Logo Logo
Help
Contact
Switch language to German
Simulation and statistical model-checking of logic-based multi-agent system models
Simulation and statistical model-checking of logic-based multi-agent system models
This thesis presents SALMA (Simulation and Analysis of Logic-Based Multi- Agent Models), a new approach for simulation and statistical model checking of multi-agent system models. Statistical model checking is a relatively new branch of model-based approximative verification methods that help to overcome the well-known scalability problems of exact model checking. In contrast to existing solutions, SALMA specifies the mechanisms of the simulated system by means of logical axioms based upon the well-established situation calculus. Leveraging the resulting first-order logic structure of the system model, the simulation is coupled with a statistical model-checker that uses a first-order variant of time-bounded linear temporal logic (LTL) for describing properties. This is combined with a procedural and process-based language for describing agent behavior. Together, these parts create a very expressive framework for modeling and verification that allows direct fine-grained reasoning about the agents’ interaction with each other and with their (physical) environment. SALMA extends the classical situation calculus and linear temporal logic (LTL) with means to address the specific requirements of multi-agent simulation models. In particular, cyber-physical domains are considered where the agents interact with their physical environment. Among other things, the thesis describes a generic situation calculus axiomatization that encompasses sensing and information transfer in multi agent systems, for instance sensor measurements or inter-agent messages. The proposed model explicitly accounts for real-time constraints and stochastic effects that are inevitable in cyber-physical systems. In order to make SALMA’s statistical model checking facilities usable also for more complex problems, a mechanism for the efficient on-the-fly evaluation of first-order LTL properties was developed. In particular, the presented algorithm uses an interval-based representation of the formula evaluation state together with several other optimization techniques to avoid unnecessary computation. Altogether, the goal of this thesis was to create an approach for simulation and statistical model checking of multi-agent systems that builds upon well-proven logical and statistical foundations, but at the same time takes a pragmatic software engineering perspective that considers factors like usability, scalability, and extensibility. In fact, experience gained during several small to mid-sized experiments that are presented in this thesis suggest that the SALMA approach seems to be able to live up to these expectations., In dieser Dissertation wird SALMA (Simulation and Analysis of Logic-Based Multi-Agent Models) vorgestellt, ein im Rahmen dieser Arbeit entwickelter Ansatz für die Simulation und die statistische Modellprüfung (Model Checking) von Multiagentensystemen. Der Begriff „Statistisches Model Checking” beschreibt modellbasierte approximative Verifikationsmethoden, die insbesondere dazu eingesetzt werden können, um den unvermeidlichen Skalierbarkeitsproblemen von exakten Methoden zu entgehen. Im Gegensatz zu bisherigen Ansätzen werden in SALMA die Mechanismen des simulierten Systems mithilfe logischer Axiome beschrieben, die auf dem etablierten Situationskalkül aufbauen. Die dadurch entstehende prädikatenlogische Struktur des Systemmodells wird ausgenutzt um ein Model Checking Modul zu integrieren, das seinerseits eine prädikatenlogische Variante der linearen temporalen Logik (LTL) verwendet. In Kombination mit einer prozeduralen und prozessorientierten Sprache für die Beschreibung von Agentenverhalten entsteht eine ausdrucksstarke und flexible Plattform für die Modellierung und Verifikation von Multiagentensystemen. Sie ermöglicht eine direkte und feingranulare Beschreibung der Interaktionen sowohl zwischen Agenten als auch von Agenten mit ihrer (physischen) Umgebung. SALMA erweitert den klassischen Situationskalkül und die lineare temporale Logik (LTL) um Elemente und Konzepte, die auf die spezifischen Anforderungen bei der Simulation und Modellierung von Multiagentensystemen ausgelegt sind. Insbesondere werden cyber-physische Systeme (CPS) unterstützt, in denen Agenten mit ihrer physischen Umgebung interagieren. Unter anderem wird eine generische, auf dem Situationskalkül basierende, Axiomatisierung von Prozessen beschrieben, in denen Informationen innerhalb von Multiagentensystemen transferiert werden – beispielsweise in Form von Sensor- Messwerten oder Netzwerkpaketen. Dabei werden ausdrücklich die unvermeidbaren stochastischen Effekte und Echtzeitanforderungen in cyber-physischen Systemen berücksichtigt. Um statistisches Model Checking mit SALMA auch für komplexere Problemstellungen zu ermöglichen, wurde ein Mechanismus für die effiziente Auswertung von prädikatenlogischen LTL-Formeln entwickelt. Insbesondere beinhaltet der vorgestellte Algorithmus eine Intervall-basierte Repräsentation des Auswertungszustands, sowie einige andere Optimierungsansätze zur Vermeidung von unnötigen Berechnungsschritten. Insgesamt war es das Ziel dieser Dissertation, eine Lösung für Simulation und statistisches Model Checking zu schaffen, die einerseits auf fundierten logischen und statistischen Grundlagen aufbaut, auf der anderen Seite jedoch auch pragmatischen Gesichtspunkten wie Benutzbarkeit oder Erweiterbarkeit genügt. Tatsächlich legen erste Ergebnisse und Erfahrungen aus mehreren kleinen bis mittelgroßen Experimenten nahe, dass SALMA diesen Zielen gerecht wird.
multi-agent systems, situation calculus, discrete event simulation, statistical model checking, logic programming
Kroiß, Christian
2016
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Kroiß, Christian (2016): Simulation and statistical model-checking of logic-based multi-agent system models. Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics
[img]
Preview
PDF
Kroiss_Christian.pdf

