated during training.
We use a squared error function and 0 as target
value. This forces the system to find similar val-
ues for related synsets. Formally, the WN relation
constraints are:

argmin
E(d)

‖RE(d)w(d)‖ ∀d (25)

2.5 Implementation
Our training objective is minimization of the sum
of synset constraints (Eq. 20), weighted by α, the
lexeme constraints (Eq. 24), weighted by β, and
the WN relation constraints (Eq. 25), weighted by
1− α− β.

The training objective cannot be solved analyt-
ically because it is subject to constraints Eq. 8,

53

L/suit (textil) S/suit-of-clothes L/suit (textil)

W/suit

L/suit (law) L/suit (law)

W/suit

W/case L/case S/lawsuit L/case W/case

W/lawsuit L/lawsuit L/lawsuit W/lawsuit

Figure 1: A small subgraph of WordNet. The circles are intended to show four different embedding dimensions. These
dimensions are treated as independent. The synset constraints align the input and the output layer. The lexeme constraints align
the second and fourth layers.

Eq. 9, Eq. 15 and Eq. 16. We therefore use back-
propagation. We do not use regularization since
we found that all learned weights are in [−2, 2].

AutoExtend is implemented in MATLAB. We
run 1000 iterations of gradient descent. On an In-
tel Xeon CPU E7-8857 v2 3.00GHz, one iteration
on one dimension takes less than a minute because
the gradient computation ignores zero entries in
the matrix.

2.6 Column normalization

Our model is based on the premise that a word is
the sum of its lexemes (Eq. 1). From the defini-
tion of E(i,j), we derived that E ∈ R|S|×n×|W |×n
is normalized over the first dimension (Eq. 8). So
E(d) ∈ R|S|×|W | is also normalized over the first
dimension. In other words, E(d) is a column nor-
malized matrix. Another premise of the model is
that a synset is the sum of its lexemes. Therefore,
D(d) is also column normalized. A simple way
to implement this is to start the computation with
column normalized matrices and normalize them
again after each iteration as long as the error func-
tion still decreases. When the error function starts
increasing, we stop normalizing the matrices and
continue with a normal gradient descent. This re-
spects that while E(d) and D(d) should be column
normalized in theory, there are a lot of practical
issues that prevent this, e.g., OOV words.

3 Data, experiments and evaluation

We downloaded 300-dimensional embeddings for
3,000,000 words and phrases trained on Google
News, a corpus of ≈1011 tokens, using word2vec
CBOW (Mikolov et al., 2013c). Many words
in the word2vec vocabulary are not in WordNet,

e.g., inflected forms (cars) and proper nouns (Tony
Blair). Conversely, many WordNet lemmas are
not in the word2vec vocabulary, e.g., 42 (digits
were converted to 0). This results in a number of
empty synsets (see Table 2). Note however that
AutoExtend can produce embeddings for empty
synsets because we use WN relation constraints in
addition to synset and lexeme constraints.

We run AutoExtend on the word2vec vectors.
As we do not know anything about a suitable
weighting for the three different constraints, we
set α = β = 0.33. Our main goal is to produce
compatible embeddings for lexemes and synsets.
Thus, we can compute nearest neighbors across all
three data types as shown in Figure 2.

We evaluate the embeddings on WSD and on
similarity performance. Our results depend di-
rectly on the quality of the underlying word em-
beddings, in our case word2vec embeddings. We
would expect even better evaluation results as
word representation learning methods improve.
Using a new and improved set of underlying em-
beddings is simple: it is a simple switch of the
input file that contains the word embeddings.

3.1 Word Sense Disambiguation
For WSD we use the shared tasks of Senseval-
2 (Kilgarriff, 2001) and Senseval-3 (Mihalcea et
al., 2004) and a system named IMS (Zhong and

WordNet ∩ word2vec
words 147,478 54,570
synsets 117,791 73,844
lexemes 207,272 106,167

Table 2: # of items in WordNet and after intersection with
word2vec vectors

54

nearest neighbors of W/suit
S/suit (businessman), L/suit (businessman),
L/accomodate, S/suit (be acceptable), L/suit (be accept-
able), L/lawsuit, W/lawsuit, S/suit (playing card), L/suit
(playing card), S/suit (petition), S/lawsuit, W/countersuit,
W/complaint, W/counterclaim

nearest neighbors of W/lawsuit
L/lawsuit, S/lawsuit, S/countersuit, L/countersuit,
W/countersuit, W/suit, W/counterclaim, S/counterclaim
(n), L/counterclaim (n), S/counterclaim (v),
L/counterclaim (v), W/sue, S/sue (n), L/sue (n)

nearest neighbors of S/suit-of-clothes
L/suit-of-clothes, S/zoot-suit, L/zoot-suit, W/zoot-suit,
S/garment, L/garment, S/dress, S/trousers, L/pinstripe,
L/shirt, W/tuxedo, W/gabardine, W/tux, W/pinstripe

Figure 2: Five nearest word (W/), lexeme (L/) and synset (S/)
neighbors for three items, ordered by cosine

Ng, 2010). Senseval-2 contains 139, Senseval-3
57 different words. They provide 8,611, respec-
tively 8,022 training instances and 4,328, respec-
tively 3,944 test instances. For the system, we
use the same setting as in the original paper. Pre-
processing consists of sentence splitting, tokeniza-
tion, POS tagging and lemmatization; the classi-
fier is a linear SVM. In our experiments (Table 3),
we run IMS with each feature set by itself to as-
sess the relative strengths of feature sets (lines 1–
7) and on feature set combinations to determine
which combination is best for WSD (lines 8, 12–
15).

IMS implements three standard WSD feature
sets: part of speech (POS), surrounding word and
local collocation (lines 1–3).

Letw be an ambiguous word with k senses. The
three feature sets on lines 5–7 are based on the
AutoExtend embeddings s(j), 1 ≤ j ≤ k, of the
synsets of w and the centroid c of the sentence in
which w occurs. The centroid is simply the sum of
all word2vec vectors of the words in the sentence,
excluding stop words.

The S-cosine feature set consists of the k
cosines of centroid and synset vectors:

< cos(c, s(1)), cos(c, s(2)), . . . , cos(c, s(k)) >

The S-product feature set consists of the nk
element-wise products of centroid and synset vec-
tors:

< c1s
(1)
1 , . . . , cns

(1)
n , . . . , c1s

(k)
1 , . . . , cns

(k)
n >

where ci (resp. s(j)i) is element i of c (resp. s(j)).
The idea is that we let the SVM estimate how im-
portant each dimension is for WSD instead of giv-
ing all equal weight as in S-cosine.

The S-raw feature set simply consists of the
n(k + 1) elements of centroid and synset vectors:

< c1, . . . , cn, s
(1)
1 , . . . , s(1)n , . . . , s

(k)
1 , . . . , s(k)n >

Our main goal is to determine if AutoExtend
features improve WSD performance when added
to standard WSD features. To make sure that
improvements we get are not solely due to the
power of word2vec, we also investigate a sim-
ple word2vec baseline. For S-product, the Auto-
Extend feature set that performs best in the exper-
iment (cf. lines 6 and 14), we test the alternative
word2vec-based Snaive-product feature set. It has
the same definition as S-product except that we
replace the synset vectors s(j) with naive synset
vectors z(j), defined as the sum of the word2vec
vectors of the words that are members of synset j.

Lines 1–7 in Table 3 show the performance of
each feature set by itself. We see that the synset
feature sets (lines 5–7) have a comparable perfor-
mance to standard feature sets. S-product is the
strongest of them.

Lines 8–16 show the performance of different
feature set combinations. MFS (line 8) is the most
frequent sense baseline. Lines 9&10 are the win-
ners of Senseval. The standard configuration of
IMS (line 11) uses the three feature sets on lines
1–3 (POS, surrounding word, local collocation)
and achieves an accuracy of 65.2% on the English
lexical sample task of Senseval-2 and 72.3% on
Senseval-3.1 Lines 12–16 add one additional fea-
ture set to the IMS system on line 11; e.g., the sys-
tem on line 14 uses POS, surrounding word, local
collocation and S-product feature sets. The system
on line 14 outperforms all previous systems, most
of them significantly. While S-raw performs quite
reasonably as a feature set alone, it hurts the per-
formance when used as an additional feature set.
As this is the feature set that contains the largest
number of features (n(k + 1)), overfitting is the
likely reason. Conversely, S-cosine only adds k
features and therefore may suffer from underfit-
ting.†

We do a grid search (step size .1) for optimal
values of α and β, optimizing the average score of
Senseval-2 and Senseval-3. The best performing
feature set combination is Soptimized-product with

1Zhong and Ng (2010) report accuracies of 65.3% /
72.6% for this configuration.

†In Table 3 and Table 4, results significantly worse than
the best (bold) result in each column are marked † for α =
.05 and ‡ for α = .10 (one-tailed Z-test).

55

Senseval-2 Senseval-3

IM
S

fe
at

ur
e

se
ts 1 POS 53.6 58.0†

2 surrounding word 57.6 65.3†

3 local collocation 58.7 64.7†

4 Snaive-product 56.5 62.2†

5 S-cosine 55.5 60.5†

6 S-product 58.3 64.3†

7 S-raw 56.8 63.1†

sy
st

em
co

m
pa

ri
so

n

8 MFS 47.6† 55.2†

9 Rank 1 system 64.2† 72.9†

10 Rank 2 system 63.8† 72.6†

11 IMS 65.2‡ 72.3‡

12 IMS + Snaive-prod. 62.6† 69.4†

13 IMS + S-cosine 65.1‡ 72.4‡

14 IMS + S-product 66.5 73.6†

15 IMS + S-raw 62.1† 66.8†

16 IMS + Soptimized-prod. 66.6 73.6†

Table 3: WSD accuracy for different feature sets and systems.
Best result (excluding line 16) in each column in bold.

α = 0.2 and β = 0.5, with only a small improve-
ment (line 16).

The main result of this experiment is that we
achieve an improvement of more than 1% in WSD
performance when using AutoExtend.

3.2 Synset and lexeme similarity

We use SCWS (Huang et al., 2012) for the similar-
ity evaluation. SCWS provides not only isolated
words and corresponding similarity scores, but
also a context for each word. SCWS is based on
WordNet, but the information as to which synset a
word in context came from is not available. How-
ever, the dataset is the closest we could find for
sense similarity. Synset and lexeme embeddings
are obtained by running AutoExtend. Based on
the results of the WSD task, we set α = 0.2 and
β = 0.5. Lexeme embeddings are the natural
choice for this task as human subjects are provided
with two words and a context for each and then
have to assign a similarity score. But for complete-
ness, we also run experiments for synsets.

For each word, we compute a context vector
c by adding all word vectors of the context, ex-
cluding the test word itself. Following Reisinger
and Mooney (2010), we compute the lexeme (resp.
synset) vector l either as the simple average of
the lexeme (resp. synset) vectors l(ij) (method
AvgSim, no dependence on c in this case) or
as the average of the lexeme (resp. synset) vec-
tors weighted by cosine similarity to c (method
AvgSimC).

Table 4 shows that AutoExtend lexeme embed-
dings (line 7) perform better than previous work,

AvgSim AvgSimC

1 Huang et al. (2012) 62.8† 65.7†

2 Tian et al. (2014) – 65.4†

3 Neelakantan et al. (2014) 67.2† 69.3†

4 Chen et al. (2014) 66.2† 68.9†

5 words (word2vec) 66.6‡ 66.6†

6 synsets 62.6† 63.7†

7 lexemes 68.9† 69.8†

Table 4: Spearman correlation (ρ× 100) on SCWS. Best re-
sult per column in bold.

including (Huang et al., 2012) and (Tian et al.,
2014). Lexeme embeddings perform better than
synset embeddings (lines 7 vs. 6), presumably be-
cause using a representation that is specific to the
actual word being judged is more precise than us-
ing a representation that also includes synonyms.

A simple baseline is to use the underlying
word2vec embeddings directly (line 5). In this
case, there is only one embedding, so there is no
difference between AvgSim and AvgSimC. It is in-
teresting that even if we do not take the context
into account (method AvgSim) the lexeme embed-
dings outperform the original word embeddings.
As AvgSim simply adds up all lexemes of a word,
this is equivalent to the constraint we proposed in
the beginning of the paper (Eq. 1). Thus, replacing
a word’s embedding by the sum of the embeddings
of its senses could generally improve the quality of
embeddings (cf. Huang et al. (2012) for a similar
point). We will leave a deeper evaluation of this
topic for future work.

4 Analysis

We first look at the impact of the parameters α, β
(Section 2.5) that control the weighting of synset
constraints vs lexeme constraints vs WN relation
constraints. We investigate the impact for three
different tasks. WSD-alone: accuracy of IMS
(average of Senseval-2 and Senseval-3) if only S-
product is used as a feature set (line 6 in Table 3).
WSD-additional: accuracy of IMS (average of
Senseval-2 and Senseval-3) if S-product is used
together with the feature sets POS, surrounding
word and local collocation (line 14 in Table 3).
SCWS: Spearman correlation on SCWS (line 7 in
Table 4).

For WSD-alone (Figure 3, center), the best per-
forming weightings (red) all have high weights
for WN relations and are therefore at the top of
triangle. Thus, WN relations are very important
for WSD-alone and adding more weight to the

56

synset and lexeme constraints does not help. How-
ever, all three constraints are important in WSD-
additional: the red area is in the middle (corre-
sponding to nonzero weights for all three con-
straints) in the left panel of Figure 3. Apparently,
strongly weighted lexeme and synset constraints
enable learning of representations that in their in-
teraction with standard WSD feature sets like lo-
cal collocation increase WSD performance. For
SCWS (right panel), we should not put too much
weight on WN relations as they artificially bring
related, but not similar lexemes together. So the
maximum for this task is located in the lower part
of the triangle.

The main result of this analysis is that Auto-
Extend never achieves its maximum performance
when using only one set of constraints. All three
constraints are important – synset, lexeme and WN
relation constraints – with different weights for
different applications.

We also analyzed the impact of the four differ-
ent WN relations (see Table 1) on performance. In
Table 3 and Table 4, all four WN relations are used
together. We found that any combination of three
relation types performs worse than using all four
together. A comparison of different relations must
be done carefully as they differ in the POS they
affect and in quantity (see Table 1). In general, re-
lation types with more relations outperformed re-
lation types with fewer relations.

Finally, the relative weighting of l(i,j) and l
(i,j)

when computing lexeme embeddings is also a pa-
rameter that can be tuned. We use simple aver-
aging (θ = 0.5) for all experiments reported in
this paper. We found only small changes in per-
formance for 0.2 ≤ θ ≤ 0.8.

5 Resources other than WordNet

AutoExtend is broadly applicable to lexical and
knowledge resources that have certain properties.
While we only run experiments with WordNet in
this paper, we will briefly address other resources.
For Freebase (Bollacker et al., 2008), we could re-
place the synsets with Freebase entities. Each en-
tity has several aliases, e.g. Barack Obama, Presi-
dent Obama, Obama. The role of words in Word-
Net would correspond to these aliases in Freebase.
This will give us the synset constraint, as well as
the lexeme constraint of the system. Relations are
given by Freebase types; e.g., we can add a con-
straint that entity embeddings of the type ”Presi-

dent of the US” should be similar.
To explorer multilingual word embeddings we

require the word embeddings of different lan-
guages to live in the same vector space, which
can easily be achieved by training a transforma-
tion matrix L between two languages using known
translations (Mikolov et al., 2013b). Let X be a
matrix where each row is a word embedding in
language 1 and Y a matrix where each row is a
word embedding in language 2. For each row the
words of X and Y are a translation of each other.
We then want to minimize the following objective:

argmin
L
‖LX − Y ‖ (26)

We can use a gradient descent to solve this but a
matrix inversion will run faster. The matrix L is
given by:

L = (XT ∗X)−1(XT ∗ Y) (27)

The matrix L can be used to transform unknown
embeddings into the new vector space, which en-
ables us to use a multilingual WordNet like Ba-
belNet (Navigli and Ponzetto, 2010) to compute
synset embeddings. We can add cross-linguistic
relationships to our model, e.g., aligning German
and English synset embeddings of the same con-
cept.

6 Related Work

Rumelhart et al. (1988) introduced distributed
word representations, usually called word embed-
dings today. There has been a resurgence of
work on them recently (e.g., Bengio et al. (2003)
Mnih and Hinton (2007), Collobert et al. (2011),
Mikolov et al. (2013a), Pennington et al. (2014)).
These models produce only a single embedding
for each word. All of them can be used as input
for AutoExtend.

There are several approaches to finding embed-
dings for senses, variously called meaning, sense
and multiple word embeddings. Schütze (1998)
created sense representations by clustering context
representations derived from co-occurrence. The
representation of a sense is simply the centroid of
its cluster. Huang et al. (2012) improved this by
learning single-prototype embeddings before per-
forming word sense discrimination on them. Bor-
des et al. (2011) created similarity measures for
relations in WordNet and Freebase to learn en-
tity embeddings. An energy based model was

57

WSD-additional WSD-alone SCWS

WN relations

lexemes synset
s

Figure 3: Performance of different weightings of the three constraints (WN relations:top, lexemes:left, synsets:right) on the
three tasks WSD-additional, WSD-alone and SCWS. “x” indicates the maximum; “o” indicates a local minimum.

proposed by Bordes et al. (2012) to create dis-
ambiguated meaning embeddings and Neelakan-
tan et al. (2014) and Tian et al. (2014) extended
the Skip-gram model (Mikolov et al., 2013a) to
learn multiple word embeddings. While these em-
beddings can correspond to different word senses,
there is no clear mapping between them and a lexi-
cal resource like WordNet. Chen et al. (2014) also
modified word2vec to learn sense embeddings,
each corresponding to a WordNet synset. They
use glosses to initialize sense embedding, which
in turn can be used for WSD. The sense disam-
biguated data can again be used to improve sense
embeddings.

This prior work needs a training step to learn
embeddings. In contrast, we can “AutoExtend”
any set of given word embeddings – without
(re)training them.

There is only little work on taking existing
word embeddings and producing embeddings in
the same space. Labutov and Lipson (2013) tuned
existing word embeddings in supervised training,
not to create new embeddings for senses or enti-
ties, but to get better predictive performance on a
task while not changing the space of embeddings.

Lexical resources have also been used to im-
prove word embeddings. In the Relation Con-
strained Model, Yu and Dredze (2014) use
word2vec to learn embeddings that are optimized
to predict a related word in the resource, with good
evaluation results. Bian et al. (2014) used not
only semantic, but also morphological and syn-
tactic knowledge to compute more effective word
embeddings.

Another interesting approach to create sense
specific word embeddings uses bilingual resources
(Guo et al., 2014). The downside of this approach
is that parallel data is needed.

We used the SCWS dataset for the word similar-
ity task, as it provides a context. Other frequently
used datasets are WordSim-353 (Finkelstein et al.,
2001) or MEN (Bruni et al., 2014).

And while we use cosine to compute similar-
ity between synsets, there are also a lot of simi-
larity measures that only rely on a given resource,
mostly WordNet. These measures are often func-
tions that depend on the provided information like
gloss or the topology like shortest-path. Examples
include (Wu and Palmer, 1994) and (Leacock and
Chodorow, 1998); Blanchard et al. (2005) give a
good overview.

7 Conclusion

We presented AutoExtend, a flexible method to
learn synset and lexeme embeddings from word
embeddings. It is completely general and can be
used for any other set of embeddings and for any
other resource that imposes constraints of a cer-
tain type on the relationship between words and
other data types. Our experimental results show
that AutoExtend achieves state-of-the-art perfor-
mance on word similarity and word sense disam-
biguation. Along with this paper, we will pub-
lish AutoExtend for extending word embeddings
to other data types; the lexeme and synset em-
beddings used in the experiments; and the code
needed to replicate our WSD evaluation2.

Acknowledgments

This work was partially funded by Deutsche
Forschungsgemeinschaft (DFG SCHU 2246/2-2).
We are grateful to Christiane Fellbaum for discus-
sions leading up to this paper and to the anony-
mous reviewers for their comments.

2http://cistern.cis.lmu.de/

58

References

Yoshua Bengio, Rejean Ducharme, and Pascal Vincent.
2003. A neural probabilistic language model. Jour-
nal of Machine Learning Research, 3:1137–1155.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014.
Knowledge-powered deep learning for word embed-
ding. In Proceedings of ECML PKDD.

Emmanuel Blanchard, Mounira Harzallah, Henri
Briand, and Pascale Kuntz. 2005. A typology of
ontology-based semantic measures. In Proceedings
of EMOI - INTEROP.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of ACM SIGMOD.

Antoine Bordes, Jason Weston, Ronan Collobert,
Yoshua Bengio, et al. 2011. Learning structured
embeddings of knowledge bases. In Proceedings of
AAAI.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2012. Joint learning of words
and meaning representations for open-text semantic
parsing. In Proceedings of AISTATS.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49(1):1–47.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In Proceedings of EMNLP.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of ICML.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of WWW.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning sense-specific word embed-
dings by exploiting bilingual resources. In Proceed-
ings of Coling, Technical Papers.

Iryna Gurevych. 2005. Using the structure of a con-
ceptual network in computing semantic relatedness.
In IJCNLP.

Birgit Hamp, Helmut Feldweg, et al. 1997. Germanet-
a lexical-semantic net for german. In Proceedings
of ACL, Workshops.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
Simlex-999: Evaluating semantic models with
(genuine) similarity estimation. arXiv preprint
arXiv:1408.3456.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of ACL.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of ACL.

Adam Kilgarriff. 2001. English lexical sample task
description. In Proceedings of SENSEVAL-2.

Igor Labutov and Hod Lipson. 2013. Re-embedding
words. In Proceedings of ACL.

Claudia Leacock and Martin Chodorow. 1998. Com-
bining local context and wordnet similarity for word
sense identification. WordNet: An electronic lexical
database, 49(2):265–283.

Minh-Thang Luong, Richard Socher, and Christo-
pher D Manning. 2013. Better word representations
with recursive neural networks for morphology. In
Proceedings of CoNLL.

Rada Mihalcea, Timothy Chklovski, and Adam Kilgar-
riff. 2004. The senseval-3 english lexical sample
task. In Proceedings of SENSEVAL-3.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever.
2013b. Exploiting similarities among lan-
guages for machine translation. arXiv preprint
arXiv:1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of NIPS.

