
Simulation and Statistical
Model-Checking of

Logic-Based Multi-Agent
System Models

Christian Kroiß

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität München

eingereicht von
Christian Kroiß

München, 14. Juni 2016

Erstgutachter: Prof. Dr. Martin Wirsing
Zweitgutachter: Doc. Ing. Petr Tůma, Dr.
Tag der mündlichen Prüfung: 28. Juli 2016

iii

Formular 3.2

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

München, 14.06.2016

Name, Vorname
Kroiß, Christian

Ort, Datum Unterschrift Doktorand/in

iv

Abstract

This thesis presents SALMA (Simulation and Analysis of Logic-Based Multi-
Agent Models), a new approach for simulation and statistical model checking
of multi-agent system models.

Statistical model checking is a relatively new branch of model-based ap-
proximative verification methods that help to overcome the well-known scal-
ability problems of exact model checking. In contrast to existing solutions,
SALMA specifies the mechanisms of the simulated system by means of log-
ical axioms based upon the well-established situation calculus. Leveraging
the resulting first-order logic structure of the system model, the simulation
is coupled with a statistical model-checker that uses a first-order variant of
time-bounded linear temporal logic (LTL) for describing properties. This is
combined with a procedural and process-based language for describing agent
behavior. Together, these parts create a very expressive framework for model-
ing and verification that allows direct fine-grained reasoning about the agents’
interaction with each other and with their (physical) environment.

SALMA extends the classical situation calculus and linear temporal logic
(LTL) with means to address the specific requirements of multi-agent sim-
ulation models. In particular, cyber-physical domains are considered where
the agents interact with their physical environment. Among other things,
the thesis describes a generic situation calculus axiomatization that encom-
passes sensing and information transfer in multi agent systems, for instance
sensor measurements or inter-agent messages. The proposed model explicitly
accounts for real-time constraints and stochastic effects that are inevitable in
cyber-physical systems.

In order to make SALMA’s statistical model checking facilities usable also
for more complex problems, a mechanism for the efficient on-the-fly evaluation
of first-order LTL properties was developed. In particular, the presented al-
gorithm uses an interval-based representation of the formula evaluation state
together with several other optimization techniques to avoid unnecessary com-
putation.

Altogether, the goal of this thesis was to create an approach for simula-
tion and statistical model checking of multi-agent systems that builds upon
well-proven logical and statistical foundations, but at the same time takes a
pragmatic software engineering perspective that considers factors like usability,
scalability, and extensibility. In fact, experience gained during several small
to mid-sized experiments that are presented in this thesis suggest that the
SALMA approach seems to be able to live up to these expectations.

v

Zusammenfassung

In dieser Dissertation wird SALMA (Simulation and Analysis of Logic-Based
Multi-Agent Models) vorgestellt, ein im Rahmen dieser Arbeit entwickelter
Ansatz für die Simulation und die statistische Modellprüfung (Model Check-
ing) von Multiagentensystemen.

Der Begriff „Statistisches Model Checking” beschreibt modellbasierte ap-
proximative Verifikationsmethoden, die insbesondere dazu eingesetzt werden
können, um den unvermeidlichen Skalierbarkeitsproblemen von exakten Meth-
oden zu entgehen. Im Gegensatz zu bisherigen Ansätzen werden in SALMA die
Mechanismen des simulierten Systems mithilfe logischer Axiome beschrieben,
die auf dem etablierten Situationskalkül aufbauen. Die dadurch entstehende
prädikatenlogische Struktur des Systemmodells wird ausgenutzt um ein Model
Checking Modul zu integrieren, das seinerseits eine prädikatenlogische Vari-
ante der linearen temporalen Logik (LTL) verwendet. In Kombination mit
einer prozeduralen und prozessorientierten Sprache für die Beschreibung von
Agentenverhalten entsteht eine ausdrucksstarke und flexible Plattform für die
Modellierung und Verifikation von Multiagentensystemen. Sie ermöglicht eine
direkte und feingranulare Beschreibung der Interaktionen sowohl zwischen
Agenten als auch von Agenten mit ihrer (physischen) Umgebung.

SALMA erweitert den klassischen Situationskalkül und die lineare tempo-
rale Logik (LTL) um Elemente und Konzepte, die auf die spezifischen An-
forderungen bei der Simulation und Modellierung von Multiagentensystemen
ausgelegt sind. Insbesondere werden cyber-physische Systeme (CPS) unter-
stützt, in denen Agenten mit ihrer physischen Umgebung interagieren. Unter
anderem wird eine generische, auf dem Situationskalkül basierende, Axioma-
tisierung von Prozessen beschrieben, in denen Informationen innerhalb von
Multiagentensystemen transferiert werden – beispielsweise in Form von Sensor-
Messwerten oder Netzwerkpaketen. Dabei werden ausdrücklich die unvermei-
dbaren stochastischen Effekte und Echtzeitanforderungen in cyber-physischen
Systemen berücksichtigt.

Um statistisches Model Checking mit SALMA auch für komplexere Prob-
lemstellungen zu ermöglichen, wurde ein Mechanismus für die effiziente Auswer-
tung von prädikatenlogischen LTL-Formeln entwickelt. Insbesondere bein-
haltet der vorgestellte Algorithmus eine Intervall-basierte Repräsentation des
Auswertungszustands, sowie einige andere Optimierungsansätze zur Vermei-
dung von unnötigen Berechnungsschritten.

Insgesamt war es das Ziel dieser Dissertation, eine Lösung für Simulation
und statistisches Model Checking zu schaffen, die einerseits auf fundierten
logischen und statistischen Grundlagen aufbaut, auf der anderen Seite je-
doch auch pragmatischen Gesichtspunkten wie Benutzbarkeit oder Erweit-
erbarkeit genügt. Tatsächlich legen erste Ergebnisse und Erfahrungen aus
mehreren kleinen bis mittelgroßen Experimenten nahe, dass SALMA diesen
Zielen gerecht wird.

vi

Acknowledgements

First of all, I would like to thank my supervisor Martin Wirsing for his strong
support during my time at the chair for Programming and Software Engineer-
ing (PST). This included not only academic advice but also the creation of an
encouraging, creative, and friendly work environment for all members of the
chair. Especially important for me was the patience, trust, and flexibility that
made it so much easier to arrange my work with my life as a father of two
young children.

Additionally, I would like to thank Petr Tůma, who did not hesitate to
agree to be the second referee for this thesis. I can well image how high his
workload is due to his many academic activities, so I really appreciate the fact
that he accepted this additional duty.

I am also particularly grateful to Tomáš Bureš, who acted as a substitute
professor at the PST chair from 2013 to 2015. Despite his full schedule, he
found time to collaborate with me on an extension of my approach that later
became one of the main contributions of my thesis.

Furthermore, I want to thank my colleagues of the PST team, who have
always been supportive in so many ways. It all began with Nora Koch and
Alexander Knapp, who introduced me to the world of academic research during
my diploma thesis. Through the kind and inspiring way with which they let me
participate in their work, they are to a large degree responsible for my decision
to join the PST group. Also, I am especially grateful to Matthias Hölzl, who in-
troduced me to GoLog and the situation calculus and to many other aspects of
logics, planning, and probability theory. Similarly, I want to thank Annabelle
Klarl, Andreas Schroeder, Philip Mayer, Lenz Belzner, and Marianne Busch,
who worked together with me during the research projects REFLECT, AS-
CENS, and MAEWA. The countless inspiring and open-minded conversations
with them really sharpened my view, strengthened my confidence, and helped
me navigate through the sometimes overwhelming amount of ideas and possi-
ble research directions. Alongside them, Rolf Hennicker and Anton Fasching
have contributed essentially to the warm and positive environment at the PST
chair with their overall helpfulness and kindness.

Finally, my deepest gratitude goes to my family for their love, support,
and most of all patience throughout all these years. In particular, none of this
would have been possible without the help, understanding, and encouragement
of my wife Nici, whom I love with all my heart.

Contents

Contents vii

1 Introduction 1
1.1 An Overview of the SALMA Approach 6
1.2 Main Contributions of the Thesis 8
1.3 Overview of the Thesis . 9

2 Background 11
2.1 Multi-Agent Systems . 11
2.2 The Situation Calculus . 12

2.2.1 Quantitative Time and Clocks 14
2.2.2 Processes and Concurrency 15
2.2.3 Stochastic and Exogenous Actions 15
2.2.4 GoLog . 16

2.3 Discrete Event Simulation . 17
2.4 Temporal Logics and Model Checking 18
2.5 Statistical Model Checking . 22

2.5.1 Sample Sizes and Sequential Hypothesis Tests 23

3 Multi-Agent Simulation with SALMA 25
3.1 A Simple Simulation Example: Delivery Robots 26
3.2 Axiomatization of System Domains 27

3.2.1 The SALMA Sort System 29
3.2.2 Fluents and Constants 31
3.2.3 Actions and Events . 33
3.2.4 Effect Axioms and Derived Fluent Functions 37
3.2.5 Action Precondition and Schedulability Axioms 40
3.2.6 Representation of Time in SALMA 45

3.3 The SALMA Agent Process Definition Language 46
3.3.1 Notation . 48

vii

viii CONTENTS

3.3.2 Agent Control Procedures 48
3.3.3 Agent Process Types . 56

3.4 The SALMA Simulation Framework 57
3.4.1 Initial Setup . 59
3.4.2 Configuration of Actions and Events 59
3.4.3 Creating Entities, Agents, and the Initial Situation . . . 63
3.4.4 Defining and Performing a Simulation Experiment . . . 65
3.4.5 Mechanisms for Language Integration 70

3.5 The Delivery Robots Experiment Revisited 72
3.6 SALMA Simulation Semantics 76

3.6.1 Basic Definitions . 76
3.6.2 Core Simulation Semantics 78
3.6.3 Semantics of Other SALMA-APDL Elements 86
3.6.4 Remarks . 90

3.7 Summary . 90
3.8 Related Work . 91

4 Statistical Model Checking in SALMA 93
4.1 SALMA’s Property Specification Language 93

4.1.1 Syntax and Language Structure 94
4.1.2 Examples . 97
4.1.3 Semantics of SALMA-PSL Properties 99

4.2 Framework Support for Statistical Model Checking 105
4.3 A Detailed Predictable Example 106
4.4 Summary . 116
4.5 Related Work . 116

5 Efficient Property Evaluation 121
5.1 Overview of the Evaluation Mechanism 121
5.2 Variable Time Advances . 122
5.3 Discrete Temporal Interval Sequences 126

5.3.1 Unlabeled Temporal Interval Sequences 126
5.3.2 Intersection Operators 131
5.3.3 Result Mappings . 136

5.4 The Property Compiler . 140
5.5 The Evaluation Goal Schedule 146

5.5.1 Basic Structure . 147
5.5.2 Property Context and Variable Binding 150
5.5.3 Nested Temporal Operators 150
5.5.4 A Formal Interface To The Evaluation Goal Schedule . . 152

5.6 The Formula Evaluation Algorithm 155
5.6.1 General Definitions . 156
5.6.2 The Property Evaluation Loop 158
5.6.3 Lookahead Evaluation of Invariants And Goals 161

CONTENTS ix

5.6.4 Main Formula Evaluation Function 166
5.6.5 Logical Connectives . 167
5.6.6 Relational Fluents and Predicates 169
5.6.7 Functions and Functional Fluents 170
5.6.8 Action Occurrences . 171
5.6.9 Variable Assignments 172
5.6.10 Evaluation of Temporal Operators 173

5.7 Validation of the Evaluation Mechanism 192
5.8 Summary . 196
5.9 Related Work . 197

6 Modeling Information Transfer in CPS 201
6.1 Running Example: Optimized Parking Lot Assignment 202
6.2 A Generic Model for Information Transfer 203

6.2.1 Information Transfer Phases 204
6.2.2 Information Transfer Paradigms 205
6.2.3 Predicate-based Addressing 209
6.2.4 Influence of the Choice of Probability Distributions . . . 210
6.2.5 Axiomatization of the Information Transfer Model . . . 211

6.3 Information Transfer in SALMA Models 218
6.3.1 Connector Declaration Macros 218
6.3.2 Specialized Process Elements For Information Transfer . 220
6.3.3 Transparent Sensing Infrastructure 225

6.4 SMC for Information Transfer 226
6.5 Experimental Evaluation . 228
6.6 Summary . 233
6.7 Related Work . 234

7 Conclusion and Outlook 237
7.1 Key Achievements of the Thesis 237
7.2 Possible Improvements and Extensions 239
7.3 Outlook . 241

A Publications of Christian Kroiß 243

Bibliography 247

Chapter 1

Introduction

Since the beginning of the modern era of information technology, computer-
based simulation has always been a very important application field. The
newly gained ability to run large numbers of even complex simulations within
acceptable time-frames and with affordable costs had significant impact on the
working methods in many fields of science and technology. On the one hand,
simulation-based approaches can be used to generate approximative numerical
solutions for problems that are too complex to solve analytically, for instance in
optimization scenarios. On the other hand, a researcher can inspect the output
of a simulation, which is usually visualized in some form, to gain a deeper
insight into the behavior of a system. This can help to recognize patterns and
interrelations that have not been understood before, in particular by running
iterative simulations with systematically varied parameters. Another common
task is to use simulations for the validation of a model by comparing the
output of simulations of this model with expected results. In particular, if the
simulated model represents a concrete system or a class of systems that actually
exist in the real world, then the simulation results can be compared with
collected observations in order to assess the accuracy of the model. Another
typical use case for simulations is to check whether the simulated system can
be assumed to fulfill certain requirements. In engineering disciplines like car
manufacturing or avionics, this kind of simulation-based validation has become
an inevitable part of the production process.

In contrast, a different general way of verifying models has emerged through-
out the last decades: automatic model checking. There, the computer analyzes
the state space, i.e. the set of states that the system can reach according to the
model, and attempts to prove or refute that a model fulfills a formally specified
property. The main advantage with respect to any kind of simulation-based
validation is that model checking produces exact results, i.e. if a model checker
does not find a violation of a property, this is understood as a proof that the
model contains no violation at all – although this obviously assumes the cor-

1

2 CHAPTER 1. INTRODUCTION

rectness of the model checker itself. Furthermore, all common automatic model
checking tools allow specifying the properties they assert in some kind of tem-
poral logic[Pnu77a, CE82], which allows for a rigorous and concise description
not only of desired properties of system states but also of temporal paths the
system runs through.

However, despite of the rapid improvement of computer system perfor-
mance and the development of more and more efficient algorithms, the state
space of more complex models can get too large to be searched exhaustively.
In these cases, exact model checking approaches cannot be applied without
introducing significant abstractions in order to reduce the number of states.
However, finding appropriate abstractions is often a difficult task that requires
much experience by the modeler. In fact, in some cases it might just not be
clear at all which details can be omitted without risking to wrongfully dismiss
important effects. Consequently, one branch of approaches that has gained
much attention recently is statistical model checking [LDB10], which attempts
to combine the idea behind model checking with the scalability of simulation
approaches. Simply put, this is achieved by treating the verified properties
as statistical hypotheses that are then tested using data collected through
simulations.

The scalability of verification approaches is particularly relevant for concur-
rent system since their state space is effectively a product of the state spaces
of the participating processes. This leads to an effect that is known as the
state-space explosion problem, which describes the fact that the state space
of concurrent system models can become to large to be searched thoroughly
when more constituents are added. One broad class of concurrent systems
where simulations play a particularly important role are multi-agent systems
(see, e.g. [Woo09]) in which the active constituents, i.e. agents, are viewed as
autonomous actors that are able to make their own decisions and act according
to them. On the one hand, this abstract concept of an agent includes artificial
entities, such as robots or some other computerized units that can be seen as
able to make their own more or less autonomous decisions. On the other hand
agents might represent actual life forms, including human beings, whose be-
havior is modeled in a way that captures the aspects that are important for the
simulation experiment. The latter kind of multi-agent simulation has been an
important tool in scientific disciplines like sociology, biology, or economics for
several decades now. Besides that, the simulation of artificial multi-agent sys-
tems has gained importance especially due to the advances in fields like swarm
robotics [Şah05] or road vehicle automation, for instance Google’s Self-Driving
Car Project [Goo16].

One important distinction between multi-agent system models can be made
with respect to whether they apply a more macroscopic or a more microscopic
viewpoint. In a macroscopic multi-agent model, agents of the same type are
treated as indistinguishable from each other, i.e. the simulation is not inter-
ested in the behavior of a particular agent but in the aggregated results that

3

emerge from the interaction of many agents. For instance, the two pictures
in Figure 1.1 are a visual representation of a state in a macroscopic simu-
lation of a simple predator-prey scenario in the simulation software Repast
Symphony [NCO+13]. The model consists of two types of agents: predators
(wolves), and prey (sheep), who act according to a set of simple rules. On the
left side, the current state of the simulation is shown by means of a grid whose
cells either represent wolves, sheep, or food for the sheep (e.g. grass). In each
step of the simulation, both wolves and sheep move to one of the adjacent cells
in which they might find a consumable food item, i.e. a sheep or a pile of
grass. All agents have an energy level that decreases when they move and in-
creases when they consume food. An agent dies when it is either consumed by
a predator or its energy level drops below zero. On the other hand, both sheep
and wolves reproduce with a constant rate, i.e. each agent may spawn a new
offspring agent in each step with a certain probability. For a model like this,
it is unlikely that a researcher would be interested in tracing the behavior of a
single sheep or wolf. Instead, what is typically analyzed is the development of
the populations of predators and prey, i.e. the agent numbers. For the current
example, these agent counts are shown in the right part of Figure 1.1.

(a) 2D visualization of the current state. (b) Agent counts (sheep vs. wolves).

Figure 1.1: Output of a macroscopic predator-prey simulation in Repast Sym-
phony.

In contrast to macroscopic models like the one described above, other prob-
lems require a microscopic approach in which the behavior of particular agents
is distinguished and can be analyzed separately. One example for such a sce-
nario can be seen in Figure 1.2, which stems from a case study that will be
covered more thoroughly in Chapter 6. The example describes an urban traffic
scenario in which parking lots for electric vehicles are a assigned by means of a
largely automated reservation system. This system consists of a coordinator,
denoted as super autonomous manager (SAM), many parking lots with charg-
ing stations (PLCS) and the vehicles themselves, which are equipped with
navigation systems and on-board computers. These constituents are modeled
as autonomous agents that communicate with each other via some wireless
connection. The diagram in Figure 1.2 gives an overview of the communica-

4 CHAPTER 1. INTRODUCTION

tion flow: vehicles send requests for parking lot reservations that consist of
a time slot and parking lot preferences, which would typically be based on
the proximity to some location that the vehicle’s driver wants to reach. The
SAM agent keeps track of the available parking places of all PLCS, calculates
assignments for reservation requests and sends these assignments back to the
vehicles, which in turn initiate a separate conversation with the assigned PLCS
to make the reservation definite. The idea behind the fact that the SAM does
not “order” the assigned PLCS to accept the reservation is to make the proto-
col more robust with respect to messages being lost or drivers changing their
plans.

PLCS
SAM

1.:Oplcs-prefs,Ostart,OdurationO

2.:Oplcs-assignment

3.:Os
tart,Od

uration

4.:OO
KO|OF

ULL PLCS
FOfreeOslots

FOfreeOslots

Figure 1.2: Microscopic model for an optimized parking lot assignment sce-
nario.

It is clear that when a system like the one shown in Figure 1.2 is simulated,
the distinction between individual agents is inevitable for the analysis of the
system. For instance, one of the most important questions that a researcher
might want to answer through a simulation experiment is how long a driver has
to wait on average until a reservation request is answered. In order to measure
these times, the simulation has to distinguish the agents and keep track of
their complete communication. Furthermore, it is certainly also important to
include the quality of the PLCS assignment in the analysis, i.e. how well the
driver’s preferences are met.

It turns out that the formal languages that are typically used by simula-
tion and model checking tools are not well suited to describe a scenario like
the one above in a way that is formally precise but at the same time accessi-
ble enough to be applied also to more complex problems. One of the issues is
that the property-specification languages that are used in model-checking tools
are typically based on propositional temporal logics like LTL and CTL (see
Section 2.4). However, for describing properties of relations and interactions
between the constituents of a multi-agent system, it is much more natural to
think in terms of first-order logic (FOL) models. While some property spec-
ification languages that are used in (statistical) model checking tools provide
features like simple quantification over processes or arrays of primitive val-
ues, they do not provide full direct support for model-specific functions and

5

relations. Therefore, the modeler is forced to introduce abstractions and indi-
rections that can easily lead to a more and more obfuscated model in which
the originally intended properties are no longer visible on first sight.

Besides difficulties in specifying the requirements for a scenario like the one
above, the construction of the system model can itself become a complicated
and error-prone task. One obvious source for complexity that is inherent to any
multi-agent system is the fact that there are many interactions between agents
that may happen at the same time. If a microscopic view is applied as described
above, this typically implies that the situations of individual agents have to
be considered both for determining which interactions happen at a particular
point in time and for calculating their outcomes. Furthermore, agents can also
interact with their environment, which could include the physical world around
them but also more abstract virtual entities that are shared between agents
like a database or a network. This interaction with the environment can mean
that agents react to events that originate from the environment. At the same
time, actions performed by agents can change the state of the environment,
which in turn might trigger events or influence other agents. It is obvious that
a modeling approach that is suitable in such a setting has to provide means
to capture a large number of effects and constraints whose scope ranges over
the whole system. Doing this in an imperative programming language can
lead to code that is very hard to comprehend and reason about. This can be
experienced in typical simulation frameworks for general purpose languages
like C/C++, Java, or Python that are designed for optimized performance.
A viable alternative for describing the effects of interactions and events on
the state of agents and the environment are rule-based languages where the
outcome of a rule typically determines the value of one or more state variables
for the next time step. In fact, the modeling languages that are employed by
model checking tools are typically rule-based. However, for agents with more
complex control logic, a purely rule-based representation of their behavior can
be just as hard to follow. Altogether, the right solution appears to be a proper
combination of several paradigms.

Summarizing the mentioned challenges for modeling and verification of
multi-agent systems, it is clear that it is hard to find a solution that fits in all
circumstances. In particular, compromises have to be made with respect to
the following factors:

1. The exactness of the assertions made by the tool, ranging from verdicts
that can be understood as proofs as in classical model checking to sta-
tistical approximation with varying confidence.

2. Scalability to large and complex models, i.e. whether it is possible to
utilize additional computational resources in order to handle larger state
spaces.

6 CHAPTER 1. INTRODUCTION

3. The level of abstraction of the model, i.e. how much detail of the modeled
can be captured.

4. The conciseness and clarity of the modeling language. This is obviously
also related to scalability towards more complex models since a modeling
approach that lacks these qualities will produce incomprehensible and
unmaintainable models for complex problems.

This thesis introduces SALMA (Simulation and Analysis of Logic-Based
Multi-Agent Systems), a solution for modeling, simulation, and statistical
model checking of multi-agent systems that strives to provide as much flexibil-
ity as possible so that such a compromise can be made in a way that suits the
situation as well as possible. It does that by combining several paradigms and
techniques, in particular logical modeling, logic programming, object oriented
programming, and statistical model checking. The following chapters will show
that the resulting set of modeling languages and the underlying software frame-
work can be applied to a wide range of different domains in a pragmatic way
that lets the modeler choose quite freely, which abstraction level to use for
particular aspects of the system. At the same time, the SALMA approach is
grounded on a solid logical foundation that allows precise reasoning about the
mechanisms of the modeled system. A first high-level overview of how this
works is presented in he next section.

1.1 An Overview of the SALMA Approach

The SALMA (Simulation and Analysis of Logic-Based Multi-Agent Systems)
approach that is presented in this thesis attempts to be a pragmatic and flexible
solution for simulation and statistical model checking of multi-agent systems.
One of its core goals is to provide the modeler with as much freedom as possible
in choosing the right level of detail for describing both the system behavior and
the properties that should be used for analysis. On the one hand, this implies
that it should be possible to add and change details to the system model with
preferably little effort, and without the model getting overloaded and hard to
comprehend. As mentioned in the last section, rule-based modeling languages
are attractive in this regard as they allow treating different effects within the
system separately. On the other hand, the used property specification language
should be able to access any detail of the system model as directly as possible
in order to make requirement violations traceable and to facilitate keeping the
requirements up-to-date with the evolving model.

The approach that SALMA takes to achieve this high cohesion between
system model and requirements model is to use first-order logic (FOL) as a
common foundation for both. First of all, this means that a first-order ver-
sion of linear temporal logic (LTL) is used as the basis for SALMA’s property
specification language (SALMA-PSL), which, as pointed out before, allows for

1.1. AN OVERVIEW OF THE SALMA APPROACH 7

a more direct representation of properties than traditional propositional LTL.
Additionally, the core of the system model (the domain model) itself is based
on the situation calculus[Rei01], a well-established methodology for model-
ing dynamic systems with first-order logic. Both the core system model and
property evaluation subsystem are implemented in Prolog and allow the mod-
eler to leverage the full facilities of logic programming. The domain model,
i.e. the general mechanisms of the simulated world, is described by means
of situation calculus axioms that are encoded in Prolog. Based on this ax-
iomatization, the modeler defines the behavior of agents by equipping them
with one or multiple processes that can be defined using SALMA’s procedural
process definition language (SALMA-PDL). Realized as an internal domain
specific language (DSL) [Fow10] within Python, the SALMA-PDL offers the
usual control flow constructs like loops and conditionals. At the same time, it
provides means to access the underlying situation calculus model, in particular
by performing actions, querying the system state, and observing events.

With the models for the domain and the agents’ behavior in place, a con-
crete simulation experiment is configured by defining initial values for all sys-
tem variables and probability distributions, for instance for the occurrence of
events. This simulation experiment is then used as input for SALMA’s Python-
based simulation engine, which interprets the agent processes, chooses which
events should occur at each time step and updates the system model state
according to the situation calculus axioms of the domain model.

This structure of the SALMA approach is outlined in Figure 1.3.

Domain Model
(Situation Calculus, Prolog)

Agent Behavior Model
(Python DSL)

Probability Distributions
(Python DSL)

Simulation Runs

Properties
(Bounded FO-LTL)

Invariants, Goals

Bernoulli Sample
of Verdicts

Statistical Model Checking

Simulation

Figure 1.3: Overview of the SALMA approach.

For each simulation run, the engine eventually decides whether it satisfies
the properties which the modeler has specified using the SALMA-PSL as de-
scribed above. The set of resulting verdicts yields a Bernoulli sample that is
used to test the statistical hypothesis H0 : p ≥ P0 which asserts that the prob-
ability of a success (a run fulfills the property) is at least as high as a given
lower bound. This way of approximative assertion of properties defined by
temporal logics is generally called statistical model checking [LDB10], which,

8 CHAPTER 1. INTRODUCTION

as mentioned in the beginning, provides a pragmatic and scalable alternative
to exact model checking techniques.

However, it is clear that the logic-based declarative approach of SALMA
comes at the price of much higher computational costs than in other solutions
for simulation and statistical model checking that take a more low-level per-
spective or are based on more restricted models. Of course, nowadays long
simulation durations are much less problematic than they used to be since
cloud computing has made provisioning large clusters with dozens or even
hundreds of nodes both easy and affordable. This allows to run large numbers
of simulations in parallel and thus getting meaningful results also for complex
experiments in acceptable time. However, SALMA is still certainly not a suit-
able solution for simulating systems with thousands of agents, which is done,
for instance, in large-scale traffic simulations.

Instead, SALMA’s main focus is on describing heterogeneous models with
complex agent behavior from a microscopic perspective. In these cases, it
is typically not necessary to simulate that many agents but rather a set of
representatives that exhibit all relevant types of behavior profiles. It will be
demonstrated throughout the thesis that for such settings, SALMA shows
its strengths by allowing the modeler to freely choose adequate levels of detail
while still maintaining a comprehensible and clear structure of both the system
and the requirements model.

1.2 Main Contributions of the Thesis

This thesis presents, to the author’s knowledge, the first consequent attempt
to use the situation calculus in discrete event simulation and statistical model
checking. Additionally, the author is not aware of any other statistical model
checking tool that supports first-order LTL to the same extend as SALMA
does. The following chapters will show that this increase of expressiveness is
very helpful in creating clear and comprehensible models, especially when the
modeled systems involve more complex interactions between agents.

The SALMA framework has been implemented as part of this thesis and is
publicly accessible as an open source project at www.salmatoolkit.org. By
its architecture, which was sketched in Section 1.1, it combines the advantages
of a declarative rule-based logical model with the flexibility of the general
purpose language Python with its rich ecosystem of libraries. The power of this
approach will become visible in several examples that are presented throughout
this thesis.

For the evaluation of bounded first-order LTL formulas, a novel algorithm
has been developed that uses sequences of temporal intervals to store eval-
uation states of formula instances, i.e. a history of the verdicts for partial
formulas that have been found during past simulation steps and a schedule
for undecided formula instances. This allows using efficient interval opera-

www.salmatoolkit.org

1.3. OVERVIEW OF THE THESIS 9

tions for simultaneously querying and updating multiple evaluation states at
once, which can significantly improve the performance of formula evaluation
for longer simulation runs. The algorithm and its data structures are described
in Chapter 5.

An extension for SALMA has been created that allows modeling informa-
tion transfer between agents or between agents and their environment, i.e.
inter-agent communication and sensing. For that, a detailed generic axiom-
atization of information transfer processes in the situation calculus has been
created which explicitly incorporates sources of uncertainty like delays and
transmission errors. This is a core element of SALMA’s support for artificial
multi-agent systems that are embedded in the physical world – referred to
lately as cyber-physical systems.

The core SALMA approach itself has been presented in [Kro14a] and
[Kro14b]. The description of the modeling approach for information trans-
fer processes in Chapter 6 has mainly been adapted from [KB16] which is the
result of a collaboration with Tomáš Bureš during his stay at the PST chair.

1.3 Overview of the Thesis

After the introduction, Chapter 2 will shortly introduce the most important
concepts that are used later in this thesis. In particular, it will give a brief
overview of the situation calculus, temporal logics, and various forms of model
checking, including statistical model checking.

Then, in Chapter 3, SALMA is presented as a self-contained approach for
discrete event simulation. This includes a detailed description of syntax and
semantics of SALMA’s situation-calculus based domain specification language,
of the agent process definition language (SALMA-APDL), and of the SALMA
framework, which is used, among other things, to specify probability distri-
butions and configure simulation experiments. How all these components fit
together is shown by means of a simple fictitious example in which strategies
of delivery robots are evaluated.

Chapter 4 describes how SALMA can be used for statistical model checking.
The property specification language (SALMA-PSL) is described in detail and it
is shown how the SALMA framework can be used to run repeated simulations
with associated properties in order to estimate satisfaction probabilities or
conduct hypothesis tests. SALMA’s statistical model checking approach is
then validated by means of an example.

In Chapter 5, SALMA’s property evaluation mechanism is examined. In
particular, it is explained how the evaluation module uses sequences of tem-
poral intervals and a special data structure, the evaluation goal schedule, to
increase the efficiency of formula evaluation. The main issue that has to be
solved by these algorithms is how to keep track of (partial) formulas for which
a conclusive verdict can’t be made immediately due to temporal operators.

10 CHAPTER 1. INTRODUCTION

After Chapters 3 to 5 have introduced all basic components of the SALMA
approach, Chapter 6 presents how they can be applied to model and simulate
cyber-physical multi-agent systems in which the stochastic nature of sensing
and communication processes have to be considered explicitly. In particular,
a generic formalization of information transfer processes in the situation cal-
culus is described together with an extension of the SALMA languages that
make these concepts usable in the model. The approach is demonstrated with
the help of the parking lot assignment example that was mentioned in the
beginning.

The thesis is concluded in Chapter 7 with a summary and a discussion
about remaining open questions and possible future research directions.

Chapter 2

Background

This chapter introduces the core concepts on which the SALMA approach,
that is presented in this thesis, is based upon. In particular, these are discrete
event simulation, statistical model checking, and the situation calculus. Each
of these topics are research fields of their own that have produced a large body
of literature, which in the case of discrete event simulation dates back more
than 40 years. It is therefore clear that any attempt to present a encyclopedic
overview of these fields would go way beyond the scope of this thesis. Instead,
only key aspects are covered that are necessary for understanding the following
chapters. Besides that, references to introductory and overview literature will
be given that can be used to acquire more profound information on each of
the mentioned topics.

2.1 Multi-Agent Systems

As indicated in the introduction, the term multi-agent system (MAS) is used by
different communities to describe systems with sometimes completely different
characteristics. In fact, there are two generally different intentions for modeling
and analyzing multi-agent systems: on the one hand, multi-agent systems
that exist in nature, like swarms of animals or groups of interacting people
in a society, are modeled and simulated by scientists in order to understand
the mechanisms of these systems. On the other hand, when artificial multi-
agent systems are developed, models and simulations are used to anticipate the
system’s behavior before it is deployed. This thesis focuses on such artificial
multi-agent systems, although most of the presented approaches could also be
applied for models and simulations of natural systems.

Comprehensive introductions to the wide field of multi-agent systems can
be found, for instance, in [Woo09] and [SLB08]. Topics that are typically ad-
dressed within the MAS community include algorithms for coordination and
collaboration, communication protocols, modeling of knowledge and intention,

11

12 CHAPTER 2. BACKGROUND

and game-theoretic analysis and design of inter-agent interactions. As men-
tioned before, the concept of multi-agent systems has not only been used in
science but also as a paradigm for developing distributed computer systems.
Arguably the most widely used technology in this area is the JAVA Agent
Development Framework (JADE) [BPR99, BCR+16], which has been actively
developed since at least 1999 and has been used for many different real-world
applications.

An obvious question at this point is what actually distinguishes a multi-
agent system from an “ordinary” distributed system. In [Woo09, Chap. 1.3],
Michael Wooldridge answers this with two main points:

1. The structure of multi-agent systems, with regard to communication and
interaction, is mostly not predetermined a-priory but formed at runtime
by more or less autonomous coordination processes.

2. Agents are self-interested in the sense that they do not necessarily col-
laborate to achieve a shared goal like the active entities of a ordinary
distributed system but instead act according to their own goals (or the
goals of their owner), which may well be conflicting.

While dynamic distributed system structures have become an ubiquitous
phenomenon in the age of cloud computing and virtualization, the fact that
agents can have different owners introduce many additional challenges for the
development of multi-agent systems. The SALMA approach that is presented
in this thesis does not enforce any strict requirements on agents and the level of
autonomy or independence. An agent is merely understood as an active entity,
i.e. something that can actively perform tasks and therefore differs from other
passive entities that can only react to events or requests. In fact, none of the
typical topics from the area of multi-agent systems are covered in depth in this
thesis. However, Chapter 6 will demonstrate how aspects like communication
and coordination can be addressed within the context of SALMA.

2.2 The Situation Calculus

The situation calculus [LPR98, Rei01] is a first order logic (FOL) language
for the description of dynamic systems whose main ingredients are actions
and fluents, which are variables whose values depend on the system’s situa-
tion. Actions are encoded in the natural way by FOL functions, and fluents
by functions or predicates that take a situation argument as an additional last
formal parameter. A situation itself is represented as a sequence of actions, en-
coded as a recursive FOL term with the special function do(Action, Situation).
Accordingly, an action sequence (a1, . . . , an) is encoded as do(an, do(an−1,
do(. . . , do(a1, S0) . . .)). Here, S0 denotes the initial situation, i.e. the refer-
ence state that is seen as the start of the analyzed period. In order to express

2.2. THE SITUATION CALCULUS 13

the effects that an action has on the world state, the modeler specifies for each
fluent exactly one successor state axiom (SSA), e.g.

broken(x, do(a, s)) ≡(a = crash ∧ holding(x, s))∨ (2.1)
(a 6= repair(x) ∧ broken(x, s)).

The sentence above describes when an item x is broken in the situation do(a, s),
which is reached when the system is in situation s and some agent performs the
action a. It says that the item will be broken after a if either a denotes a crash
of the agent and the agent is currently holding the item, or a is not a repair
action and x has been broken before. In this way, each SSA exactly defines
the value of a fluent at the situation that results from performing any action,
i.e. it captures all ways a fluent’s value might change. In fact, it is shown
in [Rei01] that successor state axioms like the one above provide a solution
to the so called frame problem [Rei01, sec. 3.1.4], which basically means that
they allow an efficient specification not only of what is changed by an action
but also of what is not affected. What is left to specify is the so-called initial
database, i.e. a collection of sentences that describe the state of the world at
the initial situation S0, such as

holding(Vase, S0) (2.2)
¬broken(Vase, S0) (2.3)

Successor state axioms are complemented by action precondition axioms
that define when the execution of an action instance is possible. In the spirit
of the simple example from above, a typical precondition for a pickUp action
would be that the agent is not already holding the item and the item is not
too heavy:

Poss(pickUp(x), s) ≡ ¬holding(x, s) ∧ weight(x) ≤ 50kg (2.4)

Using just the ingredients mentioned above, it is possible to model a system
in a way so that one can use well-established logical methods to reason about
it. One of the most common tasks in the context of the situation calculus is
solving the projection problem, which means checking whether a given formula
G(s) holds in the situation that results from performing a given action sequence
starting from the initial situation S0. The basic computational mechanism that
is used there is regression [Rei01, Sec. 4.5]. In short, the application of the
regression operator on a formula recursively replaces fluents by the right-hand
side of their successor state axioms. This eventually yields a sentence that only
mentions the initial situation S0 and therefore can be treated like any FOL
sentence. For instance, applying the regression operator (commonly denoted

14 CHAPTER 2. BACKGROUND

as R) on the situation do(drop(Rob1), S0) given the SSA from above produces
the following result:

R
[
broken(Vase, do(crash, S0)))

]
(2.5)

(2.1)
≡
[
(a = crash ∧ holding(x, s)

∨ (a 6= repair(x) ∧ broken(x, s))
]
(x 7→Vase,a7→crash,s7→S0)

≡
[
holding(Vase, S0) ∨ broken(Vase, S0))

(2.2),(2.3)
≡ >

In spite of its elegance, this schema is not well-suited for the purpose of
simulating long-running systems. The problem is that the evaluation would
gain complexity for each step because with each step, a longer history has to
be processed. To avoid this, the SALMA simulation engine uses an alterna-
tive mechanism that is called progression (see [LR97] and [Rei01, Chap. 9]).
Progressing an initial database according to a performed action means to con-
struct a new initial database that models the state of the world after that
action was performed. In the general case this construction can become quite
complicated and it is even shown in [Rei01] that there are models for which the
initial database requires second-order logic to express progression. However,
for the type of model that will be used throughout this thesis, i.e. models for
discrete event simulation, the initial database consists only of sentences like
(2.2) and (2.3). For these cases, progression simply amounts to performing a
one-step regression and substituting with sentences from the initial database
as it was done above in (2.5).