3MB

Abstract

This thesis presents SALMA (Simulation and Analysis of Logic-Based Multi- Agent Models), a new approach for simulation and statistical model checking of multi-agent system models. Statistical model checking is a relatively new branch of model-based approximative verification methods that help to overcome the well-known scalability problems of exact model checking. In contrast to existing solutions, SALMA specifies the mechanisms of the simulated system by means of logical axioms based upon the well-established situation calculus. Leveraging the resulting first-order logic structure of the system model, the simulation is coupled with a statistical model-checker that uses a first-order variant of time-bounded linear temporal logic (LTL) for describing properties. This is combined with a procedural and process-based language for describing agent behavior. Together, these parts create a very expressive framework for modeling and verification that allows direct fine-grained reasoning about the agents’ interaction with each other and with their (physical) environment. SALMA extends the classical situation calculus and linear temporal logic (LTL) with means to address the specific requirements of multi-agent simulation models. In particular, cyber-physical domains are considered where the agents interact with their physical environment. Among other things, the thesis describes a generic situation calculus axiomatization that encompasses sensing and information transfer in multi agent systems, for instance sensor measurements or inter-agent messages. The proposed model explicitly accounts for real-time constraints and stochastic effects that are inevitable in cyber-physical systems. In order to make SALMA’s statistical model checking facilities usable also for more complex problems, a mechanism for the efficient on-the-fly evaluation of first-order LTL properties was developed. In particular, the presented algorithm uses an interval-based representation of the formula evaluation state together with several other optimization techniques to avoid unnecessary computation. Altogether, the goal of this thesis was to create an approach for simulation and statistical model checking of multi-agent systems that builds upon well-proven logical and statistical foundations, but at the same time takes a pragmatic software engineering perspective that considers factors like usability, scalability, and extensibility. In fact, experience gained during several small to mid-sized experiments that are presented in this thesis suggest that the SALMA approach seems to be able to live up to these expectations.

Abstract

In dieser Dissertation wird SALMA (Simulation and Analysis of Logic-Based Multi-Agent Models) vorgestellt, ein im Rahmen dieser Arbeit entwickelter Ansatz für die Simulation und die statistische Modellprüfung (Model Checking) von Multiagentensystemen. Der Begriff „Statistisches Model Checking” beschreibt modellbasierte approximative Verifikationsmethoden, die insbesondere dazu eingesetzt werden können, um den unvermeidlichen Skalierbarkeitsproblemen von exakten Methoden zu entgehen. Im Gegensatz zu bisherigen Ansätzen werden in SALMA die Mechanismen des simulierten Systems mithilfe logischer Axiome beschrieben, die auf dem etablierten Situationskalkül aufbauen. Die dadurch entstehende prädikatenlogische Struktur des Systemmodells wird ausgenutzt um ein Model Checking Modul zu integrieren, das seinerseits eine prädikatenlogische Variante der linearen temporalen Logik (LTL) verwendet. In Kombination mit einer prozeduralen und prozessorientierten Sprache für die Beschreibung von Agentenverhalten entsteht eine ausdrucksstarke und flexible Plattform für die Modellierung und Verifikation von Multiagentensystemen. Sie ermöglicht eine direkte und feingranulare Beschreibung der Interaktionen sowohl zwischen Agenten als auch von Agenten mit ihrer (physischen) Umgebung. SALMA erweitert den klassischen Situationskalkül und die lineare temporale Logik (LTL) um Elemente und Konzepte, die auf die spezifischen Anforderungen bei der Simulation und Modellierung von Multiagentensystemen ausgelegt sind. Insbesondere werden cyber-physische Systeme (CPS) unterstützt, in denen Agenten mit ihrer physischen Umgebung interagieren. Unter anderem wird eine generische, auf dem Situationskalkül basierende, Axiomatisierung von Prozessen beschrieben, in denen Informationen innerhalb von Multiagentensystemen transferiert werden – beispielsweise in Form von Sensor- Messwerten oder Netzwerkpaketen. Dabei werden ausdrücklich die unvermeidbaren stochastischen Effekte und Echtzeitanforderungen in cyber-physischen Systemen berücksichtigt. Um statistisches Model Checking mit SALMA auch für komplexere Problemstellungen zu ermöglichen, wurde ein Mechanismus für die effiziente Auswertung von prädikatenlogischen LTL-Formeln entwickelt. Insbesondere beinhaltet der vorgestellte Algorithmus eine Intervall-basierte Repräsentation des Auswertungszustands, sowie einige andere Optimierungsansätze zur Vermeidung von unnötigen Berechnungsschritten. Insgesamt war es das Ziel dieser Dissertation, eine Lösung für Simulation und statistisches Model Checking zu schaffen, die einerseits auf fundierten logischen und statistischen Grundlagen aufbaut, auf der anderen Seite jedoch auch pragmatischen Gesichtspunkten wie Benutzbarkeit oder Erweiterbarkeit genügt. Tatsächlich legen erste Ergebnisse und Erfahrungen aus mehreren kleinen bis mittelgroßen Experimenten nahe, dass SALMA diesen Zielen gerecht wird.