George A Miller and Walter G Charles. 1991. Contex-
tual correlates of semantic similarity. Language and
Cognitive Processes, 6(1):1–28.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling.
In Proceedings of ICML.

Andriy Mnih and Geoffrey E Hinton. 2009. A scalable
hierarchical distributed language model. In Pro-
ceedings of NIPS.

59

Roberto Navigli and Simone Paolo Ponzetto. 2010.
Babelnet: Building a very large multilingual seman-
tic network. In Proceedings of ACL.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP.

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Proceedings of NAACL.

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1988. Learning representations by back-
propagating errors. Cognitive Modeling, 5:213–220.

Hinrich Schütze. 1998. Automatic word sense dis-
crimination. Computational Linguistics, 24(1):97–
123.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In Proceedings of Coling, Technical Papers.

Zhibiao Wu and Martha Palmer. 1994. Verbs seman-
tics and lexical selection. In Proceedings of ACL.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Proceedings
of ACL.

Torsten Zesch and Iryna Gurevych. 2006. Automati-
cally creating datasets for measures of semantic re-
latedness. In Proceedings of the Workshop on Lin-
guistic Distances.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In Proceedings of ACL, System Demon-
strations.

60

Chapter 4

Ultradense Word Embeddings by
Orthogonal Transformation

61

Ultradense Word Embeddings by Orthogonal Transformation

Sascha Rothe and Sebastian Ebert and Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
{sascha|ebert}@cis.lmu.de

Abstract

Embeddings are generic representations that
are useful for many NLP tasks. In this paper,
we introduce DENSIFIER, a method that learns
an orthogonal transformation of the embed-
ding space that focuses the information rele-
vant for a task in an ultradense subspace of a
dimensionality that is smaller by a factor of
100 than the original space. We show that
ultradense embeddings generated by DENSI-
FIER reach state of the art on a lexicon creation
task in which words are annotated with three
types of lexical information – sentiment, con-
creteness and frequency. On the SemEval2015
10B sentiment analysis task we show that no
information is lost when the ultradense sub-
space is used, but training is an order of mag-
nitude more efficient due to the compactness
of the ultradense space.

1 Introduction

Embeddings are useful for many tasks, including
word similarity (e.g., Pennington et al. (2014)),
named entity recognition (NER) (e.g., Collobert et
al. (2011)) and sentiment analysis (e.g., Kim (2014),
Kalchbrenner et al. (2014), Severyn and Moschitti
(2015)). Embeddings are generic representations,
containing different types of information about a
word. Statistical models can be trained to make best
use of these generic representations for a specific ap-
plication like NER or sentiment analysis (Ebert et
al., 2015).

Our hypothesis in this paper is that the informa-
tion useful for any given task is contained in an ul-
tradense subspace Eu. We propose the new method

DENSIFIER to identify Eu. Given a set of word em-
beddings, DENSIFIER learns an orthogonal transfor-
mation of the original space Eo on a task-specific
training set. The orthogonality of the transformation
can be considered a hard regularizer.

The benefit of the proposed method is that embed-
dings are most useful if learned on unlabeled cor-
pora and performance-enhanced on a broad array of
tasks. This means we should try to keep all informa-
tion offered by them. Orthogonal transformations
“reorder” the space without adding or removing in-
formation and preserve the bilinear form, i.e., Eu-
clidean distance and cosine. The transformed em-
beddings concentrate all information relevant for the
task in Eu.

The benefits of Eu compared to Eo are (i) high-
quality and (ii) efficient representations. (i) DENSI-
FIER moves non-task-related information outside of
Eu, i.e., into the orthogonal complement of Eu. As
a result, Eu provides higher-quality representations
for the task than Eo; e.g., noise that could result in
overfitting is reduced in Eu compared to Eo. (ii) Eu

has a dimensionality smaller by a factor of 100 in our
experiments. As a result, training statistical models
on these embeddings is much faster. These models
also have many fewer parameters, thus again helping
to prevent overfitting, especially for complex, deep
neural networks.

We show the benefits of ultradense representa-
tions in two text polarity classification tasks (Sem-
Eval2015 Task 10B, Czech movie reviews).

In the most extreme form, ultradense representa-
tions – i.e., Eu – have a single dimension. We ex-
ploit this for creating lexicons in which words are

62

annotated with lexical information, e.g., with senti-
ment. Specifically, we create high-coverage lexicons
with up to 3 million words (i) for three lexical prop-
erties: for sentiment, concreteness and frequency;
(ii) for five languages: Czech, English, French, Ger-
man and Spanish; (iii) for two domains, Twitter and
News, in a domain adaptation setup.

The main advantages of this method of lexicon
creation are: (i) We need a training lexicon of only a
few hundred words, thus making our method effec-
tive for new domains and languages and requiring
only a minimal manual annotation effort. (ii) The
method is applicable to any set of embeddings, in-
cluding phrase and sentence embeddings. Assum-
ing the availability of a small hand-labeled lexicon,
DENSIFIER automatically creates a domain depen-
dent lexicon based on a set of embeddings learned
on a large corpus of the domain. (iii) While the in-
put lexicon is discrete – e.g., positive (+1) and nega-
tive (-1) sentiment – the output lexicon is continuous
and this more fine-grained assessment is potentially
more informative than a simple binary distinction.

We show that lexicons created by DENSIFIER beat
the state of the art on SemEval2015 Task 10E (deter-
mining association strength).

One of our goals is to make embeddings more
interpretable. The work on sentiment, concrete-
ness and frequency we present in this paper is a
first step towards a general decomposition of embed-
ding spaces into meaningful, dense subspaces. This
would lead to cleaner and more easily interpretable
representations – as well as representations that are
more effective and efficient.

2 Model

Let Q ∈ Rd×d be an orthogonal matrix that trans-
forms the original word embedding space into a
space in which certain types of information are
represented by a small number of dimensions.
Concretely, we learn Q such that the dimensions
Ds ⊂ {1, . . . , d} of the resulting space corre-
spond to a word’s sentiment information and the
{1, . . . , d}\Ds remaining dimensions correspond to
non-sentiment information. Analogously, the sets of
dimensions Dc and Df correspond to a word’s con-
creteness information and frequency information,
respectively. In this paper, we assume that these

properties do not correlate and therefore the ultra-
dense subspaces do not overlap, e.g., Ds ∩Dc = ∅.
However, this might not be true for other settings,
e.g., sentiment and semantic information.

If ew ∈ Eo ⊂ Rd is the original embedding
of word w, the transformed representation is Qew.
We use ∗ as a placeholder for s, c and f and call
d∗ = |D∗| the dimensionality of the ultradense sub-
space of ∗. For each ultradense subspace, we create
P ∗ ∈ Rd∗×d, an identity matrix for the dimensions
in D∗ ⊂ {1, . . . , d}. Thus, the ultradense represen-
tation u∗w ∈ Eu ⊂ Rd∗ of ew is defined as:

u∗w := P ∗Qew (1)

2.1 Separating Words of Different Groups
We assume to have a lexicon resource l in which
each word w is annotated for a certain information
as either l∗(w) = +1 (positive, concrete, frequent)
or l∗(w) = −1 (negative, abstract, infrequent). Let
L∗6∼ be a set of word index pairs (v, w) for which
l∗(v) 6= l∗(w) holds. We want to maximize:

∑

(v,w)∈L∗6∼

‖u∗v − u∗w‖ (2)

Thus, our objective is given by:

argmax
Q

∑

(v,w)∈L∗6∼

‖P ∗Q(ew − ev)‖ (3)

or, equivalently, by:

argmin
Q

∑

(v,w)∈L∗6∼

−‖P ∗Q(ew − ev)‖ (4)

subject to Q being an orthogonal matrix.

2.2 Aligning Words of the Same Group
Another goal is to minimize the distance of two
words of the same group. Let L∗∼ be a set of word
index pairs (v, w) for which l∗(v) = l∗(w) holds.
In contrast to Eq. 3, we now want to minimize each
distance. Thus, the objective is given by:

argmin
Q

∑

(v,w)∈L∗∼

‖P ∗Q(ew − ev)‖ (5)

subject to Q being an orthogonal matrix.
The intuition behind the two objectives is graphi-

cally depicted in Figure 1.

63

dislike

like

peace

war

do

chocolate

don't

money

max

max

min

Q
dislike

like

peacewar
do

chocolate

don't

money

max

max

min

sentiment
dimension

non-sentiment
dimensions

Figure 1: The original word embedding space (left) and the transformed embedding space (right). The training objective for Q is

to minimize the distances in the sentiment dimension between words of the same group (e.g., positive/green: “like” & “peace”) and

to maximize the distances between words of different groups (e.g., negative/red & positive/green: “war” & “peace”; not necessarily

antonyms).

2.3 Training
We combine the two objectives in Eqs. 3/5 for each
subspace, i.e., for sentiment, concreteness and fre-
quency, and weight them with α∗ and 1−α∗. Hence,
there is one hyperparameter α∗ for each subspace.
We then perform stochastic gradient descent (SGD).
Batch size is 100 and starting learning rate is 5, mul-
tiplied by .99 in each iteration.

2.4 Orthogonalization
Each step of SGD updates Q. The updated matrix
Q′ is in general no longer orthogonal. We therefore
reorthogonalize Q′ in each step based on singular
value decomposition:

Q′ = USV T

where S is a diagonal matrix, and U and V are or-
thogonal matrices. The matrix

Q := UV T

is the nearest orthogonal matrix to Q′ in both the
2-norm and the Frobenius norm (Fan and Hoffman,
1955). (Formalizing our regularization directly as
projected gradient descent would be desirable. How-
ever, gradient descent includes an additive operation
and orthogonal matrices are not closed under sum-
mation.)

SGD for this problem is sensitive to the learning
rate. If the learning rate is too large, a large jump

results and the reorthogonalized matrix Q basically
is a random new point in the parameter space. If
the learning rate is too small, then learning can take
long. We found that our training regime of start-
ing at a high learning rate (5) and multiplying by
.99 in each iteration is effective. Typically, the cost
initially stays about constant (random jumps in pa-
rameter space), then cost steeply declines in a small
number of about 50 iterations (sweet spot); the curve
flattens after that. Training Q took less than 5 min-
utes per experiment for all experiments in this paper.

3 Lexicon Creation

For lexicon creation, the input is a set of embed-
dings and a lexicon resource l, in which words are
annotated for a lexical information such as senti-
ment, concreteness or frequency. DENSIFIER is
then trained to produce a one-dimensional ultra-
dense subspace. The output is an output lexicon.
It consists of all words covered by the embedding
set, each associated with its one-dimensional ultra-
dense subspace representation (which is simply a
real number), an indicator of the word’s strength for
that information.

The embeddings and lexicon resources used in
this paper cover five languages and three domains
(Table 1). The Google News embeddings for En-
glish1 and the FrWac embeddings for French2 are

1https://code.google.com/p/word2vec/
2http://fauconnier.github.io/

64

train test
#tokens #types resource ∩ #words resource ∩ #words τ

1 sent CZ web 2.44 3.3 SubLex 1.0 2,492 4,125 SubLex 1.0 319 500 .580
2 sent DE web 1.34 8.0 German PC 10,718 37,901 German PC 573 1,000 .654
3 sent ES web 0.37 3.7 full-strength 824 1,147 full-strength 185 200 .563
4 sent FR web 0.12 1.6 FEEL 7,496 10,979 FEEL 715 1,000 .544
5 sent EN twitter 3.34 5.4 WHM all 12,601 19,329 Trial 10E 198 200 .661
6 sent EN news 3.00 100.0 WHM train 7,633 10,270 WHM val 952 1,000 .622
7 conc EN news 3.00 100.0 BWK 14,361 29,954 BWK 8,694 10,000 .623
8 freq EN news 3.00 100.0 word2vec order 4,000 4,000 word2vec order 1,000 1,000 .361
9 freq FR web 0.12 1.6 word2vec order 4,000 4,000 word2vec order 1,000 1,000 .460

Table 1: Results for lexicon creation. #tokens: size of embedding training corpus (in billion). #types: size of output lexicon (in

million). For each resource, we give its size (“#words”) and the size of the intersection of resource and embedding set (“∩”).

Kendall’s τ is computed on “∩”.

publicly available. We use word2vec to train 400-
dimensional embeddings for English on a 2013
Twitter corpus of size 5.4×109. For Czech, German
and Spanish, we train embeddings on web data of
sizes 3.3, 8.0 and 3.8×109, respectively. We use the
following lexicon resources for sentiment: SubLex
1.0 (Veselovská and Bojar, 2013) for Czech; WHM
for English [the combination of MPQA (Wilson et
al., 2005), Opinion Lexicon (Hu and Liu, 2004)
and NRC Emotion lexicons (Mohammad and Tur-
ney, 2013)]; FEEL (Abdaoui et al., 2014) for French;
German Polarity Clues (Waltinger, 2010) for Ger-
man; and the sentiment lexicon of Pérez-Rosas et
al. (2012) for Spanish. For concreteness, we use
BWK, a lexicon of 40,000 English words (Brysbaert
et al., 2014). For frequency, we exploit the fact
that word2vec stores words in frequency order; thus,
the ranking provided by word2vec is our lexicon re-
source for frequency.

For a resource/embedding-set pair (l, E), we in-
tersect the vocabulary of l with the top 80,000 words
of E to filter out noisy, infrequent words that tend to
have low quality embeddings and we do not want
them to introduce noise when training the transfor-
mation matrix.

For the sentiment and concreteness resources,
l∗(w) ∈ {−1, 1} for all words w covered. We cre-
ate a resource lf for frequency by setting lf (w) = 1
for the 2000 most frequent words and lf (w) = −1
for words at ranks 20000-22000. 1000 words ran-
domly selected from the 5000 most frequent are
the test set.3 We designate three sets of dimen-

3The main result of the frequency experiment below is that

sions Ds, Dc and Df to represent sentiment, con-
creteness and frequency, respectively, and arbitrar-
ily set (i) Dc = {11} for English and Dc = ∅ for
the other languages since we do not have concrete-
ness resources for them, (ii) Ds = {1} and (iii)
Df = {21}. Referring to the lines in Table 1, we
then learn six orthogonal transformation matricesQ:
for CZ-web (1), DE-web (2), ES-web (3), FR-web
(4, 9), EN-twitter (5) and EN-news (6, 7, 8).

4 Evaluation

4.1 Top-Ranked Words

Table 2 shows the top 10 positive/negative words
(i.e., most extreme values on dimension Ds) when
we apply the transformation to the corpora EN-
twitter, EN-news and DE-web and the top 10 con-
crete/abstract words (i.e., most extreme values on di-
mension Dc) for EN-news. For EN-twitter (leftmost
double column), the selected words look promising:
they contain highly domain-specific words such as
hashtags (e.g., #happy). This is surprising because
there is not a single hashtag in the lexicon resource
WHM that DENSIFIER was trained on. Results for
the other three double columns show likewise ex-
treme examples for the corresponding information
and language. This initial evaluation indicates that
our method effectively learns high quality lexicons
for new domains. Figure 3 depicts values for se-
lected words for the three properties. Illustrative ex-
amples are “brother” / “brotherhood” for concrete-
ness and “hate” / “love” for sentiment.

τ is low even in a setup that is optimistic due to train/test over-
lap; presumably it would be even lower without overlap.

65

EN-twitter EN-news EN-news DE-web
positive negative positive negative concrete abstract positive negative
#blessed rape expertise angry tree fundamental herzlichen gesperrt

inspiration racist delighted delays truck obvious kenntnisse droht
blessed horrible honored worse kitchen legitimate hervorragende verurteilt

inspiring nasty thank anger dog reasonable ideale gefahr
foundation jealousy wonderful foul bike optimistic bestens falsche

provide murder commitment blamed bat satisfied glückwunsch streit
wishes waste affordable blame garden surprising optimale angst

dedicated mess passion complained homer honest anregungen krankheit
offers disgusting exciting bad bed regard freuen falschen

#happy spam flexibility deaths gallon extraordinary kompetenzen verdacht
Table 2: Top 10 words in the output lexicons for the domains Twitter and News (English) and Web (German).

4.2 Quality of Predictions

Table 1 presents experimental results. In each case,
we split the resource into train/test, except for Twit-
ter where we used the trial data of SemEval2015
Task 10E for test. We train DENSIFIER on train and
compute Kendall’s τ on test. The size of the lexicon
resource has no big effect; e.g., results for Spanish
(small resource; line 3) and French (large resource;
line 4) are about the same. See Section 5.2 for a
more detailed analysis of the effect of resource size.

The quality of the output lexicon depends strongly
on the quality of the underlying word embeddings;
e.g., results for French (small embedding train-
ing corpus; line 4) are worse than results for En-
glish (large embedding training corpus; line 6) even
though the lexicon resources have comparable size.

In contrast to sentiment/concreteness, τ values for
frequency are low (lines 8-9). For the other three
languages we obtain τ ∈ [.34, .46] for frequency
(not shown). This suggests that word embeddings
represent sentiment and concreteness much better
than frequency. The reason for this likely is the
learning objective of word embeddings: modeling
the context. Infrequent words can occur in frequent
contexts. Thus, the frequency information in a sin-
gle word embedding is limited. In contrast negative
words are likely to occur in negative contexts.

The nine output lexicons in Table 1 – each a list
of words annotated with predicted strength on one of
three properties – are available at www.cis.lmu.
de/˜sascha/Ultradense/.

τ
system all ∩

1 Amir et al. (2015) .626†

2 Hamdan et al. (2015) .621†

3 Zhang et al. (2015) .591†

4 Özdemir and Bergler (2015) .584†

5 Plotnikova et al. (2015) .577†

6 DENSIFIER .654† .650†

7 Sentiment140 .508† .538†

8 DENSIFIER, trial only .627†

Table 3: Results for Lexicon Creation. The first column gives

the correlation with the entire test lexicon of SemEval2015 10E,

the last column only on the intersection of our output lexicon

and Sentiment140. Of the 1315 words of task 10E, 985 and

1308 are covered by DENSIFIER and Sentiment140, respec-

tively. †: significantly worse than the best (bold) result in the

same column (α = .05, Fisher z-transformation).

4.3 Determining Association Strength

We also evaluate lexicon creation on SemEval2015
Task 10E. As before, the task is to predict the sen-
timent score of words/phrases. We use the trial
data of the task to tune the hyperparameter, αs =
.4. Out-of-vocabulary words were predicted as neu-
tral (7/1315). Table 3 shows that the lexicon com-
puted by DENSIFIER (line 5, Table 1) has a τ of
.654 (line 6, column all), significantly better than
all other systems, including the winner of SemEval
2015 (τ = .626, line 1). DENSIFIER also beats Sen-
timent140 (Mohammad et al., 2013), a widely used
semi-automatic sentiment lexicon. The last column
is τ on the intersection of DENSIFIER and Senti-
ment140. It shows that DENSIFIER again performs
significantly better than Sentiment140.

66

0 50 100 150 200 250 300
size of subspace

0

0.2

0.4

0.6

0.8

co
rr

el
at

io
n

Ultradense
PCA
Random

10 1 10 2 10 3 10 4

size of lexicon

0.3

0.4

0.5

0.6

0.7

co
rr

el
at

io
n

Sentiment
Concreteness

Figure 2: Kendall’s τ versus subspace size (top) and training resource size (bottom). See lines 6 & 8, Table 1, for train/test split.

4.4 Text Polarity Classification

We now show that ultradense embeddings decrease
model training times without any noticeable de-
crease in performance compared to the original em-
beddings. We evaluate on SemEval2015 Task 10B,
classification of Twitter tweets as positive, nega-
tive or neutral. We reimplement the linguistically-
informed convolutional neural network (lingCNN)
of Ebert et al. (2015) that has close to state-of-the-
art performance on the task. We do not use sentence-
based features to focus on the evaluation of the em-
beddings. We initialize the first layer of lingCNN,
the embedding layer, in three different ways: (i)
400-dimensional Twitter embeddings (Section 3);
(ii) 40-dimensional ultradense embeddings derived
from (i); (iii) 4-dimensional ultradense embeddings
derived from (i). The objective weighting isαs = .4,
optimized on the development set.

The embedding layer converts a sentence into a
matrix of word embeddings. We also add linguistic
features for words, such as sentiment lexicon scores.
The combination of embeddings and linguistic fea-
tures is the input for a convolution layer with filters
spanning 2-5 words (100 filters each). This is fol-

lowed by a max pooling layer, a rectifier nonlinear-
ity (Nair and Hinton, 2010) and a fully connected
softmax layer predicting the final label. The model
is trained with SGD using AdaGrad (Duchi et al.,
2011) and `2 regularization (λ = 5× 10−5). Learn-
ing rate is 0.01. Mini-batch size is 100.

We follow the official guidelines and use the Sem-
Eval2013 training and development sets as train-
ing set, the SemEval2013 test set as development
set and the SemEval2015 test set to report final
scores (Nakov et al., 2013; Rosenthal et al., 2015).
We report macro F1 of positive and negative classes
(the official SemEval evaluation metric) and accu-
racy over the three classes. Table 4 shows that 40-
dimensional ultradense embeddings perform almost
as well as the full 400-dimensional embeddings (no
significant difference according to sign test). Train-
ing time is shorter by a factor of 21 (85/4 exam-
ples/second). The 4-dimensional ultradense embed-
dings lead to only a small loss of 1.5% even though
the size of the embeddings is smaller by a factor of
100 (again not a significant drop). Training time is
shorter by a factor of 44 (178/4).

We perform the same experiment on CSFD, a

67

lang. embeddings #dim acc F1 ex./sec
en original 400 .666 .623 4
en DENSIFIER 40 .662 .620 85
en DENSIFIER 4 .646 .608 178
cz original 400 .803 .802 1
cz DENSIFIER 40 .803 .801 24
cz DENSIFIER 4 .771 .769 83

Table 4: Performance on Text Polarity Classification

Czech movie review dataset (Habernal et al., 2013),
to show the benefits of ultradense embeddings for a
low-resource language where only one rather small
lexicon is available. As original word embed-
dings we train new 400 dimensional embeddings
on a large Twitter corpus (3.3 ×109 tokens). We
use DENSIFIER to create 40 and 4 dimensional
embeddings out of these embeddings and SubLex
1.0 (Veselovská and Bojar, 2013). Word polarity
features are also taken from SubLex. A simple bi-
nary negation indicator is implemented by searching
for all tokens beginning with “ne”. Since that in-
cludes superlative forms having the prefix “nej”, we
remove them with the exception of common negated
words, such as “nejsi” – “you are not”. We randomly
split the 91,000 dataset instances into 90% train and
10% test and report accuracy and macro F1 score
over all three classes.