2.2.1 Quantitative Time and Clocks

Through the structure of the situation terms (do()), there is obviously an
inherent qualitative temporal relation that describes whether a situation (i.e.
state) is reached by the system before or after another situation. However,
for the kind of simulation and statistical model checking supported by the
SALMA approach, time has to be represented explicitly in a quantitative way.
A detailed discussion of the treatment of time in the situation calculus can be
found in [Rei01, chap. 7], where the occurrence time of each action is added
as an additional real-valued temporal argument, e.g. explode(bomb, 12.32). In
this modeling style, time becomes an integral part of the situation term and
can therefore be elegantly integrated in regression.

However, SALMA as a discrete event simulation (DES) approach uses a
discrete time base instead of a continuous time model (see Section 2.3 be-
low). This allows using a much simpler representation of time than the one
mentioned above. In fact, time is modeled as a regular integer fluent time
that holds the world time at the current simulation step. This topic will be
examined further in Section 3.2.6.

2.2. THE SITUATION CALCULUS 15

2.2.2 Processes and Concurrency

When a more realistic description of the world is desired, it is necessary to
distinguish between instantaneous actions and processes or activities with a
certain duration. In the situation calculus this can be achieved easily by mod-
eling activities by fluents that indicate their state and. The state transitions
are triggered by actions, which on their part are assumed to be timeless. For
instance, the following successor state axiom describes an activity moving that
a robot starts and stops performing with the start and stop actions, respec-
tively:

moving(r, do(a, s)) ≡ a = start(r) ∨ (moving(r, s) ∧ a 6= stop(r))

Obviously, there can be multiple activities (or processes) ongoing simul-
taneously, so this allows expressing concurrency to some degree. In order to
handle simultaneous actions by multiple agents, the SALMA simulation engine
uses an interleaving concurrency model that is established by gathering exe-
cuted actions from all agents in each simulation step and then compiling them
into a sequence with randomized order (cf. Section 3.6). This model is usually
sufficient for the kind of analyses this thesis and the SALMA approach are
interested in. As Reiter explains in (see [Rei01, sec. 7.2.2]), other models of
concurrency are needed mainly when a very detailed physical view is desired.

2.2.3 Stochastic and Exogenous Actions

Another step towards realism in the simulation model is to consider the inher-
ent uncertainty that is imposed by the agents’ environment. First of all, there
might be exogenous actions that are not initiated by the agent but by nature or
an external actor (see [Rei01, chap. 8]) and hence occur in a stochastic fashion.
Additionally, actions performed by the agents can have stochastic outcomes,
e.g. imposed by a failure (see [Rei01, chap.12]). Each of these additional
influences can easily be integrated in the simulation control loop. When a
stochastic action is executed (exogenous or intentional), the simulation engine
compiles a deterministic action by stochastically selecting one of the declared
possible outcomes. Similarly, the simulation engine can decide in every step to
execute any exogenous actions (aka events) whose preconditions are fulfilled.
For both stochastic and exogenous actions, the modeler has to specify proba-
bility distributions that are used by the simulation to choose between different
outcomes of a stochastic action or to determine the next occurrence time of
an event. In Chapter3 it will be shown how the specification of probability
distributions is done in the SALMA approach and how the specific choices
made at that stage strongly influence the characteristics of the model.

16 CHAPTER 2. BACKGROUND

2.2.4 GoLog

The previous sections showed that the situation calculus is well suited for de-
scribing how agents interact with their environment. However, although it is
possible to express action sequences in situation terms, this is not sufficient for
modeling the behavior of an agent. For that, a language is needed that provides
control structures for describing the agents decisions and strategies. Accord-
ingly, in [L+97], a programming language called GOLOG is introduced that
integrates with the situation calculus and allows defining procedures that may
contain typical ingredients like loops and IF-THEN-ELSE blocks. GOLOG ex-
tends the typical structure of a procedural language with principles known from
logic programming in order to achieve a higher level of abstraction. In par-
ticular, GOLOG adds operators that allow modeling nondeterministic choices
for both actions and entity values. These choices are made at runtime by
an automatic theorem prover (usually Prolog) that searches for a solution to
constraints given in the program. A particularly concise example taken from
[L+97] is shown below:

proc clean (∀x) [block(x) ⊃ in(x,Box)]? |
(πx)[(∀y)¬on(y, x)? ; put(x,Box)]; clean endProc

The procedure clean is meant to describe a part of the behavior of an agent,
e.g. a robot, in a simplified scenario that is usually referred to as a blocks world.
In this domain, which is often used as example in the context of automatic
planning (see [ST01]), one or several robots have to move some blocks around
in order to arrange them in some specified way. Here, the robot is given the
simple task to move all blocks into a box, using the situation calculus action
put(). However, the robot cannot move a block x if another one is located
on top of it, which is reflected by the fluent on(y, x). The recursive procedure
clean first uses GoLog’s ? operator to test whether all blocks are in the box yet,
in which case the recursion is stopped. This works due to the nondeterministic
choice operator | that can be understood to be selecting one of those control
flow branches at random that leads to a successful execution. In this case, the
choice is determined by a test of the fluent expression on(y, x) using GoLog’s
? operator. While the variable y is bound by an universal quantifier, the value
for x itself is chosen nondeterministically with the π operator.

In the original description of GoLog in [L+97] and [Rei01], the language
was introduced together with an implementation in Prolog that “executes”
a given GoLog program by first expanding it into a logical formula and then
searching for a valid situation, i.e. an action sequence that is a solution to that
formula. This implies that any nondeterministic choices that are expressed in
the program by means of the π or | operator mark decision points to which
the search algorithm can backtrack. When it is used in this way, GoLog can
be used for planning or for proving that certain states are reachable or not.

2.3. DISCRETE EVENT SIMULATION 17

Its main advantage in comparison to purely declarative classical approaches is
that it allows the modeler to control the search in a much more fine-grained
way and to add explicit knowledge about the agent’s expected behavior.

Several extensions to the original version of GoLog have been introduced,
e.g. ConGolog for modeling concurrency [DGLL00] or DTGolog [BRS+00] for
the integration of decision-theoretic planning on Markov Decision Processes.
However, more importantly from the perspective of this thesis is IndiGolog
[GLLS09], which adds support for sensing and reacting to external events at
runtime. This leads to an online execution model in contrast to the origi-
nal one, which is offline in the sense that it always performs the full search
for a valid action sequence in an isolated phase before the acquired plan is
executed. With its online execution strategy, IndiGolog would actually be a
viable solution for implementing a simulation engine like the one that was im-
plemented as part of the SALMA approach that is presented in this thesis.
However, a different architecture was chosen for SALMA in which the core
of the simulation engine was implemented by means of the general-purpose
programming language Python that . As it will be shown in Chapter 3, this
choice was made mainly due to pragmatic reasons, in particular because it al-
lows exploiting Python’s rich ecosystem of scientific libraries and frameworks.
On the other hand, SALMA’s simulation engine does not support GoLog’s
high-level constructs for nondeterminism that were described above, although
they account for a main part of GoLog’s strengths. This decision was made
deliberately since the high level of abstraction can be problematic for the type
of simulations for which SALMA is mainly intended. In fact, SALMA in con-
trast prefers a more fine-grained modeling perspective that makes stochastic
and timing-based effects along the execution of agent programs explicit. This
will probably become most obvious in Chapter 6 when SALMA’s application
to simulating and analyzing information transfer processes is cyber-physical
systems is discussed.

2.3 Discrete Event Simulation

In its core, the SALMA approach provides a solution for defining and perform-
ing discrete event simulations (DES), a branch of computer-based simulation
techniques that are widely used in many different application areas like manu-
facturing, health care, or sociology, to name only a few. The key characteristic
of DES methods is that the time is regarded as a series of discrete steps and
the system state (i.e. the set of variables that describe the system) is supposed
to change only at certain time points [BCINN04]. This is different from simu-
lation approaches for continuous systems that mostly use differential equations
for defining how the state variables can evolve.

A well renowned introduction to the topic can be found in [BCINN04].
There, the authors discuss a widely used general way to characterize simulation

18 CHAPTER 2. BACKGROUND

approaches according to which one of three defined world-views they inhibit:
the event-scheduling world view, the process-interaction world view, and the
activity-scanning world-view [BCINN04, Sec. 3.1.2].

Basically, in the event-scheduling world view, the model directly describes
the effect of events and rules for how new events are created and scheduled.
it uses an event schedule containing all future events and visits only the time
points in which events occur. In this approach, the occurrence time of an
event is determined as soon as all necessary information are available. At that
point, the duration until the event, i.e. the time advance, is either calculated
directly for deterministic event types or sampled from a probability distribution
that models the event source. A similar scheduling structure is also typically
used in the process-oriented view, which differs mainly in that it sets the
modeling focus on the interaction and dependencies between processes and
shared resources. In contrast, simulations based on activity scanning stop at
every time step to check for rules that can be applied according to the current
world state in order to update the world state.

Typical examples for the use of the event-oriented and process-oriented
view include queuing systems that are often used, among others, to model
production or logistics processes, as demonstrated in [BCINN04]. For such
systems that are mostly modeled with a relatively high degree of abstraction,
it is obvious that the event scheduling strategy can be much more efficient than
activity scanning in many cases. However, there are others in which it is either
difficult to define rules for the calculation of event occurrence times in advance,
or the computation is not practically feasible. In particular, it is generally hard
to schedule an event in advance when its triggering condition depends on the
state of time-dependent variables. In this case, the distribution of the time
advance can be too complex to allow direct sampling. As a consequence of
the trade-off described above, hybrid approaches have evolved that attempt to
combine the advantages from multiple world-views. In particular, [BCINN04]
mentions the so-called three-phase approach [Pid95], a combination of event
scheduling and activity scanning.

2.4 Temporal Logics and Model Checking

Although the situation calculus technically provides means to describe arbi-
trary temporal relations between situations, actions, and events, more complex
scenarios can become rather cumbersome to express. Instead, temporal logics
are mostly used for characterizing finite or infinite traces of actions or states.
Many different variants of temporal logics have been specified and used in the
literature throughout the years. The most famous and widely used among
them are without a doubt Linear-time Temporal Logic (LTL) [Pnu77a], in-
troduced by A. Pnueli in 1977, and Computation Tree Logic (CTL) [CE82],
which was defined by E.Clarke and E. A. Emerson in the 1980s. Both LTL

2.4. TEMPORAL LOGICS AND MODEL CHECKING 19

and CTL extend classical propositional logic with temporal operators that al-
low expressing properties of execution traces. A typical example for a formula
in LTL taken from [HR04] is

G(requested =⇒ F acknowledged) (2.6)

The temporal operators F and G used in this sentence express that the
partial formula in their scope is true at some point in the future (F for finally),
or at all time points (G for generally). Here, the property could express an
invariant which requires that all requests are eventually acknowledged. In the
literature, G and F are often denoted as � and ♦, respectively. Thus, the
previous formula can also be written as follows:

�(requested =⇒ ♦ acknowledged) (2.7)

CTL extends the syntax of LTL with the operators E (exists) and A (all)
that express existential and universal quantification over paths. With these
operators, the example from above could be extended:

AG(requested =⇒ EF acknowledged) (2.8)

Now the formula expresses that it holds for all traces (A) that, for all states
(G), requested implies that there exists a trace (E) from this state on which
eventually (finally, F) acknowledged holds. Hence, the E operator allows in
this case to express a weaker requirement than the formula before.

In CTL, the use of temporal operators is restricted in that every path oper-
ator (i.e. G, F , and some others not mentioned here) have to appear together
with either E or A like above. This means that not every LTL property can
be expressed in CTL, i.e. neither LTL nor CTL can be regarded as more ex-
pressive than the other. For instance, the following property can be expressed
in LTL but not in CTL:

GF requested =⇒ F acknowledged (2.9)

This formula requires that if a request arrives infinitely often (GF), then
it is eventually acknowledged (cf. [HR04, Chap 3.5]). Formulas with simi-
lar structure are typically used to express fairness constraints, which play an
important role in specifying concurrent systems. On the other hand, the abil-
ity to use existential quantification over paths is often necessary to capture
the precise meaning of intended requirements. Therefore, many approaches
and verification tools support both LTL and CTL, possibly along with various
extensions.

Temporal logics have been used in many contexts where logical formalisms
are typically used, for instance in requirements engineering (e.g. [DvLF93])
or planning (e.g. [BK00]). However, they are probably most well known
for their role in automatic model checking approaches that allow verifying

20 CHAPTER 2. BACKGROUND

whether a system model, specified in some formal graphical or textual modeling
language, conforms to a temporal logics formula. The model checker basically
explores the state space until it can either conclude that all possible traces
the system can take fulfill the formula or it finds a counter-example, i.e. a
trace in which the formula is violated. This approach is particularly useful for
concurrent systems that are inherently hard to analyze by testing or manual
inspection. After several decades of research in the field, there are now many
well-engineered and mature tools, e.g. SPIN [Hol97] or NuSMV [CCG02] that
have been applied successfully on various use cases from academia and industry.
In the case of SPIN, one feature that makes the use of this tool particularly
appealing for practitioners is its ability to extract models from C source code
[Hol00], which allows working with models at a low level of abstraction even
for larger programs.

While classical solutions like SPIN have been applied successfully in many
different settings - ranging from the verification of control algorithms for a
flood control system [Kar96] to the analysis of algorithms used in spacecraft
(e.g. [HLP01]) - there are scenarios that demand extensions to the classical
model checking approaches. For instance, real-time systems, i.e. systems in
which timing effects have to be considered, can be modeled by means of timed
automata[AD94], i.e. automata whose states and edges can be annotated
with clock constraints that specify time windows for the occurrence of state
transitions. One particularly successful tool that is based upon the timed au-
tomata formalism is UPPAAL [LPY95], which provides an integrated graphical
user interface that can be used for modeling, simulating, and model checking
real-time systems. UPPAAL has been used in a large number of studies and
projects with both academic and commercial background, of which some are
referenced on the UPPAAL website (www.uppaal.org). Since the classical
timed automata formalism as presented in [AD94] is not expressive enough to
model complex scenarios in a concise way, UPPAAL adds several extensions.
First, an UPPAAL model can be composed out of multiple automata that are
synchronized via send and receive primitives over channels. Additionally, a
textual language with a C-like syntax and data structures like arrays can be
used to model more complex transition effects.

A core aspect of all mentioned model checking approaches in general is
that they allow models to comprise nondeterministic aspects. For instance,
a state in the model can have multiple outgoing transitions, i.e. there are
multiple possibilities which state is reached next. Similarly, a constraint in a
timed automaton model in UPPAAL usually does not specify an exact delay
but an interval. In both cases, the model checking tool will effectively con-
sider all possibilities in order to answer queries of the kind “Is it possible that
something happens?” or “Is it guaranteed that something will eventually hap-
pen?”, with optional restrictions to time limits in the case of UPPAAL. For
many scenarios, however, it is important not only to know whether something
may or must happen but also with which probability. Such questions can be

www.uppaal.org

2.4. TEMPORAL LOGICS AND MODEL CHECKING 21

answered through stochastic model checking. A good introduction to this field
can be found in [KN07] where the authors explain both theoretical founda-
tions of the basic principles and algorithms but also talk about the practical
use of their tool PRISM [HKNP06], which is at the writing of this thesis one
of the most established stochastic model checking tools. The first basic step
in stochastic model checking is to augment the system model with probability
distributions for state transitions. Then, an algorithm is needed that allows
calculating the probability that a given path through the state space is taken
by the system. Usually, stochastic model checking approaches work on models
for which exact efficient algorithms are known, such as discrete time Markov
chains (DTMCs), continuous time Markov chains (CTMCs) or Markov deci-
sion processes (MDPs). With that, it is possible to construct model-checking
algorithms along the lines of the basic principles used for the classical deter-
ministic models (see [KN07]). In fact, PRISM uses a variant of CTL, called
probabilistic CTL (PCTL). PCTL replaces the path quantifiers E and A of
CTL with probabilistic operators that allow stating upper or lower bounds for
the probability with which a sub-path formula is fulfilled for traces beginning in
the current state. Thus, the CTL example in (2.8), can be transformed to the
following PCTL formula that expresses a relaxed version of the requirement:

P≥0.9[�(requested =⇒ P≥0.75[♦ acknowledged])] (2.10)

Using an intuitive interpretation, the formula in(2.10) requires that in at
least 90% of all executions, each request has a chance of 75% to be acknowl-
edged eventually.

Although huge achievements have been made in improving the efficiency
of model checking tools during the last decades, they still inherently suffer
from the so-called state explosion problem, which describes the fact that the
number of states in a system model increases exponentially in multiple factors,
including the numbers of variables, processes, or nodes in a distributed system
(cf. [BK08, Chap. 2.3]). Several approaches for mitigating this problem have
been suggested, such as abstraction techniques like the one proposed by Clarke
in [CGL94], partial order reduction approaches (see [GvLH+96]), symbolic
model checking using binary decision diagrams (BDDs) [BCM92], bounded
model checking using SAT solvers [CBRZ01], or distributed model checking
like the swarm verification extension of the SPIN model checker [HJG08]. All
of these methods have in common that they are committed to solve the model
checking problem in an exact manner, which means that when the algorithm
terminates without finding a counter-example, this is interpreted as proof that
the checked property is fulfilled by the model. On the other hand, there
also exist approximative approaches that deliberately give up this claim of
preciseness. Since this idea is fundamental to the SALMA approach presented
in this thesis, it is discussed separately in the next section.

22 CHAPTER 2. BACKGROUND

2.5 Statistical Model Checking

In spite of the endeavors mentioned above to reduce the size of the state space,
there are domains where the state space is still too large to make exact model
checking practicable. One possible solution in these cases is to use a statistical
approximation that deliberately risks making errors within certain probabilis-
tic bounds. For instance, in [GS05], the authors propose an approach called
Monte Carlo Model Checking that is based on the original automata-based
solution for LTL model checking that was introduced in [VW86]. However,
instead of constructing an automaton for the complete system as in [VW86],
the algorithm performs random walks through a state space that is constructed
on-the-fly. During this traversal, accepting traces are detected and they form
a Bernoulli sample that is finally used to assert the checked property with a
configurable bound for the error probability for missing a property violation.

While the approach described in [GS05] focuses on mitigating the state-
space explosion problem for classical reactive system models and LTL, the use
of Monte Carlo methods is much more appealing for stochastic model checking.
On the one hand, this is because the state space explosion problem is particu-
larly serious for stochastic model checking since existing exact algorithms are
computationally expensive. Additionally, all these exact algorithms are lim-
ited to certain types of stochastic models, i.e. there are more general models
of stochastic systems like generalized semi-Markov processes (GSMPs) [Gly89]
for which no exact solutions exist (cf. [YS02, p.1]). This lead to significant
research interest for applying Monte Carlo methods to the verification of many
different types of systems and the term statistical model checking (SMC) was
established. An overview of different approaches and research challenges in
this field can be found in [LDB10].

The basic general idea of statistical model checking is to conduct discrete
event simulations and evaluate the simulation traces, i.e. the observed se-
quences of states and actions or events, against properties that are typically
formulated by means of some temporal logic. The statistical model checker
decides for each inspected simulation run, whether or not a given property φ
holds. If the simulated model contains factors of uncertainty, like actions with
uncertain outcome or stochastic events, then a property φ will be fulfilled in
a given run σ (i.e. σ |= φ) with some probability p. Consequently, when N
simulation runs σi are performed, then the number of successful runs follows
a binomial distribution B(N, p).

Based on this assumption, it is possible to use common statistical methods
to either estimate the probability p, which is sometimes referred to as the
quantitative statistical model checking problem, or to perform hypothesis tests
like H0 : p ≥ pmin, H1 : p < pmin, aka solving the qualitative statistical model
checking problem.

Several approaches to statistical model checking have been proposed, which
differ with respect to the property specification languages they use, their eval-

2.5. STATISTICAL MODEL CHECKING 23

uation algorithms, and the statistical methods they apply. In particular, the
tools Ymer [You05b] and VESTA [SVA05b] have been recognized widely in
the community and inspired further research. Additionally, both PRISM and
UPPAAL, which were mentioned in the last section, have meanwhile been ex-
tended with the ability to apply statistical model checking. For PRISM, this
adds support for much more complex models than those that can be processed
by PRISM’s exact numerical algorithms.

Several important aspects of statistical model checking will be mentioned
throughout the thesis and shortly discussed in the context of the relevant
component of the SALMA approach. However, before getting started, it makes
sense to consider one particular topic that immediately suggests itself: deciding
how many simulations are “enough”? This is the topic of the next section.

2.5.1 Sample Sizes and Sequential Hypothesis Tests

One of the most important questions that arise when any kind of statistical
experiments are performed is how many samples have to be taken in order to
achieve a desired level of accuracy. For statistical model checking especially,
choosing a minimal sample size can be crucial since producing a sample, i.e.
performing a simulation run, can be very expensive for more complex models.
Since this issue is found in all domains where statistical inferences are made,
many solutions for finding optimal sampling plans have been developed. In his
PhD thesis [You05a], Younes gives a short overview of these methods, some
of which date back to the 1940s. He also introduces an algorithm that is able
to find an optimal pair (c, n) of a predefined constant c and a fixed sample
length n for a hypothesis test that accepts an hypothesis if more than c of n
simulation runs are successful (see [You05a, ch. 2.2.2]).

Another general approach that is well suited for qualitative statistical
model checking, i.e. for testing hypotheses about the probability of a model
fulfilling a property, are so-called sequential hypothesis tests. These tests do
not require selecting a fixed sample size beforehand but instead are able to
determine “on the fly” during a series of samples when the gathered data is
sufficient to accept or reject an hypothesis with the demanded error bounds.
One of the earliest, but nevertheless still widely used approaches for sequential
hypothesis testing is the Sequential Probability Ration Test (SPRT) that was
introduced by A. Wald in 1945 [W+45].

Since the original description of the SPRT refers to the probability of a
defect, i.e. a property violation in SMC, rather a success, this perspective
is adopted here. This means that for qualitative SMC problems, the null
hypothesis H0 : p ≤ pmax is tested against H1 : p > pmax. The first main step
for using the SPRT is to define an indifference region given by two probabilities
p0 and p1 around pmax. During the test, the actual value of p is estimated by
the ratio of defects, and a test decision will only be considered an error if (a)
H0 is rejected and p ≤ p0 (type I error), or (b) H0 is accepted and p ≥ p1

24 CHAPTER 2. BACKGROUND

(type II error). Additionally, two parameters α and β have to be defined for
the maximum probability of type I and type II errors, respectively. Then, after
each simulation run, the following probability ratio is calculated:

p1m

p0m

=
pdm1 (1− p1)(m−dm)

pdm0 (1− p0)(m−dm)
(2.11)

Here, m is the total number of simulation runs so far, and dm is the number
of simulation runs with a property violation (defects). The nominator (p1m)
and denominator (p0m) actually denote the posterior probabilities for the cur-
rent number of defects, given that p = p1 or p = p0. It is shown in [W+45]
that the error bounds α and β are respected if the following test procedure is
used:

(A) Reject H0 if p1mp0m
≥ 1−β

α .

(B) Accept H0 if p1mp0m
≤ β

1−α .

(C) Run an additional simulation if β
1−α <

p1m
p0m

< 1−β
α .

It is obvious that this procedure can easily be integrated in any simulation
approach in which it is possible to iteratively run independent trials. In fact,
the SALMA simulation engine integrates a simple implementation of the basic
SPRT (see Chapter 4), although this could easily be replaced by any other
function that is able to detect when a given stopping criterion is met.

When the original SPRT procedure is used, the parameters α, β, p0, and p1

have to be configured according to problem-specific considerations. The tool
can then automatically perform the necessary number of simulations until it
eventually finds a conclusive result within the specified statistical error bounds.
As shown [W+45], the expected number of required simulations Nreq depends
on the values chosen for the parameters p0, p1, α, and β, but also on the actual
probability p. If p is very close to the center of the indifference region [p0, p1],
then it is expected that the highest number of simulation runs will be required
to find a significant result. In these cases, the test could run for a long time
without a decision. This phenomenon is also demonstrated during the example
that is described in Section 4.3 of this thesis. The SALMA simulation engine
handles this kind of “livelock” situation simply by using a predefined time
limit after which the test is stopped and the user may change the parameters.
Additionally, a heuristic is described in [W+45] that could be used to stop the
sequential test at a certain point.

Chapter 3

Multi-Agent Simulation with
SALMA

This chapter discusses SALMA as a full-fledged approach for discrete event
simulation of multi-agent systems. It starts with an introduction of the two
languages that are used in SALMA to define the simulated system. The first
one is SALMA’s Domain Description Language (SALMA-DDL) that is inte-
grated in Prolog and provides means for defining the elements that describe
the system in the situation calculus. Second, there is SALMA’s Agent Process
Definition Language (SALMA-APDL), an internal domain specific language
(DSL) [Fow10] which is embedded in Python and allows defining behavior of
agents in a similar procedural style as in typical agent programming languages
like GoLog (see Section 2.2.4). How these languages and their underlying con-
cepts are used is demonstrated by means of a simple fictitious example from
the realm of multi-robot systems.

Once the domain has been axiomatized and the agent processes have been
defined, the SALMA simulation framework can be used to set up and per-
form a simulation experiment. Section 3.4 covers the essential design of this
framework and how it is used in all stages of the simulation experiment. Then,
after the first part of this chapter has introduced SALMA’s discrete event sim-
ulation approach from a more practical perspective, Section 3.6 presents an
operational semantics for the simulation algorithm in order to allow a precise
understanding of the involved concepts and mechanisms.

Remark: The basic concepts of the modeling languages that are presented
in this chapter have been introduced before in [Kro14a] and [Kro14b]. Addition-
ally, parts of the operational semantics have been presented already in [KB16]
as original work by the author of this thesis. However, all mentioned content
has been extended and improved significantly for this chapter.

25

26 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

3.1 A Simple Simulation Example: Delivery Robots

The example that will be used throughout this chapter to introduce SALMA’s
simulation capabilities is a fictional scenario from the realm of assembly au-
tomation in which multiple simple robots deliver items to workstations. As a
simplification, the physical world is modeled as a discrete two-dimensional grid
where stations have fixed locations and in each step a robot can move only
to one of its adjacent grid cells in the four main directions up, right, down,
and left. In order to pick up an item, a robot has to move to grid cell where
the item is located and grab it, using some grip mechanism that is not further
specified. After it has picked up an item, a robot moves to a workstation and
delivers the item as soon it has arrived at the station’s grid cell.

The decision to deliver an item to a workstation is not made by the robot
itself but by a coordinator agent, which is a computer system that is able to
communicate with both workstations and robots (via wireless transmission).
When the coordinator receives a request from a workstation, it is first stored in
a request queue that is processed periodically. For each request, the coordinator
selects a robot that has no current delivery assignment and an item that has
not yet been scheduled for delivery. This assignment is then sent to the robot as
a command message after which the robot immediately starts moving towards
the item’s location. To further simplify the model, it is assumed that the
robot knows all relevant positions, i.e. the grid coordinates of all items, of all
workstations, and of itself. Additionally, the example ignores the fact that the
journey of a robot could be blocked by an obstacle and supposes that robots
can move freely through the grid cells of workstations and items. However, a
robot can collide with another robot when both are in the same grid cell, in
which case both robots could break, i.e. stop working altogether, depending
on the intensity of the collision.

Figure 3.1 shows an overview of the described scenario. A common moti-
vation for conducting a simulation study in a case like this is to compare the
influence of different factors for the efficiency of the system. For instance, this
could be measured by the average rate of item deliveries or by the average time
it takes until a request from a workstation is fulfilled. The following sections
will use the delivery robots example to demonstrate the introduced concepts
and elements of the domain axiomatization and of the agent behavior definition
in SALMA. Section 3.5 puts all pieces from the previous sections together and
describes how the simulation is performed using the SALMA framework. Ad-
ditionally, the results of some concrete simulation experiments will be shown
and some options for analyzing them are discussed. In particular, the visual
inspection of the results will act as a means for validating the correctness of
both the model and SALMA’s simulation engine. The examples presented in
this chapter contain important parts of the delivery robots model but omit
others that are either more repetitive or too technical to fit into the structure
of this chapter. However, the example’s full source code can be found at the

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 27

request

task(item2, ws1)

ws1

rob2

item2

Figure 3.1: Overview of the delivery robot example.

SALMA website (www.salmatoolkit.org).

3.2 Axiomatization of System Domains

The first step in modeling a system in SALMA is to describe its domain, i.e.
the kinds of entities and agents that inhibit the system and the mechanism
and constraints that govern the possible interactions between them and with
their environment. As mentioned before, this is done by means of the situation
calculus that was shortly introduced in Section 2.2. There it was explained
that a situation calculus model consists of a set of axioms that define exactly
how actions and events influence the value of fluents. Although these axioms
can easily be defined in plain Prolog [Rei01, chap. 5], the SALMA-DDL ex-
tends the classical situation calculus with additional concepts that are used to
provide necessary information for the simulation and the property evaluation
algorithms. Most importantly, there are the following additions:

1. Constructs that are used to declare the signature of of fluents, actions,
and events in the system. They also add further information that is
used by the simulation algorithm, for instance to determine whether
an action is deterministic or stochastic. These constructs will appear
throughout the following sections and will be explained together with
the main concepts they refer to.

2. A sort system that is used to categorize entities and agents of the system.
The SALMA situation calculus variant requires all parameters of fluents

www.salmatoolkit.org

28 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

to be typed with finite sorts. This is necessary for simulation because it
makes the set of fluent instances finite and therefore allows the simulation
system to calculate the updates for all values through progression (see
Section 2.2). The sort system also supports inheritance relations that
help creating a more object-oriented view on the model. Section 3.2.1
provides more details.

3. Additional axioms are added that define not only when an event is pos-
sible, like the Poss-axiom of the classical situation calculus, but also
when it can be scheduled by the simulation algorithm to occur at a later
time. These axioms are first introduced in Section 3.2.5 and scheduling
in general will play an important role in this chapter.

4. A macro mechanism for defining successor state axioms (SSAs) by means
of so-called effect axioms that are unfolded automatically by the simu-
lation engine. This basically follows the idea behind the systematic con-
struction of SSAs presented in [Rei01]. On the one hand, this enhances
the readability of domain model since effect axioms are often much more
concise than fully specified successor state axioms. On the other hand,
the structure of effect axioms allows the simulation algorithm to identify
precisely if a fluent instance is affected by a given action. Most of all,
this is used in the event scheduling mechanism of the SALMA simulation
engine to determine whether the condition for the occurrence of an event
is time-dependent or not (see Definition 3.28 in Section 3.6.2).

In summary, a SALMA domain model description is a Prolog source file
that contains a collection of declaration statements and axioms for sorts, flu-
ents, actions, and events. The following sections introduce all elements of the
SALMA domain description language and demonstrate their use in the con-
text of the running example that is introduced along the way. The syntax
of these elements will be presented with a notation based on a standard for
the Extended Backus Naur Form (EBNF) that was proposed as ISO standard
ISO/IEC 14977 by Scowen [Sco98]. In particular, this notation uses brackets
([...]) to denote an optional appearance of the included content and curly
braces ({...}) to express that the included content can occur once, repeated,
or not at all. However, two deviations from this notation will be used in the
following: a) the use of an ellipsis (...) to omit terminal symbols that are
clear from an intuitive understanding ; and b) the omission of a comma to
separate symbols.

With these convention, the syntactic structure of a SALMA domain model
description is specified by the following grammar:

Definition 3.1 (Domain Model Structure).

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 29

Domain = { SortDecl | SubsortDecl | FluentDecl | DerivedFluentDecl |
ConstantDecl | ActionDecl | EventDecl |
EffectAxiom | DerivedFluentAxiom | PossAxiom | SchedAxiom }

Before any concrete syntax can be defined, it is necessary to introduce
some general syntactical rules and restrictions for the Prolog syntax that are
used throughout this section. First, a distinction between character classes
and different term types is needed at various points.

Definition 3.2 (Basic Syntax Elements and Term Classes).

LowerCaseLetter = "a" | ... | "z" ;
UpperCaseLetter = "A" | ... | "Z" ;
Digit = "0" | ... | "9" ;
Alphanumeric = LowerCaseLetter | UpperCaseLetter | Digit ;
Number = Digit {Digit} ["." Digit {Digit}] ;
Identifier = LowerCaseLetter { Character | "_" } ;
Variable = (UpperCaseLetter | "_") Alphanumeric | "_" ;
Term = Variable | Identifier | List | Identifier "(" Term {"," Term } ")" ;
List = "[" "]" | "[" Term {"," Term } "]" ;

A particularly important restriction is that all names for sorts, fluents,
actions, etc. have to be identifiers, i.e. strings that start with a lowercase
letter and after that may contain alphanumeric characters (i.e. letters, and
numbers) and underscores. This syntax constraint is necessary to distinguish
names from Prolog variables. With these general considerations, the elements
of a domain description can now be introduced step by step, beginning with
the sort system.

3.2.1 The SALMA Sort System

Different from Reiter’s original version of the situation calculus, SALMA em-
ploys a multi-sorted version. This means that all entities and agents in a
SALMA model belong to a specific sort that is either predefined by the sim-
ulation system or defined in the model. The domain of a sort is the set of
existing entities of that sort. It is also possible to define sub-sort relations
that declare that the domain of one sort is included in the other.

Definition 3.3 (Sort Declarations). The syntax of sort declarations in a
SALMA domain model is defined by the following grammar:

SortDecl = "sort" "(" SortName ")" "." | "sorts" "(" SortList ")" "." ;

SortList = "[" SortName "," SortName "]" ;

30 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

SubsortDecl = "subsort" "(" SortName "," SortName ")" "."
| "subsorts" "(" SortList "," SortName ")" "." ;

SortName = Identifier ;

The statement sort(X) declares a sort with the name X. On the other hand,
a subsort(X,Y) declares that the sort X is a subsort of the sort Y , i.e. that
all entities that belong to the sort X also belong to Y . Finally, sorts and
subsorts are shortcuts that allow declaring several sorts or subsorts at once.

Besides the sorts that are declared explicitly within the model, SALMA
supports several predefined primitive types.

Definition 3.4 (Primitive Types). The following predefined primitive types
exist in SALMA:

integer: Positive and negative integer numbers.
float: Floating point numbers.
boolean: Boolean values that are represented by the literals true

and false.
list: Lists with elements of arbitrary type which can be ac-

cessed as regular Python lists in agent control processes
(see Section 3.3) or as regular Prolog lists in axioms (see
below) or SALMA-PSL properties (see Chapter 4).

term: Arbitrary terms that are not interpreted further by the
SALMA simulation and evaluation mechanisms but can
be processed within the control procedures of agent pro-
cesses (see Section 3.3).

Primitive types are special sorts that cannot be part of an inheritance
hierarchy. Their use is actually restricted further, which is discussed at several
points in the following subsections. To distinguish these primitive types from
sorts that are declared by sort statements, the latter are called entity sorts,
implying that their domains are finite sets of entities.

As the top-level element of the inheritance hierarchy for entity sorts, SALMA
defines the sort object that is meant to include every other entity sort in the
system. Additionally, the sort agent is defined as a generalized type for agents
that may be used either directly as the type of an agent or as an ancestor for a
concrete agent subsort. SALMA’s sort system also allows multiple inheritance,
i.e. a sort could be included in more than one more general sorts.

To start the definition of the running example, a few sorts are declared
in Figure 3.2. The sorts robot and coordinator are declared as subsorts
of agent, which implies that entities of these sorts will later be equipped
with agent processes. On the other hand, both robot and item are declared

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 31

sorts([robot, item, coordinator, workstation, movable_object]).
subsorts([robot, coordinator], agent).
subsorts([robot, item], movable_object).

Figure 3.2: Sort declarations for the multi-robot example.

as movable objects, implying they have variable positions, while entities of
type workstation are meant to remain at fixed locations. With this first
categorization in mind, the properties of the sorts are then further described
by associating fluents with them, which is explained next.

3.2.2 Fluents and Constants

Fluents are clearly the core asset of the classical situation calculus and by
this also of the SALMA domain model. However, as mentioned in the begin-
ning of this chapter, SALMA requires a more detailed declaration than in the
original situation calculus. In particular, both the fluent value itself and the
parameters have to be typed to make it usable by the simulation algorithm.
Additionally, a distinction is made between regular fluents that are updated in
the progression step, derived fluents whose values are calculated based on other
fluents, and constants that are initialized once and keep their value throughout
the simulation. According to these demands, the SALMA domain description
language provides three declaration statements.