Table 4 shows that what we found for English is
also true for Czech. There is only a small perfor-
mance drop when using ultradense embeddings (not
significant for 40 dimensional embeddings) while
the speed improvement is substantial.

5 Parameter Analysis

In this section, we analyze two parameters: size of
ultradense subspace and size of lexicon resource.
We leave an evaluation of another parameter, the
size of the embedding training corpus, for future
work, but empirical results suggest that this corpus
should ideally have a size of several billion tokens.

5.1 Size of Subspace

With the exception of the two text polarity classifi-
cation experiments, all our subspaces have dimen-
sionality d∗ = 1. The question arises: does a one-
dimensional space perhaps have too low a capacity
to encode all relevant information and could we fur-
ther improve our results by increasing the dimen-

sionality of the subspace to values d∗ > 1? The
lexicon resources that we train and test on are all bi-
nary; thus, if we use values d∗ > 1, then we need to
map the subspace embeddings to a one-dimensional
scale for evaluation. We do this by training, on the
train part of the resource, a linear transformation
from the ultradense subspace to the one-dimensional
scale (e.g., to the sentiment scale).

Figure 2 compares different values of ds for
three different types of subspaces in this setup,
i.e., the setup in which the subspace representa-
tions are mapped via linear transformation to a one-
dimensional sentiment value: (i) Random: we take
the first ds dimensions of the original embeddings;
(ii) PCA: we compute a PCA and take the first ds

principal components; (iii) Ultradense subspace of
dimensionality ds. We use the word embeddings
and lexicon resources of line 6 in Table 1. For ran-
dom, the performance starts dropping when the sub-
space is smaller than 200 dimensions. For PCA, the
performance is relatively stable until the subspace
becomes smaller than 100. In contrast, ultradense
subspaces have almost identical performance for all
values of ds, even for ds = 1. This suggests that
a single dimension is sufficient to encode all senti-
ment information needed for sentiment lexicon cre-
ation. However, for other sentiment tasks more di-
mensions may be needed, e.g., for modeling differ-
ent emotional dimensions of polarity: fear, sadness,
anger etc.

An alternative approach to create a low-
dimensional space is to simply train low-
dimensional word2vec embeddings. The following
experiment suggests that this does not work very
well. We used word2vec to train 60-dimensional
twitter embeddings with the same settings as
on line 5 in Table 1. While the correlation for
400-dimensional embeddings shown in Table 1 is
.661, the correlation of 60-dimensional embeddings
is only .568. Thus, even though we show that the
information in 400-dimensional embeddings that
is relevant for sentiment can be condensed into a
single dimension, hundreds of dimensions seem to
be needed if we use word2vec to collect sentiment
information. If we run word2vec with a small
dimensionality, only a subset of available sentiment
information is “harvested” from the corpus.

68

po
si

tiv
e

ne
ga

tiv
e

abstract

concrete

friend

friendship

enemy
#friday

#monday

:)

:(
happy

#happy

#sad

#follower

#unfollow

child

childhood

brother

brotherhood

romance

#lovelove

hate

journey

roadtrip

democracy

dictatorship

dictator

president
money

pregnant

abortion

trophy

success

baby

robbery

sun

cappuccino

tea

chocolate

puke

hangover

hurt

pain

#starwars

#sotrue#storyofmylife

#thatawkwardmoment

#goaway

#wedding

#valentinesday #hiring

#proud

#hipster

#lol

vacation

homesick

coconut beach

slum

Figure 3: Illustration of EN-twitter output lexicon: DENSIFIER values are x coordinate (sentiment), y coordinate (concreteness)

and font size (frequency)

5.2 Size of Training Resource

Next, we analyze what size of training resource is
required to learn a good transformation Q. Labeled
resources covering many words may not be available
or suffer from lack of quality. We use the settings of
lines 6 (sentiment) and 7 (concreteness) in Table 1.
Figure 2 shows that a small training resource of 300
entries is sufficient for high performance. This sug-
gests that DENSIFIER can create a high quality out-
put lexicon for a new language by hand-labeling
only 300 words; and that a small, high-quality re-
source may be preferable to a large lower-quality re-
source (semi-automatic or out of domain).

To provide further evidence for this, we train
DENSIFIER on only the trial data of SemEval2015
task 10E. To convert the continuous trial data to bi-
nary −1 / 1 labels, we discard all words with sen-
timent values between −0.5 and 0.5 and round the
remaining values, giving us 39 positive and 38 neg-
ative training words. The resulting lexicon has τ =
.627 (Table 3, line 8).4 This is worse than τ =

4Here, we tune αs on train (equals trial data of Sem-
Eval2015 task 10E). This seems to work due to the different

.654 (line 6) for the setup in which we used sev-
eral large resources, but still better than all previ-
ous work. This indicates that DENSIFIER is espe-
cially suited for languages or domains for which lit-
tle training data is available.

6 Related Work

To the best of our knowledge, this paper is the first to
train an orthogonal transformation to reorder word
embedding dimensions into ultradense subspaces.
However, there is much prior work on postprocess-
ing word embeddings.

Faruqui et al. (2015) perform postprocessing
based on a semantic lexicon with the goal of fine-
tuning word embeddings. Their transformation is
not orthogonal and therefore does not preserve dis-
tances. They show that their approach optimizes
word embeddings for a given application, i.e., word
similarity, but also that it worsens them for other ap-
plications like detecting syntactic relations. Faruqui
et al. (2015)’s approach also does not have the bene-

objectives for training (maximize/minimize difference) and de-
velopment (correlation).

69

fit of ultradense embeddings, in particular the benefit
of increased efficiency.

In a tensor framework, Rothe and Schütze (2015)
transform the word embeddings to sense (synset)
embeddings. In their work, all embeddings live in
the same space whereas we explicitly want to change
the embedding space to create ultradense embed-
dings with several desirable properties.

Xing et al. (2015) restricted the work of Mikolov
et al. (2013) to an orthogonal transformation to en-
sure that normalized embeddings stay normalized.
This transformation is learned between two embed-
ding spaces of different languages to exploit simi-
larities. They normalized word embeddings in a first
step, something that did not improve our results.

As a reviewer pointed out, our method is also
related to Oriented PCA (Diamantaras and Kung,
1996). However in contrast to PCA a solution for
Oriented PCA is not orthogonal.

Sentiment lexicons are often created semi-
automatically, e.g., by extending manually labeled
seed sets of sentiment words or adding for each word
its syno-/antonyms. Alternatively, words frequently
cooccurring with a seed set of manually labeled sen-
timent words are added (Turney, 2002; Kiritchenko
et al., 2014). Heerschop et al. (2011) used Word-
Net together with a PageRank-based algorithm to
propagate the sentiment of the seed set to unknown
words. Scheible (2010) presented a semi-automatic
approach based on machine translation of sentiment
lexicons. The winning system of SemEval2015 10E
(Amir et al., 2015) was based on structured skip-
gram embeddings with 600 dimensions and support
vector regression with RBF kernels. Hamdan et al.
(2015), the second ranked team, used the average of
six sentiment lexicons as a final sentiment score, a
method that cannot be applied to low resource lan-
guages. We showed that the lexicons created by
DENSIFIER achieve better performance than other
semi-automatically created lexicons.

Tang et al. (2014b) train sentiment specific em-
beddings by extending Collobert & Weston’s model
and Tang et al. (2014a)’s skip-gram model. The
first model automatically labels tweets as posi-
tive/negative based on emoticons, a process that can-
not be easily transferred to other domains like news.
The second uses the Urban Dictionary to expand a
small list of 350 sentiment seeds. In our work, we

showed that a training resource of about the same
size is sufficient without an additional dictionary.
DENSIFIER differs from this work in that it does not
need a text corpus, but can transform existing, pub-
licly available word embeddings. DENSIFIER is in-
dependent of the embedding learning algorithm and
therefore extensible to other word embedding mod-
els like GloVe (Pennington et al., 2014), to phrase
embeddings (Yu and Dredze, 2015) and even to sen-
tence embeddings (Kiros et al., 2015).

7 Conclusion

We have introduced DENSIFIER, a method that is
trained to focus embeddings used for an application
to an ultradense subspace that contains the informa-
tion relevant for the application. In experiments on
SemEval, we demonstrate two benefits of the ultra-
dense subspace. (i) Information is preserved even
if we focus on a subspace that is smaller by a fac-
tor of 100 than the original space. This means that
unnecessary noisy information is removed from the
embeddings and robust learning without overfitting
is better supported. (ii) Since the subspace is 100
times smaller, models that use the embeddings as
their input representation can be trained more effi-
ciently and have a much smaller number of parame-
ters. The subspace can be learned with just 80−300
training examples, achieving state-of-the-art results
on lexicon creation.

We have shown in this paper that up to three or-
thogonal ultradense subspaces can be created. Many
training datasets can be restructured as sets of simi-
lar/dissimilar pairs. For instance, in part-of-speech
tasks verb/verb pairs would be similar, verb/noun
pairs dissimilar. Hence, our objective is widely ap-
plicable. In future work, we will explore the possi-
bility of factoring all information present in an em-
bedding into a dozen or so orthogonal subspaces.
This factorization would not change the information
embeddings contain, but it would make them more
compact for any given application, more meaningful
and more interpretable.

The nine large DENSIFIER lexicons shown in Ta-
ble 1 are publicly available.5

Acknowledgments. We gratefully acknowledge
the support of DFG: grant SCHU 2246/10-1.

5www.cis.lmu.de/˜sascha/Ultradense/

70

References
Amine Abdaoui, Jérôme Azé, Sandra Bringay, and Pascal

Poncelet. 2014. FEEL: French Extended Emotional
Lexicon: ISLRN: 041-639-484-224-2.

Silvio Amir, Ramón Astudillo, Wang Ling, Bruno Mar-
tins, Mario J. Silva, and Isabel Trancoso. 2015. Inesc-
id: A regression model for large scale twitter sentiment
lexicon induction. In Proceedings of SemEval.

Marc Brysbaert, Amy Beth Warriner, and Victor Kuper-
man. 2014. Concreteness ratings for 40 thousand gen-
erally known english word lemmas. Behavior research
methods, 46(3):904–911.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR, 12:2493–2537.

K. I. Diamantaras and S. Y. Kung. 1996. Principal Com-
ponent Neural Networks: Theory and Applications.
John Wiley & Sons, Inc.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12:2121–2159.

Sebastian Ebert, Ngoc Thang Vu, and Hinrich Schütze.
2015. A Linguistically Informed Convolutional Neu-
ral Network. In Proceedings of WASSA.

Ky Fan and Alan J Hoffman. 1955. Some metric in-
equalities in the space of matrices. volume 6, pages
111–116.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In Pro-
ceedings of NAACL.

Ivan Habernal, Tomáš Ptáček, and Josef Steinberger.
2013. Sentiment Analysis in Czech Social Media Us-
ing Supervised Machine Learning. In Proceedings of
WASSA.

Hussam Hamdan, Patrice Bellot, and Frederic Bechet.
2015. Lsislif: Feature extraction and label weight-
ing for sentiment analysis in twitter. In Proceedings
of SemEval.

Bas Heerschop, Alexander Hogenboom, and Flavius
Frasincar. 2011. Sentiment lexicon creation from lex-
ical resources. In Business Information Systems.

Minqing Hu and Bing Liu. 2004. Mining and Summa-
rizing Customer Reviews. In Proceedings of KDD.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A Convolutional Neural Network for
Modelling Sentences. In Proceedings of ACL.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of EMNLP.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Moham-
mad. 2014. Sentiment analysis of short informal texts.
JAIR, pages 723–762.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In Pro-
ceedings of NIPS.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Saif M. Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a Word-Emotion Association Lexicon. Com-
putational Intelligence, 29(3).

Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the State-of-the-
Art in Sentiment Analysis of Tweets. In Proceedings
of SemEval.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Lin-
ear Units Improve Restricted Boltzmann Machines. In
Proceedings of ICML.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva,
Veselin Stoyanov, Alan Ritter, and Theresa Wilson.
2013. SemEval-2013 Task 2: Sentiment Analysis in
Twitter. In Proceedings of SemEval.

Canberk Özdemir and Sabine Bergler. 2015. Clac-
sentipipe: Semeval2015 subtasks 10 b,e, and task 11.
In Proceedings of SemEval.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of EMNLP.

Verónica Pérez-Rosas, Carmen Banea, and Rada Mihal-
cea. 2012. Learning Sentiment Lexicons in Spanish.
In Proceedings of LREC.

Nataliia Plotnikova, Micha Kohl, Kevin Volkert, Stefan
Evert, Andreas Lerner, Natalie Dykes, and Heiko Er-
mer. 2015. Klueless: Polarity classification and asso-
ciation. In Proceedings of SemEval.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif M. Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. SemEval-2015 Task 10: Sentiment Anal-
ysis in Twitter. In Proceedings of SemEval.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings for
synsets and lexemes. In Proceedings of ACL.

Christian Scheible. 2010. Sentiment translation through
lexicon induction. In Proceedings of ACL, Student Re-
search Workshop.

Aliaksei Severyn and Alessandro Moschitti. 2015.
UNITN: Training Deep Convolutional Neural Net-
work for Twitter Sentiment Classification. In Proceed-
ings of SemEval.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting
Liu. 2014a. Building large-scale twitter-specific sen-
timent lexicon : A representation learning approach.
In Proceedings of COLING.

71

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014b. Learning Sentiment-Specific
Word Embedding for Twitter Sentiment Classification.
In Proceedings of ACL.

Peter D. Turney. 2002. Thumbs Up or Thumbs Down?
Semantic Orientation Applied to Unsupervised Classi-
fication of Reviews. In Proceedings of ACL.

Kateřina Veselovská and Ondřej Bojar. 2013. Czech
SubLex 1.0.

Ulli Waltinger. 2010. GermanPolarityClues: A Lexi-
cal Resource for German Sentiment Analysis. In Pro-
ceedings of LREC.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of HLT/EMNLP.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015.
Normalized word embedding and orthogonal trans-
form for bilingual word translation. In Proceedings
of NAACL.

Mo Yu and Mark Dredze. 2015. Learning composition
models for phrase embeddings. TACL, 3:227–242.

Zhihua Zhang, Guoshun Wu, and Man Lan. 2015. Ecnu:
Multi-level sentiment analysis on twitter using tradi-
tional linguistic features and word embedding features.
In Proceedings of SemEval.

72

Chapter 5

Word Embedding Calculus in
Meaningful Ultradense Subspaces

73

Word Embedding Calculus in Meaningful Ultradense Subspaces

Sascha Rothe and Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
sascha@cis.lmu.de

Abstract

We decompose a standard embedding
space into interpretable orthogonal sub-
spaces and a “remainder” subspace. We
consider four interpretable subspaces in
this paper: polarity, concreteness, fre-
quency and part-of-speech (POS) sub-
spaces. We introduce a new calculus
for subspaces that supports operations like
“−1 × hate = love” and “give me a neu-
tral word for greasy” (i.e., oleaginous).
This calculus extends analogy computa-
tions like “king−man+woman = queen”.
For the tasks of Antonym Classification
and POS Tagging our method outperforms
the state of the art. We create test sets for
Morphological Analogies and for the new
task of Polarity Spectrum Creation.

1 Introduction

Word embeddings are usually trained on an ob-
jective that ensures that words occurring in simi-
lar contexts have similar embeddings. This makes
them useful for many tasks, but has drawbacks for
others; e.g., antonyms are often interchangeable
in context and thus have similar word embeddings
even though they denote opposites. If we think
of word embeddings as members of a (commuta-
tive or Abelian) group, then antonyms should be
inverses of (as opposed to similar to) each other.
In this paper, we use DENSIFIER (Rothe et al.,
2016) to decompose a standard embedding space
into interpretable orthogonal subspaces, including
a one-dimensional polarity subspace as well as
concreteness, frequency and POS subspaces. We
introduce a new calculus for subspaces in which
antonyms are inverses, e.g., “−1 × hate = love”.
The formula shows what happens in the polarity
subspace; the orthogonal complement (all the re-

maining subspaces) is kept fixed. We show be-
low that we can predict an entire polarity spec-
trum based on the subspace, e.g., the four-word
spectrum hate, dislike, like, love. Similar to polar-
ity, we explore other interpretable subspaces and
do operations such as: given a concrete word like
friend find the abstract word friendship (concrete-
ness); given the frequent word friend find a less
frequent synonym like comrade (frequency); and
given the noun friend find the verb befriend (POS).

2 Word Embedding Transformation

We now give an overview of DENSIFIER; see
Rothe et al. (2016) for details. Let Q ∈ Rd×d

be an orthogonal matrix that transforms the orig-
inal word embedding space into a space in which
certain types of information are represented by a
small number of dimensions. The orthogonality
can be seen as a hard regularization of the trans-
formation. We choose this because we do not want
to add or remove any information from the origi-
nal embeddings space. This ensures that the trans-
formed word embeddings behave differently only
when looking at subspaces, but behave identically
when looking at the entire space. By choosing an
orthogonal and thus linear transformation we also
assume that the information is already encoded
linearly in the original word embedding. This is a
frequent assumption, as we generally use the vec-
tor addition for word embeddings.

Concretely, we learn Q such that the dimen-
sions Dp ⊂ {1, . . . , d} of the resulting space cor-
respond to a word’s polarity information and the
{1, . . . , d}\Dp remaining dimensions correspond
to non-polarity information. Analogously, the sets
of dimensions Dc, Df and Dm correspond to a
word’s concreteness, frequency and POS (or mor-
phological) information, respectively. In this pa-
per, we assume that these properties do not corre-

74

Figure 1: Illustration of the transformed embeddings. The horizontal axis is the polarity subspace.
All non-polarity information, including concreteness, frequency and POS, is projected into a two di-
mensional subspace for visualization (gray plane). A query word (bold) specifies a line parallel to the
horizontal axis. We then construct a cylinder around this line. Words in this cylinder are considered to
be part of the word spectrum.

late and therefore the ultradense subspaces do not
overlap. E.g.,Dp∩Dc = ∅. This might not be true
for other settings, e.g., sentiment and semantic in-
formation. As we are using only four properties
there is also a subspace which is in the orthogonal
complement of all trained subspaces. This sub-
space includes the not classified information, e.g.,
genre information in our case (e.g., “clunker” is a
colloquial word for “automobile”).

If ev ∈ Rd is the original embedding of word v,
the transformed representation is uv = Qev. We
use ∗ as a placeholder for polarity (p), concrete-
ness (c), frequency (f) and POS/morphology (m)
and call d∗ = |D∗| the dimensionality of the ultra-
dense subspace of property ∗. For each ultradense
subspace, we create P ∗ ∈ Rd∗×d, an identity ma-
trix for the dimensions inD∗. Thus, the ultradense
(UD) representation u∗v ∈ Rd∗ of word v is defined
as:

u∗v := P ∗Qev (1)

For notational simplicity, u∗v will either refer to a
vector in Rd∗ or to a vector in Rd where all dimen-
sions /∈ D∗ are set to zero.

For training, the orthogonal transformation Q
we assume we have a lexicon resource. Let L∗6∼
be a set of word index pairs (v, w) with different
labels, e.g., positive/negative, concrete/abstract or
noun/verb. We want to maximize the distance for
pairs in this group. Thus, our objective is:

argmin
Q

∑

∗∈{p,c,f,m}

∑

(v,w)∈L∗6∼

−‖P ∗Q(ev − ew)‖

(2)

subject to Q being an orthogonal matrix. Another
goal is to minimize the distance of two words with
identical labels. Let L∗∼ be a set of word index
pairs (v, w) with identical labels. In contrast to
Eq. 2, we now want to minimize each distance.
Thus, the objective is given by:

argmin
Q

∑

∗∈{p,c,f,m}

∑

(v,w)∈L∗∼

‖P ∗Q(ev−ew)‖ (3)

subject toQ being an orthogonal matrix. For train-
ing Eq. 2 is weighted with α∗ and Eq. 3 with
1 − α∗. We do a batch gradient descent where
each batch contains the same number of positive
and negative examples. This means the number of
examples in the lexica – which give rise to more
negative than positive examples – does not influ-
ence the training.

3 Setup and Method

Eqs. 2/3 can be combined to train an orthogonal
transformation matrix. We use pretrained 300-
dimensional English word embeddings (Mikolov
et al., 2013) (W2V). To train the transformation
matrix, we use a combination of MPQA (Wil-
son et al., 2005), Opinion Lexicon (Hu and Liu,
2004) and NRC Emotion lexicons (Mohammad
and Turney, 2013) for polarity; BWK, a lexicon
of 40,000 English words (Brysbaert et al., 2014),
for concreteness; the order in the word embed-
ding file for frequency; and the training set of the
FLORS tagger (Schnabel and Schütze, 2014) for
POS. The application of the transformation ma-

75

trix to the word embeddings gives us four sub-
spaces for polarity, concreteness, frequency and
POS. These subspaces and their orthogonal com-
plements are the basis for an embedding calculus
that supports certain operations. Here, we investi-
gate four such operations. The first operation com-
putes the antonym of word v:

antonym(v) = nn(uv − 2upv) (4)

where nn : Rd → V returns the word whose em-
bedding is the nearest neighbor to the input. Thus,
our hypothesis is that antonyms are usually very
similar in semantics except that they differ on a
single “semantic axis,” the polarity axis.1 The sec-
ond operation is “neutral version of word v”:

neutral(v) = nn(uv − upv) (5)

Thus, our hypothesis is that neutral words are
words with a value close to zero in the polarity
subspace. The third operation produces the polar-
ity spectrum of v:

spectrum(v) = {nn(uv + xupv) | ∀x ∈ R} (6)

This means that we keep the semantics of the
query word fixed, while walking along the polar-
ity axis, thus retrieving different shades of polarity.
Figure 1 shows two example spectra. The fourth
operation is “word v with POS of word w”:

POSw(v) = nn(uv − umv + umw) (7)

This is similar to analogies like king − man +
woman, except that the analogy is inferred by the
subspace relevant for the analogy.