Definition 3.5 (Fluent and Constant Declarations). The following grammar
rules describe the syntax of fluent and constant declarations in the SALMA-
DDL:

FluentDecl = "fluent" "(" FluentName "," ParamList "," FluentType ")" "." ;

DerivedFluentDecl =
"derived_fluent" "(" FluentName "," ParamList "," FluentType ")" "." ;

ConstantDecl = "constant" "(" FluentName "," ParamList "," FluentType ")" "." ;

FluentName = Identifier ;

FluentType = Identifier ;

ParamList = "[" "]" | "[" ParamSpec "," ParamSpec "]" ;

ParamSpec = FluentName ":" FluentType ;

With fluent(F, [x1 : t1, . . . , xn : tn], tF), a fluent F is declared that has the
parameters x1 to xn whose types are given by t1 to tn. The type of the fluent

32 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

itself is tf . While there is no restriction on the fluent’s type tf , the parameter
types have to be entity sorts (see below). The statement derived fluent
declares a derived fluent that can also have parameters with primitive types
like integer or float. Furthermore, constant sets up a constant that can be
used like a fluent but whose instances are not affected by actions or events.

In the terminology that is used in this thesis, a distinction is made between
a fluent and its instances, i.e. the current value that is associated to a specific
selection of parameter values. Since the progression mechanism of SALMA’s
simulation engine relies on the fact that the number of fluent instances is finite,
this also implies that all parameter types have to be finite. The same applies
to instances of constants, in this case not due to constraints of the progression
operation but because the simulation engine needs to be able to assure that
all constant instances are initialized at the start of the simulation. For derived
fluents, the restriction to finite parameter sorts is not necessary because a
derived fluent is neither initialized nor updated in progression but is instead a
situation dependent function.

Figure 3.3 demonstrates the declaration of several regular fluents, derived
fluents, and constants for the running delivery robots example. At first, the
fluent broken acts as an essential status flag that keeps track of whether or
not a robot is damaged too much to be operational, which might happen in a
collision, as will be shown later. After that, the fluents xpos and ypos set up
a 2-dimensional discrete grid for representing the positions of movable objects,
i.e. items and robots. Only robots can move actively so the velocity fluents
vx and vy are only associated to agents of this type. Additionally, the derived
fluents moving and ready will be used to check whether a robot is moving
and when it is able to perform the next step, respectively. When an item is
carried by a robot, this is expressed by the relational fluent carrying being
true for this particular robot-item pair. As soon as an item is delivered to a
workstation, this fact is recorded in the fluent delivered_to, and until that,
the item remains in the state undelivered, which is marked by a correspond-
ing boolean fluent. Furthermore, the integer fluent delivered_item_count
keeps track of the number of items that are delivered to a specific workstation
during the simulation, which will be used as a performance measure in the
analysis of the results. The allocated task of a robot, i.e. the item that a robot
should pick up next and the workstation it should be delivered to, is stored
in the fluent next_task, which will be set by the coordinating station agent.
This fluent actually stores a term of the form d(item, workstation) whose
components are made accessible by the two derived fluents task_item and
task_workstation. Besides that, unassigned is set up as a convenient status
flag which indicates that no task is assigned. As described above, the coordi-
nator agent receives request messages from the workstations and stores them
into a queue that is represented by the fluent request_queue that stores a list.

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 33

fluent(broken, [r:robot], boolean).

fluent(xpos, [o:movable_object], integer).
fluent(ypos, [o:movable_object], integer).

fluent(vx, [r:robot], integer).
fluent(vy, [r:robot], integer).

derived_fluent(moving, [r:robot], boolean).
derived_fluent(ready, [r:robot], boolean).

fluent(carrying, [r:robot, i:item], boolean).
fluent(delivered_to, [i:item], workstation).
derived_fluent(undelivered, [i:item], boolean).
fluent(delivered_item_count, [ws:workstation], integer).

fluent(next_task, [r:robot], term).
derived_fluent(task_item, [r:robot], item).
derived_fluent(task_workstation, [r:robot], workstation).
derived_fluent(unassigned, [r:robot], boolean).

fluent(request_queue, [c:coordinator], list).

constant(stationX, [ws:workstation], integer).
constant(stationY, [ws:workstation], integer).

Figure 3.3: Fluent and constant declarations for the multi-robot example.

The position of the coordinator does not matter for the simulation and hence
it is not reflected in the model. In contrast, the positions of the workstations
are obviously essential for the delivery process. However, a workstation cannot
move and therefore its position is represented by two constants, stationX and
stationY.

The fluents and derived fluents defined in Figure 3.3 are not fully spec-
ified until their corresponding axioms have been defined. This topic will be
discussed below in Section 3.2.4. Before that, however, the actions and events
that are responsible for changes to fluent instance values have to be declared.

3.2.3 Actions and Events

Like Reiter [Rei01], SALMA distinguishes three basic types of actions, namely
1) deterministic, so called primitive actions ; 2) stochastic actions, i.e. actions
with a random outcome ; and 3) exogenous actions aka events. As with fluents,
SALMA requires actions and events to be declared explicitly.

34 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

Definition 3.6 (Action and Event Declarations). The following grammar rules
describe the syntax of action declarations in the SALMA-DDL:

ActionDecl = "primitive_action" "(" ActionName "," ParamList ")" "." |
"stochastic_action" "(" ActionName "," ParamList "," OutcomeList ")" "." ;

EventDecl = ExogenousAtionDecl | ExogenousActionChoiceDecl ;

ExogenousAtionDecl = "exogenous_action" "(" ActionName ","
ParamList "," ParamList ")" "." ;

ExogenousActionChoiceDecl = "exogenous_action_choice" "(" ActionName ","
ParamList "," OutcomeList ")" "." ;

ActionName = Identifier ;

OutcomeList = "[" ActionName "," ActionName "]" ;

Here, primitive action(A, [x1 : t1, . . . , xn : tn], tA) declares a determin-
istic action that can be performed intentionally by an agent. All parameters
x1, . . . , xn are set by the acting agent to concretize the intended effect. The
parameter types are not restricted in any way. i.e. both entity sorts and
any primitive type can be used. The second action declaration statement,
stochastic action declares an action together with a list of possible outcomes,
i.e. a list of action names that have to refer to primitive actions declared in the
same model. The choice between these outcomes is made by the simulation
according to some probability distribution that is defined by the modeler (see
below).

In contrast to primitive and stochastic actions, the statement
exogenous action(E, [x1 : t1, . . . , xm : tm], [xm+1 : tm+1, . . . , xn : tn]) de-
clares E as a type of exogenous action, i.e. an event that originates from
the environment instead of an agent. Concrete event instances are formed by
combinations of values for the parameters that are declared inside the first
parameter list (x1, . . . , xm). Just like in the case of fluent instances, the types
of these ‘identifying’ parameters have to be finite entity sorts. The parameters
declared in the second list, xm+1, . . . , xn, convey information that augment
the event instance and are not subject to any type restrictions. In some cases,
several events are actually mutually exclusive, i.e. only one of them can hap-
pen in a given situation. To model this fact, an exogenous action choice
declaration can be used that groups a list of exogenous actions with the same
identifying parameter. The simulation will later pick only one of the speci-
fied events when the common precondition of the exogenous action choice is
fulfilled (see Section 3.2.5).

Although the use of actions in agent processes and domain axioms is dis-
cussed in detail within later sections, it is useful right away to clarify how the

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 35

concrete action terms are formed that determine the state changes within the
system. For primitive actions, the answer is simple: the action term is exactly
what is issued by the agent in the Act statement within the agent procedure
(see Section 3.3.2).

For stochastic actions, the situation is different. Although the agent per-
forms the action that is declared in the stochastic action statement, the
resulting action term depends on the outcome that is chosen probabilistically
by the simulation engine. Each of the possible outcomes that are mentioned
in the declaration of the stochastic action has to be declared as a primitive ac-
tion itself. Since both the stochastic action and the primitive action outcomes
could be declared with parameters, the modeler has to specify a mapping from
the parameters of the stochastic action, which the agent actually sets when it
performs the action, to parameters of the outcome action. This is done with
the SALMA experiment configuration API, which is described in Section 3.4.2.
Another use of the same API is the configuration of probability distributions
for exogenous actions (events). Without going into details now, the simulation
selects the event instances that should occur at a specific point in time accord-
ing to a set of axioms and probability distributions. To make this possible,
each event instance has to be identified by the values for the parameters of
the first parameter list in the declaration. Once an event instance has been
chosen to occur, the engine chooses values for the parameters of the second
list according to additional distributions that are allowed to produce values
of any type. For example, this mechanism is used for information transfer
processes in SALMA to introduce random errors (see Chapter 6). It is impor-
tant to note, however, that in the final action term that represents the event
within the situation calculus, the parameters from both lists appear in one flat
sequence just like for regular actions.

For the robotics example, the model is extended with the actions shown in
Figure 3.4. The four move actions will be used within a robot control process to
initiate a movement to the adjacent grid cell in one of the four main directions.
A movement step does not happen instantaneously but is instead an activity
that is started by a move action and ended by either a step_succeeded or a
step_failed event. Both of these concrete outcomes are declared as exogenous
actions with a single parameter that identifies the robot. However, since the
movement step can either fail or succeed but not both, they are declared as
mutually exclusive by means of an exogenous_action_choice.

Another related exogenous action is collision, which can happen between
two robots. The integer parameter severity, which is declared in the second
parameter list, will convey a random value for each event instance that will
later be used to decide whether the robots are damaged during the collision.
The stochastic action pickUp represents the attempt of a robot to pick up an
item. The model acknowledges that this might fail and therefore specifies both
a positive outcome, grab and a negative one, drop, which means that the item
slips and the robot cannot get a grip on it. In fact, the grab outcome also has

36 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

primitive_action(move_right,[r:robot]).
primitive_action(move_left, [r:robot]).
primitive_action(move_down, [r:robot]).
primitive_action(move_up, [r:robot]).

exogenous_action(step_succeeded, [r:robot], []).
exogenous_action(step_failed, [r:robot], []).
exogenous_action_choice(step_finished, [r:robot],

[step_succeeded, step_failed]).

exogenous_action(collision, [r1:robot, r2:robot], [severity:integer]).

stochastic_action(pickUp, [r:robot, i:item], [grab, drop]).
primitive_action(grab, [r:robot, i:item, grip:integer]).
primitive_action(drop, [r:robot, i:item]).
exogenous_action(accidental_drop, [r:robot, i:item], []).

exogenous_action(request, [ws:workstation, c:coordinator], []).
primitive_action(assign_task, [c:coordinator, r:robot, i:item, ws:workstation]).

Figure 3.4: Action and event declarations for the multi-robot example.

a parameter grip that could reflect the grip quality. For parameters like that,
which are not directly mappable to arguments of the action execution like r
and i, the modeler has to specify a probability distribution from which a value
is chosen when the action is performed (see Section 3.4.2). Besides the item
being dropped during a pick-up attempt, it could also happen that the robot
drops an item during its journey to the workstation, which is modeled by the
exogenous action accidental_drop. It is clear that the selection of the proba-
bility distributions that determine the grip quality and whether an accidental
drop occurs obviously affects the outcome of the simulation significantly. In
fact, Section 4.3 will come back to this topic and demonstrate how a physical
aspect like grip quality can be reflected by a distribution for accidental_drop
that is conditioned on the grip quality. The last two actions in Figure 3.4 are
used to handle the coordination of tasks. Here, the request of a workstation
is modeled as an exogenous action rather than a primitive, aka intentional,
action. This implies what could also be seen in the sort declaration, namely
that workstations are not modeled as active agents in the example, but as
passive entities without own behavior. On the other hand, the assignment of
a task is clearly intentional and therefore added as a primitive action that is
performed by the coordination agent.

At this point, all assets of the system, i.e. sorts, fluents, actions, and
events, have been declared. The next step towards a full domain specification

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 37

is to add axioms that describe how the values of fluents come about.

3.2.4 Effect Axioms and Derived Fluent Functions

As mentioned in the beginning of Section 3.2, effect axioms are actually macros
used in the SALMA-DDL to specify how the value of a fluent instance is
affected by an action or event instance. In fact, effect axioms are translated
automatically to successor state axioms as defined in Section 2.2. Their syntax
is specified in Definition 3.7.

Definition 3.7 (Syntax of Effect Axioms). The following grammar rules de-
scribe the syntax of effect axioms in the SALMA-DDL:

EffectAxiom = "effect" "(" FluentTemplate "," ActionTemplate "," Term ","
Term "," Variable ")" [EffectAxiomBody] "." ;

FluentTemplate = FluentName ["(" VarIdent { "," VarIdent } ")" ;
VarIdent = Variable | Identifier ;
ActionTemplate = ActionName ["(" Term { "," Term } ")" ;
EffectAxiomBody = ":" "-" ? ARBITRARY VALID PROLOG SOURCE CODE ? ;

Using the syntax defined above, an effect axiom for a fluent f must have one
of the following forms:

i) effect(f(x1, . . . , xn), a(y1, . . . , ym), ϑold, ϑnew, S).

ii) effect(f(x1, . . . , xn), a(y1, . . . , ym), ϑold, ϑnew, S) :-Γ.

Here x1, . . . , xn are terms that represent the parameters of the fluent f .
During progression, these terms will be unified with the parameters of ev-
ery instance of the fluent f in order to determine whether the effect should
be applied or not. Therefore, x1, . . . , xn can either be variables that will be
bound to the arguments of the fluent instance by unification or ground entity
identifiers that act as conditions for the effect. Any named variable among
x1, . . . , xn can either be used in a clause body Γ or can re-appear in another
place of the effect axiom. The term a(y1, . . . , ym) specifies an action template
that will be unified with the currently progressed action term, and the effect is
only applied when the unification is possible. In this step, variables that were
bound in the fluent template before act as conditions, and variables that are
introduced in the action template are bound by unification to the arguments
of the progressed action term. Following the action template, ϑold represent
the value of the fluent instance in the current situation, i.e. before the effect of
the action is applied. Like before, any term that is specified in this argument
will be matched against the actual current value of the fluent instance and the
effect is only applied when both values can be unified. The next parameter
of the effect axiom, ϑnew, is meant to hold the new value to which the fluent
instance will be set when the effect is applied. This can either be a predefined

38 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

value, a variable that is introduced in the fluent or action template, or a fresh
variable that is set in the clause body. In order to do this, the clause body Γ
can use the last argument S of the effect axiom, which is a variable that will
be set to the current situation during progression. Finally, Γ can be any valid
Prolog goal that evaluates to true if and only if the effect should be applied
and that binds all named variables in the effect axiom except S.

Some concrete examples for effect axioms of varying complexity can be
found in Figure 3.5, which shows the effect axioms for the fluents defined in
Figure 3.3. The first four specify that the robot’s horizontal velocity vx is set
directly to either a leftward (−1) or rightward (1) movement by the horizontal
move actions and set to 0 when the movement step finishes or fails or the robot
starts a vertical move. Here, the new value is simply specified in the axiom
itself and no calculation is needed. The axioms for the vertical velocity vy are
not shown here because they are very similar to those of vx. In contrast to
that, the effect axioms for the position fluent xpos are a bit more complex.
Here, for the effect of a successful step, i.e. a step_succeeded event, a clause
body is specified that not only considers the direct effect on the position of the
robot but also the indirect effect on the position of any item that is carried by
the robot.

The axioms that follow after the movement effects establish some self-
explanatory rules for when an item is carried by a robot. After that, the
content of the next_task fluent is defined. In this example, a single fluent is
used to store both the assigned item and the assigned target workstation. To
do that, a Prolog term is created with the arbitrary functor d. Alternatively, it
would also be possible to use two separate fluents to store the assignment. This
choice is up to the modeler. In order to make sure that robots can be assigned
new tasks after they have delivered an item, the netx_task fluent has to be
reset to none, which is specified by the second effect axiom for next_task. Ad-
ditionally, the reset also happens when the item is dropped, which indicates
that the robots will later be equipped by a relenting control strategy that
simply abandons a dropped item and waits for the next assignment (see Sec-
tion 3.3). On the other hand, when an item is eventually delivered to its target
workstation, the following effect axioms establish that this is tracked both by
the fluent delivered_to for the item itself and by delivered_item_count for
the workstation. At the other side of the delivery process, the effect axioms
for request_queue handle the contents of the request queue. When a request
message from a workstation arrives, the workstation’s id is added to the list
that is stored in request_queue using Prolog’s built-in append function. Con-
sistent to that, this entry is removed again when it has been processed, i.e.
when an item has been a assigned to be delivered to the requesting station.
Finally, in the last effect axiom, it is stated that a collision of a severity level
higher than 7 will break both robots.

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 39

effect(vx(Robot), move_right(Robot), _, 1, _).
effect(vx(Robot), move_left(Robot), _, -1, _).
effect(vx(Robot), move_up(Robot), _, 0, _).
effect(vx(Robot), move_down(Robot), _, 0, _).

effect(vx(Robot), step_succeeded(Robot), _, 0, _).
effect(vx(Robot), step_failed(Robot), _, 0, _).
. . . similar for vy

effect(xpos(O), step_succeeded(Robot), _, X, S) :-
(O = Robot, ! ; carrying(Robot, O, S)),
vx(Robot, Vx, S),
xpos(Robot, OldX, S),
X is OldX + Vx.

. . . similar for ypos

effect(carrying(Rob, Item), grab(Rob, Item, _), _, true, _).
effect(carrying(Rob, Item), drop(Rob, Item), _, false, _).
effect(carrying(Rob, Item), deliver(Rob, Item, _), _, false, _).
effect(carrying(Rob, Item), accidental_drop(Rob, Item), _, false, _).

effect(next_task(Rob), assign_task(_, Rob, Item, Workstation), _,
d(Item, Workstation), _).

effect(next_task(Rob), deliver(Rob, _, _), _, none, _).
effect(next_task(Rob), drop(Rob, _), _, none, _).
effect(next_task(Rob), accidental_drop(Rob, _), _, none, _).

effect(delivered_to(Item), deliver(_, Item, Station), _, Station, _).
effect(delivered_item_count(Ws), deliver(_, _, Ws), OldCount, NewCount, _) :-

NewCount is OldCount + 1.

effect(request_queue(C), request(Ws, C), OldQueue, NewQueue, _) :-
append(OldQueue, [Ws], NewQueue).

effect(request_queue(C), assign_task(C, _, _, Ws), OldQueue, NewQueue, _) :-
delete(Ws, OldQueue, NewQueue), !.

effect(broken(Rob), collision(R1, R2, Severity), _, true, _) :-
(R1 = Rob, ! ; R2 = Rob), Severity > 7.

Figure 3.5: Effect axioms in the multi-robotics example.

40 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

As mentioned before, the SALMA runtime automatically translates effect
axioms into successor state axioms in the form that was introduced in Sec-
tion 2.2. In fact, during the model initialization phase, a new dynamic fluent
clause is added to the Prolog clause database which combines all effect ax-
ioms for the fluent and adds a default case that returns the original value for
any action term that is not covered by the effect axioms. The clause for a
fluent f with parameters x1, . . . , xn will have the form f(x1, . . . , xn, S):-Γ. for
a boolean (i.e. relational) fluent and f(x1, . . . , xn, V, S):-Γ. for a functional
fluent, where S is the situation variable and V will be bound to the value of
the fluent instance.

Besides regular fluents, whose contents are updated in each step according
to the effect axioms, a model can also contain derived fluents whose values are
calculated based on the values of others. Hence, derived fluents are just situa-
tion dependent functions and predicates that are specified like normal Prolog
predicates. In fact, for each derived fluent declaration derived fluent(f, [x1 :
t1, . . . , xn : tn], tf)., the modeler has to add a Prolog clause with a signature of
the form f(X1, . . . , Xn, V, S) or f(X1, . . . , Xn, S) where X1, . . . Xn are Prolog
variables that represent the derived fluents parameters, V a variable that will
be bound to the return value, and S a variable that will contain the current
situation when the derived fluent is evaluated. For a boolean (i.e. relational)
derived fluent, the return value is not needed, so the second form is used. Both
forms can be seen in Figure 3.6 that shows the derived fluents for the running
example. Most of these definitions are quite self-explanatory. The clause for
dist_from_station calculates the Manhattan distance (see [Bla06]) between
a robot and a workstation, which is used because robots can only move in
strictly horizontal or vertical steps. The predicate unassigned is simply a
check that next_task contains none for a given robot, and moving checks
whether the absolute value of a robot’s velocity is higher than 0. Additionally,
the predicate ready is used as a shortcut to check whether the robot is ready
for the next step, which requires it to be functional and not moving. Another
shortcut is undelivered, which will be used by the coordinator’s control proce-
dure to select items that neither have already been delivered nor are currently
scheduled to be delivered to a workstation. Finally, the two derived fluents
task_item and task_workstation extract the item and the workstation from
an assignment term. As will be shown in Section 3.3, this is helpful for the
definition of control procedures because it avoids having to deal with Prolog
terms within Python.

3.2.5 Action Precondition and Schedulability Axioms

Besides the successor state axioms, the other essential axiom type of the sit-
uation calculus is the action precondition axiom, usually denoted as poss.
This axiom specifies whether a specific action instance is executable in a given
situation. In SALMA, action preconditions are directly formalized as Prolog

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 41

dist_from_station(Rob, Station, Dist, S) :-
xpos(Rob, X, S),
ypos(Rob, Y, S),
stationX(Station, Sx), stationY(Station, Sy),
Dist is abs(X - Sx) + abs(Y - Sy).

unassigned(Rob, S) :-
next_task(Rob, none, S).

moving(Rob, S) :-
vx(Rob, Vx, S), abs(Vx) > 0, !
;
vy(Rob, Vy, S), abs(Vy) > 0.

ready(Rob, S) :-
not moving(Rob, S), not broken(Rob, S).

undelivered(Item, S) :-
delivered_to(Item, none, S),
domain(robot, Robots, S),
not (member(R, Robots), next_task(R, d(Item, _), S)).

task_item(Rob, Item, S) :-
next_task(Rob, Task, S),
Task = d(Item, _), !
;
Item = none.

task_workstation(Rob, Ws, S) :-
next_task(Rob, Task, S),
Task = d(_, Ws), !
;
Ws = none.

Figure 3.6: Derived fluents in the multi-robot example.

42 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

clauses.

Definition 3.8 (Action Precondition Axioms). The syntax of an action pre-
condition axiom is given by the following EBNF-rule:

PossAxiom = "poss" "(" ActionTerm "," Variable ")" [PossAxiomBody] "." ;
ActionTerm = Variable | ActionName ["(" Term {"," Term } ")"] ;
PossAxiomBody = ":" "-" ? ARBITRARY VALID PROLOG SOURCE CODE ? ;

Here, the action term before the comma will be unified with the action term
that is about to be applied in progression. In fact, SALMA’s progression
algorithm will only perform the progression of an action term if a poss axiom
clause exists where the action term is unifiable and the axiom clause evaluates
to true. The second parameter of the poss axiom contains a variable that will
be bound to the current situation when the axiom is evaluated.

One subtle question about action precondition axioms is what should actu-
ally happen when an agent attempts to perform an action that is not possible
in this situation. For the original use of the situation calculus, the fact whether
an action is executable plays an important role in proofs or in planning. In sim-
ulation, however, the system commits itself to performing an action, i.e. there
is no possibility of backtracking as in planning. One possible rather intuitive
reaction to the attempt of performing an impossible action would be to block
the execution of the performing agent process until the action becomes possible
again. However, this would actually establish a kind of implicit synchroniza-
tion mechanism that might not be adequate for every model. Therefore, the
SALMA simulation engine by default treats the attempt of performing an im-
possible action as an error and cancels the simulation run. This forces the
modeler to include explicit tests into the agent control procedures that make
sure an action is only performed when its precondition is satisfied. Although
this makes the behavioral model more verbose than in other approaches like
GoLog, it actually fits well to SALMA’s understanding that aspects like the
possibility of a violated precondition are exactly what should be represented
within the simulated model.

Yet another perspective on preconditions exists in the context of exogenous
action (events). There, the poss-axioms are used by the simulation engine to
select event instances that may occur in the current simulation step. As indi-
cated in Section 2.3, this corresponds to what is usually called activity scan-
ning, which is one possible strategy for discrete event simulations. However,
in many cases, this mechanism is inefficient because aspects of the world state
that are relevant for the precondition can only change at certain distinct times.
For these cases, it is better to use an event scheduling mechanism where the
time when an event instance should occur is determined in advance. For this
purpose, SALMA introduces schedulability axioms that determine whether it

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 43

is possible in the current simulation step to decide at which point in the future
an event instance should occur. The syntax of such a statement is similar to
the classical action precondition.

Definition 3.9 (Schedulability Axioms). The syntax of a schedulability axiom
is given by the following EBNF-rule:

SchedAxiom = "schedulable" "(" ActionTerm "," Variable ")"
[PossAxiomBody] "." ;

ActionTerm = Variable | ActionName ["(" Term {"," Term } ")"] ;
PossAxiomBody = ":" "-" ? ARBITRARY VALID PROLOG SOURCE CODE ? ;

Like before, the action term in the axiom will be unified with an action
term, in this case that of an exogenous action instance or with an instance
of an exogenous action choice. Only if there is a schedulability axiom clause
that evaluates to true, an event instance may be scheduled at a time that is
determined by the occurrence probability distribution of the event (see Sec-
tion 3.4.2). For exogenous action choices, a schedulable axiom may only be
specified for the choice group itself but not for the events declared as mutually
exclusive outcomes.

The action precondition and schedulability axioms for the robotics example
are shown in Figure 3.7. At first, the movement actions are set to be only
possible if the robot is not broken. A slightly more complex condition is needed
for pickUp: first of all, the robot has to be at the same grid position as the item.
Besides that, it can only grab an item that is not currently being carried by any
other robot. The outcomes for pickUp add no further requirement, so they are
declared to be possible anytime by setting the body of the corresponding poss-
axioms to true. The same is done for the actions request and assign_task,
which effectively implies the tolerable simplifications that the coordinator’s
request message queue is unbounded and assignments could be changed at
any time. On the other hand, in order to deliver an item, a robot must not be
broken, must be carrying the item, and has to be at the same grid cell as the
target workstation.

The preconditions for these actions that are actively performed by robots
are followed by two further poss-axioms for the events collision and
accidental_drop. While for accidental_drop, the condition is again simply
that the item is actually carried by the robot, formulating the precondition for
the collision event requires more thought. One obvious condition is that two
robots are close enough to each other, which comes down to being at the same
grid location in the model of the ongoing example. This constraint is added
as a simple coordinate comparison. However, this constraint would always be
satisfied when both variables R1 and R2 point to the same robot, and therefore
this case is excluded explicitly by the constraint R1 \= R2 (where \= is Prolog’s

44 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

poss(move_right(R), S) :- not broken(R,S).
. . . same for other move-actions

poss(pickUp(R, I), S) :-
not broken(R, S),
xpos(R, Xr, S), xpos(I, Xi, S), Xr =:= Xi,
ypos(R, Yr, S), ypos(I, Yi, S), Yr =:= Yi,
domain(robot, Robots),
not (member(R2, Robots), carrying(R2, I, S)).

poss(grab(_, _, _), _) :- true.
poss(drop(_, _), _) :- true.

poss(request(_, _), _) :- true.
poss(assign_task(_, _, _, _), _) :- true.

poss(deliver(R, I, Station), S) :-
not broken(R, S), carrying(R, I, S),
xpos(R, Xr, S), stationX(Station, Xs), Xr =:= Xs,
ypos(R, Yr, S), stationY(Station, Ys), Yr =:= Ys.

poss(accidental_drop(R,I), S) :- carrying(R,I,S).

poss(collision(R1, R2, _), S) :-
R1 \= R2,
xpos(R1, X1, S), xpos(R2, X2, S), X1 =:= X2,
ypos(R1, Y1, S), ypos(R2, Y2, S), Y1 =:= Y2,
(moving(R2, S), ! ; moving(R2, S)).

schedulable(step_finished(Rob), S) :-
moving(Rob, S).

schedulable(accidental_drop(R,I), S) :-
action_occurred(grab(R,I), S).

schedulable(request(_, _), _) :- true.

Figure 3.7: Action precondition and schedulability axioms in the multi-robot
example.

syntax for 6=). As a last condition, the axiom also states that a collision occurs
only if at least one of the robots is moving.

On closer inspection, there is an important difference between the event
collision and the other events in the model with respect to the way the
simulation determines their occurrence times. Actually, in order to decide if
a collision between two robots can occur within a certain time interval, the

3.2. AXIOMATIZATION OF SYSTEM DOMAINS 45

simulation system has to evaluate the poss-axiom for each step because the
coordinates of the robots may be different each time. In contrast to that,
the occurrence time for an accidental drop event can be chosen in advance
as soon as the item is grabbed. In other words, the event can be scheduled
for a future point in time that is, for instance, determined by sampling from
a geometric probability distribution. For cases like that, a schedulability ax-
iom is required that specifies under which conditions it is possible to decide
whether an event should occur and, if necessary, calculate the occurrence time.
Therefore, the schedulability axiom for accidental_drop uses the predefined
predicate action_occurred to assert that a grab action has occurred in the
current step. Similarly, the axiom for the event choice group step_finished
states that the end of a movement, i.e. one of the events step_succeeded and
step_failed, can be scheduled right from its start, which is detected by the
derived fluent moving. This makes it possible to model various forms of un-
certainty with respect to the robots’ motion by choosing adequate probability
distributions for the delay of the step_succeeded and step_failed events.
Finally, the last axiom in Figure 3.7 makes the request event schedulable at
any time, which means that the arrival times of new requests will be deter-
mined solely by the probability distribution that is assigned for the event.

3.2.6 Representation of Time in SALMA

As mentioned in Section 2.2.1, several alternative approaches for modeling time
in the situation calculus have been proposed. Since SALMA uses a discrete
time structure and the models are used in simulation rather than history-based
analysis, time can simply be represented by one global integer fluent, which is
called time. The following axioms defines how time can progress:

primitive_action(tick, [steps:integer]).

fluent(time,[], integer).

effect(time, tick(Steps), TOld, T, _) :- T is TOld + Steps.

poss(tick(_), _) :- true.

Time advances only through a special action tick that has a parameter
steps which represents how many time units the global simulation world time
should be advanced. Although the action tick is defined as a regular primitive
action like the ones in the previous examples, the simulation system does not
allow it to be executed from any agent process (see Section 3.3). Instead it is
executed directly by the simulation engine at the end of each simulation step.
This basic model is further extended by relative time measurements called

46 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

clocks that mark the times of the most recent occurrences of actions, events,
and fluent changes. In particular, this can be used to define precondition
axioms and probability distributions that model the time between actions or
events. For instance, it would be possible to define a minimum duration of 10
time units for every step of a robot from the running example in this chapter:

poss(step_finished(Rob), S) :-
moving(Rob, S),
get_last_change_time(moving, [Rob], TLast),
time(TNow, S),
TNow >= TLast + 10.

With the means mentioned above, the situation calculus version used in
SALMA is at least theoretically expressive enough to describe timing aspects
in a similar way as with timed automata [AD94] or probabilistic timed au-
tomata [Jen96], which are widely used modeling paradigms for real-time sys-
tems (see also Section 2.4).

3.3 The SALMA Agent Process Definition
Language

In the previous section it was shown how the SALMA domain description
language (SALMA-DDL), a variant of the situation calculus, can be used to
create a model of the simulated domain, i.e. the entities, features, and relations
of the simulated system. In particular, this domain model defines the actions
that an agent can perform together with the effects of these actions. What
remains to be specified is the actual behavior of the agents. In the context of
the situation calculus, this is commonly done using GoLog or one of its many
variants (see Section 2.2.4). Usually, a GoLog interpreter is implemented in
Prolog and thus very closely connected to the situation calculus model. Besides
facilitating formal analysis, the choice of Prolog as platform has also practical
advantages because it allows creating interpreters that are very concise and
well-structured.

Nevertheless, SALMA’s simulation engine is implemented in Python and
instead of supporting GoLog, it offers an internal domain-specific language
(DSL) in Python for the definition of agent processes. The main motivation
behind this decision is to allow the modeler to integrate custom Python code
into the agent control procedures. By this, it is possible to leverage the full
potential of Python and its rich set of mathematical and scientific libraries for
performing tasks that drive the control decisions of the agent, like searching,
planning, or learning. At the same time, SALMA’s agent process definition
language (SALMA-APDL) is designed in a way that ensures a clear separation

3.3. THE SALMA AGENT PROCESS DEFINITION LANGUAGE 47

Statement

condition
arguments

ConditionalStatement

source
arguments
targetVariables

ValueRetriever

If

Default

Switch

Procedure

Sequence

condition
arguments

Case

Iterate Select

action
arguments

Act

AssignWhileWait

body

1
body

1
then 1body 1 else

0..1

children

*

cases

1..*

body

1

parent 0..1

Figure 3.8: Class hierarchy of the SALMA-APDL.

between these potentially complex calculations and the actual agent control
logic. Altogether, the chosen architecture provides the facilities that are re-
quired for the realization of complex modeling and simulation projects. This
section introduces SALMA’s agent process definition language and demon-
strates its use by extending the multi-robotics example from the last section
with behavior for the robots and the controlling station. As for the SALMA-
DDL before, this section concentrates on the syntax and practical usage of
the SALMA-APDL. A precise discussion of the semantics is postponed until
Section 3.6.

In order to fully understand the usage of the SALMA-APDL, it is im-
portant to keep in mind that it is an internal domain specific language, i.e.
an API that is realized as a set of regular Python classes that represent the
statements of the SALMA-APDL. These classes are instantiated and assem-
bled together to an object graph which stores all information that is needed by
the simulation engine to execute the control logic. The class hierarchy of the
SALMA-APDL is shown in Figure 3.8. Since there is no explicit instantiation
keyword like new in Python, the constructors of the statement classes can be
used like functions, which makes procedure definitions in the SALMA-APDL
look similar to procedural code although they are in fact sequences of nested
objects. However, it is desirable to describe the language in a way that cap-
tures the effective syntax that is actually used to represent model behavior.
For this purpose, a specialized notation is introduced next.

48 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

3.3.1 Notation

Since the SALMA-APDL is a regular Python API and as such adheres to the
general syntax of Python, it would not be very informative to discuss the “low-
level” syntax by means of a classical EBNF like it was done in the last section.
Details of the Python language are not covered here but can be found in
the Python Language Reference [Pyt15a]. Instead, the following presentation
regards Python expressions as basic building blocks of the language and focuses
on which expression types are admissible for the individual arguments. This
is denoted by a colon that is followed by a type name. The types that are
used in the following include basic predefined types like string or int and
classes defined within the SALMA-APDL. Furthermore, lists element types
can be specified with list < type >, similar to generics in Java or templates in
C++. Apart from these specialties, the notation borrows the essential elements
from the EBNF, namely [...] for an optional occurrence, \{...\} for 0, 1 or
multiple repetitions, and | for a choice.

For each of the concrete classes defined in the SALMA-APDL, there is a
constructor that is used to instantiate them. To distinguish the definition of
a constructor, the class name is enclosed in angular brackets, e.g. <While>.
Besides these types that can actually be instantiated, there are abstract classes
and “virtual” generalized types that are used as nonterminal symbols just like
in the classical EBNF.

3.3.2 Agent Control Procedures

A control procedure is the top level element of the SALMA-APDL. As such,
it wraps a sequence of statements to define a control flow that can then be
assigned to agent processes.

Definition 3.10 (Structure of an Agent Control Procedure). An agent control
procedure is defined according to the following grammar:

<Procedure> = Procedure(procName: string, body: StatementOrSequence) ;
StatementOrSequence = Statement | list<Statement> ;
Statement = Sequence | Act | Assign | If | Switch | While |

Select | Iterate | Wait ;
<Sequence> = Sequence(list<Statement>) ;

Essentially, Definition 3.10 resembles the class hierarchy of Figure 3.8.
However, it can be seen in the definition of StatementOrSequence that a Python
list can be used for the body. I this case, a Sequence instance will be created
implicitly. Since Python allows the use of square brackets to build list literals,
it is possible to write procedures in the following format:

3.3. THE SALMA AGENT PROCESS DEFINITION LANGUAGE 49

proc = Procedure([

statement1,

. . .

statementn])

This shortcut for statement sequences will be used in several places and is
one of the key factors that make the SALMA-APDL usable like a specialized
external agent programming language. In the remainder of this section, each
statement type that may appear within procedures will be introduced. It starts
with the one that is most directly connected to the situation calculus domain
model, namely the execution of an action.

Definition 3.11 (Action Execution). Within an agent control procedure, an
action execution is triggered by the Act-statement that is defined as follows:

<Act> = Act(actionName: string, arguments: ArgumentList) ;
ArgumentList = list<Argument> ;
Argument = string | number | boolean | Variable ;
<Variable> = Variable(varName: string [, varType: string]) ;

When an Act statement is reached in the control flow, an action term will be
constructed for the given action name and the given arguments, where strings
are translated to entity identifiers. When the simulation engine reaches an Act
statement, it attempts to execute the given action in the current simulation
step. If the created action instance is possible, i.e. the corresponding poss-
axiom is satisfied, it will eventually be executed by means of the progression
operator. However, if the precondition axiom is not satisfied, the simulation
is canceled and an error is risen.

The Python expressions in the arguments of the action are not evaluated
when the action term is created but when the statement object is instantiated
during the simulation’s setup. Therefore, they will act as constant values with
respect to the action execution. Alternatively, instances of the class Variable
can be used to mark variables that will be evaluated within the procedure’s
context when the statement that contains the variable is executed. For ex-
ample, in the multi-robots scenario, the robot’s control procedure contains
the statements visible in Figure 3.9 where the action deliver is executed us-
ing the previously initialized Variable objects, targetItem and targetWs as
arguments.

Naturally, variables do not only appear in action executions but in many
other places. As the grammar above reveals, it is also optionally possible to
specified a type in the constructor of the Variable object. However, this is

50 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

targetItem = Variable("targetItem")
targetWs = Variable("targetWs")
. . .
Act("deliver", [SELF, targetItem, targetWs])
. . .

Figure 3.9: Example for an action execution.

only required for variables that are used in the statements Select and Iterate
that are introduced later. The more urgent question for now is how values are
actually assigned to variables.