We create word spectra for some manually cho-
sen words using the Google News corpus (W2V)
and a Twitter corpus. As the transformation was
orthogonal and therefore did not change the length
of a dimension, we multiply the polarity dimen-
sion with 30 to give it a high weight, i.e., paying
more attention to it. We then use Eq. 6 with a suf-
ficiently small step size for x, i.e., further reduc-
ing the step size does not increase the spectrum.
We also discard words that have a cosine distance
of more than .6 in the non-polarity space. Ta-
ble 1 shows examples. The results are highly do-
main dependent, with Twitter’s spectrum indicat-
ing more negative views of politicians than news.
While fall has negative associations, autumn’s are
positive – probably because autumn is of a higher
register in American English.

1See discussion/experiments below for exceptions

Corpus, Type Spectrum

News,
Polarity

hypocrite, politician, legislator, busi-
nessman, reformer, statesman, thinker
fall, winter, summer, spring, autumn
drunks, booze, liquor, lager, beer, beers,
wine, beverages, wines, tastings

Twitter,
Polarity

corrupt, coward, politician, journalist,
citizen, musician, representative
stalker, neighbour, gf, bf, cousin, frnd,
friend, mentor
#stupid, #problems, #homework,
#mylife, #reality, #life, #happiness

News,
Concreteness

imperialist, conflict, war, Iraq, Vietnam
War, battlefields, soldiers
love, friendship, dear friend, friends,
friend, girlfriend

News,
Frequency

redesigned, newer, revamped, new
intellect, insights, familiarity, skills,
knowledge, experience

Table 1: Example word spectra for polarity, con-
creteness and frequency on two different corpora.
Queries are bold.

dev set test set
P R F1 P R F1

Adel, 2014 .79 .65 .72 .75 .58 .66
our work .81 .90 .85 .76 .88 .82

Table 2: Results for Antonym Classification

4 Evaluation

4.1 Antonym Classification.

We evaluate on Adel and Schütze (2014)’s data;
the task is to decide for a pair of words whether
they are antonyms or synonyms. The set has 2,337
positive and negative pairs each and is split into
80% training, 10% dev and 10% test. Adel and
Schütze (2014) collected positive/negative exam-
ples from the nearest neighbors of the word em-
beddings to make it hard to solve the task using
word embeddings. We train an SVM (RBF kernel)
on three features that are based on the intuition de-
picted in Figure 1: the three cosine distances in:
the polarity subspace; the orthogonal complement;
and the entire space. Table 2 shows that improve-
ment of precision is minor (.76 vs. .75), but recall
and F1 improve by a lot (+.30 and +.16).

4.2 Polarity Spectrum Creation

consists of two subtasks. PSC-SET: Given a query
word how well can we predict a spectrum? PSC-
ORD: How good is the order in the spectrum?
Our gold standard is Word Spectrum, included in
the Oxford American Writer’s Thesaurus (OAWT)
and therefore also in MacOS. For each query word

76

newsgroups reviews weblogs answers emails wsj
ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

1 LSJU 89.11† 56.02† 91.43† 58.66† 94.15† 77.13† 88.92† 49.30† 88.68† 58.42† 96.83 90.25
2 SVM 89.14† 53.82† 91.30† 54.20† 94.21† 76.44† 88.96† 47.25† 88.64† 56.37† 96.63 87.96†

3 F 90.86 66.42† 92.95 75.29† 94.71 83.64† 90.30 62.15† 89.44 62.61† 96.59 90.37
4 F+W2V 90.51 72.26 92.46† 78.03 94.70 86.05 90.34 65.16 89.26 63.70† 96.44 91.36
5 F+UD 90.79 72.20 92.84 78.80 94.84 86.47 90.60 65.48 89.68 66.24 96.61 92.36

Table 3: Results for POS tagging. LSJU = Stanford. SVM = SVMTool. F=FLORS. We show three state-
of-the-art taggers (lines 1-3), FLORS extended with 300-dimensional embeddings (4) and extended with
UD embeddings (5). †: significantly better than the best result in the same column (α = .05, one-tailed
Z-test).

this dictionary returns a list of up to 80 words of
shades of meaning between two polar opposites.
We look for words that are also present in Adel
and Schütze (2014)’s Antonym Classification data
and retrieve 35 spectra. Each word in a spectrum
can be used as a query word; after intersecting the
spectra with our vocabulary, we end up with 1301
test cases.

To evaluate PSC-SET, we calculate the 10 near-
est neighbors of the m words in the spectrum and
rank the 10m neighbors by the distance to our
spectrum, i.e., the cosine distance in the orthog-
onal complement of the polarity subspace. We re-
port mean average precision (MAP) and weighted
MAP where each MAP is weighted by the num-
ber of words in the spectrum. As shown in Table 4
there is no big difference between both numbers,
meaning that our algorithm does not work better
or worse on smaller or larger spectra.

To evaluate PSC-ORD, we calculate Spear-
man’s ρ of the ranks in OAWT and the values on
the polarity dimension. Again, there is no signifi-
cant difference between average and weighted av-
erage of ρ. Table 4 also shows that the variance
of the measures is low for PSC-SET and high for
PSC-ORD; thus, we do well on certain spectra and
worse on others. The best one, beautiful↔ ugly,
is given as an example. The worst performing
spectrum is fat↔ skinny (ρ = .13) – presumably
because both extremes are negative, contradicting
our modeling assumption that spectra go from pos-
itive to negative. We test this hypothesis by sepa-
rating the spectrum into two subspectra. We then
report the weighted average correlation of the op-
timal separation. For fat ↔ skinny, this improves
ρ to .67.

PSC-SET: MAP PSC-ORD: ρ avg(ρ1, ρ2)

average .48 .59 .70
weighted avg. .47 .59 .70

variance .004 .048 .014

beautiful/ugly .48 .84 .84
fat/skinny .56 .13 .67

absent/present .43 .72 .76

Table 4: Results for Polarity Spectrum Creation:
MAP, Spearman’s ρ (one spectrum) and average ρ
(two subspectra)

4.3 Morphological Analogy.

The previous two subspaces were one-
dimensional. Now we consider a POS subspace,
because POS is not one-dimensional and cannot
be modeled as a single scalar quantity. We
create a word analogy benchmark by extracting
derivational forms from WordNet (Fellbaum,
1998). We discard words with ≥2 derivational
forms of the same POS and words not in the
most frequent 30,000. We then randomly se-
lect 26 pairs for every POS combination for
the dev set and 26 pairs for the test set.2 An
example of the type of equation we solve here is
prediction− predict + symbolize = symbol (from
the dev set). W2V embeddings are our baseline.

We can also rewrite the left side of the equation
as POS(prediction) + Semantics(symbolize); note
that this cannot be done using standard word em-
beddings. In contrast, our method can use mean-
ingful UD embeddings and Eq. 7 with POS(v) be-
ing umv and Semantics(v) being uv − umv . The dev
set indicates that a 8-dimensional POS subspace is
optimal and Table 5 shows that this method out-

2This results in an even number of 25 ∗ 26 = 650 ques-
tions per POS combination, 4∗2∗650 = 5200 in total (4 POS
combinations, where each POS can be used as query POS).

77

W2V UD
A→B B→A A→B B→A

noun-verb 35.69 6.62 59.69† 50.46†

adj-noun 30.77 27.38 53.85† 43.85†

adj-verb 20.62 3.08 32.15† 24.77†

adj-adverb 45.38 35.54 46.46† 43.08†

all 25.63 44.29†

Table 5: Accuracy @1 on test for Morphological
Analogy. †: significantly better than the corre-
sponding result in the same row (α = .05, one-
tailed Z-test).

performs the baseline.

4.4 POS Tagging

Our final evaluation is extrinsic. We use FLORS
(Schnabel and Schütze, 2014), a state-of-the-art
POS tagger which was extended by Yin et al.
(2015) with word embeddings as additional fea-
tures. W2V gives us a consistent improvement on
OOVs (Table 3, line 4). However, training this
model requires about 500GB of RAM. When we
use the 8-dimensional UD embeddings (the same
as for Morphological Analogy), we outperform
W2V except for a virtual tie on news (Table 3, line
5). So we perform better even though we only use
8 of 300 dimensions! However, the greatest advan-
tage of UD is that we only need 100GB of RAM,
80% less than W2V.

5 Related Work

Yih et al. (2012) also tackled the problem of
antonyms having similar embeddings. In their
model, the antonym is the inverse of the en-
tire vector whereas in our work the antonym is
only the inverse in an ultradense subspace. Our
model is more intuitive since antonyms invert
only part of the meaning, not the entire mean-
ing. Schwartz et al. (2015) present a method that
switches an antonym parameter on or off (depend-
ing on whether a high antonym-synonym similar-
ity is useful for an application) and learn multiple
embedding spaces. We only need a single space,
but consider different subspaces of this space.

An unsupervised approach using linguistic pat-
terns that ranks adjectives according to their inten-
sity was presented by de Melo and Bansal (2013).
Sharma et al. (2015) present a corpus-independent
approach for the same problem. Our results (Ta-
ble 1) suggest that polarity should not be consid-

ered to be corpus-independent.
There is also much work on incorporating

the additional information into the original word
embedding training. Examples include (Botha
and Blunsom, 2014) and (Cotterell and Schütze,
2015). However, postprocessing has several ad-
vantages. DENSIFIER can be trained on a normal
work station without access to the original train-
ing corpus. This makes the method more flexible,
e.g., when new training data or desired properties
are available.

On a general level, our method bears some re-
semblance with (Weinberger and Saul, 2009) in
that we perform supervised learning on a set of de-
sired (dis)similarities and that we can think of our
method as learning specialized metrics for particu-
lar subtypes of linguistic information or particular
tasks. Using the method of Weinberger and Saul
(2009), one could learn k metrics for k subtypes
of information and then simply represent a wordw
as the concatenation of (i) the original embedding
and (ii) k representations corresponding to the k
metrics.3 In case of a simple one-dimensional type
of information, the corresponding representation
could simply be a scalar. We would expect this
approach to have similar advantages for practical
applications, but we view our orthogonal transfor-
mation of the original space as more elegant and it
gives rise to a more compact representation.

6 Conclusion

We presented a new word embedding calculus
based on meaningful ultradense subspaces. We
applied the operations of the calculus to Antonym
Classification, Polarity Spectrum Creation, Mor-
phological Analogy and POS Tagging. Our eval-
uation shows that our method outperforms pre-
vious work and is applicable to different types
of information. We have published test sets and
word embeddings at http://www.cis.lmu.
de/˜sascha/Ultradense/.

Acknowledgments

This research was supported by Deutsche
Forschungsgemeinschaft (DFG, grant 2246/10-1).

3We would like to thank an anonymous reviewer for sug-
gesting this alternative approach.

78

References

Heike Adel and Hinrich Schütze. 2014. Using mined
coreference chains as a resource for a semantic task.
In Proceedings of EMNLP.

Jan A Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. arXiv preprint arXiv:1405.4273.

Marc Brysbaert, Amy Beth Warriner, and Victor Ku-
perman. 2014. Concreteness ratings for 40 thou-
sand generally known english word lemmas. Behav-
ior research methods, 46(3):904–911.

Ryan Cotterell and Hinrich Schütze. 2015. Morpho-
logical word-embeddings. In Proceedings of the
2015 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 1287–1292,
Denver, Colorado, May–June. Association for Com-
putational Linguistics.

Gerard de Melo and Mohit Bansal. 2013. Good, great,
excellent: Global inference of semantic intensities.
Transactions of the Association for Computational
Linguistics, 1:279–290.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Minqing Hu and Bing Liu. 2004. Mining and Summa-
rizing Customer Reviews. In KDD.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a Word-Emotion Association Lexi-
con. Computational Intelligence, 29(3).

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze.
2016. Ultradense word embeddings by orthogonal
transformation. arXiv preprint arXiv:1602.07572.

Tobias Schnabel and Hinrich Schütze. 2014. Flors:
Fast and simple domain adaptation for part-of-
speech tagging. Transactions of the Association for
Computational Linguistics, 2:15–26.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In Proceedings
of CoNLL.

Raksha Sharma, Mohit Gupta, Astha Agarwal, and
Pushpak Bhattacharyya. 2015. Adjective intensity
and sentiment analysis. In Proceedings of EMNLP.

Kilian Q. Weinberger and Lawrence K. Saul. 2009.
Distance metric learning for large margin near-
est neighbor classification. J. Mach. Learn. Res.,
10:207–244.

Theresa Wilson, Janyce Wiebe, and Paul Hoff-
mann. 2005. Recognizing contextual polarity in
phrase-level sentiment analysis. In Proceedings of
HLT/EMNLP.

Wen-tau Yih, Geoffrey Zweig, and John C Platt. 2012.
Polarity inducing latent semantic analysis. In Pro-
ceedings of EMNLP.

Wenpeng Yin, Tobias Schnabel, and Hinrich Schütze.
2015. Online updating of word representations for
part-of-speech tagging. In Proceedings of EMNLP.

79

80

Chapter 6

AutoExtend: Combining Word
Embeddings with Semantic
Resources

81

AutoExtend: Combining Word Embeddings with
Semantic Resources

Sascha Rothe
LMU Munich

Hinrich Schütze
LMU Munich

We present AutoExtend, a system that combines word embeddings with semantic resources
by learning embeddings for non-word objects like synsets and entities and learning word em-
beddings which incorporate the semantic information from the resource. The method is based
on encoding and decoding the word embeddings and is flexible in that it can take any word
embeddings as input and does not need an additional training corpus. The obtained embeddings
live in the same vector space as the input word embeddings. A sparse tensor formalization
guarantees efficiency and parallelizability. We use WordNet, GermaNet and Freebase as semantic
resources. AutoExtend achieves state-of-the-art performance on Word-in-Context Similarity and
Word Sense Disambiguation tasks.

1 Introduction

Unsupervised methods for learning word embeddings are widely used in natural language
processing (NLP). The only data these methods need as input are very large corpora. However, in
addition to corpora, there are many other resources that are undoubtedly useful in NLP, including
lexical resources like WordNet and Wiktionary and knowledge bases like Wikipedia and Free-
base. We will simply refer to these as resources. In this article, we present AutoExtend, a method
for enriching these valuable resources with embeddings for non-word objects they describe; e.g.,
AutoExtend enriches WordNet with embeddings for synsets. The word embeddings and the new
non-word embeddings live in the same vector space.

Many NLP applications benefit if non-word objects described by resources – such as synsets
in WordNet – are also available as embeddings. For example, in sentiment analysis Balamurali
et al. (2011) showed the superiority of sense based features over word based features. Generally,
the arguments for the utility of embeddings for words carry over to the utility of embeddings for
non-word objects like synsets in WordNet. We demonstrate this by improved performance due
to AutoExtend embeddings for non-word objects in experiments on Word-in-Context Similarity,
Word Sense Disambiguation and several other tasks.

To extend a resource with AutoExtend, we first formalize it as a graph in which (i) objects
of the resource – both word objects and non-word objects – are nodes and (ii) edges describe
relations between nodes. These relations can be of an additive or a similarity nature. Additive
relations capture the basic intuition of the offset calculus (Mikolov et al. 2013a) as we will
discuss in detail in Section 2. Similarity relations simply define similar nodes. We then define
various constraints based on these relations. For example, one of our constraints states that the
embeddings of two synsets related by the similarity relation should be close. Finally, we select
the set of embeddings that minimizes the learning objective.

The advantage of our approach is that it decouples (i) the learning of word embeddongs on
the one hand and (ii) the extension of these word embeddings to non-word objects in a resource
on the other hand. If somebody comes up with a better way of learning word embeddings,
AutoExtend immediately can extend these embeddings to similarly improved embeddings for
non-word objects. We do not rely on any specific properties of word embeddings that make them
usable in some resources, but not in others.

© 2006 Association for Computational Linguistics

82

Computational Linguistics

The main contributions of this article are as follows. (i) We present AutoExtend, a flexible
method that extends word embeddings to embeddings of non-word objects. We demonstrate the
generality and flexibility of AutoExtend by running experiments on three different resources:
WordNet (Fellbaum 1998), Freebase (Bollacker et al. 2008) and GermaNet (Hamp et al. 1997).
(ii) AutoExtend does not require manually labelled corpora. In fact, it does not require any
corpora. All we need as input is a set of word embeddings and a resource that can be formally
modeled as a graph in the way described above. (iii) We show that AutoExtend achieves state-
of-the-art performance on several tasks including Word Sense Disambiguation.

This article is structured as follows. In Section 2, we introduce the AutoExtend model.
In Section 3, we describe the three resources we use in our experiments and how we model
them. We evaluate the embeddings of word and non-word objects in Section 4 using the tasks of
Word Sense Disambiguation, Entity Linking, Word and Word-in-Context Similarity and Synset
Alignment. Finally, we give an overview of related work in Section 5 and present our conclusions
in Section 6.

2 Model

The graph formalization that underlies AutoExtend is based on the offset calculus introduced
by Mikolov et al. (2013a). We interpret this calculus as a group theory formalization of word
relations: we have a set of elements – the word embeddings – and an operation – vector
addition – satisfying the axioms of a commutative group, in particular, commutativity, closure,1

associativity and invertibility.
The easiest way to see that the original formulation by Mikolov et al. (2013a) corresponds

to a commutative group is to conceptualize word embeddings as sums of property embeddings.
For example, let ~gf and ~gm be the embeddings for the properties feminine gender and masculine
gender and let ~r and ~p be the properties of being a ruler and a person. Then we can formalize the
semantics of queen, king, man and woman and their additive relations as follows:

~v(queen) = ~r + ~gf (1)

~v(king) = ~r + ~gm (2)

~v(woman) = ~p+ ~gf (3)

~v(man) = ~p+ ~gm (4)

~v(queen)− ~v(king) = ~gf − ~gm (5)

~v(woman)− ~v(man) = ~gf − ~gm (6)

~v(king) = ~v(queen)− ~v(woman) + ~v(man) (7)

Eqs. 5-6 motivate the name offset calculus: The differences of pairs of embeddings that only
differ on the same property and have the same relative value settings on those properties (e.g.,
masculine vs. feminine for the gender property) are modeled as fixed offsets. Eq. 7 is an example
of how offsets are used for computing analogies, the application of the offset calculus that has

1 Closure does not hold literally for the set of words of a language represented in a finite corpus: there can be no
bijection between the countable set of words and the uncountable set of real-valued vectors. When the sum ~x+ ~y of
the embeddings of two words x and y is not attested as the embedding of a word, then we can see it as the
embedding of a longer description. A simple example is that for many animals x, there are special words for the
sum of x and young (calf, cub, chick), but for others a phrase must be used (baby koala in non-Australian varieties
of English, infant baboon).

83

Rothe and Schütze AutoExtend

received most attention. Eqs. 1-4 are examples of what we take as the underlying assumption of
the offset calculus about how embeddings of words are formed: as sums of property vectors.

In addition to semantic properties like gender, the offset calculus has been applied to
morphological properties, e.g., running − walking + walked = ran; and even to properties of
regional varieties of English, e.g., bonnet − aubergine + eggplant = hood. We take an expansive
view of what a property is and include complex properties that are captured by resources. The
most important instance of this expansive view in this article is that we model a word’s embedding
as the sum of the embeddings of its senses. For example, the vector of suit is modeled as the sum
of a vector representing lawsuit and a vector representing business suit. Apart from the offset
calculus, this can also be motivated by the additivity that underlies many embedding learning
algorithms. This is most obvious for the counts in vector space models. They are clearly additive
and thus support the view of a word as the sum of its senses. To be precise a word is a weighted
sum of its senses, where the weights represent the probability of a sense. Our model incorporates
this by simply learning shorter or longer vectors.

The basic idea behind AutoExtend is that it takes the embedding of an object that is a bundle
of properties as input and “decodes” or “unravels” this embedding to the embeddings of these
properties. For example, AutoExtend unravels the embedding of a word to the embeddings of its
senses. These senses are not directly observable, so we can view them as hidden variables.

2.1 General Framework

The basic input to AutoExtend is a semantic resource represented as a graph and an embedding
space given as a set of vectors. Each node in the graph is associated with a vector in a high-
dimensional vector space. Nodes in the graph can have different types; e.g., in WordNet the
types are word, lexeme and synset (see Figure 1). One type is the input type. Embeddings of
nodes for this type are known. Embeddings of the other types are unknown and will be learned
by AutoExtend.

Concretely, to extend a resource with AutoExtend, we (i) formalize it as a graph based on
the offset calculus, (ii) assign known objects an input embedding, (iii) define a learning objective
on the graph and finally find the set of embeddings that optimizes the learning objective.

(i) Graph formalization of resource
In our formalization of the resource as a graph, objects of the resource – both word objects and
non-word objects – are nodes; some edges of the resource describe additive relations between
nodes. These additive relations are the basic relations of the offset calculus between embeddings
of words on the one hand and embeddings of constituents derived from the resource (e.g.
semantic properties, morphological properties or senses) on the other hand. More precisely, the
embedding of a node x is the sum of the embeddings of all nodes yi that are connected via an
edge (yi, x). Other edges of the resource describe similarity relations. One example of this is that
the embeddings of two synsets related by the hyponymy relation should be close. An example
for such a graph can be seen in Figure 1.

(ii) Connecting resource and word embeddings
Each node is associated with a vector. The vectors of some nodes are known and the vectors of
other nodes (e.g., senses) are not known. Throughout this article a known object is a word; a
word can also be a short phrase. An example for the embedding space we want to learn can be
seen in Figure 2.

84

Computational Linguistics

n00691

n65537

n76543

a39657

a01728

suit(law)

case(law)

lawsuit

suit(clothes)

suit_of_clothes

countersuit small
little

large big

suit

antonym

hypernym

suit_of_clothes

Figure 1
A small subset of the resource WordNet represented as a graph with three different types of nodes. Words
(blue) are connected to lexemes (orange) by additive relations (grey). Lexemes are connected to synsets
(green) and words. Synsets are connected to lexemes and also to other synsets by (dis)similarity relations
(red).

suit
n00691

case(law) lawsuit

suit(law)

suit(law)

n65537

suit(clothes)

suit(clothes)

suit_of_clothes

n76543

Figure 2
The embedding space we want to learn. The embeddings for words (blue) are given (input type). The
embeddings for lexemes (orange) and synsets (green) have to be learned (unknown types). The additive
edges define either that lexemes sum up to words or that they sum up to synsets. The similarity edges
define which embeddings are similar (e.g., n65537 and n76543).