Definition 3.12 (Variable Assignment). An Assign-statement retrieves a
value from a value source and assigns it to a variable in the context of the
current procedure. Its syntax is defined as follows:

<Assign> = Assign(target: TargetDef , source: ValueSource
[, arguments: ArgumentList]) ;

TargetDef = string | Variable | list< string | Variable > ;
ValueSource = pythonFunction | FluentName | PrologFunctionName |

PythonExpression ;
FluentName = string ; PrologFunctionName = string ;
PythonExpression = string ;

Here, the target is either a single variable or a list of variables to which the
calculated value or values will be assigned (for multiple variables, the value
retrieved from the source must be a tuple of appropriate length). Each variable
is either identified by its name or by a Variable object. The source, from which
the value is retrieved, can be one of the following:

a) A fluent whose name is given in source and whose instance is specified by
the given arguments.

b) A situation-independent Prolog function (i.e. a predicate that returns a
value by binding it to a variable in its last argument), whose name is given
in source and to which the given arguments will be passed.

c) A Python function to which a pointer is passed in source and to which
the given arguments will be passed. Within the function, it is also possible
to access the world’s state, i.e. fluent instances, entity domains, etc. (see
Section 3.4.5).

d) A Python expression, given as string in source that will be evaluated with
Python’s built-in function eval(). Within the expression, there will be an

3.3. THE SALMA AGENT PROCESS DEFINITION LANGUAGE 51

extensive set of name-value bindings that provide access to variables and
fluents (see Section 3.4.5).

In the delivery robots scenario, examples for uses of fluents, Python expres-
sions and a Python function can be found within the agent control procedures,
for instance in the fragment shown in Figure 3.10 that is reached when a robot
has just been assigned to a new task:.

. . .
Assign(targetItem, "task_item", [SELF]),
Assign(targetWs, "task_workstation", [SELF]),
Assign(tx, "targetItem.xpos"),
Assign(ty, "targetItem.ypos"),
. . .

Figure 3.10: Examples for variable assignments within the robot control pro-
cedure.

Here, the robot directly accesses the derived fluents task_item and
task_workstation to access the assigned item and the target workstation.
After that, it uses two simple Python expression to access the position of
the item. In fact, the SALMA framework provides a dynamic function and
attribute mapping system that allows the modeler to access fluents and con-
stants in an object-oriented manner, which significantly increases conciseness
and readability (see Section 3.4.5). However, sometimes the calculation of the
assigned value is too complex to be expressed in a single expression. In these
cases, a Python function may be used as a source. For example, Figure 3.11
shows how the control procedure of the coordinator agent uses the function
select_item to select the closest item to a given robot that has not been
delivered and also is not yet assigned to be delivered, which is checked by
item.undelivered. The first argument of this function is set in the Assign-
statement with the variable r to which an idle robot has been assigned before.
Eventually, the chosen pair of robot and item is used in an assign_task action
to allocate the delivery task.

Even this rather simple example shows how valuable the tight integration
with Python as a general purpose language is. Although in this situation it
would also be possible to perform the calculation within a derived fluent clause
in Prolog, it is easy to imagine more sophisticated selection strategies that
might involve complex algorithms from fields like Graph theory, optimization,
or machine learning. For all of these purposes there exist mature Python
libraries that can easily be integrated in functions like the one above. At

52 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

def select_item(rob: Agent, ctx: EvaluationContext=None, **kwargs):
if rob is None:

return None
closest_item = None
min_dist = None
for item in ctx.getDomain("item"):

if item.undelivered:
dist = np.abs(rob.xpos - item.xpos) + np.abs(rob.ypos - item.ypos)
if min_dist is None or dist < min_dist:

closest_item = item
min_dist = dist

return closest_item

. . .
Assign(i, select_item, [r]),
. . .
Act("assign_task", [SELF, r, i, ws]))])

Figure 3.11: Example use of a Python function as a value source for variable
assignment.

the same time, the Assign statements act as integration points into the agent
control procedures that make the data flow visible immediately.

For making decisions within agent control procedures, the SALMA-APDL
defines two of the most common conditional statements, namely If and Switch.

Definition 3.13 (Conditional Statements). Conditional control blocks can be
created with the statements If and Switch.

<If> = If(condition: Condition [, arguments: ArgumentList],
then: StatementOrSequence [, else: StatementOrSequence]) ;

Condition = pythonFunction | FluentName | PrologFunctionName |
PythonExpression ;

<Switch> = Switch(CaseOrDefault {, CaseOrDefault }) ;
CaseOrDefault = Case | Default ;
<Case> = Case(condition: Condition [, arguments: ArgumentList],

then: StatementOrSequence) ;
<Default> = Default(body: StatementOrSequence) ;

As usual, the If-statement tests a condition and executes the contained
statement in then (which could also be a sequence) only if the condition is
true. Optionally, another statement can be specified in else to be executed
when the test fails. For the condition, the same options are available as for
the value source of the Assign statement from Definition 3.12, i.e. a fluent, a
Prolog function, a Python function, or a Python expression. In any case, the

3.3. THE SALMA AGENT PROCESS DEFINITION LANGUAGE 53

given condition source is evaluated in the current context and is expected to
return a boolean value.

The Switch statement is inspired by the well-known construct from general
purpose programming languages like Java or C/C++. The cases are specified
by means of Case objects that contain a condition together with a statement.
Optionally, one Default case can be specified that is executed when no con-
dition is satisfied. It is worth noticing that these objects are directly given
as arguments parameters for Switch instead of as a list, which helps distin-
guishing the case collection from a sequence. When the Switch statement is
executed, the conditions of every Case object are evaluated in the same order
they were specified and the first case for which the condition is satisfied is
chosen for execution. If no test succeeds and a default case exists, then the
statement specified in the Default block is executed. Otherwise, the control
flow continues with the next statement after the Switch.

It is clear that conditional statements are indispensable for any agent con-
trol language. Often, an If is necessary to test a condition before an action is
executed. In other cases, the agent decides between multiple alternatives how
to proceed. Although the If statement could obviously also be used for this
purpose, a Switch construct can often be useful for avoiding a deep nesting of
statements that would obfuscate the real logic behind the decision.

Examples for the use of both If and Switch can be seen in Figure 3.12.
This figure also contains a loop realized by the While-statement, which is
defined next.

Definition 3.14 (While Loops). The SALMA-APDL supports while loops in
their usual form:

<While> = While(condition: Condition [, arguments: ArgumentList],
body: StatementOrSequence) ;

The condition used for While-loops is built in the same way as that of the
If-statement. The statement in the loop body is consequently repeated until
the condition fails, and unlike most procedural programming languages, the
SALMA-APDL intentionally does not support a break statement that cancels
loop execution. Although having such an option would be convenient in some
cases, it could also make the control flow harder to trace and reason about.

Another essential control flow element appears in Figure 3.12 which is
required to realize almost any nontrivial agent behavior: the ability to block
execution until a condition is fulfilled. This is achieved by the Wait statement.

Definition 3.15 (Wait Statement). In a SALMA-APLD procedure, a Wait
statement can be used to block execution until a condition is true. Its syntax
is defined as follows:

54 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

PRECONDITION TEST BEFORE DELIVERY:
. . .
If("not self.broken and "

"dist_from_station(self, targetWs) == 0 and carrying(self, targetItem)",
Act("deliver", [SELF, targetItem, targetWs]))

MAIN MOVEMENT CONTROL LOOP:
. . .
While("not self.broken and self.next_task != None and "

"(self.xpos != tx or self.ypos != ty)", [
Switch(

Case("self.xpos < tx", Act("move_right", [SELF])),
Case("self.xpos > tx", Act("move_left", [SELF]))

),
Wait("self.ready"),
Switch(

Case("self.ypos < ty", Act("move_down", [SELF])),
Case("self.ypos > ty", Act("move_up", [SELF]))

),
Wait("self.ready")])

Figure 3.12: Example use of the control flow statements in the SALMA-APDL.

<Wait> = Wait(condition: Condition [, arguments: ArgumentList]) ;

When a Wait-statement is executed within an agent process whose con-
dition is true, the control flow simply proceeds with the following statement.
However, when the condition is false, the control flow leaves the current pro-
cess and continues the execution of other processes. The process is blocked
and only continued when the condition becomes true. This can only happen
due to the change of a fluent value caused by an action performed in another
process or an event.

Although the precise simulation semantics will not be discussed until Sec-
tion 3.6, it is important to realize that action executions and blocked Wait
statements are the only points in an agent control procedure where context
switches occur in the simulation. The parts in between these points are not
interleaved with other actions, i.e. they form atomic blocks. This means, for
example, that an infinite loop in one process would actually block not only the
process that contains it but the whole simulation.

In the robot’s movement control loop shown in Figure 3.12, the Wait state-
ments are used right after a movement is started to wait until the step has
ended, which is indicated by the derived fluent idle. Without waiting for the

3.3. THE SALMA AGENT PROCESS DEFINITION LANGUAGE 55

idle state, the next move action would be executed before its precondition is
fulfilled, which would cause the simulation to be canceled. Although this re-
quirement for explicitly awaiting might seem cumbersome at first, this pattern
represents the actual behavior of the modeled agent more accurately.

The set of statements defined above would, in principle, be sufficient to
define any intended agent behavior. However, the SALMA-APDL offers two
additional constructs that are very useful in many situations and actually
establish a bridge to logic programming.

Definition 3.16 (Select Statement). The Select statement chooses the first
combination of argument values that make a Prolog predicate true.

<Select> = Select(predicateName: string, arguments: ArgumentList) ;

Different from the Assign statement, the source for Select cannot be
defined in Python but has to be either a relational (boolean) fluent, a boolean
derived fluent, or a situation-dependent Prolog predicate. When the Select
statement is executed, this predicate is called similarly as during the Assign
statement. However, every variable that is not bound to a value at that time,
and for which one of the entity types is specified as type, is treated as a
free variable. For these, the corresponding argument positions are filled with
fresh Prolog variables and the type information is used to set up membership
constraints with respect the sort domains. Due to Prolog’s evaluation scheme,
the system will now use backtracking search to find a combination of values
for which the called goal succeeds. If at least one such combination exists, the
first one is chosen and each free variable is bound to its corresponding value.
Otherwise, all free variables are set to None.

In many cases, not only the first but all possible solution for a predicate or
a fluent should be considered. In this case, a construct is needed that iterates
over these solutions.

Definition 3.17 (Iterate Statement). The statement Iterate repeats its
nested body for each possible solution of a relational fluent or Prolog pred-
icate and binds free variables according to each iteration.

<Iterate> = Iterate(source: ValueSource, arguments: ArgumentList ,
body: StatementOrSequence) ;

ValueSource = pythonFunction | FluentName | PrologFunctionName |
PythonExpression ;

The source for the iteration can be any of those that are also used for vari-
able assignment. However, their meaning is different: for fluents and Prolog
predicates, the iteration is performed over all possible solutions in the sense

56 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

r, i, ws = makevars(("r", "robot"), ("i", "item"), ("ws", "workstation"))
Procedure([

Iterate("self.request_queue", [ws], [
Select("unassigned", [r]),
Assign(i, select_item, [r]),
If("i != None and r != None",

Act("assign_task", [SELF, r, i, ws]))])])

Figure 3.13: Example for the use of Select and Iterate.

of Prolog’s findall operator (see [DEDC12, chap. 5.3]). In contrast to that,
a Python function or expression is expected to return a list. This list can
either contain one individual value for each cell, if only one free variable was
specified, or tuples with one values for each free variable.

For both the Select and the Iterate statement, examples can be found
within the control procedure of the coordinator agent, which is shown in Fig-
ure 3.13. Here, the iteration is performed over the list of requests that the
coordinator has received until the loop is entered. In each iteration, the vari-
able ws is set to the next workstation from the request queue. Within the loop’s
body, a Select is used to retrieve the first robot that is unassigned according
to the corresponding derived fluent. As described above, this robot is stored
in the variable r and passed as an argument to the function select_item
that was shown in Figure 3.11 whose return value is assigned to the variable
i. Finally, if a value could be found for both r and i, the task is assigned
using the assign_task action. The variables r, i and ws are setup beforehand
using the utility function makevars that simply returns one Variable object
for each tuple in the argument list, where the tuples contain both the name
of the variable and its type. In fact, in this case the type information is only
necessary for r, which is used in the Select statement. However, since it adds
valuable information to the model, it is certainly a good practice to add type
information in all variable declarations.

3.3.3 Agent Process Types

After the agent control procedures have been defined as described above, they
have to be attached to agent processes, which in turn are assigned to agent
instances during simulation setup. In fact, each agent can be equipped with
multiple processes that are scheduled and executed independently from each
other. SALMA distinguishes three types of processes:

3.4. THE SALMA SIMULATION FRAMEWORK 57

1. A one-shot process is executed once at the start of the simulation.
After the procedure of the process has been finished, the process is ter-
minated and will not be executed again for the current simulation run.

2. A periodic process is executed repeatedly with a specified period. In
fact, each time the procedure of a periodic process is exited, the process
becomes idle and is restarted as soon as the next time-slot has started. If
the runtime of a periodic process is longer than its period, it is restarted
immediately.

3. A triggered process is executed as soon as its trigger condition becomes
true. When the condition is found to be true while the process is already
running, this fact is just ignored.

Corresponding to these process types, the SALMA framework offers three
Python classes that are tightly connected to the SALMA-APDL and allow the
creation of process instances that can be installed onto agents.

Definition 3.18 (Agent Process Definition). An instance of a one-shot, pe-
riodic, or triggered process can be created with one of the following class
constructors.

<OneShotProcess> = OneShotProcess(procedure: Procedure) ;

PeriodicProcess = PeriodicProcess(procedure: Procedure, period: integer) ;

TriggeredProcess = TriggeredProcess(procedure: Procedure,
condition: Condition) ;

Here, the condition of the TriggeredProcess statement is defined in the same
way as it was for the conditional statements in Definition 3.13. In each simu-
lation step, it will be evaluated within the evaluation context of the agent that
owns the process.

Once the desired process instances have been created, they can be used to
create agent instances that are finally added to the world instance. At this
point, the domain of the SALMA-APDL is left and the responsibility is passed
to the core part of the SALMA simulation framework, which is described next.

3.4 The SALMA Simulation Framework

Figure 3.14 shows an overview of the core of SALMA’s simulation framework.
It comprises a class structure that is able to capture both the static and the
dynamic aspects of the simulation model. The core of the model is constituted
by the singleton class World that stores collections of objects representing all

58 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

ExogenousActionChoice

instance

«singleton»

World

EventSchedule

DeterministicAction

condition

TriggeredProcess

stochasticParams [*]

StochasticAction

variableBindings [*]

EvaluationContext

period

PeriodicProcess

EclipseCLPEngine

SelectionStrategy

SelectionStrategyExogenousAction

time
arguments [*]

EventOccurrence

OneShotProcess

state
currentStatement

Process

DerivedFluent

«facade»

LogicEngine

name
parameters [*]

Schedulable

name
parameters [*]
sort

ValueSource

parameters [*]

Action

Distribution

Distribution

Experiment

ProcedureAgent

id
sort

Entity
Constant Fluent

1

1

{subsets entities}

agents *

1

outcomes 1..*

1

paramDistributions *

*

1..*1

ec

1

self

1

choices

1..*

*

entities *

1

paramDistributions

*
occurenceDistribution 1

1

parent

0..1

*

1

**

1*

1

Figure 3.14: Overview of the core SALMA simulation framework.

ingredients of the SALMA domain model, namely fluents, actions, events, en-
tities, and agents. Additionally, through indirect links, this also includes the
agent’s processes as well as the probability distributions for stochastic and
exogenous actions. Besides this representation of the model and its configura-
tion, the world instance has an event schedule that manages a queue of future
event occurrences together with the occurrence times they are appointed to.
On the other hand, the world instance is connected to an implementation of
the LogicEngine interface which establishes the bridge to the concrete Prolog
system in use1.

The following section describes how the core classes of the SALMA frame-
work are used to assemble the different parts of the simulation model that were
discussed in the previous sections. It is also discussed how to fill the remaining
gaps, namely the probability distributions and the initial situation at which
the simulation should start. After that, Section 3.4.4 will explain how to set up
a concrete simulation experiment based on this model, which includes making
decision about simulation execution strategies and what information should
be recorded for later analysis.

1At the moment, only the ECLiPSe Constraint Programming System [SS10, ecl06]
is supported but since Python interfaces for other common implementations like SWI-
Prolog [WSTL12] also exist, a port to these platforms would be possible.

3.4. THE SALMA SIMULATION FRAMEWORK 59

3.4.1 Initial Setup

The first step in creating a simulation model in the SALMA approach is to
define the system domain model as discussed in Section 3.2. In practice, this
means that one or more Prolog source files are written that contain the dec-
larations and axioms for fluents, actions, etc. In order to work with these
sources, they have to be loaded and compiled via the Prolog interface. This
happens when the path to the domain model source file is passed at the in-
stantiation of a LogicEngine instance. At the same time, several global data
structures within the Prolog runtime system are initialized that will later store
all fluent instance and manage them during progression. The created engine
is registered at the World class and a world instance is created. After that,
the declarations from the domain model can be loaded, which automatically
creates the corresponding instances of the classes Fluent, DerivedFluent,
Constant, DeterministicAction, StochasticAction, ExogenousAction, and
ExogenousActionChoice. These objects are registered at the world instance
and the parameter lists of fluents, constants, actions, and events, as well as
the sets of outcomes for stochastic actions and exogenous action choices, are
initialized according to the declaration statements of Section 3.2. At the same
time, the declared sorts are registered together with the subsort-relations as-
sociated with them. Altogether, these steps are performed with the following
lines of Python code:

World.set_logic_engine(EclipseCLPEngine(<DOMAIN MODEL PATH>))
world = World.create_new_world()
world.load_declarations()

3.4.2 Configuration of Actions and Events

After the domain model has been loaded, all of its elements can be accessed
via the world instance. In particular, it is necessary to configure probability
distributions and selection strategies for the actions and events:

For exogenous actions, an occurrence distribution has to be specified
whose meaning depends on the declaration of the event. If a schedulable
axiom is defined for the exogenous action, the occurrence distribution has
to be numeric. When an event instance is detected to be schedulable in a
simulation step, then the occurrence distribution is used to sample a delay
time after which the occurrence of the event instance will be scheduled. On
the other hand, if only a precondition for the event is specified by means
of a poss axiom, then the occurrence distribution has to be boolean. If the
precondition is satisfied for a specific event instance in the current simulation
step, the occurrence distribution is used to decide whether the event instance
should occur in the same step. Additionally, as mentioned in Section 3.2.3, an
exogenous action can also have probabilistic parameters, for which the modeler
has to set up adequate probability distributions, too.

60 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

For stochastic actions, a selection strategy has to be defined which is used
to choose one of the possible outcomes when the stochastic action is performed
by an agent. Often such a distribution simply assigns a fixed probability to
each outcome, although any type of categorical distribution with the right
value range can be used. Additionally, the modeler has to specify how the
parameters of the chosen outcome action are going to be filled. This can
either be a direct mapping to a controlled parameter that is set when the
agent executes the action, or it could itself be another probability distribution
that is able to yield values of the correct type.

Exogenous action choices, i.e. sets of mutually exclusive events, require
a selection strategy similar to stochastic actions, with the difference that the
choices are exogenous actions. Each of these options have to be configured like
any independent event as described above.

As a concrete example for the configuration of probability distributions
and selection strategies, Figure 3.15 shows an excerpt of one version of the
delivery robots example. First, a categorical selection strategy is chosen for
the exogenous action choice step_finished, where the probabilities for the
events step_succeeded and step_failed are set to 0.8 and 0.2, respectively.
For both of these step options, a constant occurrence distribution with the
parameter 1 is defined, which means that each movement will either succeed
or fail after exactly one time step. For the stochastic action pickUp, the
probability of a successful grab is set to 70% vs a 30% chance of dropping
the item. The parameters r and i of both outcomes, which represent the
robot and the item, are mapped to the correspondent parameters of pickUp.
Furthermore, the model specifies a uniform distribution for the grip parameter
that selects a value between 1 and 10 with the same probability. For both the
two following exogenous actions accidental_drop and request, geometric
distributions are defined, with a success probability of 0.001 for the accidental
drop and 0.01 for a request by a workstation. Finally, for the collision event, for
which a poss but no schedulable axiom exists in the model (cf. Figure 3.7),
the occurrence distribution decides directly about the occurrence within the
current simulation step.

All probability distributions used in the current example have in com-
mon that they are defined using parameters that are fixed when the distribu-
tion object is created during simulation setup. Although this is sufficient in
many cases, often a distribution depends on the current situation. Therefore,
the SALMA framework makes it easy to define custom probability distribu-
tions by inheriting from the class Distribution and overriding the method
generateSample or by using a special class CustomDistribution that dele-
gates generation of a sample to a Python function. In both cases, the custom
method or function receives the arguments that define the action or event in-
stance and can access the full world state in order to derive a value. As an
example, it could be reasonable to assume that the rate with which a worksta-
tion sends out item requests is related to the current number of “open orders”,

3.4. THE SALMA SIMULATION FRAMEWORK 61

def setup_distributions(self):
step_finished = world.get_exogenous_action_choice("step_finished")
step_finished.selection_strategy = Categorical(step_succeeded=0.8,

step_failed=0.2)
stepdelay = ConstantDistribution("integer", 1)
world.get_exogenous_action(

"step_succeeded").config.occurrence_distribution = stepdelay
world.get_exogenous_action(

"step_failed").config.occurrence_distribution = stepdelay

pickup = world.get_stochastic_action("pickUp")
pickup.selection_strategy = Categorical(grab=0.7, drop=0.3)
grab = pickup.outcome("grab")
grab.map_param("r", "r"), grab.map_param("i", "i")
grab.uniform_param("grip", value_range=(1, 10))
drop = pickup.outcome("drop")
drop.map_param("r", "r"), drop.map_param("i", "i")

accidental_drop = world.get_exogenous_action("accidental_drop")
accidental_drop.config.occurrence_distribution =

GeometricDistribution(0.001)

request_event = world.get_exogenous_action("request")
request_event.config.occurrence_distribution =

GeometricDistribution(0.01)

collision_event = world.get_exogenous_action("collision")
collision_event.config.occurrence_distribution = BernoulliDistribution(1.0)
collision_event.config.uniform_param("severity", value_range=(5, 10))

Figure 3.15: Definition of probability distributions for the delivery robots ex-
ample.

62 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

i.e. requests for which no item has been delivered yet. If an item is interpreted
as a resource that is needed at a workstation to perform some task, then it
could be imagined that a workstation has a number Nslots of slots at which
tasks can be performed in parallel. When the processes that happen at each
slot are not modeled in more detail, it is a common choice to describe the times
between requests at each slot by the same geometric distribution. However, if
a request has been sent due to a current demand of a slot, this means that the
slot will be waiting for the item to arrive and not issue any further requests
in the meantime. Therefore, the total inter-arrival times for a workstation ws
can be modeled by a geometric distribution that depends on the number of
free slots Nfree(ws):

P (T = t) ∼ Geom(ptot(ws)) (3.1)
where

ptot(ws) = 1− (1− pslot)Nfree(ws)

Here, pslot is the parameter for each slot and Nfree(ws) is the number of
slots of ws that are not currently waiting for the delivery of a requested item.
This can be seen when ptot(ws) is understood as the probability that at least
one free slot of ws issues a request at a given step. Since the model guarantees
that every request will remain in the coordinator’s queue until it is assigned
to a robot, the number of free slots can be derived as follows:

Nfree(ws) = Nslots − card({robots delivering to ws}) (3.2)
− card({entries in request queue from ws})

Figure 3.16 shows how this probability distribution is realized by means
of a short Python function request_distrib that is installed for the request
event via a CustomDistribution object. This function is called each time
the simulation algorithm has chosen an instance of the event request for
which the corresponding schedulable axiom was true. The workstation, the
coordinator, and the world’s root evaluation context are passed to the function
via the parameters ws, c, and ctx, respectively. Using these arguments, the
function first uses the method count of Python’s list type to count the number
of times the workstation appears in the request queue of the coordinator.
Then it iterates over all existing robots, i.e. the domain of the sort robot
and counts the number of robots that are currently assigned to deliver an
item to the workstation. With these numbers and the constants N_SLOTS and
P_SLOT, the parameter p_totis calculated as explained above and a sample
from the corresponding geometric distribution is returned, which will be used
to schedule the next occurrence for the event instance request(ws, c).

3.4. THE SALMA SIMULATION FRAMEWORK 63

def request_distrib(ws, c, ctx: EvaluationContext=None, **kwargs):
ws_in_queue = c.request_queue.count(ws)
assigned_robots = 0
for r in ctx.getDomain("robot"):

if r.task_workstation == ws:
assigned_robots += 1

n_free = N_SLOTS - assigned_robots - ws_in_queue
p_tot = 1 - (1 - P_SLOT)**n_free
return None if p_tot == 0 else np.random.geometric(p_tot)

. . .
request_event.config.occurrence_distribution = CustomDistribution(

"integer", request_distrib)

Figure 3.16: Alternative custom distribution for the occurrence of item re-
quests.

Altogether, it is obvious that the choice of probability distributions and
outcome selection strategies plays an important role in the model. By the abil-
ity to integrate custom Python code, SALMA achieves a high level of flexibility
that allows tackling even complex scenarios with much detail. Due to the im-
portant role of probability distribution definitions within the model, SALMA
puts considerable effort into achieving a tight integration of the SALMA do-
main and behavior models into the Python environment in order to achieve
conciseness and high readability. One of the facilities that serve this purpose
is the event and action configuration API used in Figure 3.15. However, the
most important facet of language integration is the fact that SALMA makes
fluent and constant instances accessible in an object-oriented manner. This
could already be seen, e.g., in the function request_distrib in Figure 3.16
and Section 3.4.5 will explore this topic a bit further. Before that, however,
the remaining steps in configuring the simulation are taken, namely the pop-
ulation of the world’s state at the simulation start and the definition of the
concrete experiment.

3.4.3 Creating Entities, Agents, and the Initial Situation

In the classical situation calculus, the initial situation is the point of reference
to which all formulas are projected through the regression operator. Similar,
from the simulation perspective in SALMA, the initial situation represents the
world state at the start, from which all future states evolve during simula-
tion due to the repeated application of a progression step (cf. Section 2.2).
Therefore, a value for every fluent and constant instance has to be defined for
the initial situation. In fact, SALMA does not fill in undefined instances with
default values but raises an exception when any uninitialized values are found

64 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

at the start of the simulation. This is meant to force the modeler to consider
every facet of the world’s state at the beginning. Usually, significant parts of
the initial values for constant and fluent instances are initialized by samples
from probability distributions that have to be chosen carefully according to
the concrete requirements of the simulation experiment. First, however, the
model has to be populated with entities and agents that make up the domains
of the declared sorts. For the delivery robots example, this means two sorts of
agents are created, namely several robots and a coordinator. Additionally, two
sorts of passive entities are added for items and workstations. How these sys-
tem elements are created and registered at the world instance is shown in the
method create_entities in Figure 3.17. For each robot and the coordinator,
instances of the class Agent are created and assigned with a SALMA-APDL
Procedure as described in Section 3.3. The content of these procedures are
omitted here since the most important parts have already been shown above.
However, the full code can be found on the SALMA website at [Kro16]. Besides
the agents, Entity objects are created to represent the items and workstations
in the system. All entity and agent objects are registered at the world instance
using the method World.add(), which creates preliminary domain maps for
the sorts of the registered entities. However, before the agents and entities can
actually be used in the model, the world instance has to be initialized using the
method World.initialize(). This step in particular sets up the sort domain
hierarchy according to the subsort relations defined in the domain model, i.e.
it makes sure that the domain of a super-sort contains the entities of all its
subsorts.

After the entities for the system have been registered and the world instance
has been initialized, the Entity and Agent objects can be accessed either
individually by a lookup via their identifiers using the method
World.get_entities_by_id(), or as part of a set returned by
World.getDomain() that retrieves all entities of a given sort and its subsorts.

The next step at this point is to set values for constant and fluent in-
stances at the initial situation. One way to do this is to use the methods
World.set_fluent_value(fname, params, value) and
World.set_constant_value(fname, params, value) that expect the name
of the fluent or constant and the parameters that identify the instances and
assigns the given value. However, a much more elegant way is leverage the
object-oriented facade that is offered by Entity and Agent classes (see also
Section 3.4.5). This approach has been used in Figure 3.18 where the initial
situation is set up for the delivery robots example. There, within a loop over
all Agent objects from the domain of the sort robot, the position of each
robot is set to coordinate value sampled from uniform distributions over the
world’s grid, whose dimensions are defined by the constants GRID_WIDTH and
GRID_HEIGHT. The same random initialization is done below for the positions
of the items and the stations. In fact, as will be explained in Section 3.4.4, the
method create_initial_situation() will actually be executed at the begin-

3.4. THE SALMA SIMULATION FRAMEWORK 65

def create_robot(num):
p = Procedure([. . .])
proc = OneShotProcess(p)
return Agent("rob" + str(num), "robot", [proc])

def create_coordinator():
p = Procedure([. . .])
proc = PeriodicProcess(p, 50)
return Agent("coordinator1", "coordinator", [proc])

. . .

def create_entities(self):
coordinator1 = create_coordinator()
self.world.add(coordinator1)
for r in range(1, NUM_ROBOTS + 1):

self.world.add(create_robot(r))
for i in range(1, NUM_ITEMS + 1):

self.world.add(Entity("item" + str(i), "item"))
for i in range(1, NUM_STATIONS + 1):

self.world.add(Entity("ws" + str(i), "workstation"))

Figure 3.17: Creation of entities for the delivery robots example.

ning of each simulation run, hence creating an experiment where the entity
positions are randomized. Of course, this is only one possible choice for an
initialization strategy and others can be realized just as well using the facili-
ties of the SALMA framework. In fact, this is already one important aspect
of designing the simulation experiment, which is discussed next.

3.4.4 Defining and Performing a Simulation Experiment

The previous sections of this chapter explained how a simulation model can be
defined using the modeling languages of the SALMA approach and how the
model can be turned into a concrete scenario by initializing values and choos-
ing probability distributions. In order to use this model within a simulation
experiment, some additional decisions have to be made, for instance:

1. How often should the simulation be repeated, i.e. how many simulation
runs are performed?

2. How long should each simulation run be followed? What criteria for
cancellation exist?

3. How should parameters of the model be varied between the simulation
runs.

66 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

def create_initial_situation(self):
coordinator1, = self.world.get_entities_by_id("coordinator1")
robots = self.world.getDomain("robot")
items = self.world.getDomain("item")
workstations = self.world.getDomain("workstation")

for r in robots:
r.xpos = np.random.randint(1, GRID_WIDTH)
r.ypos = np.random.randint(1, GRID_HEIGHT)
r.vx = 0
r.vy = 0
r.broken = False
r.next_task = None
r.robot_radius = 1
for i in items:

r.set_carrying(i, False)

coordinator1.request_queue = []

for item in items:
item.xpos = np.random.randint(1, GRID_WIDTH)
item.ypos = np.random.randint(1, GRID_HEIGHT)
item.delivered_to = None

for ws in workstations:
ws.stationX = np.random.randint(1, GRID_WIDTH)
ws.stationY = np.random.randint(1, GRID_HEIGHT)
ws.delivered_item_count = 0

Figure 3.18: Creation of the initial situation for the delivery robots experiment.

4. Which information should be recorded in order to create an adequate
data base for later analysis?

In general, making these choices is part of a process that is often referred to
as simulation experiment design, which is a wide field by itself and can therefore
only be touched very superficially in this thesis. Often cited introductions to
this topic can be found in [San05] or [Law14, Chap. 12].

The first aspect to realize with respect to the issues mentioned above is
that these decisions have to be made not only for one individual simulation run
but for a series of simulation runs. This means that the framework needs a way
to control the entire life cycle of a simulation run, including initialization, re-
set, cleanup, and data logging. The part of the SALMA simulation framework
that is responsible for this is shown in Figure 3.19. A simulation experiment is

3.4. THE SALMA SIMULATION FRAMEWORK 67

defined by creating a subclass of Experiment. There, a protocol for the initial-
ization of a simulation run is established by means of several template methods
that can be implemented within the user-defined subclass (see [GHJV94]). Pri-
marily, this includes the methods create_entities, setup_distributions,
and create_initial_situation, for which examples were shown throughout
this section. The structure of the initialization procedure itself can be seen in
Figure 3.22a.

+run_trials(e : Experiment, num : int, max_steps : int) : ExperimentResult [*]
...

ExperimentRunner

+run_trials(e : Experiment, num : int, max_steps : int) : ExperimentResult [*]
...

SingleProcessExperimentRunner

+run(max_steps : int) : ExperimentResult
+initialize()
+reset()
«template»#setup_distributions()
«template»#create_entities()
«template»#create_initial_situation()
«template»#before_run()
«template»#after_run()

Experiment

+step(info : StepInfo) : Verdict

StepListener

#setup_distributions()
#create_entities()
#create_initial_situation()
#before_run()
#after_run()

DeliveryRobotsExperiment

-instance : World

+instance() : World
+create_new_world()
+load_declarations()
+initialize()
-init_sort_hierarchy()
+step() : StepInfo

...

«singleton»

World

+world_finished : boolean

StepInfo

+action_name : String
+arguments [*]

ActionExecution

UNDETERMINED
NOT_OK

CANCEL

OK

«enumeration»

Verdict

+verdict : Verdict
+steps : int
+worldTime : int

...

ExperimentResult

1

+failed

-step_listeners*

+performed

Figure 3.19: Structure of the SALMA simulation experiment framework.

After the initialization sequence, a simulation experiment can be executed
using the method Experiment.run(). The simulation would then proceed un-
til either the world has finished, i.e. there is no process left that might be
executed, or when a time limit is reached. Additionally, an experiment can
be equipped with one or more StepListeners, which, although represented as
interfaces in Figure 3.19, are really callback functions that are executed after
each simulation step. Every step listener function receives arguments that in-
clude a reference to the World instance and a collection of details about the
current step. In particular, it receives two lists that contain the actions (in-
cluding events) that were performed in this step and those that failed because
their preconditions were not satisfied. One typical use case for a step listener
is to write part of the state and action information to a log-file or a database
that can later be used for analysis of the experiment results. An example for
such a logging handler that is used in the delivery robots example can be found
in Figure 3.20. There, a step listener is created as a closure that is bound to
a file object [Pyt15a, 16.2] that references a CSV file to which the positions of
all robots are written (together with other data that is omitted here).

Besides for data logging, step listeners can be used to define stop condi-

68 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

def create_step_logger(f: TextIOBase):
def __l(world: World, step=None, **kwargs):

positions = []
. . .

robots = sorted(world.getDomain("robot"))
for rob in robots:

positions.append((rob.xpos, rob.ypos))
. . .

columns = [step, world.time]
for p in positions:

columns.extend(p)
. . .
f.write(";".join(list(map(str, columns))) + "\ n")
f.flush()

return __l

. . .
experiment = DeliveryRobotsExample(experiment_path)
experiment.initialize()
with experiment_path.joinpath("experiment.csv").open("w") as f:

f.write(create_csv_header() + "\ n")
f.flush()
experiment.step_listeners.append(create_step_logger(f))
experiment.run(max_steps=3000)

Figure 3.20: Use of a step listener for data logging in the delivery robots
experiment.

tions for simulation runs. In fact, a simulation run is stopped when a step
listener returns one of the verdicts OK or NOT_OK, declaring the run either as
success or as failure. This can be an important measure to avoid simulations
from getting stuck in a state in which no further valuable progress is possible.
For instance, in the delivery robots example, it might happen that all robots
are broken and thus unable to move, or that all items have been delivered. In
both cases, it obviously does not make sense to continue the simulation. There-
fore, the two additional step listeners shown in Figure 3.21 are installed. The
first, break_when_all_delivered, returns a positive verdict, when the fluent
delivered_to is set for all items. On the other hand, break_when_all_broken
returns a negative verdict when the fluent broken is true for all robots. Both
return None when their conditions are not met to indicate that the simulation
should continue.

When a simulation experiment involves any kind of statistical analysis, a
single simulation run is not enough for any meaningful analysis. Instead, a
batch of simulation runs has to be performed to gather a sufficient amount of
data. For this purpose, the SALMA framework defines the interface

3.4. THE SALMA SIMULATION FRAMEWORK 69

def break_when_all_delivered(world: World, **kwargs):
for i in world.getDomain("item"):

if i.delivered_to is None:
return None

return OK

def break_when_all_broken(world: World, **kwargs):
for r in world.getDomain("robot"):

if r.broken is False:
return None

return NOT_OK

Figure 3.21: Use of step listeners to establish simulation stop conditions in the
delivery robots experiment.

ExperimentRunner with the method run_trials() that can be called with a
number of simulation runs (trials) that should be performed. The execution
then enters a nested loop that is sketched in Figure 3.22b. It can be seen
that the initialization procedure from Figure 3.22a is executed at the begin-
ning of every simulation run. As explained above, this resets the world state
by recreating all entities, restoring the event and action configurations, and
constructing an initial situation for the next run. Then, the Experiment is ex-
ecuted via its run() method, which triggers the hook function before_run()
that can, for example, be used to initialize auxiliary data structures or re-
sources like log-files. Then, the inner loop is entered, which keeps executing
the main step function of the simulation algorithm, World.step() until a) the
simulation indicates a finish of the world’s processes (represented by the flag
stepInfo.world_finished being true); b) the maximum number of steps has
been reached; c) the simulation run was stopped because a verdict has been
found by a step listener, or d) an action has failed, i.e. it has been performed
by an agent although its precondition was not satisfied. Finally, when the
inner loop is left, the method after_run() is called to perform any necessary
post-processing, e.g. saving files to disc, and the results of the simulation run
are appended to the overall result collection which will eventually be returned
when run_trials() is exited.