(iii) Learning objective
We define the learning objective based on various constraints. The additive relations define
the topology of an autoencoder, which will result in autoencoding constraints that apply if
a resource object participates in different additive relations (see next section). We also use
similarity relations that are specified in the resource. Finally, we select the set of embeddings
for non-word objects that minimizes the learning objective. We will assign them to those nodes
in the graph (e.g., senses) that do not occur in corpora and do not have corpus-based embeddings.

85

Rothe and Schütze AutoExtend

suit

case

lawsuit

case(law)

lawsuit

suit(textil)

suit(law)

n65537

n00691

Figure 3
A subgraph of Figure 1 with additive edges only. Words are sums of their lexemes and synsets are sums of
their lexemes. The circles are intended to show four different embedding dimensions.

We present AutoExtend in more detail in the following sections. While we could couch the
discussion in terms of generic resources, the presentation is easier to follow if a specific resource
is used as an example. We will therefore use WordNet as an example resource where appropriate.
We now give a brief description of those aspects of WordNet that we make use of in this article.

Words in WordNet are lemmata where a lemma is defined as a particular spelling of the base
form of an inflected word form; i.e., a lemma is a sequence of letters with a particular part of
speech. A lexeme pairs such a spelling with a particular meaning. A synset is a set of lexemes
with the same meaning in the sense that they are interchangeable for each other in context.
Thus, we can also define a lexeme as the conjunction of a word and a synset. Additive relations
between lexemes and words and lexemes and synsets correspond to a graph in which each lexeme
node is connected to exactly one word node and to exactly one synset node. Additionally, two
synset nodes can be connected to indicate a (dis)similarity relation holding between them, e.g.,
hyponomy or antonymy.

In the context of this paper, word nodes are “known” in the sense that we have learned their
vectors from a large corpus. Embeddings for inflected forms are not used in this paper.2 Lexeme
and synset nodes are unknown since they are not directly observable in a corpus and vectors
cannot be learned from them using standard embedding learning algorithms.

2.2 Additive Edges

As already mentioned, we will use WordNet as an example resource to simplify the presentation
of our model. We will use the additive edges to formulate two basic premises of our model:
(i) words are sums of their lexemes and (ii) synsets are sums of their lexemes. For example,
the embedding of the word suit is a sum of the embeddings of its two lexemes suit(textile) and
suit(law); and the embedding of the synset lawsuit-case-suit(law) is a sum of the embeddings
of its three lexemes lawsuit, case(law) and suit(law) (see Figure 3). This is equivalent to saying
words split up into their lexemes and lexemes sum up to their synsets. We will formulate this in
this subsection.

We denote word vectors as w(i) ∈ Rn, synset vectors as s(j) ∈ Rn, and lexeme vectors as
l(i,j) ∈ Rn, where l(i,j) is that lexeme of wordw(i) that is a member of synset s(j). We set lexeme

2 We also tried (i) lemmatizing the corpus, (ii) using an averaged embedding of all inflected forms and (iii) using only
the embeddings of the most frequent inflected form. These three methods yielded worse performance.

86

Computational Linguistics

vectors l(i,j) that do not exist to zero. For example, the non-existing lexeme flower(truck) is set
to zero. We can then formalize our premise that (i) and (ii) hold as follows:

w(i) =
∑

j

l(i,j) (8)

s(j) =
∑

i

l(i,j) (9)

These two equations are underspecified. We therefore introduce the matrix E(i,j) ∈ Rn×n:

l(i,j) = E(i,j)w(i) (10)

We make the assumption that the dimensions in Eq. 10 are independent of each other, i.e., E(i,j)

is a diagonal matrix. Our motivation for this assumption is: (i) This makes the computation
technically feasible by significantly reducing the number of parameters and by supporting
parallelism. (ii) Treating word embeddings on a per-dimension basis is a frequent design choice
(e.g., Kalchbrenner et al. (2014b)). (iii) When vectors are treated as elements of a group, the
addition is dimension-wise.

Note that we allow E(i,j) < 0 and in general the distribution weights for each dimension
(diagonal entries of E(i,j)) will be different. Our assumption can be interpreted as word w(i)

distributing its embedding activations to its lexemes on each dimension separately.
Eqs. 8-9 can then be written as follows:

w(i) =
∑

j

E(i,j)w(i) (11)

s(j) =
∑

i

E(i,j)w(i) (12)

From Eq. 11 it directly follows that:

∑

j

E(i,j) = In ∀i (13)

with In being the identity matrix.
Let W be a |V | × n matrix where n is the dimensionality of the embedding space, |V | is the

number of words and each row w(i) is a word embedding; and let S be a |S| × n matrix where
|S| is the number of synsets and each row s(j) is a synset embedding.W and S can be interpreted
as linear maps and a mapping between them is given by the rank 4 tensor E ∈ R|S|×n×|V |×n. We
can then write Eq. 12 as a tensor matrix product:

S = E×W (14)

while Eq. 13 states, that

∑

j

Ei,d1

j,d2
= 1 ∀i, d1, d2 (15)

87

Rothe and Schütze AutoExtend

Additionally, there is no interaction between different dimensions, so Ei,d1

j,d2
= 0 if d1 6= d2. In

other words, we are creating the tensor by stacking the diagonal matrices E(i,j) over i and j.
Another sparsity arises from the fact that many lexemes do not exist: Ei,d1

j,d2
= 0 if l(i,j) = 0; i.e.,

l(i,j) 6= 0 only if word i has a lexeme that is a member of synset j. To summarize the sparsity:

Ei,d1

j,d2
= 0⇐ d1 6= d2 ∨ l(i,j) = 0 (16)

2.3 Learning Through Autoencoding

We adopt an autoencoding framework to learn embeddings for lexemes and synsets. To this end,
we view the tensor equation S = E×W as the encoding part of the autoencoder: the synsets are
the encoding of the words. For the decoding part, we will take another copy of Figure 3 flip it
horizontally and concatenate it to the encoding part (see Figure 4). This time the offset calculus
relationships – words are sums of their lexemes and synsets are sums of their lexemes – translate
into synsets splitting up into their lexemes and lexemes summing up to their words. We formulate
the corresponding decoding part as follows:

s(j) =
∑

i

l2
(i,j) (17)

w2
(i) =

∑

j

l2
(i,j) (18)

In analogy to E(i,j), we introduce the diagonal matrix D(j,i):

l2
(i,j) = D(j,i)s(j) (19)

In this case, it is the synset that distributes itself to its lexemes. We can then rewrite Eqs. 17-18
to:

s(j) =
∑

i

D(j,i)s(j) (20)

w2
(i) =

∑

j

D(j,i)s(j) (21)

and we also get the equivalent of Eq. 13 for D(j,i):

∑

i

D(j,i) = In ∀j (22)

and in tensor notation:

W2 = D× S (23)

Normalization and sparseness properties for the decoding part are analogous to the encoding
part:

∑

i

Dj,d2

i,d1
= 1 ∀j, d1, d2 (24)

88

Computational Linguistics

suit

case

lawsuit

case(law)

lawsuit

suit(textil)

suit(law)

n65537

n00691

case(law)

lawsuit

suit(textil)

suit(law)
suit

case

lawsuit

Figure 4
Encode and decode part of AutoExtend. The circles are intended to show four different embedding
dimensions. These dimensions are treated as independent. The word constraint aligns the input and the
output layer (blue columns), i.e., the difference between encoding input and decoding output is minimized.
The lexeme constraint aligns the second and fourth layers (orange columns).

Dj,d2

i,d1
= 0⇐ d1 6= d2 ∨ l(i,j) = 0 (25)

We can state the learning objective of the autoencoder as follows:

argmin
E,D

‖D×E×W −W‖ (26)

under the conditions Eq. 15, 16, 24 and 25.
Now we have an autoencoder where input and output layers are the word embeddings.

Aligning these two layers (i.e., minimizing the difference between them) will give us the word
constraint. The hidden layer represents the synset vectors. The tensors E and D have to be
learned. They are rank 4 tensors of size ≈1015. However, we already discussed that they are
very sparse, for two reasons: (i) We make the assumption that there is no interaction between
dimensions. (ii) There are only few interactions between words and synsets (only when a lexeme
exists). In practice, there are only ≈107 elements to learn, which is technically feasible.

2.4 Matrix Formalization

Based on the assumption that each dimension is fully independent from other dimensions, a
separate autoencoder for each dimension can be created and trained in parallel. Let W ∈ R|V |×n
be a matrix where each row is a word embedding and w(d) =W·,d the d-th column of W , i.e., a
vector that holds the d-th dimension of each word vector. In the same way, s(d) = S·,d holds the
d-th dimension of each synset vector and E(d) = E·,d·,d ∈ R|S|×|V |. We can write S = E×W as:

s(d) = E(d)w(d) ∀d (27)

with E(d)
i,j = 0 if l(i,j) = 0. The decoding equation W2 = D× S takes this form:

w2
(d) = D(d)s(d) ∀d (28)

89

Rothe and Schütze AutoExtend

noun verb adj adv
hypernymy 84,505 13,256 0 0
antonymy 2,154 1,093 4,024 712
similarity 0 0 21,434 0
verb group 0 1,744 0 0

Table 1
Number of similarity relations by part-of-speech

where D(d) = D·,d·,d ∈ R|V |×|S| and D(d)
j,i = 0 if l(i,j) = 0. So E and D are symmetric in terms of

non-zero elements. The learning objective becomes:

argmin
E(d),D(d)

‖D(d)E(d)w(d) − w(d)‖ ∀d (29)

2.5 Lexeme Embeddings

The hidden layer S of the autoencoder gives us synset embeddings. The lexeme embeddings are
defined when transitioning from W to S, or more explicitly by:

l(i,j) = E(i,j)w(i) (30)

However, there is also a second lexeme embedding in AutoExtend when transitioning from S to
W2:

l2
(i,j) = D(j,i)s(j) (31)

Aligning these two representations (i.e., minimizing the difference between them) seems natural,
so we impose the following lexeme constraint:

argmin
E(i,j),D(j,i)

∥∥∥E(i,j)w(i) −D(j,i)s(j)
∥∥∥ ∀i, j (32)

This can also be expressed dimension-wise. The matrix formulation is given by:

argmin
E(d),D(d)

∥∥∥∥E(d) diag(w(d))−
(
D(d) diag(s(d))

)T∥∥∥∥∀d (33)

with diag(x) being a square matrix having x on the main diagonal, w(d) =W·,d is again the d-th
column of W and vector s(d) defined by Eq. 27. While the lexeme constraint encourages the
two embeddings of a lexeme (l(i,j) and l2(i,j)) to be similar, they are still two different lexeme
embeddings. In all experiments reported in Section 4 we will use the average of both embeddings
and in Section 4.6 we will analyze the weighting in more detail.

2.6 Similarity Edges

Some WordNet synsets contain only a single word (lexeme). The autoencoder learns based on
the word constraint, i.e., lexemes being shared by different synsets (and also words); thus, it is
difficult to learn good embeddings for single-lexeme synsets. To remedy this problem, we use

90

Computational Linguistics

the similarity edges to impose the constraint that synsets related by WordNet relations should
have similar embeddings. Table 1 shows relations we used. Note that we also used the antonym
relation, as antonyms are often replaceable in context and thus have similar word embeddings in
standard word embedding models. Similarity relations are entered in a new matrix R ∈ Rr×|S|,
where r is the number of relation tuples. For each relation tuple, i.e., row inR, we set the columns
corresponding to the first and second synset to 1 and −1, respectively. The values of R are not
updated during training. We use a squared error function and 0 as target value. This forces the
system to find similar values for related synsets. Formally, the similarity constraint is:

argmin
E(d)

‖RE(d)w(d)‖ ∀d (34)

2.7 Column Normalization

Our model is based on the premise that a word is the sum of its lexemes (Eq. 8). From the
definition of E(i,j), we derived that E ∈ R|S|×n×|V |×n should be normalized over the first
dimension (Eq. 15). So E(d) ∈ R|S|×|V | should also be normalized over the first dimension. In
other words, E(d) should be a column normalized matrix. Another premise of the model is that a
synset is the sum of its lexemes. Therefore, D(d) should also be column normalized. We call this
the column normalization constraint and formalize it as follows:

argmin
E(d)

‖([1, . . . , 1]E(d))− [1, . . . , 1] ‖ ∀d (35)

argmin
D(d)

‖([1, . . . , 1]D(d))− [1, . . . , 1] ‖ ∀d (36)

2.8 Implementation

Our training objective is minimization of the sum of all constraints normalized by their output
size, i.e., the word constraint (Eq. 29) divided by the number of words, the lexeme constraint
(Eq. 33) divided by the number of lexemes and the similarity constraint (Eq. 34) divided by
the number of similarities. Our training objective is minimization of the sum of these three
normalized constraints, weighted by α (Eq. 29), β (Eq. 33) and 1− α− β (Eq. 34). The
parameters α and β are tuned on development sets using a grid search with step size 0.1. To
save computational cost we explore a “lazy” approach for the column normalization constraint
(Eq. 35 & Eq. 36): We start the computation with column normalized matrices and normalize
them again after each iteration (doing a gradient descent on the other three constraints) as long as
the error function still decreases. When the error function starts increasing, we stop normalizing
the matrices and continue with a normal gradient descent. This respects that whileE(d) andD(d)

should be column normalized in theory, there are a lot of practical issues that prevent this, e.g.,
out-of-vocabulary words.

The overall training objective cannot be solved analytically because it is subject to Eq. 16 and
Eq. 25. We therefore use backpropagation. It turned out to be unnecessary to use regularization:
all learned weights in the experiments presented below are in [−2, 2].

3 Data

We test our framework in three different problem settings that cover three resources and two
languages.

91

Rothe and Schütze AutoExtend

nearest neighbors of W/suit
S/suit (businessman), L/suit (businessman), L/accomodate, S/suit (be acceptable), L/suit (be
acceptable), L/lawsuit, W/lawsuit, S/suit (playing card), L/suit (playing card), S/suit (petition),
S/lawsuit, W/countersuit, W/complaint, W/counterclaim

nearest neighbors of W/become
L/become, S/become/suit, L/become/turn, L/become/get, S/become (into exist.), L/become (into
exist.), W/becoming, S/become/turn, S/make, L/make, S/turn (into), W/increasingly, W/be,
W/emerge

nearest neighbors of W/lawsuit
L/lawsuit, S/lawsuit, S/countersuit, L/countersuit, W/countersuit, W/suit, W/counterclaim,
S/counterclaim (n), L/counterclaim (n), S/counterclaim (v), L/counterclaim (v), W/sue, S/sue
(n), L/sue (n)

nearest neighbors of S/suit-of-clothes
L/suit-of-clothes, S/zoot-suit, L/zoot-suit, W/zoot-suit, S/garment, L/garment, S/dress,
S/trousers, L/pinstripe, L/shirt, W/tuxedo, W/gabardine, W/tux, W/pinstripe

Figure 5
Five nearest word (W/), lexeme (L/) and synset (S/) neighbors for four items, ordered by cosine

3.1 WordNet

We use publicly available 300-dimensional embeddings3 for 3,000,000 words and phrases trained
on Google News, a corpus of ≈1011 tokens, using word2vec CBOW, with a window size of 5
(Mikolov et al. 2013c). Unless stated otherwise we use WordNet 2.1 as the SensEval tasks are
based on this version. Many words in the word2vec vocabulary are not in WordNet, e.g., inflected
forms (cars) and proper nouns (Tony Blair). Conversely, many WordNet lemmata are not in the
word2vec vocabulary, e.g., 42 (digits were converted to 0). This results in a number of empty
synsets (see Table 3). Note however that AutoExtend can produce embeddings for empty synsets
because we also use similarity relations, not just additive relations.

We run AutoExtend on the word2vec vectors. Our main goal is to produce compatible
embeddings for lexemes and synsets. Thus, we can compute nearest neighbors across all three
types as shown in Figure 5.

3.2 GermaNet

For this setup, we train word2vec embeddings for German using settings similar to those that
were used to train the English word2vec embeddings. We use the German Wikipedia with 5 ∗ 108
tokens and preprocess them with the word2phrase tool included in word2vec two times, first with
a threshold of 200 and then with a threshold of 100. After that, we run word2vec with identical
settings as the downloaded word embeddings, i.e. CBOW, window size 5, minimal count 5,
negative sampling 3 and hierarchical softmax off. We run 10 iterations to compensate for the
smaller corpus. After that we intersect them with words found in GermaNet 9.0. As GermaNet
has the same structure as WordNet we can directly apply AutoExtend to it. For similarity
relations, we only use hypernymy and antonymy. In GermaNet, antonymy is a relationship
between lexemes. To match our model, we extend it to synsets by viewing any pair of synsets as
antonyms if they contain lexemes that are antonyms.

3 http://code.google.com/p/word2vec/

92

Computational Linguistics

WordNet 2.1 and GermaNet Freebase
input types Words W Words W

unknown types Lexemes L1, L2 Aliases L1, L2

Synsets S Entities S, Types T
Improved Words W1, W2 Improved Words W1, W2

input edges W∗ × L∗, L∗ × S, S × S W∗ × L∗, L∗ × S, S × T
word constraint (W,W2) (W,W2)

lexeme constraint (L1, L2) (L1, L2)
similarity constraint (S, S) (S, T)

Table 2
Overview of input and output data of AutoExtend for different resources. The improved word embedding
matrices W1 and W2 emerge when summing up all corresponding lexeme embeddings in L1 and L2,
respectively. The lexeme matrices L1 and L2 emerge from the lexemes l in Eq. 30 and l2 in Eq. 31,
respectively.

3.3 Freebase

Freebase contains word nodes4 (whose embeddings are known) and alias nodes and entity nodes
(whose embeddings are unknown). Each entity also has one or more types, e.g. director. As we
will explain below, we also create type nodes and learn embeddings for them. An alias node is
connected to exactly one word node and exactly one entity node. An entity node is connected to
one or more type nodes.

We use the same English word embeddings as for WordNet and intersect them with words
found in Freebase. A Freebase entity has one or more aliases, e.g. the entity Barack Obama has
the aliases Barack Obama, President Obama and Barack Hussein Obama. Aliases are available in
different languages, but we only use English aliases. The role of synsets in WordNet corresponds
to the role of entities in Freebase; the role of lexemes in WordNet corresponds to the role of
aliases in Freebase, i.e., they connect words and entities. Freebase contains a large number of
entities with a single alias; we exclude these since they are usually not completely modeled and
contain little information.

Freebase also contains a great diversity of relations, but most of them do not fulfill the re-
quirement of connecting similar entities. For example, the relation born-in connects a person and
a city, and we do not want to align these embeddings. We therefore only use the relation same-
type. There are about 26,000 types in Freebase, with different granularity, and well-modeled
entities usually have several types. For example, Barack Obama has the types President-of-the-
US, person and author as well as several other types.5 For a type with n members, this would
give us n2 relations. This would result in a huge relation matrix which would slow down the
AutoExtend computation. To address this, we add type nodes to the graph. The similarity relation
same-type is only constructed between type nodes and entity nodes, but not between entity nodes
and entity nodes. An added benefit is that AutoExtend also produces type embeddings; these may
be useful for several tasks, e.g., for entity typing (Yaghoobzadeh and Schütze 2015).

4 Recall that our definition of words also includes phrases. Just as we subsume both suit and red tape under the
concept of word in WordNet, we also refer to both Clinton and George Miller in Freebase as words.

5 Entities also have one notable type, e.g., President-of-the-US for Barack Obama, but we do not distinguish notable
types from other types.

93

Rothe and Schütze AutoExtend

WordNet 2.1 ∩ word2vec GermaNet 9.0 ∩ word2vec Freebase ∩ word2vec
words 147,478 54,570 109,683 89,160 ≈ 23 103 17,165

synsets 117,791 73,844 93,246 82,027 e: ≈ 50 106 12,362
t: ≈ 26 103 3,516

lexemes 207,272 106,167 124,996 103,926 ≈ 47 106 27,478

Table 3
Number of items in different resources and after intersection with word2vec vectors. The analogs of
synsets in Freebase are entities (“e:”) and types (“t:”).

4 Experiments and Evaluation

We evaluate AutoExtend embeddings on the following tasks: Word Sense Disambiguation,
Entity Linking, Word-in-Context Similarity, Word Similarity and Synset Alignment. Our results
depend directly on the quality of the underlying word embeddings. We would expect even better
evaluation results as word representation learning methods improve. Using a new and improved
set of underlying embeddings in AutoExtend is simple: it is a simple switch of the input file that
contains the word embeddings.

4.1 Word Sense Disambiguation

We use IMS (It Makes Sense) for our Word Sense Disambiguation (WSD) evaluation (Zhong
and Ng 2010). As in the original paper, preprocessing consists of sentence splitting, tokenization,
POS tagging and lemmatization; the classifier is a linear SVM. In our experiments (Table 4), we
run IMS with each feature set by itself to assess the relative strengths of feature sets (lines 1–
7) and on feature set combinations to determine which combination is best for WSD (lines 8,
12–15). We use SensEval-2 as development set for SensEval-3 and vice versa. This gives us a
weighting of α = β = 0.4 for both sets.

IMS implements three standard WSD feature sets: part of speech (POS), surrounding word
and local collocation (lines 1–3).

Let w be an ambiguous word with k senses. The three feature sets on lines 5–7 are based
on the AutoExtend embeddings s(j), 1 ≤ j ≤ k, of the k synsets of w and the centroid c of the
sentence in which w occurs. The centroid is simply the sum of all word2vec vectors of the words
in the sentence, excluding stop words.

The S-cosine feature set consists of the k cosines of centroid and synset vectors:

< cos(c, s(1)), cos(c, s(2)), . . . , cos(c, s(k)) >

The S-product feature set consists of the nk element-wise products of centroid and synset
vectors:

< c1s
(1)
1 , . . . , cns

(1)
n , . . . , c1s

(k)
1 , . . . , cns

(k)
n >

where ci (resp. s(j)i) is element i of c (resp. s(j)). The idea is that we let the SVM estimate how
important each dimension is for WSD instead of giving all equal weight as in S-cosine.

The S-raw feature set simply consists of the n(k + 1) elements of centroid and synset
vectors:

< c1, . . . , cn, s
(1)
1 , . . . , s(1)n , . . . , s

(k)
1 , . . . , s(k)n >

94

Computational Linguistics

WSD Entity Linking
SensEval-2 SensEval-3 FACC dev FACC test

size 4,328 3,944 10,000 10,000
IM

S
fe

at
ur

e
se

ts 1 POS 53.6† 58.0† 44.3† 45.2†

2 surrounding word 57.6† 65.3† 62.3† 60.3†
3 local collocation 58.7† 64.7† 53.7† 53.8†

4 Snaive-product 56.5† 62.2† 57.7† 58.2†

5 S-cosine 55.6† 61.0† 39.3† 39.8†

6 S-product 56.9† 62.6† 58.4† 59.2†

7 S-raw 57.2† 63.3† 56.1† 56.1†

sy
st

em
co

m
pa

ri
so

n

8 MFS 47.6† 55.2† 33.6† 33.4†

9 Rank 1 system 64.2† 72.9†

10 Rank 2 system 63.8† 72.6‡

11 IMS 65.2† 72.3† 62.2† 61.7†

12 IMS + Snaive-prod. 62.6† 69.4† 65.0† 64.9†

13 IMS + S-cosine 65.3‡ 72.2† 62.1† 61.6†

14 IMS + S-product 66.8† 73.6† 65.8† 65.4†
15 IMS + S-raw 62.4† 66.8† 63.5† 63.3†

Table 4
WSD and Entity Linking accuracy for different feature sets and systems. Best result in each column in
bold. Results of development sets are italic. Results significantly worse than the best (bold) result in each
column are marked † for α = .05 and ‡ for α = .10 (one-tailed Z-test).

Based on the experiment, we would like to determine whether AutoExtend features improve
WSD performance when added to standard WSD features. To make sure that improvements we
get are not solely due to the power of word2vec, we also investigate a simple word2vec baseline.
For S-product (the AutoExtend feature set that performs best in the experiment, see line 14),
we test the alternative word2vec-based Snaive-product feature set. It has the same definition as
S-product except that we replace the synset vectors s(j) with naive synset vectors z(j), defined
as the sum of the word2vec vectors of the words that are members of synset j.

Lines 1–7 in Table 4 show the performance of each feature set by itself. We see that the
synset feature sets (lines 5–7) have a comparable performance to standard feature sets. S-product
is the strongest of the synset feature sets.

Lines 9–16 show the performance of different feature set combinations. MFS (line 8)
is the most frequent sense baseline. Lines 9&10 are the winners of SensEval. The standard
configuration of IMS (line 11) uses the three feature sets on lines 1–3 (POS, surrounding
word, local collocation) and achieves an accuracy of 65.2% on the English lexical sample task
of SensEval-2 (Kilgarriff 2001) and 72.3% on SensEval-3 (Mihalcea et al. 2004).6 Lines 12–
16 add one additional feature set to the IMS system on line 11; e.g., the system on line 14
uses POS, surrounding word, local collocation and S-product feature sets. The system on line
14 outperforms all previous systems, most of them significantly. While S-raw performs quite
reasonably as a feature set alone, it hurts the performance when used as an additional feature
set. As this is the feature set that contains the largest number of features (n(k + 1)), overfitting
is the likely reason. Conversely, S-cosine only adds k features and therefore may suffer from
underfitting.

The main result of this experiment is that we achieve an improvement of more than 1% in
WSD performance when using AutoExtend.

6 Zhong and Ng (2010) report accuracies of 65.3% / 72.6% for this configuration.

95

Rothe and Schütze AutoExtend

word 1 similarity word 2
... Crew members advised passengers to sit
quietly in order to increase their chances of
survival ...

7.1 ... the Rome Statute stipulates that the court
may inform the Assembly of States Parties
or Security Council ...

... and Andy ’s getting ready to pack his
bags and head up to Los Angeles tomorrow
to get ready to fly back home on Thursday

2.1 ... she encounters Ben (Duane Jones) , who
arrives in a pickup truck and defends the
house against another pack of zombies ...

Table 5
Examples of the SCWS test set. The score indicates the similarity of the words in bold.

4.2 Entity Linking

We use the same IMS system for Entity Linking. The train, development and test sets are created
as follows. We start with the annotated FACC corpus and extract all entity annotated words
and their surrounding words – ten to the left and ten to the right. Recall that throughout the
paper, a word can also be a phrase. We remove aliases that occur less than 0.1 times than the
corresponding word and words that have a character length of one or two. We extract at most 400
examples for each entity-word combination. This procedure selects entities that are ambiguous
and that are frequent enough to give us a sufficient number of training examples. We randomly
select 50 words with 1000 examples each and split each word into 700 train, 100 development
and 200 test instances. This results in a test set of 10,000 instances.7 We optimize the constraint
weights on the development set; the optimal values are α = 0.7 and β = 0.0. We incorporate the
embeddings in three different ways as described in Section 4.1. The results can be seen in Table 4.
Again the element-wise product (line 14) performs better than cosine and raw (lines 13&15). The
new feature set achieves an accuracy of 65.4% – significantly better than the baseline IMS system
(line 11, 61.7%).

4.3 Word-in-Context Similarity

The third evaluation uses SCWS (Huang et al. 2012). SCWS is a Word Similarity test set but
does not only provided isolated words and corresponding similarity scores, but also a context
for each word. The similarity score is an average score of 10 human ratings. See Table 5 for
examples. In contrast to normal Word Similarity test sets, this data set also contains pairs of two
instances of the same word. SCWS is based on WordNet, but the information as to which synset
a Word-in-Context came from is not available. However, the data set is the closest we could find
for sense similarity. Synset and lexeme embeddings are obtained by running AutoExtend. We
set α = 0.2 and β = 0.2 based on Section 4.4. Lexeme embeddings are the natural choice for
this task as human subjects are provided with two words and a context for each and then have to
assign a similarity score. But for completeness, we also run experiments for synsets.

For each word, we compute a context vector c by adding all word vectors of the context,
excluding the test word itself. Following Reisinger and Mooney (2010), we compute the lexeme
(resp. synset) vector l either as the simple average of the lexeme (resp. synset) vectors l(ij)

(resp. s(j)) (method AvgSim, no dependence on c in this case) or as the average of the lexeme
(resp. synset) vectors weighted by cosine similarity to c (method AvgSimC). The latter method
is supposed to give higher weights to lexemes that better fit the context.

7 This set is publicly available at http://cistern.cis.lmu.de/.

96

Computational Linguistics

AvgSim AvgSimC
1 Huang et al. (2012) 62.8† 65.7†

2 Tian et al. (2014) – 65.4†

3 Neelakantan et al. (2014) 67.2† 69.3†

4 Chen et al. (2014) 66.2‡ 68.9†

5 words (word2vec) 66.7† 66.7†

6 synsets 63.2† 63.5†

7 lexemes 68.3† 70.2†

Table 6
Spearman correlation (ρ× 100) on SCWS. Best result per column in bold. Results significantly worse
than the best (bold) result are marked † for α = .05 and ‡ for α = .10 (one-tailed Z-test).

Table 6 shows that AutoExtend lexeme embeddings (line 7) perform better than previous
work, including (Huang et al. 2012) and (Tian et al. 2014). Lexeme embeddings perform better
than synset embeddings (lines 7 vs. 6), presumably because using a representation that is specific
to the actual word being judged is more precise than using a representation that also includes
synonyms.

A simple baseline is to use the underlying word2vec embeddings directly (line 5). In this
case, there is only one embedding, so there is no difference between AvgSim and AvgSimC. It
is interesting that even if we do not take the context into account (method AvgSim) the lexeme
embeddings outperform the original word embeddings. As AvgSim simply adds up all lexemes
of a word, this is equivalent to the motivation we proposed in the beginning of the article (Eq. 8).
Thus, replacing a word’s embedding by the sum of the embeddings of its senses could generally
improve the quality of embeddings – cf. Huang et al. (2012) for a similar argument. We will do
a deeper evaluation of this in Section 4.4.

4.4 Word Similarity

The results of the previous experiments motivate us to test the new embeddings also on Word
Similarity test sets, namely MC (Miller and Charles 1991), MEN (Bruni et al. 2014), RG (Ruben-
stein and Goodenough 1965), SIMLEX (Hill et al. 2014), RW (Luong et al. 2013) and WordSim-
353 (Finkelstein et al. 2001) for English (using embeddings autoextended based on WordNet)
and GUR-65, GUR-350 (Gurevych 2005) and ZG-222 (Zesch and Gurevych 2006) for German
(using embeddings autoextended based on GermaNet). As the simple sum of the lexeme vectors
(method AvgSim, line 7, Table 6) ignores the context and outperforms the underlying word
embeddings (line 5), we expect a similar performance improvement on other Word Similarity
test sets. Note that AutoExtend makes available three different word embeddings:

1. the original word embeddings W0 =W , i.e. the input to AutoExtend

2. the word embeddings W1 that we get when we add lexeme vectors of the encoding
part (see Eq. 30)

3. the word embeddings W2 that we get when we add lexeme vectors of the decoding
part (see Eq. 31 or Eq. 22)

We observe that each pair (Wi,Wj), i 6= j of word embedding sets corresponds to a constraint of
AutoExtend. (i) The column normalization constraint (Eq. 35) will align W0 and W1, as we just
split the original word embeddings and add them up again. (ii) The word constraint (Eq. 29) will

97

Rothe and Schütze AutoExtend

MC MEN RG SIMLEX RW WORDSIM GUR GUR ZG
size 30 3,000 65 999 2,034 353 65 350 222

coverage 30 2,922 65 999 1,246 332 47 213 108
1 W 78.9† 77.0† 76.1† 44.2† 54.2† 69.9† 41.0† 39.1† 23.0†

2 W1 70.9† 67.5† 67.8‡ 37.6† 49.3† 61.0† 25.1† 40.4† 28.4‡

3 W2 85.2† 77.5† 82.5† 47.4† 54.8† 69.0† 63.3† 57.1† 34.3†

Table 7
Spearman correlation (ρ× 100). Best result per column in bold. Results of development sets are italic.
Results significantly worse or better than the basline (line 1) in each column are marked † for α = .05 and
‡ for α = .10 (one-tailed Z-test).

align W0 and W2. This was the initial idea of our system. (iii) The lexeme constraint (Eq. 33)
will align W1 and W2.

As in the previous section we use the cosine similarity of word embeddings to predict a
similarity score and report the Spearman correlation. We use W (Table 7, line 1) as our baseline.
Lines 2 & 3 are the word embeddings described above. The SIMLEX and GUR-65 test sets
are used as development sets to obtain the parameters α = 0.2 and β = 0.2 for both models
by optimizing max(W1,W2), i.e. the best result of line 2 & 3. While we observe a significant
performance drop from W to W1, we also observe a small improvement on W2 on English. The
improvement is significant for German, but not for English. This is most likely because of the
very strong baseline of the Google News word embeddings, which are used for the English test
sets. The German embeddings are trained on the smaller Wikipedia corpus. This suggests that
our method is especially suited to improve lower quality embeddings.

4.5 Synset Alignment

In this evaluation, we try to predict whether a German synset corresponds to an English synset
or not. This is a useful task when creating multilingual resources. We use the synset embeddings
from GermaNet 9.0 and WordNet 3.0. As these embeddings were trained on different corpora
we first have to calculate a linear map that transfers the English embedding space to the German
one.8 For this we extract the most frequent 30,000 English words and translate them to German
using Google Translate. The resulting pairs are intersected with the most frequent 30,000 German
words, leaving 10,684 translation pairs. We hold out 1,000 of them for testing. The remaining
9,684 translation pairs are used to train a linear map. Following (Mikolov et al. 2013b), let
W be the matrix containing the German embeddings as rows and V the matrix containing the
corresponding English embeddings as rows. The linear map L is given by:

L = (WTW)−1WTV (37)

The linear map L solves the following optimization problem:

argmin
L
‖WL− V ‖ (38)

8 We could also transfer the German embedding space to the English one, but the performance is lower for this
setting. The most likely reason is, that the English embeddings are learned on a bigger corpus and thus contain more
information. For the linear map, it is easy to drop information, but it is difficult to infer new information.

98

Computational Linguistics

Words Synsets
dev test

size 2,000 2,000 2,000
1 word .943
2 synset .872† .870†
3 synsetnaive .852‡ .826†

Table 8
Accuracy of development and test set on the Synset Alignment task. Best result per column in bold.
Results of development set are italic. Results significantly worse than the best result are marked † for
α = .05 (one-tailed Z-test) and ‡ for α = .10 (one-tailed Z-test).

We create two test sets, one for words and one for synsets. The 1,000 translation pairs we
held back are concatenated with 1,000 random German-English word pairs. The task is to predict
whether a pair is a translation (positive) or not (negative); the test set contains 1,000 positive and
1,000 negative instances. We construct similar development and test sets for synsets by using the
interlingual index provided in GermaNet. The interlingual index allows a mapping of concepts
(e.g. synsets) of different languages We randomly collect 1,000 correct German-English synset
pairs and 1,000 false synset pairs for development and test each. The development set is used to
optimize the parameters α and β of German and English models. The best performance is found
for α = 0.9 and β = 0.1 for both German and English. Note that we do not need a development
set for words as there are no parameters to tune. Errors in the word test set are probably due to
insufficient word embedding models or errors caused by the linear mapping L. As we already
mentioned our synset embeddings can only be as good as the underlying word embeddings. So
both cases, insufficient word embeddings and insufficient linear map, also affect the performance
of the synset embeddings. Because of this, the accuracy of the word test (Line 1 in Table 8) set
can be seen as an upper bound. Line 2 shows the performance of our synset embeddings on the
development and test sets. Line 3 shows the performance of naive synset embeddings, defined as
the sum of the vectors of the words that are members of a synset.

The main result of this experiment is that the synset vectors obtained by AutoExtend perform
better in bilingual synsets alignment than a naive sum of words.

4.6 Analysis

The most important parameter of AutoExtend is the weighting α and β given to the objectives.
Table 9 shows a summary of all weightings used in this article. We observe that while all
constraints are important, the optimal weighting is different for different applications. These
differences are due to different corpora and resources. For example, aligning types in Freebase
has a different effect than aligning antonyms in WordNet. But more important is the actual task
the embeddings are used for. For example, when we compute embedding similarities, we want
similar words to have similar embeddings resulting in a big weighting for the similarity constraint
(lines 4 & 5). For Synset Alignment we want similar embeddings to have different embeddings
in order to better distinguish them, resulting in no weight for the similarity constraint (line 6 &
7).

We found that some applications are not sensitive to the weighting; for example, for Entity
Linking (line 2), the differences between weightings that give non-zero weights to all three
constraints are negligible (less than 0.3).

We also analyzed the impact of the four different relations in WordNet (see Table 1) on
performance. In Table 4 and Table 6, all four relations are used together. We found that any

99

Rothe and Schütze AutoExtend

α β 1− α− β
task corpus resource word c. lexeme c. similarity c.

1 WSD Google News WordNet 2.1 0.4 0.4 0.2
2 Entity Linking Google News Freebase 0.7 0.0 0.3
3 SCWS Google News WordNet 2.1 0.2 0.2 0.6
4 Word Similarity Google News WordNet 2.1 0.2 0.2 0.6
5 Word Similarity Wikipedia GermaNet 9.0 0.2 0.2 0.6
6 Synset Alignment Google News WordNet 3.0 0.9 0.1 0.0
7 Synset Alignment Wikipedia GermaNet 9.0 0.9 0.1 0.0

Table 9
Optimal weighting of the three constraints (word, lexeme, similarity) for different tasks.

combination of three relation types performs worse than using all four together. A comparison
of different relations must be done carefully as they differ in the POS they affect and in quantity
(see Table 1). In general, relation types with more relations outperformed relation types with
fewer relations.

5 Related work

Word Embeddings
Among the earliest work on distributed word representations, usually called word embeddings
today, was (Rumelhart et al. 1988). Non-neural-network techniques that create low-dimensional
word representations also have been used widely, including singular value decomposition (SVD)
(Deerwester et al. 1990; Schütze 1992) and random indexing (Kanerva 1998, 2009). There has
been a resurgence of work on embeddings recently (e.g., Bengio et al. (2003a), Mnih and Hinton
(2007a), Collobert et al. (2011), Mikolov et al. (2013a), Pennington et al. (2014a)), including
methods that are SVD-based (Levy and Goldberg 2014; Stratos et al. 2015). All of these models
differ from AutoExtend in that they produce only a single embedding for each word, but all of
them can be used as input for AutoExtend.

Sense Embeddings not related to Lexical Resources
There are several approaches to finding embeddings for senses, variously called meaning, sense
and multiple word embeddings. Schütze (1998) created sense representations by clustering
context representations derived from co-occurrence. The centroid of its cluster is used as a
representation of a sense. Reisinger and Mooney (2010) and Huang et al. (2012) also presented
methods that learn multiple embeddings per word by clustering the contexts. Bordes et al. (2011)
created similarity measures for relations in WordNet and Freebase to learn entity embeddings.
An energy based model was proposed by Bordes et al. (2012) to create disambiguated meaning
embeddings and Neelakantan et al. (2014) and Tian et al. (2014) extended the Skip-gram model
(Mikolov et al. 2013a) to learn multiple word embeddings. Another interesting approach to create
sense-specific word embeddings uses bilingual resources (Guo et al. 2014). The downside of this
approach is that parallel data is needed. While all these embeddings correspond to different word
senses, there is no clear mapping between them and a resource like WordNet.

Sense Embeddings related to Lexical Resources
Recently, Bhingardive et al. (2015) used WordNet to create sense embeddings similar to the naive
method in this paper. They used these sense embeddings to extract the most frequent synset. Chen
et al. (2014) modified word2vec to learn sense embeddings, each corresponding to a WordNet

100

Computational Linguistics

synset. They use glosses to initialize sense embeddings, which in turn can be used for WSD. The
sense disambiguated data can again be used to improve sense embeddings. While WordNet is by
far the most used resource, Iacobacci et al. (2015) computed sense embeddings with BabelNet,
which is a superset of WordNet. They use a state-of-the-art WSD system to generate a large sense
annotated corpus which is used to train sense embeddings. In contrast, our approach can be used
to improve WSD without relying on input from an existing WSD system.

Embeddings using Lexical Resources
Other work tries to combine distributed word representations and semantic resources to create
better or specialized embeddings. These include the ADMM by Fried and Duh (2014) and
the work of Wang et al. (2015). Liu et al. (2015) used WordNet to create ordinal similarity
inequalities also to extend the Skip-gram model into a Semantic Word Embedding model. In
the Relation Constrained Model, Yu and Dredze (2014) used word2vec to learn embeddings that
are optimized to predict a related word in the resource, with good evaluation results. Bian et al.
(2014) used not only semantic, but also morphological and syntactic knowledge to compute more
effective word embeddings. Cotterell et al. (2016) focus on generating embeddings for inflected
forms not observed during training based on morphological resources. Wang et al. (2014) used
Freebase to learn embeddings for entities and words. This is done during embedding learning,
in contrast to our post-processing method. Zhong et al. (2015) improved this by requiring the
embedding vector not only to fit the structured constraints in the knowledge base, but also to be
equal to the embedding vector computed from the text description.

Post-processing Embeddings
This prior work needs a training step to learn embeddings. In contrast, we can “AutoExtend”
any set of given word embeddings – without (re)training them. There is an increasing amount of
work on taking existing word embeddings and combine them with a lexical resource. Labutov
and Lipson (2013) re-embedded existing word embeddings in supervised training, not to create
new embeddings for senses or entities, but to get better predictive performance on a task while
not changing the space of embeddings. A similar approach was chosen by Faruqui et al. (2015a)
and called retrofitting. This work is also related to our work in that it uses WordNet. However, it
only uses the similarity relations in order to change embeddings for known objects, i.e. words.
They do not use additive relations nor do they compute embeddings for non-word objects. Jauhar
et al. (2015) used the same retrofitting technique to also model sense embeddings. There work
is similar to our approach but instead of distinguishing between additive and similarity relations
all edges are treated as similarity relations (see Figure 1). Their results show an improvement
for word embeddings but the sense embeddings perform worse then the embeddings they were
trained on (0.42 on SCWS, see Table 6). We therefore believe that the additive relation is the
superior model for the relationship between words and lexemes as well as for the relationship
between synsets and lexemes. Kiela et al. (2015) used retrofitting and joint-learning approaches
to specialize their embeddings for either similarity or relatedness tasks.

Other Related Work
In this work we treated WSD and Entity Linking as the same problem and used IMS to solve this
task. Moro et al. (2014) exposed the differences of both tasks and also present a unified approach
called Babelfy. An overview and analysis of the main approaches to Entity Linking is given by
Shen et al. (2015). And while we use cosine to compute similarity between synsets, there are also
a lot of similarity measures that only rely on a given resource, mostly WordNet. These measures
are often functions that depend on information like glosses or on topological properties like
shortest paths. Examples include (Wu and Palmer 1994) and (Leacock and Chodorow 1998);

101

Rothe and Schütze AutoExtend

Blanchard et al. (2005) give a good overview. A purely graph based approach to WSD was
presented by Agirre et al. (2014).

6 Conclusion

We presented AutoExtend, a flexible method to learn embeddings for non-word objects in
resources. AutoExtend is a general method that can be used for any set of embeddings and
for any resource that imposes constraints of a certain type on the relation between words
and other objects. Our experimental results show that AutoExtend can be applied to different
tasks including Word Sense Disambiguation, Entity Linking, Word-in-Context Similarity, Word
Similarity and Synset Alignment. It achieves state-of-the-art performance on Word-in-Context
Similarity and Word Sense Disambiguation.

Acknowledgments
This work was funded by Deutsche Forschungsgemeinschaft (DFG SCHU 2246/2-2). We are
grateful to Christiane Fellbaum for discussions leading up to this paper and to the anonymous
reviewers for their comments.

References
Amine Abdaoui, Jérôme Azé, Sandra Bringay, and Pascal Poncelet. 2014. Feel: French extended

emotional lexicon: Islrn: 041-639-484-224-2.
Heike Adel and Hinrich Schütze. 2014. Using mined coreference chains as a resource for a semantic task.

In Proceedings of EMNLP.
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor Soroa. 2009. A

study on similarity and relatedness using distributional and wordnet-based approaches. In Proceedings
of NAACL.

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa. 2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics, 40(1):57–84.