Although the abstracted interaction in Figure 3.22 refers to the general
interface ExperimentRunner, it is actually a representation of the execution
schema realized in the class SingleProcessExperimentRunner. At the mo-
ment, this class that performs all simulation runs sequentially within one
Python process is the only implementation included in the SALMA framework.
However, with the recent development in the fields of parallel and distributed
computing, cloud computing, and various emerging “Big Data” technologies,

70 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

interaction initialization initialization[]

 : Experiment

«singleton»

 : World

initialize()1:
create_new_world2:

3: ()

initialize()5:

create_initial_situation()8:

create_entities()4:

setup_distributions()7:

init_sort_hierarchy()6:

(a) Simulation run initial-
ization sequence.

interaction running trials running trials[]

 : ExperimentRunner : StepListener : Experiment «singleton»

 : World

[i=1; i<=num; i++]

[stepInfo.world_finished ==
 false
& step <= max_steps
& verdict == UNDETERMINED
& failed_actions = {}]

loop

loop

run_trials(e, num, max_steps)

run(max_steps):"results[i]"

reset()

verdict

before_run()

step():"stepInfo"

initialize()

step(stepInfo):"verdict"

results[i]

after_run()

stepInfo

(b) Execution of a batch of simulation runs.

Figure 3.22: Interactions during simulation initialization and execution.

it has become a relatively straightforward task to realize experiment runners
that are able to simultaneously perform many simulation runs in a cluster and
aggregate the results. Since this kind of horizontal scalability is a key factor for
the success of statistical model checking and simulation approaches in general,
this topic will be revisited in the outlook that is given in Section 7.3 in the
conclusion of this thesis.

3.4.5 Mechanisms for Language Integration

One of the main goals that guided the design of the SALMA modeling lan-
guages and the underlying framework is to create a tight integration between
the between the model parts where the situation calculus model can be accessed
in a natural way but the modeler can still leverage the Python ecosystem to full
extent. As Fowler points out in [Fow10, Chap. 6], this is one of the strongest
arguments for the use of an internal domain specific language (DSL) like the
SALMA-APDL instead of an external one that is parsed and interpreted as a
closed unit.

In Section 3.3, several points were discussed where the demand for inte-
gration of the situation calculus model with Python code arises, namely the

3.4. THE SALMA SIMULATION FRAMEWORK 71

definition of conditions and the retrieval of values for variable assignment and
iteration. The first obvious option in these cases is to specify the name of the
fluent and a list of arguments that are then passed directly to the LogicEngine,
i.e. the bridge to the Prolog interpreter (see Figure 3.14). This works fine when
the fluent name itself conveys enough information to explain the meaning of
its concrete use on first sight. However, often the condition or value source
is more complex and involves calculations or combinations of multiple fluents
or constants. For these cases, the SALMA framework allows using Python
expressions in which all elements of the situation calculus model are accessible
in a natural way. In fact, Section 3.3 already presented many examples for
expressions like that, for instance in Figure 3.12 where the precondition of the
deliver action is tested by an If statement with the following condition:

If("not self.broken and "
"dist_from_station(self, targetWs) == 0 and carrying(self, targetItem)", . . .

It is obvious that this condition can be read like a regular object-oriented
expression and captures both the decision logic and the origin of the involved
data in a very concise way. Expressions like this are possible because the
SALMA framework populates the namespace that is used when the expres-
sion is evaluated by Python’s built-in function eval() [Pyt15b, Chap. 2].
During the initialization phase, it adds accessor functions for fluents and con-
stants and entity objects that are bound to their identifiers, e.g. targetWs and
targetItem above. Accessor functions, like carrying() in the example above,
act as direct wrappers around calls to the logic engine where the name of the
fluent or constant is given implicitly by the function name. This already allows
creating concise expressions that hide much unnecessary clutter. However, the
SALMA framework offers another option for accessing fluent and constant val-
ues that is even much more concise and clearer to read. A good example can
again be taken from Figure 3.12, this time being the condition of the robots’
main movement control loop:

While("not self.broken and self.next_task != None and "
"(self.xpos != tx or self.ypos != ty)", [. . .

As demonstrated in this expression, the SALMA framework provides an
object-oriented view on the domain model. In fact, many fluents and con-
stants are declared with a single parameter whose type is an entity sort,
e.g. the fluents xpos and ypos or the constants stationX and stationY
from the delivery robots example (see Figure 3.3). These fluents and con-
stants can be understood as attributes of the entities that are admissible for
the qualifying argument. To achieve this, the SALMA framework leverages a
mechanism in Python that allows customizing the attribute access of objects
(see [Pyt15a, Sec. 3.3.2.]). In particular, the special methods __get_attr__()
and __set_attr__() that are declared in Python’s top-level class object, are

72 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

overwritten in the class Entity. These methods are called by the Python run-
time when undefined attributes are accessed. When this happens, the method
implementations in Entity delegate the access to the Python-Prolog bridge
LogicEngine that retrieves or updates the value of the fluent or constant in-
stance as intended. Besides being usable in expressions within SALMA-APDL
statements as above, the instances of the class Entity are used also in other cir-
cumstances, e.g. within custom probability distribution functions (Figure 3.16)
or for the creation of the initial situation (Figure 3.18). Altogether, it can be
seen from these examples that this style of attribute fluent and constant access
effectively achieves a seamless integration of the situation calculus model into
the Python environment. On top of that, the object-oriented view provides a
perspective on the system model that is likely to be more intuitive for users
who are nowadays almost certainly familiar with object-oriented programming
languages.

3.5 The Delivery Robots Experiment Revisited

All components of the SALMA simulation approach have now been discussed.
This means that the parts of the delivery robots example shown in the previous
sections can be assembled to create a fully functional simulation model and
define concrete simulation experiments. As a first step, it is important to
validate the model, i.e. to confirm that the simulated system behaves in a way
that is consistent with the assumptions and expectations of the modeler. In the
case of the delivery robots experiment, this can best be done by visualizing the
behavior of the robots. The easiest way this can be achieved is by logging the
positions of the robots to a CSV file with a step listener like that in Figure 3.20.
After the simulation experiment, this file can be read and analyzed with any
mathematical software package like Matlab, Octave, or R, or with libraries
provided by the scientific Python stack (SciPy) [dev15], which was used for all
calculations and diagrams in this thesis. As a first step, the path of the robots
can be plotted in a two-dimensional diagram together with the locations of
items and workstations. Figure 3.23 show such a plot with all robot paths for
a simulation with 3 robots, 20 items, and 5 workstations with a grid size of
200 × 200. All positions were initialized randomly by sampling from uniform
distributions on the grid’s dimensions as shown in Figure 3.18. Even though
it is hard to trace the exact movements of each individual robot, it can clearly
be seen that the robots in fact adhere to the movement strategy defined in
Figure 3.12 and that all items were visited during simulation. This already
can be seen as a strong confirmation for the simulation’s validity. For further
investigation, it is also possible to animate the robots’ movement, which shows
that each robot exactly follows the two phase of its control procedure, i.e.
picking up the item and then delivering to a workstation.

After the validity of the simulation model has been confirmed visually,

3.5. THE DELIVERY ROBOTS EXPERIMENT REVISITED 73

0 50 100 150 200
xpos

0

50

100

150

200

y
p

o
s

rob1

rob2

rob3

Figure 3.23: Robot paths from a simulation with 3 robots, 20 items, and 5
workstations in a 200× 200 grid.

experiments can be set up to perform deeper analyses of aspects in which the
modeler is interested. One typical question that might arise in a scenario like
the delivery robot example is how the number of robots influences the rate of
items delivered to workstations. On the one hand, it makes sense to expect
that deploying more robots means that items can be delivered faster. This is
partly due to higher parallelism and also because the distances that have to be
covered between robots, items, and workstation tend to be shorter. However,
it should also be expected that there are limiting factors that counteract the
positive effect of higher robot numbers from a certain point on. For example,
depending on the grid size, very high numbers of robots probably lead to more
collisions and hence broken robots that cannot contribute anymore. Therefore,
one important question that could be investigated by means of a simulation
experiment is to see whether there is in fact a limit for the number of robots
at which a congestion appears.

Another significant factor for the efficiency of the delivery robots system
is the strategy used by the coordinator to assign delivery tasks. So far, this
has been a rather simple one that was already shown in Figure 3.11 and Fig-
ure 3.13. With this strategy, the coordinator selects any robot that is not
currently assigned to a delivery task and then chooses the closest item to that
robot that has not been assigned to another robot, yet. Clearly, the assign-
ments that are created could be rather inefficient when a robot is selected that

74 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

def select_item2(station: Entity, ctx: EvaluationContext=None, **kwargs):
dist = (lambda r: np.abs(r.xpos - station.stationX) +

np.abs(r.ypos - station.stationY))
robot_distances = [(dist(r), r) for r in ctx.getDomain("robot") if r.unassigned]
if len(robot_distances) == 0:

return None, None
closest_robot = min(robot_distances)[1]

dist = (lambda i: np.abs(i.xpos - closest_robot.xpos) +
np.abs(i.ypos - closest_robot.ypos))

item_distances = [(dist(i), i) for i in ctx.getDomain("item") if i.undelivered]
if len(item_distances) == 0:

return None, None
closest_item = min(item_distances)[1]
return closest_robot, closest_item

. . .
p = Procedure([

Iterate("self.request_queue", [ws], [
Assign([r, i], select_item2, [ws]),
If("i != None and r != None",

Act("assign_task", [SELF, r, i, ws]))])
])

Figure 3.24: Improved strategy for delivery task assignment.

is far away from the requesting workstation. A first possible improvement of
the strategy might therefore be to select the unassigned robot that is closest to
the workstation. This is shown in Figure 3.24 where the selection is done in-
side a Python function that uses a very compact style leveraging Python’s list
comprehensions and lambda functions for calculating the Manhattan distances
(see [Bla06]) between robots and stations and between robots and items, re-
spectively. Since the new selection function returns robot and item together
as a pair, the Select statement used before in the coordinator’s control proce-
dure (Figure 3.13) is removed and the result of the select function is assigned
to the two variables r and i at once.

In order to compare the performance of the two proposed strategies and
to analyze the effects of the robot number, the experiment can be modified so
that the number of robots and the strategy are used as controlled variables
and the mean number of items delivered within a certain period is treated
as the measured result. This is realized by the three nested loops shown in
Figure 3.25. It can be seen that the number of robots is increased in steps of
5 from 5 to 100 (since the second argument for Python’s range is exclusive),

3.5. THE DELIVERY ROBOTS EXPERIMENT REVISITED 75

for num_robots in range(5, 105, 5):
for strategy in [1, 2]:

for i in range(10):
if experiment_path.joinpath("stop.txt").exists():

break
else:

experiment = Experiment02(num_robots, strategy)
experiment.initialize()
experiment.run(max_steps=500)

Figure 3.25: Experiment control loop for comparing delivery task selection
strategies.

and for each number, 10 independent simulations are performed for the first
strategy, and 10 for the second. What is not shown here is that instead of
recording data for each simulation step as in the first experiment, this time
a summary of each simulation run is logged, containing most importantly the
number of robots and the number of items that could be delivered within the
given period of 500 simulation steps. This is done by overwriting the life-cycle
handler function after_run that the class Experiment02 inherits from the
Experiment base class.

The loop in Figure 3.25 conducts 20×2×10 = 400 independent simulations
and writes the summary for each of them as one line to a comma separated val-
ues (CSV) file. Due to the relatively high complexity of the logical progression
performed in each step, the runtime of the simulations is significantly higher
than it would be for an approach with a lower abstraction level. In fact, the
time complexity of the progression step obviously grows approximately linearly
in the number of fluents and entities in the system. For a configuration with 50
robots, 10 workstations, and 100 items, this can mean durations of about two
minutes for each simulation on a modern average desktop computer. However,
since the simulations are independent, it is possible to run them in parallel,
either on multiple cores on the same system of on a cluster of multiple ma-
chines. The recorded results from all simulations can then simply be merged
in order to achieve more precise analysis results. In fact, for the results shown
below, the inner loop from Figure 3.25 was actually split and the simulations
were distributed among 10 virtual machines on a cloud platform each of which
conducted 2 simulations for each number of robots (one for each strategy).
For each simulation, a grid of 500 × 500 units was used that was populated
with 10 workstations and 100 items with randomized initial positions. The
probability pslot that any workstation slot generates a request in the current
time step was set to 0.01 (see 3.1) in Section 3.4.2) and the number of slots per
workstation was set to 100. This guarantee that there are always enough free

76 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

20 40 60 80 100

number of deployed robots

0

10

20

30

40

50

60

n
u

m
b

e
r

o
f

it
e
m

s
 /

 b
ro

k
e
n

 r
o
b

o
ts

avg. num. of delivered items (strategy 1)

avg. num. of broken robots (strategy 1)

avg. num. of delivered items (strategy 2)

avg. num. of broken robots (strategy 2)

Figure 3.26: Mean count of delivered items and collisions by number of robots.

slots to generate tasks for all robots. Figure 3.26 shows the mean numbers of
delivered items and the mean number of robots that were broken due to colli-
sions, within 500 simulation steps for each combination of a number of robots
and the chosen strategy. Each data point in the plot is a mean calculated
from the results of 10 simulation runs. The plot clearly shows the expected
advantage of the second strategy. It also confirms the anticipated congestion
effect since a number of robots higher than 55 does not appear to improve the
overall delivery performance significantly.

3.6 SALMA Simulation Semantics

So far, the SALMA simulation approach has been described from a detailed
yet practical perspective. All important elements of the SALMA modeling
languages have been introduced with respect to their syntax and their role
in the simulation model. Together with the examples within this chapter,
it should already be possible to get a clear picture about how simulation in
SALMA works. To render this first understanding more precisely, this section
provides a formal operational semantics of SALMA’s simulation mechanism.
The structure of the semantics is chosen so that it is on the one hand very close
to the actual simulation algorithm but on the other hand abstract enough to
allow focusing on the most important aspects.

3.6.1 Basic Definitions

As the top-level element of the simulation semantics described here, the system
simulation model is a combination of all declarations together with the world

3.6. SALMA SIMULATION SEMANTICS 77

state.

Definition 3.19 (System Simulation Model). The system simulation model
is defined by the following tuple:

Sys = 〈Decl,DDom, Sched,Agents, (Procsa)a∈Agents, P rob,FS0〉 (3.3)

Here, Decl is the set of all declaration statements for sort, sort hierarchies,
fluents, and primitive, stochastic and exogenous actions. In conjunction with
this, DDom denotes the basic action theory [Rei01], which is defined as the
complete set of successor state and precondition axioms that define when and
how the system can progress in response to actions and events. In addition to
this classical part, the domain model in SALMA also contains schedulability
axioms, represented by the set Sched, that define preconditions that have to
be met so that events can be scheduled. Furthermore, (Procsa)a∈Agents is an
indexed family of process definitions that define the agents’ behavior, and Prob
stands for the set of probability distributions that are used by the simulation
to schedule events and to choose probabilistic action outcomes. Finally, FS0

is the set of fluent instance values defined for the initial situation, i.e. the set
of values for fluent instances that is used at the start of the simulation run.

Based on the system model, it is possible to define the system state, which
is a combination of several structures that are manipulated during simulation.

Definition 3.20 (System state). The state of the simulated system is defined
as follows:

St = 〈Prun, Pact, Pwait, Pidle, Act, Evt,F〉 (3.4)

Here, Prun, Pact, Pwait, and Pidle are sets of process states (see below) that
describe the processes which are currently being executed, performing actions,
waiting, or idle, respectively. Act is the set of pending actions that are yet
to be executed in the current simulation step, Evt is the event schedule, and
F represents the current situation, i.e. the current set of values for all fluent
instances of the system.

The life-cycle status of a process is represented by its membership to one of
the sets Prun, Pact, Pwait, and Pidle. Clearly, a process can at any point in time
either be running, acting waiting, or idle. Therefore, the following constraint
holds:

Prun ∩ Pact = ∅ ∧ Prun ∩ Pwait = ∅ ∧ Prun ∩ Pidle = ∅ (3.5)
∧ Pact ∩ Pwait = ∅ ∧ Pact ∩ Pidle = ∅ ∧ Pwait ∩ Pidle = ∅

78 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

The process state descriptions mentioned above combine all information
about the current state of each process.

Definition 3.21 (Process state). The state of a process p in state St, denoted
as pSt, is defined by a tuple of the following form:

pSt = (pid, a, ncur ◦ σ, η) (3.6)

Here, pid is a process identifier, a is the agent that executes the process
and ncur is the current process control node, i.e. the position in the procedure
of the process that was reached last. Besides that, the suffix of the process, i.e.
the sequence of remaining statements of the procedure that will be executed
after ncur, is denoted by σ. The operator ◦ is used in this definition and below
to represent either sequence composition or the addition of an element at the
start or end of a sequence. Finally, η is the process-local evaluation context
that defines the mappings of variables to values.

At the initial state of a simulation, the initial situation S0 holds, i.e. all
fluent instances are set to their initial values. Additionally, all processes are
in the idle state and neither actions nor events are scheduled.

Definition 3.22 (Initial system state). Let S0 be the initial situation of the
system in the sense of the situation calculus. Furthermore, let PBodypid be
the full control node sequence of the procedure declaration of the process with
the process identifier pid. Then the initial state of the simulation is given by

StS0 = 〈PS0
run, P

S0
act, P

S0
wait, P

S0
idle, Act

S0 , EvtS0 ,FS0〉 (3.7)

where

PS0
run =PS0

act = PS0
wait = ActS0 = EvtS0 = ∅

PS0
idle ={(pid, a,PBodypid, ∅) | a ∈ Agents

∧ (pid,PBodypid) ∈ Procsa}
(3.8)

3.6.2 Core Simulation Semantics

In the following, the simulation semantics of SALMA will be described by
means of transition rules that define how the system state can evolve during
simulation. These rules are written in a style that is inspired by structural
operational semantics (see [Plo04]). However, the premises for the applicability
of each rule are mostly not stated as explicit preconditions but implicitly by

3.6. SALMA SIMULATION SEMANTICS 79

patterns in the respective data structures that have to be matched when the
rule “fires”.

At first, there is the Act statement with which an agent can execute actions.
In fact, this is the only option for an agent to influence its environment –
namely through the effect of the executed actions in the sense of the situation
calculus. However, the progression is not performed directly for each Act call.
Instead, the current interpretation of the action term is added to the set of
pending actions. At the same time, the process is suspended temporarily until
the action has been handled.

Definition 3.23 (Action execution). Let α be an action term that possibly
contains variables. Then, an action execution is interpreted as follows:

〈{(pid, as,Act(α) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉 −→
〈Prun, Pact ∪ {(pid, as, σ, η)}, Pwait, Pidle, Act ∪ {JαKF ,η}, Evt,F〉

(3.9)

Concordant with the postponed execution mentioned in the last definition,
the system performs progression steps for the executed actions only when all
active processes are currently blocked, i.e. they are either waiting or perform-
ing actions. In this case, both pending actions and events that are due for the
current time step are performed in random order.

Definition 3.24 (Action progression). Let α and ε be ground terms that
denote a valid concrete action or event, respectively. Furthermore, let t =
time(S) be the current time and progress(F , α) the fluent database that results
from performing a progression step for action α to the fluent database in the
current simulation step, F (see [Rei01, Chap. 9]). Then, the following rule
describes the premise and effect of a progression step:

a) Actions:

〈∅, Pact, Pwait, Pidle, {α} ∪Act,Evt,F〉 −→
〈∅, Pact, Pwait, Pidle, Act, Evt,F ′〉

(3.10)

where F ′ =

{
progress(F , α) if Jposs(α)KF
F otherwise

80 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

b) Events:

〈∅, Pact, Pwait, Pidle, Act, {(ε, t)} ∪ Evt,F〉 −→
〈∅, Pact, Pwait, Pidle, Act, Evt,F ′〉

(3.11)

where F ′ =

{
progress(F , ε) if Jposs(ε)KF
F otherwise

After all currently scheduled agent actions have been performed, idle due
processes are activated and blocked processes are reactivated. This first in-
cludes all processes that are currently executing actions. Additionally, waiting
and idle processes can be scheduled in this phase when the corresponding
conditions are satisfied.

Definition 3.25 (Process activation). Let cond(p) denote a condition on
which the process p is waiting after executing a Wait statement, and let
trigger(p) be a condition that, if true, causes an idle triggered process to be
executed in the current step. Similarly, let nextScheduleT ime(p) be a func-
tion that yields the next time point when an idle periodic process is scheduled
to be launched. Then, the following rule describes the activation of processes:

〈∅, Pact, Pwait, Pidle, ∅, Evt,F〉 −→ 〈Prun, ∅, P ′wait, P ′idle, ∅, Evt,F〉 (3.12)

where P+
w = {pw | pw ∈ Pwait ∧ Jcond(pw)KF = >}
P+
i = {pi | pi ∈ Pidle ∧ (Jtrigger(pi)KF = >∨

JtimeKF = nextScheduleT ime(pi))}
Prun = Pact ∪ P+

w ∪ P+
i

P ′wait = Pwait \ P+
w

P ′idle = Pidle \ P+
i

In the definition above it can be seen that both processes that are idle
and those that are waiting can be reactivated. The waiting state is reached as
an explicit consequence of a Wait statement, which will be explained later in
Definition 3.33. In contrast, a process becomes idle simply when all statements
of the process body have completed. This is expressed by the following rule.

3.6. SALMA SIMULATION SEMANTICS 81

Definition 3.26 (Process completion). Let pid be the id of a running process
that has completed its statement sequence in the current simulation step and
let PBodypid be the body that is defined for the process in the agent behavior
model. A process becomes idle when all statements of its body have completed,
i.e.

〈{(pid, as, ∅, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉 −→
〈Prun, Pact, Pwait, {(pid, as,PBodypid, ∅)} ∪ Pidle, Act, Evt,F〉

(3.13)

It was already mentioned before, e.g. in Section 3.4.2, that an event can
be added to the event schedule either a) instantaneously, i.e. within the cur-
rent simulation step, or b) anticipatory, i.e. at a time point in the future
that is chosen according to a specific probability distribution. Instantaneous
scheduling is used when a poss axiom but no schedulable axiom exists for
the event type. Then, that poss axiom is tested for every time step and if it
is found to be true, the occurrence distribution assigned to the event is used
to decide whether or not the event should occur. For anticipatory scheduling,
a schedulable axiom has to exist, which is also evaluated at each time step.
When this yields a positive result, it means that at this point it is possible
to determine a point in the future at which the event should occur. This is
done by sampling the delay until the occurrence of the event instance from the
assigned occurrence distribution.

In general, scheduling is performed iteratively until no further events can
be scheduled, although every concrete event instance can only be scheduled
once. Additionally, there may be cases where there can be only one of a set of
several events - i.e. they form an exogenous action choice (see Section 3.2.3).

Definition 3.27 (Event scheduling). Let ε be an event term, ∆Tε a random
variable that models a delay for the event ε, and Occurε a random variable
that models whether ε should occur (Occur = 1) or not (Occur = 0) in the
current simulation step. Furthermore, let the predicates schedulable(ε) and
poss(ε) represent the tests of the schedulability and possibility axioms with
the concrete event instance ε in the current simulation step. Whether an event
is scheduled instantaneously or anticipatory in the sense explained above is de-
termined by the function type(ε). Furthermore, the predicate exclusive(ε1, ε2)
indicates that two events are mutually exclusive as part of an exogenous ac-
tion choice. Finally, the notation p−→ is used to express that the given state
transition occurs with probability p. Finally, as above, F is used to represent
the fluent database in the current simulation step.

82 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

Given the definitions above, assume that Φ0 and one of the two conditions
Φ1 or Φ2 are satisfied:

Φ0 ≡ (@t′. (ε, t′) ∈ Evt) ∧ (@t′′@ε′. exclusive(ε, ε′) ∧ (ε′, t′′) ∈ Evt)
Φ1 ≡ type(ε) = immediate ∧ Jposs(ε)KF
Φ2 ≡ type(ε) = scheduled ∧ Jsched(ε)KF

(3.14)

Then,

〈∅, Pact, Pwait, Pidle, Act, Evt,F〉
p−→

〈∅, Pact, Pwait, Pidle, Act, {(ε, t)} ∪ Evt,F〉 (3.15)

and

〈∅, Pact, Pwait, Pidle, Act, Evt,F〉
1−p−→

〈∅, Pact, Pwait, Pidle, Act, Evt,F〉
(3.16)

where

p =

Pr(Occurε = 1) if t = JtimeKF ∧ Φ1

Pr(∆Tε = δt) if t = JtimeKF + δt ∧ Φ2

0 otherwise
(3.17)

When no agent processes can proceed any further and no more actions or
events can be executed in the current simulation step, the system progresses
to the next time point that is relevant either a) because an event is scheduled
for this time, b) because a periodic process is scheduled to be executed, or c)
because an event will become possible or schedulable at this time.

Definition 3.28 (Time advance). Let F be the fluent database in the current
simulation step and Scur the associated current situation. As usual in the
situation calculus literature, S1 ⊂ S2 is used to express that situation S2

results from performing a sequence of actions in S1. Also, let EligibleEvent
be a derived fluent that is defined as below:

EligibleEvent(ε, S) ≡ (type(ε) = immediate ∧ poss(ε, S))

∨ (type(ε) = scheduled ∧ sched(ε, S))
(3.18)

3.6. SALMA SIMULATION SEMANTICS 83

EligibleEvent determines whether an event instance can happen in a given
situation or be scheduled for later occurrence. Based on that, StepEnd is true
if no further processing is possible in the current simulation step.

StepEnd ≡(@pw ∈ Pwait. Jcond(pw)KS = >)

∧ (@pi ∈ Pidle. Jtrigger(pi)KS = >)

∧ @ε. EligibleEvent(ε)
(3.19)

Furthermore, let tcur = JtimeKF be the time at the current time step and
nextScheduleT ime(p) the next time at which a periodic process p is scheduled
to be launched.

If StepEnd holds in the current system state, the following rule is applica-
ble:

〈∅, ∅, Pwait, Pidle, ∅, Evt,F〉 −→ if StepEnd = >
〈∅, ∅, Pwait, Pidle, ∅, Evt,F ′〉

(3.20)

where F ′ = progress(F , tick(tnext − tcur)) (3.21)
tnext = min{tev, twait, tperiod, tscan} (3.22)
tev = min{t | (ε, t) ∈ Evt} (3.23)

twait =

{
∞ if Pwait = ∅
tcur + 1 if Pwait 6= ∅

(3.24)

tperiod = min{t | ∃p ∈ Pidle. t = nextScheduleT ime(p)} (3.25)
tscan = min{t | ∃S, ε. EligibleEvent(ε, S)∧ (3.26)

t = time(S) ∧ Scur ⊂ S}

In the definition above, a situation calculus perspective was chosen to de-
scribe the interpretation of fluents, preconditions, and schedulability predi-
cates. In particular, this allows evaluating EligibleEvent for future steps
that follow the current situation. In the calculation for tscan this is used to
search for future situations in which any event becomes possible or schedula-
ble. In fact, as mentioned earlier in Section 3.2, the use of effect axioms in the
domain model allows the simulation algorithm to detect if a fluent instance
is affected by the tick event. This can also be used to determine whether
the formula in a poss or schedulable axiom is time-dependent. By excluding
time-independent event instances from consideration in the scanning process,
the algorithm can avoid unnecessary computation.

The definition of twait in (3.24) effectively says that as soon as at least one
process is in the waiting state, the next time step has to be visited, i.e. the

84 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

time cannot be advanced further that tcur + 1. This is due to the fact that in
general, the conditions of waiting processes could depend on events other than
tick, whose occurrences cannot be predicted. However, as a future extension,
it would be worthwhile to integrate a mechanism that recognizes conditions
which only depend on time – similar to the mechanism that already exists for
exogenous actions (events).

The most obvious effect of the progression step progress(F , tick(tnext −
tcur)) is that the world time is advanced to the next “interesting” point for
which an event or a process is scheduled. In fact, the time steps in between
the current simulation step and this next one are not simulated explicitly.
Depending on the model, this can be much more efficient than approaches
that are fixed to equidistant time steps. However, it is possible that the model
contains effect axioms that make the event tick(∆T) affect not only time but
also other fluents. In this case, it has to be guaranteed that progressing the
model in one step to tnext actually has the same effect as advancing every time
step separately or as any other time partitioning scheme. This is expressed as
a property that will be called time-advance stability in this thesis.

Definition 3.29 (Time-Advance-Stability). Let F (x1, . . . , xn, S) be a func-
tional fluent and G(x1, . . . , xn, S) a relational fluent defined in the system
domain model. Additionally, let S denote a situation term and ÂS = (ai,S)li=1
the action sequence that leads from the initial situation S0 to S. Furthermore,
let Sta be defined as the set of possible situation terms that consist only of
tick actions, i.e.

Sta = {S | ∀i ∈ [1, l].∃t. ai,S = tick(t)} (3.27)

Then F is called time-advance-stable if the following property holds:

∀S ∈ Sta.∀∆t ∈ N0.∀x1, . . . ,∀xn.
time(S) = time(S0) + ∆t =⇒

F (x1, . . . , xn, S) = F (x1, . . . , xn, do(tick(∆t), S0))

Similarly, G is time-advance-stable iff

∀S ∈ Sta.∀∆t ∈ N0.∀x1, . . . ,∀xn.
time(S) = time(S0) + ∆t =⇒

G(x1, . . . , xn, S) ≡ G(x1, . . . , xn, do(tick(∆t), S0))

Finally, a system model Sys is called time-advance-stable iff all fluents
defined in Sys are time-advance-stable.

3.6. SALMA SIMULATION SEMANTICS 85

Time-advance-stability requires that all fluents are defined in a way so that
it does not matter whether the time is advanced by multiple tick-steps that
add up to the intended delay, or whether this happens with a single tick-action.
This directly leads to the following theorem:

Theorem 3.1. Let Sys be simulation model and let F be the state of the
fluent instance database in a simulation step of Sys. Let furthermore tnext
and tcur be the times of the current and the next scheduled simulation step,
respectively. Furthermore, let (δti)

n
i=1 denote a sequence of time differences

and let F1 = F2 be an abbreviation for the fact that the value of each fluent
instance in F1 is equal to the value of the corresponding fluent instance in
F2. Finally, the progression operator is recursively lifted to the application of
a sequence of time steps:

progress(F , (δti)1
i=1) = progress(F , tick(δti))

progress(F , (δti)ni=1) = progress(progress(F , (δti)n−1
i=1), tick(δtn))

Given the definitions above, it holds that if Sys is time-advance stable, then
all possible sequences of tick actions that in sum lead to the same time advance
have the same effect on the model, i.e.

∀∆T∀ (δti)
n
i=1 .

n∑
1

δti = ∆T =⇒

progress(F , (δti)ni=1) = progress(F , tick(∆T))

Proof. It is shown in [Rei01, Chap. 9.2.1] that for SALMA’s fluent database,
which is logically complete in the sense that it stores concrete values for all flu-
ent instances, a progression step can be realized by substitution with the right
sides of the successor state axioms, i.e. by a one-step regression. In fact, this
is exactly how progression is realized in the SALMA simulation engine. This
implies that if S0 denotes the current situation, then the sequence (Si)1≤i≤n
can be defined recursively as follows:

Si = do(tick(δti), Si−1) (3.28)

This means that the situation Sn, which corresponds to the situation that
results from performing progress(F , (δti)ni=1), will have the following structure:

Sn = do(tick(δtn), do(tick(δtn−1), . . . do(tick(δt1), S0) . . .) (3.29)

Since Sn contains only tick actions, it belongs to the set Sta that was
defined in Definition 3.28. Therefore, since the system model is time-advance
stable, it holds for any functional fluent F and any relational fluent G that

86 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

F (x1, . . . , xn, Sn) = F (x1, . . . , xn, do(tick(∆T), S0)) (3.30)
G(x1, . . . , xn, Sn) ≡ G(x1, . . . , xn, do(tick(∆T), S0)) (3.31)

By the definition of the progression operator from above, this implies

progress(F , (δti)ni=1) = progress(F , tick(∆T)) (3.32)

Therefore, the theorem holds.

3.6.3 Semantics of Other SALMA-APDL Elements

The rules presented so far described the core simulation mechanism. In the
following, this will be augmented by rules for the remaining elements of the
SALMA-APDL. First, and arguably one of the most basic ingredient of any
non-trivial procedure, is the assignment of a value to a variable, which modifies
the evaluation context η.

Definition 3.30 (Variable Assignment). Let x be a variable name and θ be a
value source expression as described in Definition 3.12 that can be evaluated
within the current evaluation context η in the current situation S. Then the
assignment of the value of θ to x is interpreted as follows:

〈{(pid, as,Assign(x, θ) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉 −→
〈{(pid, as, σ, η′)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉
where η′ = η[x 7→ JθKF ,η]

(3.33)

Here, the interpretation of the value source JθKS,η] depends on the source
type of θ:

a) If θ = f(v1, . . . , vn) where f is a fluent, constant, or situation-independent
Prolog function, then θ is evaluated by the logic engine with respect to the
current situation.

b) If θ = g(v1, . . . , vn) where g is a Python function, or θ is a string that
contains a Python expression, then θ is evaluated within Python using the
bindings described in Section 3.4.5.

The conditional statements are interpreted as expected.

3.6. SALMA SIMULATION SEMANTICS 87

Definition 3.31 (Conditional Statements). Let θ be a conditional expression
as described in Definition 3.13 and let ςthen and ςelse be statements. Then, an
If statement is interpreted as follows:

〈{(pid, as, If(θ, ςthen, ςelse) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉

→

〈{(pid, as, ςthen ◦ σ, η)} ∪ Prun, if JθKF ,η = >

Pact, Pwait, Pidle, Act, Evt,F〉
〈{(pid, as, ςelse ◦ σ, η)} ∪ Prun, otherwise

Pact, Pwait, Pidle, Act, Evt,F〉

Here, it is assumed for the sake of brevity that ςelse can also be empty if the
If statement does not state an alternative branch.

Similarly, let θ1, . . . , θn be conditional expressions and ς1, . . . , ςn be state-
ments. Then, the interpretation of the Switch statement can be defined as
follows:

〈{(pid, as,Switch(Case(θ1, ς1), . . . ,Case(θn, ςn),Default(ςdef)) ◦ σ, η)}
∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉

→

〈{(pid, as, ςi ◦ σ, η)} ∪ Prun, if JθiKF ,η = >∧
Pact, Pwait, Pidle, Act, Evt,F〉 ∀1 ≤ j < i.JθjKF ,η = ⊥

〈{(pid, as, ςdef ◦ σ, η)} ∪ Prun, if @i.JθiKF ,η = >
Pact, Pwait, Pidle, Act, Evt,F〉

As before, the omission of the default case is seen as an abbreviation for a
Default clause with empty body.

As usual in operational semantics, while loops are interpreted by unfolding,
i.e. by inserting the body of the While block before the loop if the condition
evaluates to true.

Definition 3.32 (While loops). Let θ be a conditional expression as described
in Definition 3.13 and let ς be a statement. Then a While loop with the body
ς and the condition θ is interpreted as follows:

88 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

〈{(pid, as,While(θ, ς) ◦ σ, η)}
∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉

→

〈{(pid, as, ς ◦While(θ, ς) ◦ σ, η)} ∪ Prun, if JθKF ,η = >
Pact, Pwait, Pidle, Act, Evt,F〉

〈{(pid, as, σ, η)} ∪ Prun, if JθKF ,η = ⊥
Pact, Pwait, Pidle, Act, Evt,F〉

Another essential element that already appeared implicitly in Definition 3.25
is the Wait statement. It moves a running process to the set of waiting pro-
cesses Pwait if the condition is false.

Definition 3.33 (Wait statements). Let θ be a conditional expression. A
Wait statement that watches the condition θ is interpreted by the following
rule:

〈{(pid, as,Wait(θ) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉

→

〈{(pid, as, σ, η)} ∪ Prun, if JθKF ,η = >
Pact, Pwait, Pidle, Act, Evt,F〉

〈Prun, Pact, {(pid, as,Wait(θ) ◦ σ, η)} ∪ Pwait, if JθKF ,η = ⊥
Pidle, Act, Evt,F〉

The semantics for the final two statements of the SALMA-APDL that have
not been covered yet in this section, namely Select and Iterate, would be
quite complex to formalize completely. Therefore, the details of the actual
result selection are abstracted away and the following rules focus on the con-
sequences to the simulation state.

Definition 3.34 (Selection and iteration). Let P be a Prolog predicate or a
relational fluent of arity n and let x1, . . . , xn be a sequence of terms that are
either literal values, bound variables, or free variables, i.e. variables that are
not yet bound. In this respect, let IFV (x1, . . . , xn) denote the set of indexes
between 1, . . . , n that belong to the free variables among x1, . . . , xn. Then a
Select statement for P with the arguments x1, . . . , xn is interpreted as follows:

〈{(pid, as,Select(P, [x1, . . . , xn]) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉
−→ 〈{(pid, as, σ, η′)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉

3.6. SALMA SIMULATION SEMANTICS 89

where

η′ =

η[∀i ∈ IFV (x1, . . . , xn). xi 7→ vi] if ∃v1∃v2 . . . ∃vn.

JP (v1, . . . , vn)KF = >
η[∀i ∈ IFV (x1, . . . , xn). xi 7→ None] otherwise

For defining the semantics of the Iterate statement, it is practical to
abstract away the details of how the data over which the simulation iterates
is generated. As described in Section 3.3.2, there are several different options
for data sources at this point, namely fluents, Prolog predicates and Python
functions or expressions. However, regardless of which option is chosen, the
source is evaluated only once at the beginning and the iteration works on a
snapshot of the data. Formally, let θ be an expression that is admissible for
the use as a data source in an Iterate statement as defined in Definition 3.17.
The result of the evaluation of θ at the time when the Iterate statement
is reached, is denoted by JθKF ,η = [(v1,1, . . . , v1,m), . . . , (vn,1, . . . , vn,m)], i.e.
a sequence of tuples that contain the values that will be bound to the free
variables in the Iterate block. With all that, the semantics of an Iterate
statement can be defined recursively by the following rules:

〈{(pid, as, Iterate(θ, [x1, . . . , xm], ς) ◦ σ, η)} ∪ Prun,
Pact, Pwait, Pidle, Act, Evt,F〉

−→ 〈{(pid, as, Iterate(JθKF ,η, [x1, . . . , xm], ς) ◦ σ, η)} ∪ Prun,
Pact, Pwait, Pidle, Act, Evt,F〉

〈{(pid, as, Iterate([(v1,1, . . . , v1,m), . . . , (vn,1, . . . , vn,m)], [x1, . . . , xm], ς) ◦ σ, η)}
∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉

−→ 〈{(pid, as,
ς ◦ Iterate([(v2,1, . . . , v2,m), . . . , (vn,1, . . . , vn,m)], [x1, . . . , xm], ς) ◦ σ, η′)}
∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉

where η′ = η[x1 7→ v1, . . . , xm 7→ vm]

〈{(pid, as, Iterate(∅, [x1, . . . , xm], ς) ◦ σ, η)} ∪ Prun,
Pact, Pwait, Pidle, Act, Evt,F〉

−→ 〈{(pid, as, σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉

90 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

3.6.4 Remarks

The presented semantics of SALMA’s simulation mechanism has some impor-
tant consequences that might not be apparent on first sight:

1. Actions and events do not have a duration. The system does not enforce
a limit for the number of actions and events performed at the same time
step. This means that the modeler is responsible for assuring that the
simulation does not exhibit Zeno behavior (see [BK08]), which basically
describes a system that performs an infinite number of actions within
a finite time span. Every activity that blocks a process for a certain
duration has to be modeled by an action that is followed by a Wait-
statement (e.g. in Figure 3.12 on page 54).

2. Actions and events are interleaved nondeterministically. Each time a
process executes an action, it is only performed after all other processes
had the chance to schedule an action execution. All actions that have
been collected in the action schedule Act and all due events are then
performed in random order before any process can continue its execution.
There is no built-in prioritization mechanism, neither with respect to
processes nor actions or events. If such a mechanism is intended, it has
to be modeled explicitly.

3.7 Summary

This chapter has introduced SALMA as an approach for discrete event simu-
lation. It presented two modeling languages provided by SALMA, namely its
Domain Description Language (SALMA-DDL) and its Agent Process Defini-
tion Language (SALMA-APDL), that can be used to define the domain model
of the simulated system and the behavioral model of the involved agents. It
was shown how the SALMA-DDL extends the basic situation calculus with
additional concepts and constructs specifically geared towards discrete event
simulation. At first, this includes an hierarchical sort system that is used to
declare finite entity types. By restricting all fluent parameters to finite types,
SALMA’s simulation engine is able to use the progression mechanism of the
simulation calculus to calculate the world state for the next simulation step.
Another notable extension that is introduced by the SALMA-DDL is an axiom
that defines under which conditions an event instance can be scheduled, i.e.
at which point it is possible to determine the next occurrence time of an event
instance. This extension allows the use of the event scheduling paradigm of
discrete event simulation, which is in many scenarios much more efficient than
a simulation strategy based on fixed equidistant time steps. While the domain
description language is based on Prolog in the fashion of the original imple-
mentations of the simulation calculus, SALMA’s agent modeling language is

3.8. RELATED WORK 91

implemented as an internal domain specific language [Fow10] in Python. This
API provides a similar structure as traditional agent programming languages
based on the situation calculus like GoLog [L+97]. The chosen architecture
achieves a tight integration of the languages and allows leveraging the full
potential of the Python platform. It was demonstrated along the running ex-
ample of this chapter that the flexibility gained from this integration is very
important for models in which agents have complex behavior. In particular,
this is true when adaptive systems are modeled, since the adaptation mecha-
nisms typically involve specialized and potentially complex computations for
tasks like optimization, planning, or learning.

Besides providing a practical introduction to the SALMA modeling and
simulation approach, this chapter presented a formal operational semantics of
the simulation algorithm. This is intended to provide a thorough understand-
ing of SALMA’s concepts and mechanisms, which is a necessary for being able
to fully comprehend the next chapter that describes SALMA’s support for
statistical model checking.

Since a technical presentation of SALMA’s simulation algorithm would
not have added much essential information to the discussion of the semantics,
it was left out altogether. Instead, this chapter did provide strong evidence
for the correctness of the implementation by means of a simple yet versatile
example simulation experiment whose results could be visualized in a way that
allowed a very exact comparison between the actual and the expected behavior
of the model.

3.8 Related Work

One aspect of discrete event simulation that seems to be especially relevant in
the context of the SALMA approach is the distinction between different world
views that was already mentioned in Section 2.3, namely the activity-oriented
view, the event-oriented view, and the process-oriented view (cf. [BCINN04,
Chap. 3]). It was also mentioned in Section 2.3 that often mixtures of these
world-views are used, in particular combinations of event scheduling and ac-
tivity scanning, which is often labeled as the three-phase approach [Pid95]. As
described in this chapter, a similar combination is also used within the SALMA
simulation semantics that supports both schedulable and immediate events.

Many tools or libraries exist that support either one of the mentioned
world-views or combinations of them. Among them, there are simulation li-
braries for general purpose programming languages that provide abstractions,
runtime infrastructure and utilities that facilitate building simulations. Exam-
ples for freely available software packages of this kind are the process-oriented
SimPy [MV03] library for Python or the DESMO-J[LP99] framework for Java
that supports both the event-scheduling and the process-interaction world
view. Clearly, SALMA is comparable to solutions like that with respect to

92 CHAPTER 3. MULTI-AGENT SIMULATION WITH SALMA

the fact that it also presents itself as a framework with a Python API for
building and running the simulation experiment. However, through the com-
bination with the situation calculus, SALMA adds a declarative layer that
often notably increases conciseness of the model.

Although it is not a technical restriction, SALMA is focused on modeling
and simulating multi-agent systems. Multi-agent simulation has been adapted
in many different fields, which has resulted in a broad spectrum of more or
less specialized approaches. Widely used examples for domain-independent
frameworks in that area are MASON (Java) [LCRP+05] and RePast (Java,
C++)[Col03]. Software packages like that offer highly flexible APIs at a rel-
atively low level of abstraction. On the other hand, there are modeling and
simulation approaches that are specialized on particular applications, e.g. the
MatSim framework for multi-agent transport simulations [HNA16]. SALMA
tries to provide as much flexibility as possible with regard to fitting simula-
tions to the characteristics of the modeled domain. Most of all, this includes
SALMA’s ability to vary the level of detail and abstraction of the system
model within a broad spectrum, which was discussed thoroughly in this chap-
ter. However, the logic-based generic representation in SALMA is inherently
much more computationally expensive than optimized specialized approaches.
In particular, the application of SALMA might not be practical for models
with very large numbers of agents, which is typical, for instance, in more re-
alistic traffic simulation experiments. In such cases, it could still be beneficial
to use SALMA as a supporting approach for analyzing certain parts or mecha-
nisms of the model from a microscopic perspective. This will become even more
apparent when SALMA’s abilities for statistical model checking are discussed
in the next chapter.

On the theoretical side, the DEVS (Discrete Event System Specification)
[ZPK00] formalism, which was originally developed in the 1970s by Bernard
P. Zeigler, has become very popular and there has been a lot of research di-
rected to it. DEVS provides a system-oriented unified view on both continuous
and discrete simulation models. Additionally, DEVS establishes mechanisms
for hierarchical subsystem composition. In particular because of this com-
positionality, it would be an interesting branch of future work to develop a
mapping of the SALMA semantics onto the DEVS formalism.

Chapter 4

Statistical Model Checking in
SALMA

The previous chapter has introduced SALMA as a versatile approach for
modeling and simulation of multi-agent systems. However, the real value
of SALMA’s consequent logical representation becomes visible when it is ex-
tended towards statistical model checking (see Section 2.5). This chapter first
introduces the SALMA Property Specification Language (SALMA-PSL) that
is used to formalize invariants and goals that are checked against each simula-
tion run. Following that, a practical overview of SALMA’s usage in a statistical
model checking setting is given. In particular, it is shown how an experiment
is set up and how results are analyzed by means of hypothesis tests and in-
terval estimation. Based on this introduction, Chapter 5 will later discuss the
mathematical and algorithmic details behind the evaluation of SALMA-PSL
properties.

Remark: SALMA’s property specification language has already been de-
scribed in [Kro14a] and [Kro14b]. Also, a simplified denotational semantics for
most language elements was presented in [Kro14b]. However, some corrections
and extensions have been made for this chapter and the discussion is much
more thorough.

4.1 SALMA’s Property Specification Language

The predominant general method of reasoning about execution traces in com-
puter science is to use temporal logics. In agreement with that, the SALMA
Property Specification Language (SALMA-PSL) is based upon a first-order
version of bounded linear temporal logic (BLTL) (see [Pnu77b]), a variant of
LTL that adds an upper time bound for the temporal operators. This time
bound guarantees that every formula can be confirmed or falsified by a simula-

93

94 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

tion run with finite length. On top of the LTL-based foundation, the SALMA
PSL adds several capabilities that facilitate reasoning about characteristic as-
pects of the situation-calculus-based model. This section first presents the
syntax of SALMA-PSL formulas and then describes their semantics in detail.

4.1.1 Syntax and Language Structure

In the following, the syntax and structure of the SALMA property specifica-
tion language is described throughout several separate definitions that specify
the grammar using a simplified version of the EBNF. In particular, when an
argument list is given as (X, . . . ,X), this is an abbreviation for the EBNF
expression ”(”X{”, ”X}”)”, i.e. it allows one or multiple arguments. Addi-
tionally, a “hat” decoration like p̂ is used to indicate that a symbol has arity 0.
The presentation starts with formulas as the top-level elements of the language
and then discusses their ingredients one by one.

Definition 4.1 (Formulas). The syntax of a SALMA-PSL formula Φ is spec-
ified by the following grammar:

Φ ::= true | false |
Θ ∼ Θ | p̂ | p(Θ, . . . ,Θ) | F̂B | FB(Θ, . . . ,Θ) | not(Φ) | and(Φ, . . . ,Φ) |
or(Φ, . . . ,Φ) | implies(Φ,Φ) | forall(x : T,Φ) | exists(x : T,Φ) |
occur(α) | always(τ,Φ) | eventually(τ,Φ) | until(τ,Φ,Φ) |
let(z : Θ,Φ)

Here, Θ represents a term as defined in Definition 4.2, ∼ is a comparison
operator (like <, >, =, or 6=), p̂ and p are situation-independent predicates,
F̂B and FB are relational fluents, x and z are variable names, T is the name of
a finite sort, α is an action instance as in Definition 4.5, and τ is an admissible
time bound expression (see Definition 4.4). Besides that, not, and, or, and
implies are the usual logical connectives. Furthermore, forall and exists
denote the universal and existential quantifiers that are restricted to finite
domains, which have to be specified by means of an entity sort name after
the colon in the quantifier’s variable declaration. The special predicate occur
tests whether an action or event was performed or happened in the current
time step. As mentioned in the beginning, the temporal operators always,
eventually, and until are restricted with a finite time bound that is specified
as the first argument. Finally, the keyword let provides a means for assigning
expression values to variables that can be reused within nested subformulas.

One point that immediately strikes out in the definition above is that
fluents are used without a situation argument. Indeed, situation terms are

4.1. SALMA’S PROPERTY SPECIFICATION LANGUAGE 95

suppressed entirely in SALMA-PSL formulas and restored during evaluation
according, either by inserting the current situation or a situation constructed in
the context of lookahead evaluation (see Section 5.6.3). The basic ingredients of
a formula are terms, which can be used as arguments of predicates or relational
fluents or in comparisons.

Definition 4.2 (Terms). The syntax of SALMA-PSL terms, represented by
Θ, is specified by the following grammar:

Θ ::= ΘR | x | e | f̂T | fT (Θ, . . . ,Θ) | F̂T | FT (Θ, . . . ,Θ)

Here ΘR is a numeric term (see Definition 4.3 below), x is a variable whose
type is a finite sort, e is an entity value, T is a finite sort from the model, f̂T
and fT are situation-independent functions of type T , and F̂T as well as FT
are functional fluents of type T .

In the general definition of terms above, a distinction is made between
numeric and non-numeric terms, i.e. terms that represent a value from a
finite entity sort. The reason for this is that only the former may be used
within arithmetic expressions.

Definition 4.3 (Numeric terms). Numeric terms have the following syntax:

ΘR ::= x | c | ΘR ~ΘR | fR(Θ, . . . ,Θ) | FR(Θ, . . . ,Θ) |
lastT ime(α)

Here x is a numeric variable, c is a numeric literal, ~ is an arithmetic oper-
ator (like +, −, ∗, /), f̂R and fR are numeric situation-independent functions,
and both F̂R and FR are numeric fluents. Furthermore, α is action instance
and lastT ime is a special function that returns the last time at which the
action instance α occurred.

It is actually necessary to constrain numeric terms further when they are
used for specifying time bounds in temporal operators. In fact, SALMA only
allows time bounds specified by either a natural number literal or a variable
that is bound in a let-expression that encapsulates the temporal operator. The
restriction to a plain natural number instead of a more complex expression is
necessary because of the way such expressions are evaluated, which will be
explained in Chapter 5. Without going into details, it can be said that a
compound expression is translated into a conjunction of chained evaluations
and variable assignments. However, because the time bound would have to be
calculated before the temporal operator expression, it would not be possible
to treat this temporal expression separately. Since that is necessary for the
evaluation goal scheduling mechanism (see Section 5.5), allowing arbitrary ex-
pressions time bounds would require a separate evaluation strategy. A solution

96 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

to this problem is to move the desired time bound expression to the definition
of a variable in a let-expressions. During evaluation, the variable is replaced
by the expression’s value and the let-block is eliminated. For the evaluation
goal schedule, this effectively has the same effect as using a numeric literal.
Since it would be rather hard to guarantee that an expression always evaluates
to a natural number, the SALMA-PSL interpreter allows any real number as
time bound and rounds it appropriately (see Section 4.1.3). The restrictions
defined above are summarized in the next definition.

Definition 4.4 (Admissible time bound expression). An expression τ is an
admissible time bound expression if it is either a numeric literal, i.e. τ ∈ N,
or the temporal operator that uses τ is nested in the body φ within a let-
expression of the form let(τ : ΘR, φ) where ΘR is a numeric term as defined
above.

As seen above, it is sometimes necessary to refer to an action instance, i.e.
an action symbol together with a combination of arguments for all parameters
according to the action’s signature (see Section 3.2.3).

Definition 4.5 (Action instance). An action instance is a special term con-
strained by the following grammar:

α ::= â | a(Θ, . . . ,Θ) | êv | ev(Θ, . . . ,Θ)

Here Θ represents an arbitrary term, â and êv are 0-ary action and event
symbols, and a and ev are n-ary action and event symbols from the model
signature.

Similarly, a fluent instance refers to a concrete selection of values for a
fluent.

Definition 4.6 (Fluent instance). The syntax of a fluent instance is defined
as follows:

γ ::= F̂T | FT (Θ, . . . ,Θ)

Here, Θ represents an arbitrary term, and F̂T and FT are 0-ary and n-ary
fluent symbols of type T .

The definitions above have introduced all constituents that are used to
build formulas and terms in SALMA-PSL. The last step that is necessary in
order to make a SALMA-PSL formula usable as a property that is checked

4.1. SALMA’S PROPERTY SPECIFICATION LANGUAGE 97

during statistical model checking is to mark it as either an invariant or a
goal. This information is added by wrapping the formula in one of the pseudo-
operators invariant or goal.

Definition 4.7 (SALMA-PSL property). The syntax of a SALMA-PSL prop-
erty Prop is specified by the grammar

Prop ::= invariant(Φ) | goal(Φ)

where Φ can be any formula as defined in Definition 4.1.

Before the formal semantics of SALMA-PSL formulas is presented in Sec-
tion 4.1.3, it is helpful to examine some examples that demonstrate the typical
usage of the language constructs.

4.1.2 Examples

Since the SALMA property specification language is based on LTL, much of
the typical structure of linear time temporal logic formulas can be found in
SALMA-PSL properties. Typically, a formula refers to a start point that is
marked either by a state constraint, i.e. a condition built out of fluent values,
or by the occurrence of an action or event, which can be expressed using the
special predicate occur. By using nested temporal operators, it is possible to
describe complex sequences of expected behavior. For instance, the following
formula could be used to express some time constraints for robots from the
example that was introduced in Section 3.1:

forall(r:robot, implies(occur(activate(r)),
eventually(10, until(100, moving(r),

and(occur(grab(r, ?)), eventually(200, atBase(r)))))))

This property requires that the behavior of every robot must fulfill the
following constraints:

1. It starts moving within 10 time units after it is activated.

2. Then, after continuously moving for at most 100 time units, it grabs
some item that is not specified further.

3. Finally, it returns to the base station within 200 time units.

One of the most important aspects of the SALMA-PSL is its ability to
refer to properties of entities and relation between entities in a very detailed
way. Often, it is very useful to store the value of more complex expressions in
variables that can be re-used later. This can be seen in Figure 4.1.

Here, the variable critDist is a typical example for the re-use of an expres-
sion, in this case meant to be a critical distance to the designated destination

98 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

forall(r:robot, forall(i:item,
implies(occur(grab(r, i)),

let(critDist: min(25, speed(r) * 10), let(tlim: deadline(i) - time,
until(tlim,

forall(r2:robot, forall(ws:workstation,
and(

implies(r2 =/= r, distance(r, r2) > crtitDist),
implies(ws =/= destination(i), distance(r, ws) > crtitDist)))),

delivered(i)))))))

Figure 4.1: Example for the use of variables and let blocks.

of an item. In the let-expression, this variable is set to the distance the robot
would cover within 10 time units, or at least 25 length units. Within the body
of a let expression, the defined variable can be re-used at any position. In this
case, critDist is used twice to express safety distances to all other robots and
all workstations except the destination of the delivered item. In contrast, the
other variable tlim is required because the SALMA-PSL does not allow arbi-
trary expressions for time bounds of temporal operators (see Definition 4.4).
Here, tlim is used to set a time bound that respects a deadline for the delivery
of an item.

The examples above already contain essentially all core constructs that are
currently defined in the SALMA-PSL. Many more sophisticated elements that
are found in other expression languages, such as aggregation or filter operators,
do not exist in a generic, model-independent way. However, one important
strength of the SALMA approach is that it is possible to integrate any Prolog
(ECLiPSe) predicate or function, including both those defined by the user and
those shipped with standard or 3rd-party libraries. For example, it might be
useful to define a function that calculates the maximum horizontal position
that any robot has in the current situation. This can easily be expressed in
plain Prolog:

maxxpos(XMax) :-
domain(robot, Robots, s0),
member(R, Robots), xpos(R, XMax, s0),
not (member(R2, Robots), R \= R2,

xpos(R2, XR2, s0), XR2 > XMax), !.

With this user-defined function, it is now possible to define a SALMA-PSL
property which expects any robot that picks up an item to move past the
current maximum X position:

4.1. SALMA’S PROPERTY SPECIFICATION LANGUAGE 99

forall(r:robot,
implies(occur(grab(r,?)),

let(mx:maxxpos, eventually(50, xpos(r) > mx))))

Here, the use of the let-expression it is actually necessary. In fact, when
the property above is evaluated, the current value of maxxpos is syntactically
substituted for the variable mx and the resulting rewritten formula is scheduled
for further inspection (see Section 5.5). This means that the current maximum
position at the moment the robot grabs the item is frozen and set as the
goal. If the function maxxpos was used directly in eventually expression, the
current position of the robot would in any step be compared to the maximum
X position at that time, which would make the constraint unsatisfiable.

4.1.3 Semantics of SALMA-PSL Properties

In order to properly describe the semantics of the language, it is first necessary
to introduce the concept of a simulation trace.

Definition 4.8 (Simulation trace). A simulation trace of a modelM, denoted
by σM is a finite sequence of situations S0, . . . , Sn, where S0 is the initial
situation at the simulation start, Si is the situation after i actions have been
performed, and Sn is the situation that is present in the latest simulation step.
Furthermore, σnk is the segment of the simulation trace that starts at situation
Sk and ends in situation Sn.

This notion of a trace segment is important because in general, the interpre-
tation of a SALMA-PSL formula depends on both a reference (or start) point
and the time span from that point up to the end of the observed simulation
trace.

Definition 4.9 (Interpretation with respect to a simulation trace segment).
Given a term Θ and a simulation trace segment σnk , the interpretation of Θ
with respect to σnk is denoted as JΘKnk . This can be understood as the value
that is assigned to Θ for the situation Sk when the future of Sk is known up
to Sn.

Another concept that is necessary to express the semantics of formulas
in terms of the situation calculus is regression, which was introduced in Sec-
tion 2.2. The application of the regression operator to the term Θ, written as
R(Θ), transforms Θ to a term that still expresses the same value but refers
only to the initial situation S0. This allows using the abbreviated statement
M, S0 |= R(Φ) to expresses that Φ is entailed by the basic action theory that
is formed by the currently simulated model with the initial situation S0. Simi-
larly, when a formula is entailed for all possible initial situations, this is written
asM |= Φ.

100 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

In the chosen semantics, the interpretation of a formula at a given situation
Sk is understood in the context of a simulation trace with a fixed last situation
Sn. However, for formulas that contain temporal operators, it is not always
possible to decide whether they are true or false based only on the available
simulation trace segment σnk . Therefore, it is necessary to use a three-valued
logic that allows expressing that in a given situation, the result of a formula
cannot be decided yet. Throughout the remainder of this thesis, the three
possible options will be represented by the symbols >, ⊥, and ?.

With the concepts and definitions from above, the semantics of SALMA-
PSL formulas can be defined in the context of the situation calculus.

Definition 4.10 (Semantics of a SALMA-PSL expression). Let v be a nu-
meric or boolean literal or a constant of an entity sort, θR,1, . . . , θR,n numeric
terms, � an arithmetic operator, ∼ a comparison operator (i.e. one of <,
≤, =, ≥, >, or 6=), θ, θ1, . . . , θn arbitrary terms, and Φ,Φ1, . . . ,Φn formulas.
Furthermore, let i, j, k, n ∈ N0 be situation indexes, and let T ∈ N0 represent
a time limit. Finally, let α and γ be an action and a fluent instance as defined
in Definition 4.5 and Definition 4.6, respectively. Then the semantics of a
SALMA-PSL expression Θ with respect to the trace segment σnk is recursively
defined as follows:

1. constants:

JvKnk =

v if v ∈ R or v ∈ T where T is an entity sort
> if v = true

⊥ if v = false

2. arithmetic expressions: JθR,1 � θR,2Knk = JθR,1Knk � JθR,2Knk .

3. functional expressions: Jg(θ1, . . . , θn)Knk = v
if (a) g is a situation-independent function with arity n and the evalu-
ation of g(Jθ1Knk , . . . , JθnK

n
k) yields the result v, or (b) g is a functional

fluent andM, S0 |= R(g(Jθ1Knk , . . . , JtnK
n
k , Sk)) = v.

4. relational expressions:

a) Jf(θ1, . . . , θn)Knk = > if (a) f is a situation-independent predicate
and M |= f(Jθ1Knk , . . . , JθnK

n
k), or (b) f is a relational fluent and

M, S0 |= R(f(θ1, . . . , θn, Sk)).

b) Jθ1 ∼ θ2Knk =

{
> if Jθ1Knk ∼ Jθ2Knk
⊥ otherwise

5. temporal expressions:

4.1. SALMA’S PROPERTY SPECIFICATION LANGUAGE 101

a) Jeventually(T,Φ)Knk =

> if ∃j ∈ [k,min(k + bT c, n)]. JΦKnj = >

⊥ if n ≥ k + dT e ∧
∀j ∈ [k, k + dT e]. JΦKnj = ⊥

? otherwise

b) Jalways(T,Φ)Knk =

> if n ≥ k + dT e ∧
∀j ∈ [k, k + dT e].JΦKnj = >

⊥ if ∃j ∈ [k,min(k + bT c, n)]. JΦKnj = ⊥

? otherwise

c) Juntil(T,Φ1,Φ2)Knk =

> if ∃j ∈ [k,min(k + bT c, n)]. JΦ2Knj = >∧
∀i ∈ [k, j[. JΦ1Kni = >

⊥ if
(
∃i ∈ [k, n]. JΦ1Kni = ⊥∧

∀j ∈ [k, i]. JΦ2Knj = ⊥
)

∨
(
n ≥ k + dT e ∧

∀j ∈ [k, k + dT e]. JΦ2Knj = ⊥
)

? otherwise

6. logical connectives:

a) Jnot(Φ)Knk =

> if JΦKnk = ⊥
⊥ if JΦKnk = >
? otherwise

b) Jand(Φ1, . . . ,Φn)Knk =

> if ∀1 ≤ i ≤ n. JΦiKnk = >
⊥ if ∃1 ≤ i ≤ n. JΦiKnk = ⊥
? otherwise

c) Jor(Φ1, . . . ,Φn)Knk =

> if ∃1 ≤ i ≤ n. JΦiKnk = >
⊥ if ∀1 ≤ i ≤ n. JΦiKnk = ⊥
? otherwise

d) Jimplies(Φ1,Φ2)Knk = Jor(not(Φ1),Φ2)Knk

7. quantifiers:

102 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

a) Jforall(x : T,Φ)Knk =

> if ∀e ∈ Jdomain(T)Knk .
JΦ[e/x]Knk = >

⊥ if ∃e ∈ Jdomain(T)Knk .
JΦ[e/x]Knk = ⊥

? otherwise

b) Jexists(x : T,Φ)Knk =

> if ∃e ∈ Jdomain(T)Knk .
JΦ[e/x]Knk = >

⊥ if ∀e ∈ Jdomain(T)Knk .
JΦ[e/x]Knk = ⊥

? otherwise

8. Joccur(α)Knk =

{
> if Sk = do(α, Sk−1)

⊥ otherwise

9. JlastTime(α)Knk =

t if ∃k. Sk = do(α, Sk−1) ∧ time(Sk) = t∧

@k′.k′ > k ∧ Sk′ = do(α, Sk′−1)

−1 if @k. Sk = do(α, Sk−1)

10. Jlet(x : θ,Φ)Knk =

> if JΦ[JθKnk/x]Knk = >
⊥ if JΦ[JθKnk/x]Knk = ⊥
? otherwise

The first interesting point in the definition above is how fluents are in-
terpreted in the rules 3 and 4a. Here, the connection is made between the
SALMA-PSL semantics and the situation calculus by reducing the interpre-
tation with respect to a simulation trace segment (see Definition 4.9) to the
application of the regression operator of the situation calculus that was shortly
introduced in Section 2.2. There it was already explained that in SALMA, re-
gression is actually never used in the traditional sense, in which the initial
situation would refer to the start of the simulation. Instead, progression is
used, which effectively means that the database is updated in each step so
that the initial situation S0 always directly represents the current simulation
state. Thus, the regression-based viewpoint above should be understood as an
abstraction that allows a more concise description.

The semantics of the temporal operators clarifies that the current valua-
tion of a SALMA-PSL formula always has to be understood with respect to

4.1. SALMA’S PROPERTY SPECIFICATION LANGUAGE 103

the current trace segment. A definite value (> or ⊥) is assigned only if the
requirements for the temporal operator are either clearly fulfilled or violated
within the currently accessible time horizon. Otherwise, the marker ? is used to
declare that no conclusive decision has been found yet. Naturally, this marker
for indefiniteness dominates over other values in the logical operators and, or,
and not, i.e. one indefinite part of such an expression is enough to prevent a
definite decision for the whole expression. As mentioned in Section 4.1.1, the
time bound for a temporal operator is not guaranteed to be a natural number.
Since SALMA uses a discrete time base, definite decisions are only possible at
time points that are whole numbers. This is reflected by the floor and ceiling
functions in the definitions above.

Another crucial aspect of the interpretation of formulas is the way in which
the range of quantifiers is determined in rule 7. In fact, the entities that are
substituted for the quantifier’s variable are taken from Jdomain(T)Knk , which
is the current content of the domain of sort T in situation Sk. This actually
leads to an evaluation semantics that conforms to a natural understanding of
the temporal operators. For instance, a model describing a task scheduling
system could contain a sort that represents the set of all tasks that currently
exist in the system. If the model is intended for long-running simulations,
then it makes sense to integrate the possibility of new tasks being scheduled
or finished tasks being deleted. This means that the domain of the sort task
could be changing throughout a simulation run. In such a model, one could
imagine a simple requirement like the following:

implies(occur(snapshot), eventually(10,
forall(t : task, occur(writeStackTrace(t))))

This formula says that as soon as a snapshot event occurs, all active tasks
in the system have to write out their stack traces within 10 time units. In
this case it is clear that a task entity that is added to the domain after the
snapshot event occurred should not be included in the quantifier inside the
until block because the task did not receive the signal in the first place. Here,
the static unfolding of domains actually achieves this since the formula that
is registered in the evaluation goal schedule when the trigger event occurs
automatically refers only to the entities that exist at that time.

The rules for the quantifiers are followed by the definition of predicates
occur and the function lastTime that provide access to the last occurrence
of a specific action instance. It can be seen that both constructs are inter-
preted based on the simulation history. However, like the use of the regression
operator above, this is an abstraction that is meant to achieve a more con-
cise presentation. In fact, the SALMA evaluation mechanism does not store a
longer part of the history but uses a clock-mechanism that records time-stamps
for actions and events (see Section 5.6.8).

In each step of the simulation, when the evaluation mechanism has calcu-
lated interpretations for the formulas of all properties that are registered to

104 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

be checked during the experiment, the SALMA runtime combine these results
and tries to find a verdict for the current simulation trace. At this point,
the distinction between goals and invariants matters. Basically, a simulation
will be canceled and declared as a failure if at least one invariant from the
active property collection is violated. On the other hand, it will be declared
as success as soon as all goals are fulfilled. However, sometimes it is not easy
to formulate proper goals in order to define the end condition of simulation.
Besides that, it could be possible that the formulated goals are not reached at
all or only after an unbearable long simulation runtime. Therefore, it is also
possible to specify a time limit at which the simulation is ended at the latest
if no conclusive result has been found yet. In this case, the simulation run
is found to be a success if no goals were specified and is left as inconclusive
(?) if at least one goal is still unsatisfied when the time limit is reached. This
behavior is summarized in the following definition.

Definition 4.11 (Interpretation of a property collection). Let PC be a prop-
erty collection, i.e. a set of invariants or goals that are specified as in Defini-
tion 4.7, and let σn0 be the simulation trace segment observed up to the current
step (n). Furthermore, let Tlim be a time limit specified for the experiment.
Then, the current interpretation of the property collection PC with respect to
σn0 is defined as follows:

JPCKn0 =

> if (∀Inv ∈ PC. Inv = invariant(Φinv) =⇒
∀i ∈ [0, n]. JΦinvKni = >)

∧
((

(∀G ∈ PC. G = goal(ΦG) =⇒ ∃j ∈ [0, n] JΦGKnj = >)

∧ time(Sn) < Tlim
)

∨
(
(@G ∈ PC.G = goal(ΦG))

))
⊥ if

(
∃Inv ∈ PC∃i ∈ [0, n]. Inv = invariant(Φinv)

∧ JΦinvKni = ⊥
)

∨
(
time(Sn) ≥ Tlim ∧
∃G ∈ PC.G = goal(ΦG) ∧ ∀j ∈ [0, n].JΦGKnj = ⊥

)
? otherwise

The definitions in this section define the semantics of SALMA-PSL prop-
erties in a concise but relatively abstract manner. How these rules are imple-
mented by SALMA’s property evaluation mechanism is the topic of Chapter 5.
First, however, it is time to return to more practical issues, namely how sta-
tistical model checking experiments are actually performed with SALMA.

4.2. FRAMEWORK SUPPORT FOR STATISTICAL MODEL CHECKING105

4.2 Framework Support for Statistical Model
Checking

In Section 3.4.4, it was explained how the SALMA framework is used to set
up an experiment that consists of a domain model, an agent behavior model, a
set of probability distributions for actions and events, and a configuration for
the initial situation. In order to use such an experiment for statistical model
checking, the following additional steps have to be performed.

1. Invariants and goals have to be registered in the property collection that
is associated with the experiment.

2. Optionally, a time limit can be specified to ensure that simulation trials
are not executed unnecessarily long.

3. A hypothesis test can be set up for the experiment. The sampling strat-
egy of the test determines how many repetitions are conducted. This
can either happen a-priori due to some heuristic or dynamically, which
means that after each evaluation step, the test strategy decides whether
further trials are required or not.

4. The configured experiment is executed repeatedly either for a preconfig-
ured number of trials or until the hypothesis test accepts an hypothesis.

5. The results gathered during the repeated simulations can be used for
further statistical analysis, e.g. for estimating a confidence interval for
the success probability (see Section 4.3).

The part of the SALMA framework that is responsible for realizing statis-
tical model checking is shown in Figure 4.2. One central point is that through
the interfaces HypothesisTest and ExperimentRunner, it is possible to specify
different hypothesis tests and strategies for the execution of repeated simula-
tion trials. A typical example for a hypothesis test that is very suitable for
statistical model checking is Wald’s sequential probability ratio test (SPRT,
[W+45]) that was introduced in Section 2.5.1. As described there, the SPRT
is able to determine dynamically when enough trials have been conducted for
a given set of parameters. An implementation of this test is provided by the
SALMA framework.

For the execution strategy, the framework currently offers only a basic
implementation that runs simulations sequentially on the same CPU core.
However, it would be a straightforward task to create an implementation of
the ExperimentRunner interface that performs multiple simulations in parallel
and aggregates the results. In fact, due to the recent technical developments
in the field of distributed computing and “Big Data”, the prospect of moving

106 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

+runTrials(e : Experiment, ht : HypothesisTest, num : int, timeLimit : int) : SMCResult

ExperimentRunner

+runTrials(e : Experiment, ht : HypothesisTest, num : int, timeLimit : int) : SMCResult

SingleProcessExperimentRunner

+SPRT(p0 : double, p1 : double, alpha : double, beta : double)
+getAcceptedHypothesis(m : int, defects : int) : HypothesisResult

SPRT

+registerProperty(name : String, formula : String, type : PropertyType)
+arbitrateVerdict() : Verdict

PropertyCollection

+getAcceptedHypothesis(m : int, defects : int) : HypothesisResult

HypothesisTest

-acceptedHypothesis : HypothesisResult
-verdicts : Verdict [*]
-results : ExperimentResult [*]

SMCResult

+run(timeLimit : int) : ExperimentResult

Experiment

-verdict : Verdict
-steps : int
-worldTime : int
-failedInvariants : String [*]
-achievedGoals : String [*]

ExperimentResult

NULL_HYPOTHESIS

UNDETERMINED
ALTERNATIVE

«enumeration»

HypothesisResult
UNDETERMINED

OK
NOT_OK

«enumeration»

Verdict

INVARIANT
GOAL

«enumeration»

PropertyType

1

Figure 4.2: SALMA framework support for statistical model checking.

statistical model checking approaches like SALMA to large distributed infras-
tructures has become realistic. The discussion will come back to this topic
shortly in the outlook of this thesis in Section 7.3.

4.3 A Detailed Predictable Example

As a first demonstration of SALMA’s usage for statistical model checking, this
section presents an example that is small and simple enough to be understood
instantly but still exercises the most important concepts. Another beneficial
feature of this example is that it is possible to calculate an exact probability
for the success of a simulation trial. This allows its use as a system test case
that validates the core functionality of both the simulation engine and the
property evaluation mechanism.

The scenario that is discussed here is based on the domain model that
was introduced in Section 3.1. Just like there, the model used in this section
describes a simple world where robots are moving around a two-dimensional
discrete space and are able to carry items with them. However, unlike in Sec-
tion 3.1, it is assumed here that each time a robot grabs an item, the grip
it has on it can be of different quality. Depending on grip quality, there is
a certain probability of the item being dropped accidentally. In the exam-
ple, this is modeled as a stochastic action pickUp whose single outcome is a
modified version of grab that now has an integer stochastic parameter grip
which represents the grip quality by means of a grade from 1 (perfect grip)
to 4 (very bad grip). This value is stored in a fluent grip, which serves as
the conditioning state for the probability distribution that governs the occur-
rence of the accidental drop event. As in the original example in Chapter 3,
the robot moves in discrete steps that are started intentionally by the agent

4.3. A DETAILED PREDICTABLE EXAMPLE 107

stochastic_action(pickUp, [r:robot, i:item], [grab]).
primitive_action(grab, [r:robot, i:item, grip:integer]).
fluent(grip, [r:robot], integer).
schedulable(accidental_drop(R,I), S) :-

action_occurred(grab(R,I,_), S).
effect(carrying(Rob, Item), grab(Rob, Item, _), _, true, _).
effect(carrying(Rob, Item), accidental_drop(Rob, Item), _, false, _).
effect(grip(Rob), grab(Rob, _, NewGrip), _, NewGrip, _).

Figure 4.3: Excerpt of the robot domain model with grip quality.

with move_?-actions and that end when a finish_step event occurs after a
stochastic delay. The relevant excerpt of the domain model that sets up the
new rules for modeling grip quality is shown in Figure 4.3.