Silvio Amir, Ramón Astudillo, Wang Ling, Bruno Martins, Mario J. Silva, and Isabel Trancoso. 2015.
Inesc-id: A regression model for large scale twitter sentiment lexicon induction. In Proceedings of
SemEval.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

A. R. Balamurali, Aditya Joshi, and Pushpak Bhattacharyya. 2011. Harnessing wordnet senses for
supervised sentiment classification. In Proceedings of EMNLP.

Yoshua Bengio, Rejean Ducharme, and Pascal Vincent. 2003a. A neural probabilistic language model.
Journal of Machine Learning Research, 3:1137–1155.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003b. A Neural Probabilistic
Language Model. Journal of Machine Learning Research, 3:1137–1155.

Sudha Bhingardive, Dhirendra Singh, Rudra Murthy V, Hanumant Redkar, and Pushpak Bhattacharyya.
2015. Unsupervised most frequent sense detection using word embeddings. In Proceedings of ACL.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014. Knowledge-powered deep learning for word embedding. In
Proceedings of ECML/PKDD.

Emmanuel Blanchard, Mounira Harzallah, Henri Briand, and Pascale Kuntz. 2005. A typology of
ontology-based semantic measures. In Proceedings of EMOI - INTEROP.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings of ACM
SIGMOD.

Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua Bengio, et al. 2011. Learning structured
embeddings of knowledge bases. In Proceedings of AAAI.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. 2012. Joint learning of words and
meaning representations for open-text semantic parsing. In Proceedings of AISTATS.

Jan A Botha and Phil Blunsom. 2014. Compositional morphology for word representations and language
modelling. arXiv preprint arXiv:1405.4273.

102

Computational Linguistics

Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual web search engine. In
Proceedings of WWW.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014. Multimodal distributional semantics. Journal of
Artificial Intelligence Research, 49(1):1–47.

Marc Brysbaert, Amy Beth Warriner, and Victor Kuperman. 2014. Concreteness ratings for 40 thousand
generally known english word lemmas. Behavior Research Methods, 46(3):904–911.

Sung-Hyuk Cha. 2007. Comprehensive survey on distance/similarity measures between probability
density functions. Mathematical Models and Methods in Applied Sciences, 1(4):300–307.

Ching-Yun Chang, Stephen Clark, and Brian Harrington. 2013. Getting creative with semantic similarity.
In Procedings of ICSC.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014. A unified model for word sense representation and
disambiguation. In Proceedings of EMNLP.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of ICML.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from scratch. Journal of Machine Learning Research,
12:2493–2537.

Ryan Cotterell and Hinrich Schütze. 2015. Morphological word-embeddings. In Proceedings of NAACL.
Ryan Cotterell, Hinrich Schütze, and Jason Eisner. 2016. Morphological smoothing and extrapolation of

word embeddings. In Proceedings of ACL.
Gerard de Melo and Mohit Bansal. 2013. Good, great, excellent: Global inference of semantic intensities.

Transactions of the ACL, 1:279–290.
Gerard de Melo and Gerhard Weikum. 2012. Uwn: A large multilingual lexical knowledge base. In

Proceedings of ACL, System Demonstrations.
Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman.

1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science,
41(6):391–407.

K. I. Diamantaras and S. Y. Kung. 1996. Principal Component Neural Networks: Theory and Applications.
John Wiley & Sons, Inc.

Beate Dorow, Florian Laws, Lukas Michelbacher, Christian Scheible, and Jason Utt. 2009. A
graph-theoretic algorithm for automatic extension of translation lexicons. In Proceedings of GEMS.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159.

Ted Dunning. 1993. Accurate methods for the statistics of surprise and coincidence. Computational
Linguistics, 19(1):61–74.

Sebastian Ebert, Ngoc Thang Vu, and Hinrich Schütze. 2015. A Linguistically Informed Convolutional
Neural Network. In Proceedings of WASSA.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank: Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence Research, 22:457–479.

Ky Fan and Alan J Hoffman. 1955. Some metric inequalities in the space of matrices. American
Mathematical Society, 6(1):111–116.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris Dyer, Eduard Hovy, and Noah A. Smith. 2015a.
Retrofitting word vectors to semantic lexicons. In Proceedings of NAACL.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard Hovy, and Noah A. Smith. 2015b.
Retrofitting word vectors to semantic lexicons. In Proceedings of NAACL.

Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. Bradford Books.
Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan

Ruppin. 2001. Placing search in context: The concept revisited. In Proceedings of WWW.
Dániel Fogaras and Balázs Rácz. 2005. Scaling link-based similarity search. In Proceedings of WWW.
Daniel Fried and Kevin Duh. 2014. Incorporating both distributional and relational semantics in word

representations. arXiv preprint arXiv:1412.4369.
Alex Graves. 2013. Generating sequences with recurrent neural networks. CoRR.
Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. 2014. Learning sense-specific word embeddings

by exploiting bilingual resources. In Proceedings of COLING, Technical Papers.
Iryna Gurevych. 2005. Using the structure of a conceptual network in computing semantic relatedness. In

Proceedings of IJCNLP.
Ivan Habernal, Tomáš Ptáček, and Josef Steinberger. 2013. Sentiment Analysis in Czech Social Media

Using Supervised Machine Learning. In Proceedings of WASSA.

103

Rothe and Schütze AutoExtend

Matthias Hagen, Martin Potthast, Michel Büchner, and Benno Stein. 2015. Webis: An Ensemble for
Twitter Sentiment Detection. In Proceedings of SemEval.

Hussam Hamdan, Patrice Bellot, and Frederic Bechet. 2015. Lsislif: Feature extraction and label
weighting for sentiment analysis in twitter. In Proceedings of SemEval.

Birgit Hamp, Helmut Feldweg, et al. 1997. Germanet-a lexical-semantic net for german. In Proceedings of
ACL, Workshops.

Xianpei Han and Jun Zhao. 2010. Structural semantic relatedness: a knowledge-based method to named
entity disambiguation. In Proceedings of ACL.

Taher H. Haveliwala. 2002. Topic-sensitive pagerank. In Proceedings of WWW.
Bas Heerschop, Alexander Hogenboom, and Flavius Frasincar. 2011. Sentiment lexicon creation from

lexical resources. In Proceedings if BIS.
Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa

Suleyman, and Phil Blunsom. 2015. Teaching machines to read and comprehend. In Proceedings of
NIPS.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014. Simlex-999: Evaluating semantic models with
(genuine) similarity estimation. arXiv preprint arXiv:1408.3456.

Cong Duy Vu Hoang and Min-Yen Kan. 2010. Towards automated related work summarization. In
Proceedings of COLING.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation,
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and Summarizing Customer Reviews. In Proceedings of KDD.
Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. 2012. Improving word

representations via global context and multiple word prototypes. In Proceedings of ACL.
Thad Hughes and Daniel Ramage. 2007. Lexical semantic relatedness with random graph walks. In

Proceedings of EMNLP-CoNLL.
Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto Navigli. 2015. Sensembed: learning sense

embeddings for word and relational similarity. In Proceedings of ACL.
Tommi Jaakkola and David Haussler. 1998. Exploiting generative models in discriminative classifiers. In

Proceedings of NIPS.
Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy. 2015. Ontologically grounded multi-sense

representation learning for semantic vector space models. In Proceedings of NAACL.
Tony Jebara, Risi Kondor, and Andrew Howard. 2004. Probability product kernels. Journal of Machine

Learning Research, 5:819–844.
Glen Jeh and Jennifer Widom. 2002. Simrank: a measure of structural-context similarity. In Proceedings of

KDD.
Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014a. A Convolutional Neural Network for

Modelling Sentences. In Proceedings of ACL.
Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014b. A convolutional neural network for

modelling sentences. In Proceedings of ACL.
Pentti Kanerva. 1998. Sparse distributed memory. MIT Press.
Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to computing in distributed

representation with high-dimensional random vectors. Cognitive Computation, 1(2):139–159.
Douwe Kiela, Felix Hill, and Stephen Clark. 2015. Specializing word embeddings for similarity or

relatedness. In Proceedings of EMNLP.
Adam Kilgarriff. 2001. English lexical sample task description. In Proceedings of SENSEVAL-2.
Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In Proceedings of EMNLP.
Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mohammad. 2014. Sentiment analysis of short informal

texts. Journal of Artificial Intelligence Research, pages 723–762.
Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and

Sanja Fidler. 2015. Skip-thought vectors. In Proceedings of NIPS.
Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. Journal of the ACM,

46(5):604–632.
Igor Labutov and Hod Lipson. 2013. Re-embedding words. In Proceedings of ACL.
Florian Laws, Lukas Michelbacher, Beate Dorow, Christian Scheible, Ulrich Heid, and Hinrich Schütze.

2010. A linguistically grounded graph model for bilingual lexicon extraction. In Proceedings of
COLING.

Claudia Leacock and Martin Chodorow. 1998. Combining local context and wordnet similarity for word
sense identification. WordNet: An electronic lexical database, 49(2):265–283.

104

Computational Linguistics

Elizabeth Leicht, Petter Holme, and Mark Newman. 2006. Vertex similarity in networks. Physical Review
E, 73(2):026120.

Ronny Lempel and Shlomo Moran. 2000. The stochastic approach for link-structure analysis (salsa) and
the tkc effect. Computer Networks, 33(1):387–401.

Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. In
Proceedings of NIPS.

Pei Li, Zhixu Li, Hongyan Liu, Jun He, and Xiaoyong Du. 2009. Using link-based content analysis to
measure document similarity effectively. In Proceedings of APWeb/WAIM.

Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou Sun, Yintao Yu, and Tianyi Wu. 2010. Fast
computation of simrank for static and dynamic information networks. In Proceedings of EDBT.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and Yu Hu. 2015. Learning semantic word embeddings
based on ordinal knowledge constraints. In Proceedings of ACL.

Dmitry Lizorkin, Pavel Velikhov, Maxim Grinev, and Denis Turdakov. 2010. Accuracy estimate and
optimization techniques for simrank computation. The International Journal on Very Large Data Bases,
19(1):45–66.

Minh-Thang Luong, Richard Socher, and Christopher D Manning. 2013. Better word representations with
recursive neural networks for morphology. In Proceedings of CoNLL.

Andrew J. McMinn, Yashar Moshfeghi, and Joemon M. Jose. 2013. Building a large-scale corpus for
evaluating event detection on twitter. In Proceedings of CIKM.

Rada Mihalcea and Dragomir Radev. 2011. Graph-based natural language processing and information
retrieval. Cambridge University Press.

Rada Mihalcea, Timothy Chklovski, and Adam Kilgarriff. 2004. The senseval-3 english lexical sample
task. In Proceedings of SENSEVAL-3.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b. Exploiting similarities among languages for
machine translation. arXiv preprint arXiv:1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013c. Distributed
representations of words and phrases and their compositionality. In Proceedings of NIPS.

George A Miller and Walter G Charles. 1991. Contextual correlates of semantic similarity. Language and
Cognitive Processes, 6(1):1–28.

Einat Minkov and William W. Cohen. 2008. Learning graph walk based similarity measures for parsed
text. In Proceedings of EMNLP.

Einat Minkov and William W. Cohen. 2012. Graph based similarity measures for synonym extraction from
parsed text. In Proceedings of TextGraphs-7.

Andriy Mnih and Geoffrey Hinton. 2007a. Three new graphical models for statistical language modelling.
In Proceedings of ICML.

Andriy Mnih and Geoffrey E. Hinton. 2007b. Three New Graphical Models for Statistical Language
Modelling. In Proceedings of ICML.

Andriy Mnih and Geoffrey E Hinton. 2009. A scalable hierarchical distributed language model. In
Proceedings of NIPS.

Saif M. Mohammad and Peter D. Turney. 2013. Crowdsourcing a Word-Emotion Association Lexicon.
Computational Intelligence, 29(3).

Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. 2013. NRC-Canada: Building the
State-of-the-Art in Sentiment Analysis of Tweets. In Proceedings of SemEval.

Andrea Moro, Alessandro Raganato, and Roberto Navigli. 2014. Entity linking meets word sense
disambiguation: a unified approach. Transactions of the ACL.

Pradeep Muthukrishnan, Dragomir Radev, and Qiaozhu Mei. 2010. Edge weight regularization over
multiple graphs for similarity learning. In Proceedings of ICDM.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Restricted Boltzmann
Machines. In Proceedings of ICML.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin Stoyanov, Alan Ritter, and Theresa Wilson.
2013. SemEval-2013 Task 2: Sentiment Analysis in Twitter. In Proceedings of SemEval.

Roberto Navigli and Simone Paolo Ponzetto. 2010. Babelnet: Building a very large multilingual semantic
network. In Proceedings of ACL.

Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum. 2014. Efficient
non-parametric estimation of multiple embeddings per word in vector space. In Proceedings of EMNLP.

Kiem-Hieu Nguyen and Cheol-Young Ock. 2012. Semantic relatedness for biomedical word sense
disambiguation. In Proceedings of TextGraphs-7.

105

Rothe and Schütze AutoExtend

Diarmuid Ó Séaghdha and Ann Copestake. 2008. Semantic classification with distributional kernels. In
Proceedings of COLING.

Canberk Özdemir and Sabine Bergler. 2015. Clac-sentipipe: Semeval2015 subtasks 10 b,e, and task 11. In
Proceedings of SemEval.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014a. Glove: Global vectors for word
representation. In Proceedings of EMNLP.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014b. GloVe: Global Vectors for Word
Representation. In Proceedings of EMNLP.

Verónica Pérez-Rosas, Carmen Banea, and Rada Mihalcea. 2012. Learning Sentiment Lexicons in
Spanish. In Proceedings of LREC.

Nataliia Plotnikova, Micha Kohl, Kevin Volkert, Stefan Evert, Andreas Lerner, Natalie Dykes, and Heiko
Ermer. 2015. Klueless: Polarity classification and association. In Proceedings of SemEval.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. CoRR.

Delip Rao, David Yarowsky, and Chris Callison-Burch. 2008. Affinity measures based on the graph
Laplacian. In Proceedings of TextGraphs-3.

Reinhard Rapp, Serge Sharoff, and Bogdan Babych. 2012. Identifying word translations from comparable
documents without a seed lexicon. In Proceedings of LREC.

Joseph Reisinger and Raymond J Mooney. 2010. Multi-prototype vector-space models of word meaning.
In Proceedings of NAACL.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko, Saif M. Mohammad, Alan Ritter, and Veselin
Stoyanov. 2015. SemEval-2015 Task 10: Sentiment Analysis in Twitter. In Proceedings of SemEval.

Sascha Rothe and Hinrich Schütze. 2015. Autoextend: Extending word embeddings to embeddings for
synsets and lexemes. In Proceedings of ACL.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze. 2016. Ultradense word embeddings by orthogonal
transformation. In Proceedings of NAACL.

Herbert Rubenstein and John B Goodenough. 1965. Contextual correlates of synonymy. Communications
of the ACM, 8(10):627–633.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1988. Learning representations by
back-propagating errors. Cognitive Modeling, 5:213–220.

Josef Ruppenhofer, Jasper Brandes, Petra Steiner, and Michael Wiegand. 2015. Ordering adverbs by their
scaling effect on adjective intensity. In Proceedings of RANLP.

Mehran Sahami and Timothy D. Heilman. 2006. A web-based kernel function for measuring the similarity
of short text snippets. In Proceedings of WWW.

Christian Scheible and Hinrich Schütze. 2012. Bootstrapping sentiment labels for unannotated documents
with polarity pagerank. In Proceedings of LREC.

Christian Scheible, Florian Laws, Lukas Michelbacher, and Hinrich Schütze. 2010. Sentiment translation
through multi-edge graphs. In Proceedings of COLING.

Christian Scheible. 2010. Sentiment translation through lexicon induction. In Proceedings of ACL, Student
Research Workshop.

Helmut Schmid. 1994. Probabilistic part-of-speech tagging using decision trees. In Proceedings of
NeMLaP.

Helmut Schmid. 2004. Efficient parsing of highly ambiguous context-free grammars with bit vectors. In
Proceedings of COLING.

Tobias Schnabel and Hinrich Schütze. 2014. Flors: Fast and simple domain adaptation for part-of-speech
tagging. Transactions of the ACL, 2:15–26.

Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of EMNLP.

Hinrich Schütze and Michael Walsh. 2008. A graph-theoretic model of lexical syntactic acquisition. In
Proceedings of EMNLP.

Hinrich Schütze. 1992. Dimensions of meaning. In Proceedings of IEEE - SC.
Hinrich Schütze. 1998. Automatic word sense discrimination. Computational Linguistics, 24(1):97–123.
Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015. Symmetric pattern based word embeddings for

improved word similarity prediction. In Proceedings of CoNLL.
Aliaksei Severyn and Alessandro Moschitti. 2015. UNITN: Training Deep Convolutional Neural Network

for Twitter Sentiment Classification. In Proceedings of SemEval.
Raksha Sharma, Mohit Gupta, Astha Agarwal, and Pushpak Bhattacharyya. 2015. Adjective intensity and

sentiment analysis. In Proceedings of EMNLP.

106

Computational Linguistics

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. Entity linking with a knowledge base: Issues,
techniques, and solutions. IEEE Transactions on Knowledge and Data Engineering, 27(2):443–460.

Karl Stratos, Michael Collins, and Daniel Hsu. 2015. Model-based word embeddings from decompositions
of count matrices. In Proceedings of ACL.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting Liu. 2014a. Building large-scale twitter-specific
sentiment lexicon : A representation learning approach. In Proceedings of COLING.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. 2014b. Learning
Sentiment-Specific Word Embedding for Twitter Sentiment Classification. In Proceedings of ACL.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and Tie-Yan Liu. 2014. A
probabilistic model for learning multi-prototype word embeddings. In Proceedings of COLING,
Technical Papers.

Peter D. Turney. 2002. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised
Classification of Reviews. In Proceedings of ACL.

Kateřina Veselovská and Ondřej Bojar. 2013. Czech SubLex 1.0.
Ulli Waltinger. 2010. GermanPolarityClues: A Lexical Resource for German Sentiment Analysis. In

Proceedings of LREC.
Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge graph and text jointly

embedding. In Proceedings of EMNLP.
Tong Wang, Abdel-rahman Mohamed, and Graeme Hirst. 2015. Learning lexical embeddings with

syntactic and lexicographic knowledge. In Proceedings of ACL.
Kilian Q. Weinberger and Lawrence K. Saul. 2009. Distance metric learning for large margin nearest

neighbor classification. Journal of Machine Learning Research, 10:207–244.
Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005. Recognizing contextual polarity in phrase-level

sentiment analysis. In Proceedings of HLT/EMNLP.
Zhibiao Wu and Martha Palmer. 1994. Verbs semantics and lexical selection. In Proceedings of ACL.
Wensi Xi, Edward A. Fox, Weiguo Fan, Benyu Zhang, Zheng Chen, Jun Yan, and Dong Zhuang. 2005.

Simfusion: measuring similarity using unified relationship matrix. In Proceedings of SIGIR.
Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized word embedding and orthogonal

transform for bilingual word translation. In Proceedings of NAACL.
Yadollah Yaghoobzadeh and Hinrich Schütze. 2015. Corpus-level fine-grained entity typing using

contextual information. In Proceedings of EMNLP.
Wen-tau Yih, Geoffrey Zweig, and John C Platt. 2012. Polarity inducing latent semantic analysis. In

Proceedings of EMNLP.
Wenpeng Yin, Tobias Schnabel, and Hinrich Schütze. 2015. Online updating of word representations for

part-of-speech tagging. In Proceedings of EMNLP.
Mo Yu and Mark Dredze. 2014. Improving lexical embeddings with semantic knowledge. In Proceedings

of ACL.
Mo Yu and Mark Dredze. 2015. Learning composition models for phrase embeddings. Transactions of the

ACL, 3:227–242.
Torsten Zesch and Iryna Gurevych. 2006. Automatically creating datasets for measures of semantic

relatedness. In Proceedings of the Workshop on Linguistic Distances.
Zhihua Zhang, Guoshun Wu, and Man Lan. 2015. Ecnu: Multi-level sentiment analysis on twitter using

traditional linguistic features and word embedding features. In Proceedings of SemEval.
Zhi Zhong and Hwee Tou Ng. 2010. It makes sense: A wide-coverage word sense disambiguation system

for free text. In Proceedings of ACL, System Demonstrations.
Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen. 2015. Aligning knowledge and

text embeddings by entity descriptions. In Proceedings of EMNLP.

107

108

Bibliography

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL http://tensorflow.org/.

Amine Abdaoui, Jérôme Azé, Sandra Bringay, and Pascal Poncelet. Feel: French
extended emotional lexicon: Islrn: 041-639-484-224-2, 2014.

Heike Adel and Hinrich Schütze. Using mined coreference chains as a resource
for a semantic task. In Proceedings of EMNLP, 2014.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and
Aitor Soroa. A study on similarity and relatedness using distributional and
wordnet-based approaches. In Proceedings of NAACL, 2009.

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa. Random walks for
knowledge-based word sense disambiguation. Computational Linguistics, 40
(1):57–84, 2014.

Silvio Amir, Ramón Astudillo, Wang Ling, Bruno Martins, Mario J. Silva, and
Isabel Trancoso. Inesc-id: A regression model for large scale twitter sentiment
lexicon induction. In Proceedings of SemEval, 2015.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

109

BIBLIOGRAPHY

A. R. Balamurali, Aditya Joshi, and Pushpak Bhattacharyya. Harnessing wordnet
senses for supervised sentiment classification. In Proceedings of EMNLP, 2011.

Yoshua Bengio, Rejean Ducharme, and Pascal Vincent. A neural probabilistic
language model. Journal of Machine Learning Research, 3:1137–1155, 2003a.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A Neu-
ral Probabilistic Language Model. Journal of Machine Learning Research, 3:
1137–1155, 2003b.

Sudha Bhingardive, Dhirendra Singh, Rudra Murthy V, Hanumant Redkar, and
Pushpak Bhattacharyya. Unsupervised most frequent sense detection using
word embeddings. In Proceedings of ACL, 2015.

Jiang Bian, Bin Gao, and Tie-Yan Liu. Knowledge-powered deep learning for
word embedding. In Proceedings of ECML/PKDD, 2014.

Emmanuel Blanchard, Mounira Harzallah, Henri Briand, and Pascale Kuntz. A
typology of ontology-based semantic measures. In Proceedings of EMOI -
INTEROP, 2005.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of ACM SIGMOD, 2008.

Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning
structured embeddings of knowledge bases. In Proceedings of AAAI, 2011.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. Joint learn-
ing of words and meaning representations for open-text semantic parsing. In
Proceedings of AISTATS, 2012.

Jan A Botha and Phil Blunsom. Compositional morphology for word representa-
tions and language modelling. arXiv preprint arXiv:1405.4273, 2014.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. In Proceedings of WWW, 1998.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. Multimodal distributional se-
mantics. Journal of Artificial Intelligence Research, 49(1):1–47, 2014.

Marc Brysbaert, Amy Beth Warriner, and Victor Kuperman. Concreteness ratings
for 40 thousand generally known english word lemmas. Behavior Research
Methods, 46(3):904–911, 2014.

110

BIBLIOGRAPHY

Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between
probability density functions. Mathematical Models and Methods in Applied
Sciences, 1(4):300–307, 2007.

Ching-Yun Chang, Stephen Clark, and Brian Harrington. Getting creative with
semantic similarity. In Procedings of ICSC, 2013.

Danqi Chen, Jason Bolton, and Christopher D Manning. A thorough examination
of the cnn/daily mail reading comprehension task. In Proceedings of ACL,
2016.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. A unified model for word sense
representation and disambiguation. In Proceedings of EMNLP, 2014.

Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of
ICML, 2008.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavuk-
cuoglu, and Pavel Kuksa. Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–2537, 2011.

Ryan Cotterell and Hinrich Schütze. Morphological word-embeddings. In Pro-
ceedings of NAACL, 2015.

Gerard de Melo and Mohit Bansal. Good, great, excellent: Global inference of
semantic intensities. Transactions of the ACL, 1:279–290, 2013.

Gerard de Melo and Gerhard Weikum. Uwn: A large multilingual lexical knowl-
edge base. In Proceedings of ACL, System Demonstrations, 2012.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–407, 1990.

Konstantinos Diamantaras and Sun-Yuan Kung. Principal Component Neural
Networks: Theory and Applications. John Wiley & Sons, Inc., 1996.

Beate Dorow, Florian Laws, Lukas Michelbacher, Christian Scheible, and Jason
Utt. A graph-theoretic algorithm for automatic extension of translation lexi-
cons. In Proceedings of GEMS, 2009.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159, 2011.

111

BIBLIOGRAPHY

Ted Dunning. Accurate methods for the statistics of surprise and coincidence.
Computational Linguistics, 19(1):61–74, 1993.

Sebastian Ebert, Ngoc Thang Vu, and Hinrich Schütze. A Linguistically Informed
Convolutional Neural Network. In Proceedings of WASSA, 2015.

Günes Erkan and Dragomir R. Radev. Lexrank: Graph-based lexical centrality as
salience in text summarization. Journal of Artificial Intelligence Research, 22:
457–479, 2004.

Ky Fan and Alan J Hoffman. Some metric inequalities in the space of matrices.
American Mathematical Society, 6(1):111–116, 1955.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris Dyer, Eduard Hovy, and
Noah A. Smith. Retrofitting word vectors to semantic lexicons. In Proceedings
of NAACL, 2015a.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard Hovy, and
Noah A. Smith. Retrofitting word vectors to semantic lexicons. In Proceedings
of NAACL, 2015b.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, and Chris Dyer. Problems
with evaluation of word embeddings using word similarity tasks. arXiv preprint
arXiv:1605.02276, 2016.

Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books,
1998.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,
Gadi Wolfman, and Eytan Ruppin. Placing search in context: The concept
revisited. In Proceedings of WWW, 2001.

Dániel Fogaras and Balázs Rácz. Scaling link-based similarity search. In Pro-
ceedings of WWW, 2005.

Daniel Fried and Kevin Duh. Incorporating both distributional and relational se-
mantics in word representations. arXiv preprint arXiv:1412.4369, 2014.

Ferdinand Georg Frobenius. Über matrizen aus nicht negativen elementen.
Sitzungsberichte der Akademie der Wissenschaften zu Berlin, pages 456–477,
1912.

Francis Galton. Co-relations and their measurement, chiefly from anthropometric
data. Proceedings of the Royal Society of London, 45(273-279):135–145, 1888.

112

BIBLIOGRAPHY

Alex Graves. Generating sequences with recurrent neural networks. CoRR, 2013.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. Learning sense-specific
word embeddings by exploiting bilingual resources. In Proceedings of COL-
ING, Technical Papers, 2014.

Iryna Gurevych. Using the structure of a conceptual network in computing se-
mantic relatedness. In Proceedings of IJCNLP, 2005.

Ivan Habernal, Tomáš Ptáček, and Josef Steinberger. Sentiment Analysis in Czech
Social Media Using Supervised Machine Learning. In Proceedings of WASSA,
2013.

Matthias Hagen, Martin Potthast, Michel Büchner, and Benno Stein. Webis: An
Ensemble for Twitter Sentiment Detection. In Proceedings of SemEval, 2015.

Hussam Hamdan, Patrice Bellot, and Frederic Bechet. Lsislif: Feature extrac-
tion and label weighting for sentiment analysis in twitter. In Proceedings of
SemEval, 2015.

Birgit Hamp and Helmut Feldweg. Germanet-a lexical-semantic net for german.
In Proceedings of ACL, Workshops, 1997.

Xianpei Han and Jun Zhao. Structural semantic relatedness: a knowledge-based
method to named entity disambiguation. In Proceedings of ACL, 2010.

Taher H. Haveliwala. Topic-sensitive pagerank. In Proceedings of WWW, 2002.

Bas Heerschop, Alexander Hogenboom, and Flavius Frasincar. Sentiment lexicon
creation from lexical resources. In Proceedings if BIS, 2011.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and
comprehend. In Proceedings of NIPS, 2015.

Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic
models with (genuine) similarity estimation. arXiv preprint arXiv:1408.3456,
2014.

Cong Duy Vu Hoang and Min-Yen Kan. Towards automated related work sum-
marization. In Proceedings of COLING, 2010.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

113

BIBLIOGRAPHY

Minqing Hu and Bing Liu. Mining and Summarizing Customer Reviews. In
Proceedings of KDD, 2004.

Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Im-
proving word representations via global context and multiple word prototypes.
In Proceedings of ACL, 2012.

Thad Hughes and Daniel Ramage. Lexical semantic relatedness with random
graph walks. In Proceedings of EMNLP-CoNLL, 2007.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto Navigli. Sensembed:
learning sense embeddings for word and relational similarity. In Proceedings
of ACL, 2015.

Tommi Jaakkola and David Haussler. Exploiting generative models in discrimi-
native classifiers. In Proceedings of NIPS, 1998.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy. Ontologically grounded
multi-sense representation learning for semantic vector space models. In Pro-
ceedings of NAACL, 2015.

Tony Jebara, Risi Kondor, and Andrew Howard. Probability product kernels. Jour-
nal of Machine Learning Research, 5:819–844, 2004.

Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similar-
ity. In Proceedings of KDD, 2002.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A Convolutional Neu-
ral Network for Modelling Sentences. In Proceedings of ACL, 2014a.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neu-
ral network for modelling sentences. In Proceedings of ACL, 2014b.

Pentti Kanerva. Sparse distributed memory. MIT Press, 1998.

Pentti Kanerva. Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors. Cognitive
Computation, 1(2):139–159, 2009.

Maurice George Kendall. Rank correlation methods. Griffin, 1948.

Douwe Kiela, Felix Hill, and Stephen Clark. Specializing word embeddings for
similarity or relatedness. In Proceedings of EMNLP, 2015.

Adam Kilgarriff. English lexical sample task description. In Proceedings of
SENSEVAL-2, 2001.

114

BIBLIOGRAPHY

Yoon Kim. Convolutional Neural Networks for Sentence Classification. In Pro-
ceedings of EMNLP, 2014.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mohammad. Sentiment analysis
of short informal texts. Journal of Artificial Intelligence Research, 50:723–762,
2014.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urta-
sun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In Proceedings
of NIPS, 2015a.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urta-
sun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In Proceedings
of NIPS, 2015b.

Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604–632, 1999.

Igor Labutov and Hod Lipson. Re-embedding words. In Proceedings of ACL,
2013.

Florian Laws, Lukas Michelbacher, Beate Dorow, Christian Scheible, Ulrich
Heid, and Hinrich Schütze. A linguistically grounded graph model for bilin-
gual lexicon extraction. In Proceedings of COLING, 2010.

Claudia Leacock and Martin Chodorow. Combining local context and word-
net similarity for word sense identification. WordNet: An electronic lexical
database, 49(2):265–283, 1998.

Elizabeth Leicht, Petter Holme, and Mark Newman. Vertex similarity in networks.
Physical Review E, 73(2):026120, 2006.

Ronny Lempel and Shlomo Moran. The stochastic approach for link-structure
analysis (salsa) and the tkc effect. Computer Networks, 33(1):387–401, 2000.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix fac-
torization. In Proceedings of NIPS, 2014.

Omer Levy, Yoav Goldberg, and Israel Ramat-Gan. Linguistic regularities in
sparse and explicit word representations. In Proceedings of CoNLL, 2014.

Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou Sun, Yintao Yu, and Tianyi
Wu. Fast computation of simrank for static and dynamic information networks.
In Proceedings of EDBT, 2010.

115

BIBLIOGRAPHY

Pei Li, Zhixu Li, Hongyan Liu, Jun He, and Xiaoyong Du. Using link-based
content analysis to measure document similarity effectively. In Proceedings of
APWeb/WAIM, 2009.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and Yu Hu. Learning semantic
word embeddings based on ordinal knowledge constraints. In Proceedings of
ACL, 2015.

Dmitry Lizorkin, Pavel Velikhov, Maxim Grinev, and Denis Turdakov. Accuracy
estimate and optimization techniques for simrank computation. The Interna-
tional Journal on Very Large Data Bases, 19(1):45–66, 2010.

Minh-Thang Luong, Richard Socher, and Christopher D Manning. Better word
representations with recursive neural networks for morphology. In Proceedings
of CoNLL, 2013.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective ap-
proaches to attention-based neural machine translation. In Proceedings of
EMNLP, 2015.

Andrew J. McMinn, Yashar Moshfeghi, and Joemon M. Jose. Building a large-
scale corpus for evaluating event detection on twitter. In Proceedings of CIKM,
2013.

Rada Mihalcea and Dragomir Radev. Graph-based natural language processing
and information retrieval. Cambridge University Press, 2011.

Rada Mihalcea, Timothy Chklovski, and Adam Kilgarriff. The senseval-3 english
lexical sample task. In Proceedings of SENSEVAL-3, 2004.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013a.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among
languages for machine translation. arXiv preprint arXiv:1309.4168, 2013b.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Proceedings of NIPS, 2013c.

George A Miller and Walter G Charles. Contextual correlates of semantic simi-
larity. Language and Cognitive Processes, 6(1):1–28, 1991.

116

BIBLIOGRAPHY

Einat Minkov and William W. Cohen. Learning graph walk based similarity mea-
sures for parsed text. In Proceedings of EMNLP, 2008.

Einat Minkov and William W. Cohen. Graph based similarity measures for syn-
onym extraction from parsed text. In Proceedings of TextGraphs-7, 2012.

Richard von Mises and Hilda Pollaczek-Geiringer. Praktische verfahren der gle-
ichungsauflösung. Zeitschrift für Angewandte Mathematik und Mechanik, 9(2):
152–164, 1929.

Andriy Mnih and Geoffrey Hinton. Three new graphical models for statistical
language modelling. In Proceedings of ICML, 2007a.

Andriy Mnih and Geoffrey E. Hinton. Three New Graphical Models for Statistical
Language Modelling. In Proceedings of ICML, 2007b.

Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed language
model. In Proceedings of NIPS, 2009.

Saif M. Mohammad and Peter D. Turney. Crowdsourcing a Word-Emotion Asso-
ciation Lexicon. Computational Intelligence, 29(3), 2013.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. NRC-Canada:
Building the State-of-the-Art in Sentiment Analysis of Tweets. In Proceedings
of SemEval, 2013.

Andrea Moro, Alessandro Raganato, and Roberto Navigli. Entity linking meets
word sense disambiguation: a unified approach. Transactions of the Association
for Computational Linguistics, 2:231–244, 2014.

Pradeep Muthukrishnan, Dragomir Radev, and Qiaozhu Mei. Edge weight regu-
larization over multiple graphs for similarity learning. In Proceedings of ICDM,
2010.

Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted
Boltzmann Machines. In Proceedings of ICML, 2010.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin Stoyanov, Alan Ritter,
and Theresa Wilson. SemEval-2013 Task 2: Sentiment Analysis in Twitter. In
Proceedings of SemEval, 2013.

Roberto Navigli and Simone Paolo Ponzetto. Babelnet: Building a very large
multilingual semantic network. In Proceedings of ACL, 2010.

117

BIBLIOGRAPHY

Neha Nayak, Gabor Angeli, and Christopher D Manning. Evaluating word em-
beddings using a representative suite of practical tasks. Proceedings of ACL,
2016.

Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum.
Efficient non-parametric estimation of multiple embeddings per word in vector
space. In Proceedings of EMNLP, 2014.

Kiem-Hieu Nguyen and Cheol-Young Ock. Semantic relatedness for biomedical
word sense disambiguation. In Proceedings of TextGraphs-7, 2012.

Diarmuid Ó Séaghdha and Ann Copestake. Semantic classification with distribu-
tional kernels. In Proceedings of COLING, 2008.

Canberk Özdemir and Sabine Bergler. Clac-sentipipe: Semeval2015 subtasks 10
b,e, and task 11. In Proceedings of SemEval, 2015.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global
Vectors for Word Representation. In Proceedings of EMNLP, 2014a.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of EMNLP, 2014b.

Verónica Pérez-Rosas, Carmen Banea, and Rada Mihalcea. Learning Sentiment
Lexicons in Spanish. In Proceedings of LREC, 2012.

Oskar Perron. Zur theorie der matrices. Mathematische Annalen, 64(2):248–263,
1907.

Nataliia Plotnikova, Micha Kohl, Kevin Volkert, Stefan Evert, Andreas Lerner,
Natalie Dykes, and Heiko Ermer. Klueless: Polarity classification and associa-
tion. In Proceedings of SemEval, 2015.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text. In Proceedings of the
2016 Conference on EMNLP, 2016.

Delip Rao, David Yarowsky, and Chris Callison-Burch. Affinity measures based
on the graph Laplacian. In Proceedings of TextGraphs-3, 2008.

Reinhard Rapp, Serge Sharoff, and Bogdan Babych. Identifying word translations
from comparable documents without a seed lexicon. In Proceedings of LREC,
2012.

118

BIBLIOGRAPHY

Joseph Reisinger and Raymond J Mooney. Multi-prototype vector-space models
of word meaning. In Proceedings of NAACL, 2010.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko, Saif M. Mohammad, Alan
Ritter, and Veselin Stoyanov. SemEval-2015 Task 10: Sentiment Analysis in
Twitter. In Proceedings of SemEval, 2015.

Sascha Rothe and Hinrich Schütze. Autoextend: Extending word embeddings to
embeddings for synsets and lexemes. In Proceedings of ACL, 2015.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze. Ultradense word embed-
dings by orthogonal transformation. In Proceedings of NAACL, 2016.

Herbert Rubenstein and John B Goodenough. Contextual correlates of synonymy.
Communications of the ACM, 8(10):627–633, 1965.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. Cognitive Modeling, 5:213–220, 1988.

Josef Ruppenhofer, Jasper Brandes, Petra Steiner, and Michael Wiegand. Order-
ing adverbs by their scaling effect on adjective intensity. In Proceedings of
RANLP, 2015.

Mehran Sahami and Timothy D. Heilman. A web-based kernel function for mea-
suring the similarity of short text snippets. In Proceedings of WWW, 2006.

Christian Scheible. Sentiment translation through lexicon induction. In Proceed-
ings of ACL, Student Research Workshop, 2010.

Christian Scheible and Hinrich Schütze. Bootstrapping sentiment labels for unan-
notated documents with polarity pagerank. In Proceedings of LREC, 2012.

Christian Scheible, Florian Laws, Lukas Michelbacher, and Hinrich Schütze. Sen-
timent translation through multi-edge graphs. In Proceedings of COLING,
2010.

Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In
Proceedings of NeMLaP, 1994.

Helmut Schmid. Efficient parsing of highly ambiguous context-free grammars
with bit vectors. In Proceedings of COLING, 2004.

Tobias Schnabel and Hinrich Schütze. Flors: Fast and simple domain adaptation
for part-of-speech tagging. Transactions of the ACL, 2:15–26, 2014.

119

BIBLIOGRAPHY

Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Evaluation
methods for unsupervised word embeddings. In Proceedings of EMNLP, 2015.

Hinrich Schütze. Dimensions of meaning. In Proceedings of IEEE - SC, 1992.

Hinrich Schütze. Automatic word sense discrimination. Computational Linguis-
tics, 24(1):97–123, 1998.

Hinrich Schütze and Michael Walsh. A graph-theoretic model of lexical syntactic
acquisition. In Proceedings of EMNLP, 2008.

Roy Schwartz, Roi Reichart, and Ari Rappoport. Symmetric pattern based word
embeddings for improved word similarity prediction. In Proceedings of CoNLL,
2015.

Aliaksei Severyn and Alessandro Moschitti. UNITN: Training Deep Convolu-
tional Neural Network for Twitter Sentiment Classification. In Proceedings of
SemEval, 2015.

Raksha Sharma, Mohit Gupta, Astha Agarwal, and Pushpak Bhattacharyya. Ad-
jective intensity and sentiment analysis. In Proceedings of EMNLP, 2015.

Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge base:
Issues, techniques, and solutions. IEEE Transactions on Knowledge and Data
Engineering, 27(2):443–460, 2015.

Charles Spearman. The proof and measurement of association between two
things. The American journal of psychology, 15(1):72–101, 1904.

Karl Stratos, Michael Collins, and Daniel Hsu. Model-based word embeddings
from decompositions of count matrices. In Proceedings of ACL, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting Liu. Building large-
scale twitter-specific sentiment lexicon : A representation learning approach.
In Proceedings of COLING, 2014a.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. Learning
Sentiment-Specific Word Embedding for Twitter Sentiment Classification. In
Proceedings of ACL, 2014b.

120

BIBLIOGRAPHY

Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv preprint arXiv:1605.02688, 2016.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and Tie-
Yan Liu. A probabilistic model for learning multi-prototype word embeddings.
In Proceedings of COLING, Technical Papers, 2014.

Peter D. Turney. Thumbs Up or Thumbs Down? Semantic Orientation Applied to
Unsupervised Classification of Reviews. In Proceedings of ACL, 2002.

Kateřina Veselovská and Ondřej Bojar. Czech SubLex 1.0, 2013. URL http:
//hdl.handle.net/11858/00-097C-0000-0022-FF60-B.

Ulli Waltinger. GermanPolarityClues: A Lexical Resource for German Sentiment
Analysis. In Proceedings of LREC, 2010.

Tong Wang, Abdel-rahman Mohamed, and Graeme Hirst. Learning lexical em-
beddings with syntactic and lexicographic knowledge. In Proceedings of ACL,
2015.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph
and text jointly embedding. In Proceedings of EMNLP, 2014.

Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large
margin nearest neighbor classification. Journal of Machine Learning Research,
10:207–244, 2009.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recognizing contextual po-
larity in phrase-level sentiment analysis. In Proceedings of HLT/EMNLP, 2005.

Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Pro-
ceedings of ACL, 1994.

Wensi Xi, Edward A. Fox, Weiguo Fan, Benyu Zhang, Zheng Chen, Jun Yan,
and Dong Zhuang. Simfusion: measuring similarity using unified relationship
matrix. In Proceedings of SIGIR, 2005.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. Normalized word embed-
ding and orthogonal transform for bilingual word translation. In Proceedings
of NAACL, 2015.

Yadollah Yaghoobzadeh and Hinrich Schütze. Corpus-level fine-grained entity
typing using contextual information. In Proceedings of EMNLP, 2015.

121

BIBLIOGRAPHY

Wen-tau Yih, Geoffrey Zweig, and John C Platt. Polarity inducing latent semantic
analysis. In Proceedings of EMNLP, 2012.

Wenpeng Yin, Tobias Schnabel, and Hinrich Schütze. Online updating of word
representations for part-of-speech tagging. In Proceedings of EMNLP, 2015.

Mo Yu and Mark Dredze. Improving lexical embeddings with semantic knowl-
edge. In Proceedings of ACL, 2014.

Mo Yu and Mark Dredze. Learning composition models for phrase embeddings.
Transactions of the ACL, 3:227–242, 2015.

Torsten Zesch and Iryna Gurevych. Automatically creating datasets for measures
of semantic relatedness. In Proceedings of the Workshop on Linguistic Dis-
tances, 2006.

Zhihua Zhang, Guoshun Wu, and Man Lan. Ecnu: Multi-level sentiment analysis
on twitter using traditional linguistic features and word embedding features. In
Proceedings of SemEval, 2015.

Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen. Align-
ing knowledge and text embeddings by entity descriptions. In Proceedings of
EMNLP, 2015.

Zhi Zhong and Hwee Tou Ng. It makes sense: A wide-coverage word sense disam-
biguation system for free text. In Proceedings of ACL, System Demonstrations,
2010.

122

Curriculum Vitae

Education
04/2013 – 09/2016 Ph.D. Student (CIS, LMU Munich, Germany)

Research on Representation Learning

10/2006 – 04/2012 Student (LMU Munich, Germany)
Diploma in Math, Grade: 1.7
Specializations: Discrete Mathematics
Minor: Computer Science

Practical Experience
since 11/2016 Research Software Engineer (Google, Zurich)

Research on Deep Learning

06/2015 – 09/2015 Research Intern (Microsoft, Redmond, USA)
Exploring various neural network language models for
improved speech recognition systems

10/2008 – 02/2012 Student Trainee (Microsoft, Unterschleißheim)
Optimizing the SPAM identification process using
techniques from information retrieval and machine
learning

10/2007 – 08/2008 Student Trainee (Fujitsu Siemens Computers, Munich)
Developing a GUI (Tcl/Tk) to view, run and automate
system security tests

01/2007 – 08/2007 Student Trainee (Nokia Siemens Networks , Munich)
Concept and realization of an auto login system for an
intranet site

123