Besides the new grip quality aspect, the domain model is further extended
with the parametrized constants named destX and destY that store the co-
ordinates of a destination for an item, i.e. the location to which the item
should be delivered by a robot. Although both the initial location and the
destination of each item could be any two-dimensional position, it is assumed
in this example that a) each item is initially located at the same position as
the robot that is assigned to deliver it, and b) the destination for each item is
set to a point strictly to the right of its initial position. This means that the
movement of the robots can be limited to a series of steps to the right. It will
become clear below why this greatly simplifies the validation of the simulation
results.

Based on the presented domain model, the concrete example of this section
equips robots with a simple agent control process that picks up a predetermined
item and moves to the right until the item’s destination is reached. Then,
it drops the item intentionally, which is meant to represent delivery in the
example. Figure 4.4 shows the Python code fragment that creates a robot
agent with the described control procedure that is registered as a one-shot
process, which means that it is only executed once.

One of the essential configuration steps for the simulation is the defini-
tion of probability distributions for the exogenous actions finish_step and
accidental_drop and for the stochastic action pickUp. The code fragment
that does this is shown in Figure 4.6. For the occurrence distribution of the
event finish_step, the example actually uses the constant value 1, which
means that each movement step is guaranteed to have a fixed duration. Al-
though somewhat unrealistic, this abstraction is crucial for the calculation of
an exact success probability (see below). The stochastic action pickUp has
only one possible outcome, namely grab, so no selection distribution has to be
specified. With map_param, the robot and item arguments of the pickUp ac-

108 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

def create_robot(self, num):
myItem = Variable("myItem")
proc = OneShotProcess([

Act("pickUp", [SELF, myItem]),
While("xpos(self) < destX(myItem)", [

Act("move_right", [SELF]),
Wait("not moving(self)")

]),
If("carrying(self, myItem)",

Act("drop", [SELF, myItem]))
])
agent = Agent("rob" + str(num), "robot", [proc], myItem="item" + str(num))
return agent

Figure 4.4: Agent process controlling robots in SMC example.

Figure 4.5: Probabilistic transitions for the pickUp action.

tion, which is performed intentionally by the robot agent, are passed through
to the action grab. However, in the updated domain model of this example,
grab has the additional parameter grip. For this parameter, a categorical
distribution is installed that assigns a distinct probability to each possible grip
quality grade. In the concrete configuration used for this example, four differ-
ent grip quality states are distinguished and encoded by the numbers 1 to 4,
where 1 is meant to denote perfect grip and 4 very bad grip. The probability
mapping used in this example was {1 7→ 0.3, 2 7→ 0.65, 3 7→ 0.04, 4 7→ 0.01).
Given the effect axioms from Figure 4.3, this leads to the transition system
fragment in Figure 4.5.

In order to model the effect of the grip quality, the occurrence delay dis-
tribution for the event accidental_drop is set to a conditional geometric
distribution that chooses its parameter dependent on the value of the grip

4.3. A DETAILED PREDICTABLE EXAMPLE 109

fluent. This is realized by a closure that is created over the custom Python
function accidental_drop_delay together with an array of probabilities for
each possible grip value. This closure is installed as a CustomDistribution
and will hence be used to sample occurrence delays for accidental_drop event
instances. The integration works similar to Python functions that are called in
agent processes to calculate values for variable assignments (see Section 3.3.2):
the first parameters r and i are the qualifying parameters of the event instance,
i.e. a robot and the item it might drop. Besides these values, the framework
automatically injects fluent accessors in declared keyword arguments, which is
used here to access the current value of the grip quality. Based on this value,
a parameter for a geometric distribution is chosen from the parameter vec-
tor and a random delay is sampled accordingly. Besides returning this delay,
which will be used by the simulation engine to schedule the event, a distri-
bution function can also choose to return None to signal that this particular
event instance should not be scheduled at all at this point.

The concrete parameter vector in drop_probabilities that was used for
the experiment discussed here was (0.0, 0.001, 0.01, 0.2). This means that the
grip value 1 (aka “perfect grip”) is assigned to the parameter 0.0, in which case
the distribution function returns None, corresponding to the idea that a robot
would never accidentally drop an item if it has perfect grip. The other three
parameter options yield a series of geometric distributions whose cumulative
distribution functions (CDF) are shown in Figure 4.7.

The last component of the experiment’s configuration is the definition of the
initial situation for each simulation trial. As described in Section 3.4.4, this
is done in the method create_initial_situation of the experiment class,
which is called by the framework at the beginning of each simulation run. For
this example, all robots are initially placed above each other in distinct rows at
x-position 0. Additionally, for each robot, the item with the corresponding id
is placed at the same position as the robot, i.e. item1 at the location of rob1,
etc. Then, each item is assigned a random destination that is constrained to
be at the same y-coordinate as the item and on the right side of it with a
distance that is sampled from a uniform distribution ranging from 10 to 50
steps. This setup of the destinations can be seen in Figure 4.8.

When the experiment is configured as described above, it is now almost
ready to be used together with SALMA’s statistical model checker. What
remains to be done is the definition of invariants and goals that should be
checked. The property that is going to be examined here is whether all robots
are able to deliver the item they have been assigned to its destination within
a certain time without dropping the item accidentally. The SALMA-PSL for-
mula that expresses this requirement will be called F and can be found in the
top of Figure 4.9.

In the definition of F , the occurrence of a grab marks the start of the
delivery process that has to be completed within 100 time units. This limit
is intentionally chosen high enough so that it cannot be a reason for a trial

110 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

def setup_distributions(self):
. . .
fstep = world.get_exogenous_action("finish_step")
fstep.config.occurrence_distribution = ConstantDistribution("integer", 1)
pickup = world.get_stochastic_action("pickUp")
grab = pickup.outcome("grab")
grab.map_param("r", "r"), grab.map_param("i", "i")
grab.set_param_distribution("grip", CategoricalDistribution("integer",

[(1, 0.3), (2, 0.65), (3, 0.04), (4, 0.01)]))

drop_delay_fn = generate_drop_delay_distribution(
[0.0, 0.001, 0.01, 0.2])

acc_drop = world.get_exogenous_action("accidental_drop")
acc_drop.config.occurrence_distribution = \

CustomDistribution("integer", drop_delay_fn)
. . .

def generate_drop_delay_distribution(drop_probabilities):
def accidental_drop_delay(r , i , grip=None, **ctx):

g = grip(r)
if g < 1 or g > len(drop_probabilities):

raise SALMAException(. . .)
p = drop_probabilities[g - 1]
if p == 0:

return None
else:

return np.random.geometric(p)
return accidental_drop_delay

Figure 4.6: Setup of probability distributions for the robot example.

failure, which allows concentrating on the possible occurrence of accidental
drops. The wild-card symbol ? is used in the occur-predicate to ignore the
grip quality argument. Besides this invariant, it is also necessary to declare a
stop condition for the simulation by means of an achieve-goal. The intuitive
choice in this example is to declare the simulation trial as successful when the
invariant has not been violated, all items have been carried to their destina-
tions, and the items have been delivered, i.e. no item is still being carried by
any robot. The corresponding goal, named G, can also be seen in Figure 4.9,
which actually shows the content of a property specification file. Assuming this
file is stored under the name robots01.sspl, the invariant F and the goal G
can be loaded and registered in the experiment’s property collection with the
following command :

4.3. A DETAILED PREDICTABLE EXAMPLE 111

0 10 20 30 40 50
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
(X

d
ro
p
x
)

grip = 1
grip = 2
grip = 3

Figure 4.7: CDFs for schedule delays of accidentalDrop events, conditioned
on the robot’s current grip quality.

. . .
for i in self.world.getDomain("item"):

dist = np.random.randint(10, 51)
self.world.set_constant_value("destX", [i.id],

self.world.get_fluent_value("xpos", [i.id]) + dist)
self.world.set_constant_value("destY", [i.id],

self.world.get_fluent_value("ypos", [i.id]))

Figure 4.8: Setup of the item destinations in the robot example.

INVARIANT F: forall(r:robot, forall(i:item,
implies(occur(grab(r, i, ?)), until(100, carrying(r, i), xpos(i) = destX(i)))))

GOAL G: forall(i:item,
and(xpos(i) = destX(i), not(exists(r:robot, carrying(r, i)))))

Figure 4.9: Content of the property specification file robots01.sspl that de-
fines the invariant and the goal used in the example.

112 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

In [9]: import salma
from salma.experiment import SingleProcessExperimentRunner
from robots01 import Robots01

In [13]: experiment = Robots01()
runner = SingleProcessExperimentRunner()
experiment.setup_properties()
experiment.initialize()

In [16]: _, results, details = runner.run_trials(experiment, number_of_trials=100)

In [19]: successes = sum(results)

In [27]: import statsmodels.stats.proportion as proportion

In [33]: proportion.proportion_confint(successes, 100, alpha=0.05, method="agresti_co
ull")

Out[33]: (0.76601878752323671, 0.90808576373187333)

Figure 4.10: Performing a SALMA experiment in the IPython environment.

experiment.property_collection.load_from_file("robots01.sspl")

At this point, the configuration is complete and the experiment can be per-
formed. This can be done by using an instance of a concrete ExperimentRunner
class, e.g. SingleProcessExperimentRunner (see Section 4.2). With that, a
predefined number of trial runs can be performed by a call to the method
run_trials, which returns a list with boolean results for all trials for which a
conclusive verdict could be found. Additionally, a list of dictionaries is passed
back that contain detailed information about the trials like the number of
performed simulation steps. Based on this data, the user can perform vari-
ous kinds of statistical analyses. In particular, there is now a well-established
collection of mathematical and scientific Python modules that form the so-
called scientific Python stack [dev15], which contains implementations of vari-
ous methods for calculating confidence intervals for proportions or performing
a wide range of common hypothesis tests. Alternatively run_trials can also
be called with an optional argument containing an instance of some subclass
of the abstract class HypothesisTest. In the current example, SALMA’s in-
tegrated simple implementation of Wald’s sequential probability ration test
(SPRT [W+45]) is used, which was introduced in Section 2.5.1. The simula-
tion is repeated only as long as necessary before the hypothesis can be accepted
or rejected with the desired error bounds. Called in this way, run_trials ei-
ther returns the number of the accepted hypothesis (0 or 1) or None if no
definite choice could be made within a maximal number of simulation trials.

A typical example for the use of the SALMA framework together with
common scientific Python modules can be seen in Figure 4.10, which shows an
excerpt of an interactive session example in the IPython environment [PG07].
IPython provides a read–eval–print loop (REPL) that can be used similar to

4.3. A DETAILED PREDICTABLE EXAMPLE 113

common mathematical or statistical software packages like Matlab or R. Here,
after importing the required modules, the class Robots01, which contains the
experiment described in this section, was instantiated and initialized. Then,
100 simulation trials were performed with a call to run_trials. This returned
a tuple with three parts, the accepted hypothesis, which is ignored here since
no test was specified, the trial results, and the execution details. The last
lines in Figure 4.10 use a function from the StatsModel library [sta15] to cal-
culate a confidence interval for the success probability using the Agresti-Coull
method [AC98] that was recommended in a survey by Brown et al. in 2001
[BCD01] for samples larger than 40. In this case, 85 of the 100 performed trials
were successful and the calculated confidence interval was [0.766019, 0.908086]
at level 0.05.

As mentioned in the beginning of this section, the example presented here
allows an exact calculation of the success probability. What makes this possible
is the fact that the event probability distributions are set up in a way so that it
is known that each robot needs exactlyX time steps to reach a target that has a
distance ofX length units. Since the occurrence times of accidental drop events
are modeled by a geometric distribution, the cumulative distribution function
(CDF) of the geometric distribution can be used to calculate the probability
that a robot drops an item before it reaches its destination. As described above,
the parameter of the geometric distribution for the drop events depends on the
grip quality, which is reached as an outcome of the stochastic action pickUp.
Given that the item distances are uniformly distributed between 10 and 50,
the probability that one robot drops an item before reaching its destination
can be expressed as follows:

P (fail-1-robot) =

50∑
d=10

4∑
g=1

(P (Dist = d)P (Grip = g) · P (Xdrop ≤ d | g))

=
1

40

50∑
d=10

(0.3 · (1− (1− 0)d) + 0.65 · (1− (1− 0.001)d)+

0.04 · (1− (1− 0.01)d) + 0.01 · (1− (1− 0.2)d))

=
1

40

50∑
d=10

(0 + 0.65 · (1− 0.999d) + 0.04 · (1− 0.99d)+

0.01 · (1− 0.8d))

≈ 0.0392471

Given that there are three robots that act independently, the following
expression yields the overall probability that a simulation run is a success:

P (success) = (1− P (fail-1-robot))3 ≈ 0.8868193

114 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

80 82 84 86 88 90 92 94 96 98

x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

x
 /

 N

Bin(100;p)

Successes in 100 x 100 simulation runs

80 82 84 86 88 90 92 94 96 98

x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x
 /

 N

Bin(100;p)

100 samples from Bin(100; p)

Figure 4.11: Left side: success rates of simulation runs for the Robot experi-
ment, grouped into samples of size 100. Right side: histogram of s sample of
size 100 from the binomial distribution with the theoretical probability.

Obviously, the confidence interval that was produced in Figure 4.10 con-
tains the real probability. However, in order to validate the accuracy of the
simulation, it is necessary to work with a much larger sample. In fact, the simu-
lation was run for a total of 10, 000 times, grouped in 100 samples of 100 trials.
Altogether, 8, 916 of the 10, 000 trials were successful, which, using the Agresti-
Coull method, leads to a 0.05 level confidence interval of [0.885354, 0.897545].
This is so close to the actual probability of 0.8868193 that it intuitively sug-
gests that both the simulation mechanism and the property evaluation worked
correctly. For further comparison, the simulation results can be understood
as a sample of size 100 from the binomial distribution B(100; 0.8868193) that
describes the theoretically expected number of successes. The left side of Fig-
ure 4.11 shows a normalized histogram of this sample, i.e. the success rates.
It also contains a line plot that visualizes the probability mass function of
the said theoretical distribution. The other histogram on the right side of Fig-
ure 4.11 shows a sample of size 100 that was drawn directly from that binomial
distribution using the appropriate function from the SciPy package. It can be
seen that the deviation from the expected results has a similar magnitude for
both cases. This again underpins the impression that the differences between
the simulation results and the theoretically expected results are not signifi-
cant. Finally, this can be verified more formally with a χ2 goodness of fit test
(see e.g. [DS12, Chap. 10.1]) for the null-hypothesis that the batched simu-
lation result is distributed according to B(100; 0.8868193). This test yielded
the test statistic 14.373, which corresponds to a p-value of 0.213. This means
the null-hypothesis would be accepted for all significance levels up to 0.213.

As mentioned before, SALMA also allows using the sequential probability
ratio test (SPRT) to test a composite null-hypothesis of the form P (failure) ≤
Pmax, i.e. to confirm that the probability of the registered properties being
violated is at most Pmax. Such a test can be performed with a command
sequence like the one shown in Figure 4.12. The test configuration requires
four parameters: the first two, named p0 and p1, define an indifference region

4.3. A DETAILED PREDICTABLE EXAMPLE 115

In [9]: from salma.statistics import SPRT

In [10]: sprt = SPRT(0.24, 0.26, 0.05, 0.05)

In [11]: hyp, results, details = runner.run_trials(experiment, hypothesis_test=sprt,
max_trials=500)

In [12]: hyp, len(results), sum(results)

Out[12]: (0, 179, 162)

Figure 4.12: Conducting an sequential probability ration test (SPRT) in the
IPython environment.

in the sense that the null hypothesis is only accepted if P (failure) < p0 and
only rejected if P (failure) > p1. The remaining parameters specify α and β,
the maximal acceptable probabilities for errors of the first and second kind.
Instead of being specified by a parameter as before, the number of necessary
trials is determined automatically by the SPRT algorithm that continues until
a decision can be found that respects the given error bounds. Only a maximal
number of 500 trials is specified to avoid unacceptably long run-times. In
the example of Figure 4.12, p0 was set to 0.24, p1 to 0.26, and both α and
β to 0.05. The last line in Figure 4.12 shows the result returned by the call
to run_trials. As expected, the null-hypothesis was accepted in this case
(which is indicated by hyp being 0), since the actual failure probability is
approximately 1 − 0.8868193 = 0.113181. The number of trials that were
performed before the hypothesis was accepted was 179 and 162 trails were
successful.

In order to validate SALMA’s implementation of the SPRT algorithm more
thoroughly, the test was performed with the same levels for α and β but with
different values for p0 and p1. In fact, the indifference region was set to a fixed
interval of length 0.4 that was centered around a variable probability value
p, which was moved up from 0.3 to 0.93 in steps of 0.2. The results of this
experiment can be seen in Figure 4.13 where the number of performed trials
is plotted against p and the markers indicate whether the null-hypothesis was
accepted or rejected, or no definite result could be found within the given
maximum number of trials. The dashed vertical line marks the theoretical
probability for a failure, i.e. 1 − P (success) ≈ 0.113181 and the horizontal
line in the top shows the trial number limit that was set to 500. It can be
seen that the null-hypothesis H0 : P (failure) < p was in fact accepted for
all tests where p was lower than 0.11 and accepted when it was higher. For
p = 0.11, the number of trials exceeded the specified bound of 500, so no
decision could be made. It is also clear that there is a strong peak for the
number of necessary trials at the position of the actual failure probability. In
fact, this coincides exactly with the findings in [W+45] and therefore provides
additional evidence for the correctness of the SALMA simulation and property

116 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

evaluation algorithms.

0.000 0.200 0.400 0.600 0.800 1.0000.113

p

0

100

200

300

400

500

tr
ia

ls

1−P(success)

max trials
H0

H1

undecided

Figure 4.13: Results of iterative executions of the SPRT test for the delivery
robots example with H0 : P (failure) < p.

4.4 Summary

This chapter described how the SALMA approach can be used for statisti-
cal model checking. In doing so, it revealed one of the main contribution of
SALMA, which is the seamless integration of a logical property specification
language into a situation calculus based environment. This language can be
seen as a variant of linear temporal logics (LTL), which is a common founda-
tion for many existing statistical model checking approaches. In contrast to
classical LTL, the property specification language of SALMA (SALMA-PSL)
allows to define detailed expressions in which all elements of the system model
can be accessed with first-order predicate logics. The syntax and semantics of
the SALMA-PSL were described in this chapter and illustrated with several
example formulas. After that, the use of SALMA for statistical model check-
ing was demonstrated by means of an experiment based on the delivery robots
example from Chapter 3. This experiment was adapted in a way so that the
probability that a simulation run satisfies a given SALMA-PSL property can
be calculated exactly. The expected outcome was compared to the results of
10.000 repetitions of the simulation which confirmed that the deviation was
not statistically significant. This acts as evidence for the correctness of the
approach and its implementation.

4.5 Related Work

A short overview of related work in the field of statistical model checking was
already given in Section 2.5. A significant part of the research in SMC has been

4.5. RELATED WORK 117

focused on statistical issues, such as the selection of adequate hypothesis tests
or estimators, the handling of rare events (e.g. in [CZ11]), or the application
of Bayesian method as in [JCL09] . These topics are mainly independent
from the way in which the simulation is realized that produces the traces on
which the statistical model checkers operate. Hence, they are as relevant for
the approach presented in this thesis as they are for any other. On the other
hand, this means that solutions which are developed for them in the context
of other approaches can also be applied when SALMA is used. As this thesis
focuses on the integration of SMC with logic-based modeling and simulation,
such general statistical aspects are not discussed further.

What is more relevant from the perspective of this thesis is the design
and capabilities of the different property specification languages that are used
in statistical model checking. Although almost all SMC solutions adapt the
languages they use for modeling and property specification to their specific
needs, they are basically all based on the “classical” temporal logics that were
shortly introduced in Section 2.4, namely linear temporal logics (LTL), compu-
tational tree logic (CTL), the probabilistic CTL variant PCTL and Continuous
Stochastic Logic (CSL).

As explained in this chapter, the property specification language that is
used by the SALMA framework can be seen as a first-order predicate logic
(FOL) variant of bounded LTL (BLTL). The term bounded LTL generally
describes variants of LTL in which all temporal operators have upper bounds
on the number of steps until which . BLTL was discussed very early, e.g. in
(see [Pnu77b]), as an obvious variant of LTL. For statistical model checking, it
is used, for instance by Clarke and Zuliani in their statistical model checking
approach presented in [CZ11], which focuses on cyber-physical systems. To the
author’s knowledge, there is currently no other implemented SMC solution
that supports FOL. However, there have been attempts to lift exact model
checking to first-order temporal logics. For instance, in [BDG+98], the authors
use a symbolic model checking algorithm to verify a Binary Decision Diagram
based representation of a first-order Kripke structure. Respectively, a model-
checker for first-order LTL was described in [WTM04]. There, the system
model is specified as an abstract state machine (ASM), and the requirements as
formulas in a first-order variant of LTL. These formulas are then automatically
transformed to propositional LTL formulas and checked against the system
model using a method that is adapted from the classical automata-based LTL
model checking approach by Vardi [Var96].

PCLT and CSL have been used originally in exact stochastic model check-
ing tools like PRISM [HKNP06]. For statistical model checking, both have
been adopted, for instance, by Ymer [You05b] and VESTA [SVA05b], and by
PRISM itself, whose latest version includes an extension for statistical model
checking. Since CSL is based on a continuous time model, it obviously dif-
fers from both PCTL and the property specification language that is used in
SALMA. However, PCTL and CSL have in common that they provide prob-

118 CHAPTER 4. STATISTICAL MODEL CHECKING IN SALMA

abilistic operators that reason about the probability with which a subformula
is fulfilled.

The SALMA property specification language does not include probabilistic
operators and therefore only allows reasoning about the probability of top-
level formulas by means of hypothesis tests or estimation. The reason why
nestable probabilistic operators were not included in SALMA is mainly because
of the immense simulation effort that could be necessary when formulas with
such nested multi-level structures are tested. For example, suppose that the
SALMA verification engine had to test a PCTL formula like this:

Ψ = (P≤0.05Φ1)U≤100 Φ2

Without anticipating details of the actual evaluation algorithm that is used
in SALMA, which will be explained elaborately in Chapter 5, it can be said
that in order to determine whether the subformula (P≤0.05Φ1) holds in the
current state, it would be necessary conduct a full nested hypothesis test for the
formula Φ1. This means that for every visited step during the outer simulation
in which the top-level formula Ψ is tested, the engine would have to spawn
a batch of independent simulations that start from the current state and test
the property Φ1. Hence, the total number of simulations that are necessary
to determine a result for the top-level formula could in the worst case grow
exponentially with the number of nesting levels.

In spite of this obvious problem, all of the established statistical model
checkers that were mentioned in Section 2.5 support nested probabilistic op-
erators. However, the authors of these tools mainly address another issue,
namely how the statistical methods they use have to be adapted to take into
account that the result of the evaluation of a subformula with probabilistic
operators is a random variable itself (see [SVA04, sec. 3.2], [YS02, sec. 4.1]).
In [YS02, sec. 4.1]), the authors shortly mention the problem of having to con-
duct full hypothesis tests for each nesting level. They also point out that the
nesting level is not required in most practical scenarios ([YS02, sec. 5])). As an
obvious solution for mitigating the growth of the number of required samples,
memoization is suggested in [YS02] and [You05a], i.e. storing results of nested
evaluations ad reusing them when the same start state is visited again. This
idea is extended in [YKNP06] by combining statistical model checking for the
outer formulas with numerical stochastic model checking for the nested sub-
formulas. Both solutions would be difficult to integrate in SALMA since the
state space is so large that exact numerical methods are not applicable and it
is rather unlikely that the exact same state is ever reached again. Altogether,
it has to be said that a proper solution for handling nested probabilistic op-
erators in SALMA has yet to be found. In fact, the discussion will return to
this issue shortly when an outlook for the thesis is presented in Chapter 7.3.

Another typical feature of temporal logics that is missing in the SALMA
property specification language is the support for unbounded temporal oper-
ators. In fact, this is a topic that has been addressed time and again within

4.5. RELATED WORK 119

the statistical model checking community. The obvious challenge for any
simulation-based approach is that it may not be possible in acceptable (or
even finite) time to find a trace prefix that invalidates or confirms the checked
properties. There have been different approaches to deal with this problem.
In “Monte Carlo Model Checking” [GS05], the structure of the model allows
using automata-based techniques for finding loops in a very similar way as in
classical model checkers. However, this is not possible for the more general
cases of statistical model checking where structure of the model is not as ac-
cessible. In [SVA05a], the authors propose a method that involves the use of
a modified model in which an additional outgoing failure transition with the
same non-zero probability is added to each state, i.e. transitions that lead to
an absorbing failure state. By this, every simulation run will eventually come
to an end. The authors then describe how to use hypotheses tests on this
modified model for testing within some given error bounds that an unbounded
path formula is not fulfilled. However, the justification for their approach is
partly based on a lower bound for the success probability of a simulation trace
that is proportional to (1−ps)N where N is the number of states of the system.
For the type of FOL models used in SALMA, where the number of possible
states is measured by the product of the sizes of all fluent domains. Therefore,
the state space will effectively be so large that this lower bound converges to-
wards 0 and thus becomes useless. Since this problem is so universal, it is not
surprising that, for instance, PRISM uses a much more pragmatic solution by
simply limiting the simulation length (cf. [pri16]). On the other hand, it is
unclear how problematic this restriction actually is. Intuitively, it might be
argued that for cases in which even a very high limit on the trace lengths is
not acceptable, statistical model checking itself might be not exact enough.

Chapter 5

Efficient Evaluation of
FO-BLTL Properties

Once invariants and goals are formulated using SALMA’s property specifica-
tion language, they are registered with the simulation engine and the experi-
ment can be stared. All registered properties are then evaluated “on the fly”
alongside simulation and each simulation run is stopped as soon as a conclusive
verdict for the configured combination of invariants and goals is found. Since
statistical model checking in general requires a large number of simulation
runs, one of the key requirements for SALMA’s property evaluation module
is the ability to find verdicts as soon as possible in order to avoid running
simulations longer than necessary. At the same time, the evaluation mecha-
nism has to be scalable with respect to the complexity of the formulas, the
number of entities in the system, and the length of the history. This chapter
describes how this is achieved in SALMA through a combination of optimized
data structures and algorithms.

5.1 Overview of the Evaluation Mechanism

Figure 5.1 summarizes SALMA’s property evaluation mechanism. At first, the
properties specified in SALMA-PSL are translated by the formula compiler
into an internal representation that can be interpreted by the Prolog-based
evaluation algorithm. Section 5.4 explains this step. The compiled formulas
are added to a property registry from which they are retrieved and evaluated
in each simulation step. As soon as the evaluation of a property returns a
conclusive verdict (positive or negative), it is returned to the simulation engine
which includes it in the evaluation statistics and in the arbitration of the
overall result for the simulation run. However, if a property’s formula contains
temporal operators, it cannot always be determined immediately whether a
property holds at a given time point or not. In this case, an entry in the

121

122 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

formula cache
formula compiler

formula evaluator

property registry

Evaluation Goal Schedule

invariants & goals

simulation
model

sort
domains

results

fluent state,
events,
actions

Figure 5.1: Property evaluation overview.

evaluation goal schedule is created that marks the property for being re-visited
in the following steps. Section 5.5 explains this scheduling mechanism in detail
and describes how it uses term rewriting, a formula cache, and a transitive
reference model to support formulas with multiple levels of nested temporal
operators. However, before these more technical details can be revealed, it is
necessary to discuss several core concepts of SALMA’s evaluation mechanism.

5.2 Formula Evaluation With Variable Time
Advances

Besides the support for complex requirement specifications, one of the main
aspects in the design of SALMA’s property evaluation module is the support
for simulations with variable time advances. As described in Section 3.6, the
simulation engine uses a priority queue in which events are scheduled at time
points that are basically chosen according to probability distributions that
model their delays 1. Since probabilistic effects can only occur through events,
the simulated system follows a deterministic state trajectory during the time
between two events. Therefore, from the perspective of the simulation, it is
often not necessary to calculate the world state for every time step but only
for those where events occur. In this case, the time is advanced and the time-
dependent fluents are updated by a single progression step (cf. Definition 3.28
in Section 3.6.2). As explained in Theorem 3.1, this optimization is possible
when the domain model of the simulated system fulfills the time-advance-
stability property that was introduced in Definition 3.29. In contrast, when
this property is not satisfied, then the simulation has to explicitly visit every
step between the current and the next event, i.e. the simulation works with a
constant time advance of 1.

1In fact there are also slightly different scheduling schemes that are based on ad-hoc
event selection rather than delays (see Section 3.6)

5.2. VARIABLE TIME ADVANCES 123

However, even if the simulated model is time-advance-stable, the period
between the current and the next event can generally not be ignored when the
simulation traces are used as input for the evaluation of goals and invariants.
In fact, it is not always possible without direct inspection to determine whether
a property holds at a specific time. For instance, a simplified kinematic model
of a multi-robot system could contain the fluents shown in Figure 5.2. Since
the velocity fluents vx and vy can obviously only change through an intentional
action, they have to remain constant during a time advance period. Therefore,
it is easy to see that posx and posy are time-advance-stable:

Lemma 5.1. The fluents posx and posy in Figure 5.2 are time-advance-stable.

Proof. Let ∆t ∈ N0 be the total delay of the time advance between the current
event end the next scheduled event. Additionally, let t1, . . . , tn be a partition
of ∆t, i.e. ∆t =

∑n
i=1 ti. Since by definition no event or action other than tick

can occur during a time advance period, the value of any instance of the fluents
vx and vy have to remain constant and we can substitute them with a constant
vx or vy, respectively. To prove that posx and posy are time-advance-stable,
we have to show that the value for any of their instances is the same both for
a situation term with the single action tick(∆t) and for a situation term that
consists of the action sequence of (tick(t1), . . . , tick(tn)). Since the definitions
of posx and posy are symmetrical, it is enough to show this for posx:

posx(r, do(tick(tn), do(tick(tn−1), do(. . . , do(tick(t1), S0)))))

= posx(r, do(tick(tn−1), do(. . . , do(tick(t1), S0)))) + vxtn

= posx(r, do(tick(tn−2), do(. . . , do(tick(t1), S0)))) + vxtn−1 + vxtn

= . . . = posx(r, S0) + vxt1 + . . .+ vxtn = posx(r, S0) + vx

n∑
i=1

ti

= posx(r, S0) + vx∆t = posx(r, do(tick(∆t), S0))

When the simulation advances from the current time tnow to the time of
the next scheduled event tnext, it can simply perform a single progression with
tick(tnext − tnow) to update the world state. However, it is not far-fetched to
assume that the specification for the system model might contain an invariant
that requires robots to have a certain minimum distance, i.e.

F = forall(r1 : robot, forall(r2 : robot, implies(r1 \= r2, dist(r1, r2) > 5)))

. Where dist is a derived fluent that is defined as the euclidean distance:

dist(r1, r2, s) = d ≡

d =
√

(posx(r2, s)− posx(r1, s))2 + (posy(r2, s)− posy(r1, s))2

124 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

posx(r, do(a, s)) = x ≡ ((∃t ∈ N0. a = tick(t))∧
x = posx(r, s) + vx(r, s)t) ∨ ((@t. a = tick(t)) ∧ x = posx(r, s))

posy(r, do(a, s)) = y ≡ ((∃t ∈ N0. a = tick(t))∧
y = posy(r, s) + vy(r, s)t) ∨ ((@t. a = tick(t)) ∧ y = posy(r, s))

vx(r, do(a, s)) = v ≡ a = setVx(r, v)∨
((@v′.a = setVx(r, v′)) ∧ vx(r, s) = v)

vy(r, do(a, s)) = v ≡ a = setVy(r, v)∨
((@v′.a = setVy(r, v

′)) ∧ vy(r, s) = v)

Figure 5.2: Excerpt from example model with deterministic trajectories be-
tween events.

scenario 1 scenario 2

Figure 5.3: Example for robot movement during time advance.

When the property F is registered as an invariant, then the evaluation
module has to check that the property holds in every time step between the
current and the next event. This fact is clearly visible in Figure 5.3 in which
the trajectories of two robots, r1 and r2, are sketched. Although information
about the start and end coordinates is enough to tell that the paths of both
robots have crossed, it is not clear whether they were actually closer than their
minimum distance at any point in time.

In terms of the situation calculus, this means that the property has to be
evaluated for every situation in which the time is between tcur and tnext. How-
ever, since the model is time-advance stable and it is known that no event or

5.2. VARIABLE TIME ADVANCES 125

action occurs between tcur and tnext except tick, it is not necessary to perform
full progression for the intermediate steps. Instead, it is possible to use a more
efficient evaluation scheme based on regression, i.e. by substitution of the
situation arguments in the formula itself. This is shown below in Theorem 5.1.

Theorem 5.1. Let Φ be a SALMA-PSL formula and let M a system model
that is time-advance-stable. Additionally, let tcur and tnext be the time of the
current simulation step and the time at which the next event is scheduled for
the current simulation run. Furthermore, let S represent a situation and JΦKS
denote the evaluation of Φ for situation S. Then the following equivalence
holds:

∀S. ∀∆t ∈ N0. (∆t ≤ tnext − tcur) ∧ (time(S) = time(S0) + ∆t) =⇒ (5.1)
JF KS ≡ JF Kdo(tick(∆t),S0)

Proof. By construction of the simulation algorithm we know that no other
event or action other than tick can occur between tcur and tnext. In terms of
Definition 3.29, this means that S ∈ Sta. Therefore, sinceM is time-advance-
stable, we know by Definition 3.29 that for all fluent instances, the value does
not depend on how the situation term responsible for the time advance is
constructed. In particular, this holds for all fluent instances that are included
in the evaluation of Φ. Since all other elements of Φ have to be constant
anyway, this means that the evaluation result JF KS itself is independent from
the construction of the situation term S. Therefore, the equivalence in the
right side of the implication in (5.1) holds, which proves the theorem.

The consequence of the theorem is that the evaluation algorithm can use
a loop that simply increases the delay ∆t step by step in order to evaluate Φ
for all time steps between tcur and tnext, which will be explained further in
Section 5.6.3. The most important aspect of this design is that, in many cases,
it is able to reduce the evaluation effort significantly. More precisely, for each
of the steps in the loop mentioned before, only those fluent instance values are
calculated that are really needed to evaluate the formula. This of course is a
direct result of the recursive nature of the situation-calculus-based axioms in
which the rules for fluent updates are specified in SALMA. In fact, depending
on the structure of Φ, only a very small partition of the state space has to be
calculated. First of all, there might be many fluents that are neither directly
nor transitively referenced by any formula but only involved in agent control
procedures. Additionally, only a few instances of a fluent might be relevant
for a formula. In particular, invariants and goals are often conditioned, like in
the formula below that requires robots that are involved in a transmission to
stay within a certain maximum range.

126 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

G = forall(r1 : robot, forall(r2 : robot, implies(
and(r1 \= r2, transmitting(r1, r2)),
dist(r1, r2) < maxTransmissionRange)))

Here, the fluent dist only has to be evaluated for pairs of robots that
are involved in a transmission since all other pairs will be filtered out by the
implication.

Altogether, the SALMA’s property evaluation mechanism is designed to
leverage the obvious advantage of the event scheduling paradigm as far as
possible, which is avoiding the calculation of unnecessary parts of the state
space along deterministic trajectories. This can potentially provide a great
efficiency advantage in comparison to procedural multi-agent simulation ap-
proaches where the state variables are updated directly by the agent control
functions in every step. The next sections will explain the most important
concepts, data structures, and algorithms that contribute to this design.

5.3 Discrete Temporal Interval Sequences

One of the most important aspects of SALMA’s property evaluation algorithm
is the way in which the points in time that are relevant for the evaluation goal
schedule are represented. This topic will mainly be covered in Section 5.5.
However, first it is necessary to introduce the basic data structures on which
the algorithms in this chapter are based: sequences of discrete time intervals
and result mappings, which add labels to interval sequences that represent
evaluation states.

5.3.1 Unlabeled Temporal Interval Sequences

First, since a discrete time base is assumed, a temporal interval is merely a
closed interval on natural numbers.

Definition 5.1 (Discrete temporal interval). A temporal interval is a closed
interval [ts, te] with ts ∈ N0 and te ∈ N0. Furthermore, the set of all possible
temporal intervals is denoted by IT .

In the further discussion within this chapter, temporal intervals will be
used to reflect the evaluation state of a given property with respect to the
time, i.e. at which time points the property was evaluated to true or false,
and for which points a concise result has not been found yet. Since the state
of a property will change in the course of events, it is necessary to represent
time trajectories that contain gaps. This is achieved by aggregating intervals
in sorted sequences.

5.3. DISCRETE TEMPORAL INTERVAL SEQUENCES 127

Definition 5.2 (Discrete Temporal Interval Sequence). A discrete temporal
interval sequence, written like T , is a sorted sequence of disjunctive closed
intervals of natural numbers. Formally, T : N0 → IT = ([ti,s, ti,e])

N
i=0 where

the following invariants hold:

1. ∀0 ≤ i ≤ N. ti,s ∈ N0 and ti,e ∈ N0.

2. ∀0 ≤ i ≤ N. ti,s ≤ ti,e.

3. ∀1 ≤ i ≤ N. ti,s > ti−1,e.

4. ∀0 ≤ i ≤ N − 1. ti,e < ti+1,s.

For some of the following definitions and theorems, it is useful to introduce
some additional terminology and notation that facilitate referring to certain
properties of temporal interval sequences.

Definition 5.3. Let T be a temporal interval sequence. Then the cardinality
of T , written as |T | is defined as the number of temporal intervals in T . This
means that for T = (Ii)

N
i=0 = (I0, . . . , IN), the cardinality is |T | = N + 1.

Furthermore, when T = (Ii)
N
i=0, then the set of temporal intervals in T ,

written as IT (T), is defined as

IT (T) ⊂ IT := {Ii | 0 ≤ i ≤ |T | − 1}

In the definition of temporal interval sequences, properties 1 and 2 simply
state that the elements of the sequence are valid discrete temporal intervals, i.e.
intervals on natural numbers. More importantly, properties 3 and 4 together
establish that the intervals are sorted in ascending order and are disjunct,
i.e. they don’t overlap. Since these invariants are crucial for the evaluation
algorithms, it will be necessary below to show that they are maintained by all
used operations on temporal interval sequences.

Figure 5.4 shows an example for a temporal interval sequence. Later in
this chapter, it will be described how sequences like that are used to represent
time intervals that share a common category. For instance, the intervals in
Figure 5.4 could reflect the times when a given property holds.

Figure 5.4: Example discrete temporal interval sequence.

Without going into details about how the evaluation algorithm actually
creates such interval-based property state representations, it is clear that first

128 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

of all, a constructor is required to build temporal interval sequences. More
precisely, an operator is needed that adds a temporal interval to an interval
sequence while maintaining the invariants of Definition 5.2.

Definition 5.4 (Addition of an interval to a temporal interval sequence). Let
T = ([ti,s, ti,e])

N
i=0 be a temporal interval sequence and I = [ts, te] a single

closed temporal interval. Then the addition of T and I, written as T ⊕I is
defined as follows:

T ⊕I =
(
I ′i
)N ′

i=0

where

I ′i =

[ti,s, ti,e] if i ≤ i<

[t′s, t
′
e] if i = i< + 1

[tr(i),s, tr(i),e] if i< + 2 ≤ i ≤ N ′

with

i< =

{
max{i | ti,e < ts} if ∃i. ti,e < ts

−1 otherwise

i> =

{
min{i | ti,s > te} if ∃i. ti,s > te

N + 1 otherwise

r : N0 → N0, r(i) = i+ i> − i< − 2

N ′ = i< + 2 +N − i>

t′s =

min (ts, tk,s) if ∃k. k = min{i | ts ≤ ti,e ≤ te}

ts otherwise

t′e =

max (te, tl,e) if ∃l. l = max{i | ts ≤ ti,s ≤ te}

te otherwise

A schematic overview of the calculations in Definition 5.4 is shown in Fig-
ure 5.5. Unlike a regular insertion of an element into a list, the operator ⊕
not only has to maintain the order of the sequence but also potentially merge
overlapping intervals to guarantee that the resulting sequence reflects the in-
tuitive addition semantics and fulfills the conditions stated in Definition 5.2.
This is established in the following theorem.

5.3. DISCRETE TEMPORAL INTERVAL SEQUENCES 129

Figure 5.5: Addition of an interval to an interval sequence.

Theorem 5.2. Let T = ([ti,s, ti,e])
N
i=0 be a temporal interval sequence for which

the properties 1. to 4. of Definition 5.2 hold. Furthermore, let I = [ts, te] be
a single closed temporal interval and T ′ = T ⊕I the sequence that results from
the addition of I to T . Then, the intervals in T ′ cover all intervals from T
and I and satisfy properties 1. to 4. of Definition 5.2.

Proof. The proof works by case analysis of all possible constellations regarding
the temporal relation between the interval I and the sequence T :

i) I is strictly before T , i.e. te < t0,s. The ordering constraints of Defi-
nition 5.2 imply ∀i.ti,e > ti,s > te > ts. This yields i< = −1, i> = 0,
t′s = ts and t′e = te. Therefore, r(i) = i − 1 and N ′ = N + 1. Al-
together, this results in the intended temporal interval sequence T ′ =
([ts, te], [t0,s, t0,e], . . . , [tN,s, tN,e]). This means that all previous intervals
as well as I are contained in T ′ and the order of the original elements of T
is not modified. With ts < te < t0,s, all properties of Definition 5.2 hold.

ii) I starts before or within the first interval and ends before the start of the
last interval. Then, as above, i< = −1. Let c be the number of intervals
that are fully covered by I. This means that i> = c, N ′ = −1+2+N−c =

N−c+1, and r(i) = i+c−1. Thus, T ′ = ([t′s, t
′
e], [tc,s, tc,e], . . . , [tN,s, tN,e]).

This immediately shows that properties 1. to 4. of Definition 5.2 are
satisfied. Since t′s and t′e are defined so that [t′s, t

′
e] is the smallest interval

that contains I and all intervals that are partially or completely overlapped
by I, it holds that T ′ covers all intervals as intended.

iii) I is strictly between two intermediate intervals. In this case, there is a left
part and a right part of the old sequence that are not altered internally
and simply arranged before and after I. For the index transformation
defined above, this means that i> = i< + 1, which implies r(i) = i − 1
and N ′ = N + 1. This corresponds to a valid construction of an interval
sequence and therefore all required properties hold.

130 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

iv) I overlaps one or several intermediate intervals. This means that basically
the same considerations apply as in case ii. Additionally, like before, the
left and right surrounding sequence parts are not altered and therefore
the required properties hold.

v) I overlaps or is adjacent to the last interval of T . Again, it is easy to see
that this case is symmetrical to ii so the same arguments apply.

vi) I is strictly after the last interval of T , i.e. te < t0,s. This means that
i< = N , i> = N + 1, t′s = ts and t′e = te. Therefore, r(i) = i − 1 and
N ′ = N + 1. As before, the construction corresponds to the requirements
in Definition 5.2.

Based upon the interval addition operator from above, it is possible to
inductively define the union of two temporal interval sequences.

Definition 5.5 (Union of temporal interval sequences). Let T = (Ii)
N
i=0 and

T ′ = (I ′i)
N ′
i=0 be two temporal interval sequences. Furthermore, let (I ′i)

l
i=k

denote the subsequence of (I ′i)
N ′
i=0 from index k to l. Then the union of T and

(I ′i)
N ′
i=0 is recursively defined as follows:

T ∪
(
I ′i
)l
i=k

:=

(T ⊕I ′k) ∪ (I ′i)
l
i=k+1 if k < l

T ⊕I ′k otherwise

The union operator simply works by successively adding all intervals from
one sequence to another sequence. Since this is recursively based on the interval
addition operation from Definition 5.4, it is easy to show that temporal interval
sequences are closed under union, i.e. the union of two temporal interval
sequences also maintains the invariants from Definition 5.2. However, the proof
necessarily relies on the fact that subsequences of temporal interval sequences
maintain these invariants, which is shown in the following lemma.

Lemma 5.2. Let T = (Ii)
N
i=0 be a temporal interval sequence and let (Ii)

l
i=k

with 0 ≤ k ≤ l ≤ N denote the subsequence of T from index k to l. Then
(Ii)

l
i=k fulfills the invariants from Definition 5.2.

Proof. Since no interval bounds are changed, properties 1 and 2 cannot be
violated in any way. Furthermore, the subsequence (Ii)

l
i=k can be seen as a

sequence (I ′i)
l−k
i=0 where I ′i = Ii+k, i.e. Ii = I ′i−k. From Definition 5.2 we know

that ∀ 1 ≤ i ≤ N. ti,s > ti−1,e and ∀ 0 ≤ i ≤ N − 1. ti,e < ti+1,s. In particular,
this implies ∀ k+ 1 ≤ i ≤ l. ti,s > ti−1,e and ∀ k ≤ i ≤ l− 1. ti,e < ti+1,s. With

5.3. DISCRETE TEMPORAL INTERVAL SEQUENCES 131

the equivalence from above, this can be rewritten to ∀ k + 1 ≤ i ≤ l. t′i−k,s >
t′i−k−1,e and ∀ k ≤ i ≤ l − 1. t′i−k,e < t′i−k+1,s. Simple index transformation
finally leads to ∀ 1 ≤ i ≤ l−k. t′i,s > t′i−1,e and ∀ 0 ≤ i ≤ l−k−1. t′i,e < t′i+1,s,
respectively. These two expressions correspond to the instantiation of property
3 and 4 of Definition 5.2 for the sequence (I ′i)

l−k
i=0, which proves the lemma.

Using Lemma 5.2, it can be shown that the temporal interval sequence
invariants are maintained by the union operator.

Theorem 5.3. Let T = (Ii)
N
i=0 and T ′ = (I ′i)

N ′
i=0 be two temporal interval

sequences and let T ′′ = T ∪ T ′ be the union of T and T ′. Then the invariants
defined in Definition 5.2 hold for T ′′.

Proof. The proof works by induction over the length of T ′, i.e. N ′ + 1. If T ′

is empty, T ′′ = T , which fulfills the invariants by definition. Therefore, let the
induction start with a length of 1, i.e. T ′ = (I ′i)

0
i=0. In this case, T ′′ = T ⊕I ′0,

which fulfills the invariants due to Theorem 5.2.
For the induction step, let T ′ = (I ′i)

N ′
i=0 be a sequence with a length greater

than 1, i.e. N ′ > 0. Then, T ′′ = (T ⊕I ′0)∪(I ′i)
N ′
i=1. Due to Theorem 5.2, the left

part of this union is an admissible interval sequence that fulfills the invariants.
Additionally, Lemma 5.2 shows that right part also fulfills the invariants. By
a simple index transformation, the subsequence (I ′i)

N ′
i=1 can be rewritten to

(I ′i)
N ′−1
i=0 , whose length is one less than the length of (I ′i)

N ′
i=0. Therefore, by the

induction hypothesis, a union with (I ′i)
N ′−1
i=0 maintains the invariants, which

concludes the proof.

5.3.2 Intersection Operators

As Section 5.6 will show, one of the most essential mechanism in the property
evaluation algorithm is the selection of intervals within specific regions and the
re-labeling of the selected segments with updated evaluation states. In terms
of temporal interval sequences as introduced above, this mainly amounts to
calculating intersections between intervals and interval sequences. First, an
intersection between two intervals is defined in the usual way.

Definition 5.6 (Intersection of two intervals). Let I1 = [t1,s, t1,e] and I2 =
[t2,s, t2,e] be two discrete temporal intervals. Then the intersection between I1

and I2 is defined as follows:

I1 ∩ I2 =

{
∅ if t1,e < t2,s ∨ t2,e < t1,s

[max (t1,s, t2,s),min (t1,e, t2,e)] otherwise

132 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Figure 5.6: Intersection between intervals.

Figure 5.6 shows three different cases for an intersection between two in-
tervals. The other possible arrangements of I1 and I2 are symmetric and are
therefore covered by the maximum and minimum operators in Definition 5.6.

When an interval intersection is used to update the evaluation schedule, it
is almost always also important to process the remainder of the intersection, i.e.
the parts of the original intervals that are not included in the intersection. For
the purpose of the algorithms of this chapter, it makes sense to view one of the
two intervals in an intersection as the query interval and one as themanipulated
interval. In many cases, only the remaining part of the manipulated interval
has to be processed further. This remainder of an interval intersection is
defined as the relative complement of the intervals in the set theoretic sense.

Definition 5.7 (Relative complement of two intervals). Let I1 = [t1,s, t1,e]
and Iq = [t2,s, t2,e] be two discrete temporal intervals. Then the relative com-
plement of I2 in I1, written as I1 \ I2 yields a temporal interval sequence that
is defined as follows:

I1 \ I2 =

(I ′i)
0
i=0 with I ′0 = I1 if t1,e < t2,s ∨ t2,e < t1,s

(I ′i)
0
i=0 with I ′0 = [t1,s, t2,s − 1] if t1,s < t2,s ≤ t1,e ∧ t2,e ≥ t1,e

(I ′i)
0
i=0 with I ′0 = [t2,e + 1, t1,e] if t2,s ≤ t1s ∧ t1,s ≤ t2,e < t1,e

∅ if t2,s ≤ t1,s ∧ t2,e ≥ t1,e

([t1,s, t2,s − 1], [t2,e + 1, t1,e]) if t1,s < t2,s ∧ t1,e > t2,e

5.3. DISCRETE TEMPORAL INTERVAL SEQUENCES 133

Figure 5.7: Relative complement of two intervals.

The calculation of the relative complement is visualized in Figure 5.7, where
all cases from Definition 5.7 are shown. It is easy to see that the required
properties for interval sequences are fulfilled by the complement sequence.
This is stated as a simple theorem for later reference.

Theorem 5.4. Let I1 = [t1,s, t1,e] and Iq = [t2,s, t2,e] be two discrete temporal
intervals. Then I1 \ I2 yields a temporal interval sequence that fulfills the
invariants stated in Definition 5.2.

Proof. The first two invariants from Definition 5.2, namely that all interval
bounds have to be in N0 and that each interval has to contain at least one
time point (i.e. ts ≤ te), directly follow from the conditions of the cases in
Definition 5.7. More precisely, it is easy to check that for all cases except
the fourth one, the conditions, together with the fact that both I1 and I2 are
defined as non-empty intervals over N0, imply 0 ≤ t′s ≤ t′e. The fourth case
produces an empty sequence, so all invariants apply trivially.

For the third and fourth invariant, only the last case of Definition 5.7 is
relevant since the other cases produce sequences with at most one element.

134 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Therefore, it remains to show that ([t1,s, t2,s−1], [t2,e+1, t1,e]) fulfills the third
and fourth invariants. This again follows directly from the fact that I2 is
an admissible discrete temporal interval, which implies t2,s ≤ t2,e and hence
t2,s − 1 < t2,e + 1. Since the sequence contains exactly two intervals, this
satisfies both invariant 3 and 4.

Based on the definitions above, it is now possible to specify the most im-
portant operator, namely the intersection between an interval sequence and
an interval.

Definition 5.8 (Intersection of an interval sequence with an interval). Let
T = (Ii)

N
i=0 be a temporal interval sequence with (Ii)

l
i=k representing its sub-

sequence from k to l. Additionally, let I = [ts, te] be a closed temporal inter-
val. Then the intersection between T and I creates a new temporal interval
sequence that is defined as follows:

(Ii)
l
i=k ∩ I :=

((Ii)
l
i=k+1 ∩ I)⊕ (Ik ∩ I) if k < l

(I ′i)
0
i=0 with I ′0 = Ik ∩ I otherwise

Similar to the union operator from Definition 5.5, the intersection defined
above recursively processes each interval in the sequence and adds its intersec-
tion with the query interval I to the result sequence. As in Definition 5.5, the
interval addition operator ⊕ guarantees that the resulting interval sequence
satisfies the invariants of Definition 5.2. Therefore, it is also easy to show
that temporal interval sequences are closed under intersection with an inter-
val, which is stated in the next theorem.

Theorem 5.5. Let T = (Ii)
N
i=0 be a temporal interval sequence and I = [ts, te]

be a closed temporal interval. Then T ∩ I yields a new admissible temporal
interval sequence that fulfills the invariants from Definition 5.2.

Proof. The proof works by induction over the cardinality of T and is structured
very similar to the proof of Theorem 5.3. Since the intersection with an empty
sequence is trivially empty, let the induction start with N = 0, which means
that T contains exactly one interval. In this case, Definition 5.8 directly yields
T ∩ I = I0∩. For the induction step, consider a cardinality of N + 1 for T .
Then, according to Definition 5.8, it holds that

T ∩ I = (Ii)
N+1
i=0 ∩ I = ((Ii)

N+1
i=1 ∩ I)⊕ (I0 ∩ I)

The right side of the ⊕ above is a single interval by definition and, given
the induction hypothesis, the left side is a valid temporal interval sequence.
Therefore, due to Theorem 5.2, T ∩ I must also be an admissible temporal
interval sequence.

5.3. DISCRETE TEMPORAL INTERVAL SEQUENCES 135

As in the case of two intervals, the property evaluation algorithms also need
to process the remainder of intersections between an interval sequence and a
query interval. Hence, the relative complement operator has to be extended
similarly to the extension of the intersection.

Definition 5.9 (Relative complement of an interval in an interval sequence).
Let T = (Ii)

N
i=0 be a temporal interval sequence with (Ii)

l
i=k representing its

subsequence from k to l. Additionally, let I = [ts, te] be a closed temporal
interval. Then the relative complement of I in T , written as T \I yields a new
temporal interval sequence that is defined as follows:

(Ii)
l
i=k \ I :=

((Ii)
l
i=k+1 \ I)⊕ (Ik \ I) if k < l

(I ′i)
0
i=0 with I ′0 = Ik \ I otherwise

For the sake of completeness, it is obviously necessary to show also in this
case that the properties of Definition 5.2 are maintained.

Theorem 5.6. Let T = (Ii)
N
i=0 be a temporal interval sequence and I = [ts, te]

be a closed temporal interval. Then the relative complement T \I is an ad-
missible temporal interval sequence according that fulfills the requirements of
Definition 5.2.

Proof. The proof works by induction over the cardinality of T and uses Theo-
rem 5.4. Otherwise, it works exactly as the one in Theorem 5.5 and is therefore
not repeated in detail.

Figure 5.8 visualizes the application of the intersection and relative com-
plement operators between an interval sequence and a query interval. As
mentioned before, these two operations are essential for the evaluation of tem-
poral operators in SALMA’s property evaluation algorithm and will therefore
appear often during the next sections.

Finally, by a similar recursion scheme as before, it is also straightforward
to define the relative complements of an interval sequence in another.

Definition 5.10 (Relative complement of an interval sequence in another
interval sequence). Let T1 = (I1,i)

N
i=0 and T2 be temporal interval sequences.

Then the relative complement of T1 in T2, written as T2 \T1 yields a new
temporal interval sequence that is defined as follows:

T2 \ (I1,i)
N
i=k :=

{
(T2 \I1,k) \ (I1,i)

N
i=k+1 if k < N

T2 \I1,k otherwise

136 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Figure 5.8: Intersection and complement of sequence and interval.

Again, the validity of the construction above is stated separately in the
theorem below, which follows directly from the theorem above.

Theorem 5.7. Let T1 = (I1,i)
N
i=0 and T2 be temporal interval sequences. Then

the relative complement T2 \T1 is an admissible temporal interval sequence
according that fulfills the requirements of Definition 5.2.

Proof. The proof works by induction over the cardinality of T1 and uses The-
orem 5.6. Since it is structured exactly as the one in Theorem 5.5, it is not
repeated in detail.

The definitions above together form a solid basis that allow the creation,
access, and manipulation of temporal interval sequences. Additionally, at sev-
eral points of the algorithms, a function is needed to calculate the latest time
point in an interval sequence.

Definition 5.11 (Latest time point in interval sequence). Let T = (Ii)
N
i=0

be a temporal interval sequence. Then the latest time point in T , written as
maxt(T) is defined as follows:

maxt(T) = maxt((Ii)
N
i=0) := max{t ∈ N0 | ∃i. t ∈ Ii}

5.3.3 Result Mappings

Besides the plain interval sequences, suitable data structures are needed to
propagate batches of evaluation results that are gathered when the schedule
is processed. In fact, for reasons that will become clearer during the follow-
ing sections, we need a way to associate individual temporal intervals with
evaluation results, which is provided by the following definition.

5.3. DISCRETE TEMPORAL INTERVAL SEQUENCES 137

Definition 5.12 (Temporal result mapping). A temporal result mapping
res

R

is a tuple 〈T ,R〉 that consists of a temporal interval sequence T and a function
R : IT (T)→ {>,⊥, ?} that labels each interval in T with a result, i.e. one of

>, ⊥, or ?. Furthermore, let
res

R .intv refer to the temporal interval sequence of
res

R and
res

R .rmap to its labeling function.

Figure 5.9: Example for a result mapping.

Figure 5.9 shows a possible mapping of the intervals in Figure 5.4 to dif-
ferent results. This particular example could describe a typical outcome of
the evaluation of a property at the end of a simulation step. Here, the al-
gorithm was able to decide that the scheduled evaluation goal instances that
start within the first two intervals are successful, while no conclusive result
has been found yet for the instances that start within the third interval.

Since result mappings are actually merely labeled temporal interval se-
quences, it is possible to reuse the operations that were defined in the last
section and extend them in a very straightforward manner to incorporate the
result labels. The first step is a simple constructor that assigns the same result
label to all intervals.

Definition 5.13 (Unique result assignment). Let T = (Ii)
N
i=0 be a temporal

interval sequence and r ∈ {>,⊥, ?} a result label. Then the unique result
assignment of r to the intervals in T , written as T |r yields a result mapping
res

R = 〈T ,R〉 with the mapping function R : IT (T) → {>,⊥, ?} defined as
follows:

R(I) = r for all I ∈ IT (T)

The only other constructor needed for result mappings is the union oper-
ator. Since the evaluation algorithms allow a restriction to result mappings
with non-overlapping intervals, the union an easily be defined by leveraging
the union operator for interval sequences.

Definition 5.14 (Union of temporal result mappings). Let
res

R = 〈T ,R〉 and
res

R′ = 〈T ′, R′〉 be two temporal result mappings with disjunct temporal interval
sequences, i.e. it holds that

∀I ∈ IT (T).∀I ′ ∈ IT (T ′). I ∩ I ′ = ∅

138 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

. Then the union of
res

R and
res

R′ is defined as

res

R ∪
res

R′ = 〈T ∪T ′, R∪〉

where

R∪ : IT (T) ∪ IT (T ′)→ {>,⊥, ?} =

{
R(I) if I ∈ IT (T)

R′(I) if I ∈ IT (T ′)

As expected, the union of result mappings basically amounts to creating a
union of the interval sequences and combining the mapping functions by case
distinction. However, a restriction to disjunct temporal interval sequences is
necessary since overlapping intervals with different result labels would lead to
ambiguity. Therefore, it will later be necessary to show that the participating
result mappings in fact have disjunctive interval sequences whenever the union
operator is used.

With the operations defined so far, it is possible to construct any result
mapping simply by adding together mapping segments with unique labels that
were constructed with the |r operator. Additionally, the evaluation algorithms
in Section 5.6 need to be able to use result mappings within logical connectives,
i.e. negation, conjunction, and disjunction. Naturally, the most basic one is
the negation operator that simply flips all definite labels.

Definition 5.15 (Negation of a result mapping). Let
res

R = 〈T ,R〉 be a result

mapping. Then, the negation of
res

R , written as ¬
res

R is defined as follows:

¬
res

R = 〈T ,R¬〉

where R¬ : IT (T)→ {>,⊥, ?} with

R¬(I) =

> if R(I) = ⊥
⊥ if R(I) = >
? otherwise

The other two required connectives, ∧ and ∨, are a bit more complex. The
problem is that the interval sequences of the two participating result mappings
are not necessarily equal. This means that intervals possibly have to be cut
and recomposed according to the application of the logical operators to interval
overlaps.

5.3. DISCRETE TEMPORAL INTERVAL SEQUENCES 139

Definition 5.16 (Logical connectives for result mappings).

Let
res

R1 = 〈T1, R1〉 and
res

R2 = 〈T2, R2〉 be result mappings. Then the conjunc-
tion and disjunction of the two can be defined as follows:

res

R1 ∧
res

R2 = 〈T∧, R∧〉 = T∧,?|? ∪ T∧,>|> ∪ T∧,⊥|⊥

and
res

R1 ∨
res

R2 = 〈T∨, R∨〉 = T∨,?|? ∪ T∨,>|> ∪ T∨,⊥|⊥

.
To construct the interval sequences in the definition above, first all intervals

from the source sequences are sorted by their label in the result mappings and
combined into three new sequences T>, T⊥, and T?:

T> = T1,> ∪T2,>, T⊥ = T1,⊥ ∪T2,⊥, T? = T1,? ∪T2,?

with

Tj,> =
⊕
I∈I1,>

I where Ij,> = {I ∈ Tj | Rj(I) = >} for j ∈ {1, 2}

and analogically for Tj,⊥ and Tj,?.
With these combined intervals and the relative complement of one interval

sequence in another from Definition 5.10, it is possible to define the sequences
from which the final result mappings are constructed:

T∧,? = T? \T⊥
T∧,> = (T> \T⊥) \ T∧,?
T∧,⊥ = T⊥

T∨,? = T? \T>
T∨,> = T>

T∨,⊥ = (T⊥ \T>) \ T∨,?

Finally, a function is needed that determines a summary of a result map-
ping, which could be unanimous if all intervals have the same label, ambiguous
if the mapping contains both top and ⊥ intervals, and undetermined (?) if at
least one interval is undetermined.

Definition 5.17 (Summary of a result mapping). Let
res

R = 〈T ,R〉 be a result

mapping. The summary of
res

R , written as summary(
res

R), is defined as follows:

140 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

summary(
res

R) =

> if ∀I ∈ IT (T).R(I) = >

⊥ if ∀I ∈ IT (T).R(I) = ⊥

ambiguous if (∀I ∈ IT (T).R(I) 6=?)

∧ (∃I ′ ∈ IT (T).R(I ′) = >)

∧ (∃I ′′ ∈ IT (T).R(I ′′) = ⊥)

? if ∃I ∈ IT (T).R(I) =?

In the definition above, ? has precedence over ambiguous in the sense that
even if the result mapping contains both positive and negative definite inter-
vals, it is still seen as undetermined if at least one of its intervals is. This is
important for the evaluation algorithm since it indicates that at least for some
of the intervals, entries for the evaluation goal schedule have to be created.

Other mechanisms to manipulate result mappings are actually not neces-
sary, since result mappings are only used as means for data collection through-
out recursive function calls during property evaluation. The actual evaluation
state information in the evaluation goal schedule is stored differently. This will
be discussed in Section 5.5. However, before the data structures involved in
the evaluation goal schedule can be examined properly, it is necessary to look
at the way in which formulas are translated into the internal representation
that is actually used by the Prolog-based property interpreter. This is the
topic of the next section.

5.4 The Property Compiler

As mentioned in the beginning of this chapter, the SALMA-PSL formulas of
the invariants and goals that are registered for evaluation are first sent to the
property compiler, which transforms them to an internal representation that is
interpreted by the evaluation algorithm. In fact, there are three main aspects
that are addressed by this translation:

1. The quantifiers forall and exists have to be unfolded into conjunctions
and disjunctions, respectively, over the set of entities that exist for the
selected sort.

2. The functional-styled formulas have to be transformed into a represen-
tation that conforms to the evaluation and variable binding schema of
logic programming.

3. The situation arguments at the last position of fluent usages have to be
restored.

5.4. THE PROPERTY COMPILER 141

Due to its rather technical nature, it is not practicable to describe the
whole compilation process in detail. However, this section will describe the
most important transformation rules since they offer valuable insight in the
expected structure of the internal representation. This in turn will later in
Section 5.6 be very helpful for understanding some of the most essential design
aspects of the evaluation algorithm.

First, however, it is necessary to introduce some essential concepts, namely
variable substitution, term unification, and subterm substitution. First, vari-
able substitution and unification are defined in the usual way in which it can
be found throughout the literature, for instance in [BA12, CHAP. 10].

Definition 5.18 (Variable substitution). A variable substitution θ = {x1 7→
t1, . . . , xn 7→ tn} is a set of mappings from variables to terms. The application
of a substitution θ to a term φ, is written as θφ. The result of θφ is defined as
the term that results from replacing any occurrence of a variable x1 to xn in
φ with the corresponding replacement term from the substitution θ.

Using variable substitution unification of two terms can be defined.

Definition 5.19 (Unification). A substitution θ is a unifier for two terms φ
and ψ if θφ = θψ. Furthermore, Two terms φ and ψ are unifiable, written
φ ' θ if there exists a unifier for them.

Besides being one of the most basic mechanism in logic programming and
therefore in the evaluation of SALMA-PSL formulas, the unification concept is
used here to define the subterm substitution operation, which is used in various
places both in the property compiler and the formula evaluation algorithms.

Definition 5.20 (Subterm substitution). Let Θ be a term and let Ψ = {θ1 7→
θ′1, . . . , θm 7→ θ′m} be a set of mappings that relate arbitrary ground or non-
ground terms θi to ground replacement terms θ′i. Then substterm(Ψ,Θ) denotes
the subterm substitution that results from rewriting Θ by replacing each sub-
term of Θ that unifies with one of θ1, . . . , θm with the respective substitution
term. Formally, let c be a symbol with arity 0, φ a symbol with arity n. Then
substterm(Ψ,Θ) is recursively defined as follows:

1. substterm(Ψ, c) =

{
θ′ if ∃θ.θ ' c ∧ θ 7→ θ′ ∈ Ψ

c otherwise

2. substterm(Ψ, φ(t1, . . . , tn)) =
θ′ if ∃θ.θ ' φ(t1, . . . , tn) ∧ θ 7→ θ′ ∈ Ψ

φ(substterm(Ψ, t1), . . . ,

substterm(Ψ, tn)) otherwise

142 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

3. substterm({θ 7→ θ′} ∪Ψ,Φ) = substterm({θ 7→ θ′}, substterm(Ψ,Φ))

The ability to replace arbitrary subterms allows in particular to substitute
variables that are bound by quantifiers. In fact, since all sort domains within
a SALMA model are constrained to be finite sets, the property compiler can
eliminate any quantifier in the following way:

1. Iterate over the entities in the sort domain of the variable that is bound
by the quantifier.

2. For each of these entities, create an instance of the original subformula
inside the quantifier where this entity is substituted for the bound vari-
able.

3. In case of universal quantification (forall), replace the quantifier block
with a conjunction over the generated subformula instances. For exis-
tential quantification (exists), use a disjunction instead.

Formally, when JΦKcomp denotes the result of the compilation procedure
for the SALMA-PSL formula Φ, then the quantifier elimination step can be
expressed as follows:

Definition 5.21 (Quantifier elimination in the property compiler). Let Φ be
a SALMA-PSL formula and T be a finite sort with domain(T) = {e1, . . . , en}.
Then the elimination of quantifiers in Φ, written as elimQ(Φ) can be defined
recursively as follows:

elimQ(forall(x : T,Φ)) = and(elimQ(substterm({x 7→ e1},Φ)), . . . ,

elimQ(substterm({x 7→ en},Φ)))

elimQ(exists(x : T,Φ)) = or(elimQ(substterm({x 7→ e1},Φ)), . . . ,

elimQ(substterm({x 7→ en},Φ)))

One direct result of this way of representing quantification is that formulas
have to be re-compiled when the domain of a sort changes during simulation,
i.e. when entities are created or destroyed during simulation. Although the
use of dynamic sorts complicates reasoning about the system model and is
therefore not generally recommended, it is used within SALMA’s extension
for modeling information transfer that is described in Chapter 6 (see Sec-
tion 6.2.5). Having to re-compile formulas during simulations might seem like
an unnecessary overhead compared to possible alternative solutions in which

5.4. THE PROPERTY COMPILER 143

sort domains are cleanly separated from the formulas and accessed dynamically
during evaluation. However, since formulas in the evaluation goal schedule are
not re-compiled, the domain at the time a formula is added to the schedule is
effectively fixated at that moment. A look back to Definition 4.10 reveals that
this is exactly what is required by the intended semantics.

After all quantifiers have been eliminated, the property compiler has to
translate SALMA-PSL formulas to a representation that can be evaluated
by the Prolog interpreter. The main problem is that the evaluation scheme
of Prolog does not really support the functional style used in SALMA-PSL
formulas. Instead, each immediate result within an evaluation has to be bound
to a Prolog variable 2 and propagated to the next steps. For instance, consider
a formula that tests whether the combined weight of two items is less than 100.
When it is assumed that weight is a constant defined to take one argument
of type item, then this could be expressed with the following SALMA-PSL
expression:

weight(item1) + weight(item2) < 100

However, the Prolog representation of the constant weight and the built-
in function + are actually defined as predicates that bind their result to a
variable that is passed as the last position. This means that the results of all
steps of the calculation have to be collected in fresh Prolog variables and then
combined in the comparison. In this case, the expression from above will be
translated to

all([weight(item1, _530), weight(item2, _567), +(_530, _567, _515), _515 < 100])

Here, _530, _567, and _515 are unnamed (anonymous) Prolog variables
that are created programmatically during the compilation process. It can
be seen that the first two of them, which store the results retrieved from
the weight predicate, are actually substituted for the corresponding weight()
subterms within the sum. The same happens again with _515 which eventually
passes the sum to the comparison with 100. All rewritten parts are finally
combined in a conjunction, which is represented by all in the compilation
result. The compiler assures that the binding of each variable appears before
its use in the conjunction. Knowing that the evaluation algorithm processes
the elements of the conjunction in order, this realizes the intended semantics.

The treatment of functional fluents is very similar to that of regular func-
tions, except that the initial situation term (s0) has to be added as a last
argument. With this general pattern in mind, the semantics of the translation
procedure can be summarized.

2The name Prolog variable is used here and in the following to distinguish them from
variables that appear in untranslated SALMA-PSL expressions.

144 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Definition 5.22 (Compilation of SALMA-PSL formulas). Let R(θ1, . . . , θn)
denote any relation, including relational fluents, situation-independent predi-
cates, and comparisons like <, ≤, =, ≥, >, or 6=. On the other hand, let f rep-
resent a situation-independent function, a functional fluent, or an arithmetic
operation. For brevity’s sake, the operators for comparisons and arithmetics
are thought to appear in prefix form (e.g. +(weight(rob1), weight(rob2)) in-
stead of weight(rob1) + weight(rob2)) and thus can be treated exactly like
situation-independent predicates or functions. For the subterms θ1, . . . , θn and
Θ1, . . . ,Θn, it is assumed that they do not contain any quantifiers, i.e. there
either were none in the original SALMA-PSL formula or they were eliminated
by the procedure described above. Furthermore, let [Θ1, . . . ,Θn] represent a
list of terms, and A ◦ B the concatenation of list A and list B. Additionally,
〈X1, . . . , Xn〉 is used as a notation to describe either a tuple of values that
are returned by a function, or a list of variables to which the elements of a
tuple are assigned. Besides these variables that are used in the rules below,
it is necessary to distinguish between symbolic variables that appear in the
SALMA-PSL expressions as regular subterms, and logical variables that are
instantiated directly by the Prolog interpreter. Therefore, logical variables
are marked with a hat, e.g. x̂, while unmarked names are used for symbolic
variables.

With these notational conventions, the compilation procedure can be de-
scribed as follows:

1. processEvalTerms(Bindings, [Θ1, . . . ,Θn]) = 〈Bindings′, [Θ′1] ◦ Params′〉

where

〈Bindings′, Params′〉 = processEvalTerms(Bindings′′, [Θ2, . . . ,Θn])

where 〈Bindings′′,Θ′〉 = processEvalTerm(Bindings,Θ1)

2. processEvalTerms(Bindings, [Θ]) = processEvalTerm(Bindings,Θ)

3. processEvalTerm(Bindings, v) = 〈Bindings, v〉

where v is a number or an entity literal

4. processEvalTerm(Bindings, f(θ1, . . . , θn)) = 〈Bindings′ ◦ [Θ′], x̂〉

where

〈Bindings′, [θ′1, . . . , θ′n]〉 = processEvalTerms(Bindings, [θ1, . . . , θn])

and

Θ′ =

{
f(θ′1, . . . , θ

′
n, x̂, S0) if f is a fluent

f(θ′1, . . . , θ
′
n, x̂) otherwise

5.4. THE PROPERTY COMPILER 145

5. compile(R(θ1, . . . , θn)) = c ([β1, . . . , βm,Θ
′])

where

Θ′ =

{
R(θ′1, . . . , θ

′
n, S0) if R is a relational fluent

R(θ′1, . . . , θ
′
n) otherwise

with

〈[β1, . . . , βm], [θ′1, . . . , θ
′
n]〉 = processEvalTerms([], [θ1, . . . , θn])

6. compile(and(Θ1, . . . ,Θn)) = all([compile(Θ1), . . . , compile(Θn)])

7. compile(or(Θ1, . . . ,Θn)) = one([compile(Θ1), . . . , compile(Θn)])

8. compile(not(Θ)) = not(compile(Θ))

9. compile(implies(Φ,Ψ)) = one([not(compile(Φ)), compile(Ψ)])

10. compile(eventually(T,Φ)) = eventually(T, compile(Φ))

11. compile(always(T,Φ)) = always(T, compile(Φ))

12. compile(until(T,Φ,Ψ)) = until(T, compile(Φ), compile(Ψ))

13. compile(occur(Θ)) = occur(compile(Θ))

14. compile(let(x : Θ,Φ)) = let(x : x̂,Θ′,Φ′)

where Θ′ = compile(= (x̂,Θ)) and Φ′ = compile(Φ)

Most of the rules in the definition above are straightforward. The most
interesting part is certainly the compilation of predicates and relational fluents
in rule 5, which also includes comparisons. In this rule, the compiler uses
the recursive functions processEvalTerm and processEvalTerms to gather
terms that instantiate freshly created variables, which in turn are substituted
for the parameters of compiled relation R. The recursion works on a tuple that
consists of two lists that are labeled Bindings and Params, respectively. The
second list contains the parameters that are eventually used in the compilation
result, i.e. either constants like numbers or entity symbols, or freshly created
logical variables (see above). To this end, the first list, Bindings, contains the
terms that, when evaluated, bind these variables to the values of the original
subterms they represent. For this to work, the compiler has to assure that, for
each variable, its binding term precedes all usages. Indeed, this can be verified
by inspection of rule 4: since the binding terms gathered in the recursion step
(Bindings′) are used as the left side of the concatenation with the new binding
term Θ′, the binding terms are effectively ordered from inside to outside. With
the generated order, all terms are combined with the special c (. . .) operator,

146 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

comp(p(f(g(h(t))))) = c ([β1, . . . , βm,Θ]) (1)
Θ = p(θ) (2)

〈[β1, . . . , βm], [θ]〉 = pets([f(g(h(t)))]) (3)
= pet(f(g(h(t)))) = 〈B′ ◦ [Θ′], x̂〉

Θ′ = f(θ′, x̂) (4)
〈B′, [θ′]〉 = pet(g(h(t))) = 〈B′′ ◦ [Θ′′], ŷ〉 (5)

Θ′′ = g(θ′′, ŷ) (6)
〈B′′, [θ′′]〉 = pet(h(t)) = 〈B′′′ ◦ [Θ′′′], ẑ〉 (7)

Θ′′′ = h(θ′′′, ẑ) (8)
〈B′′′, [θ′′′]〉 = pet(t) = 〈[], [t]〉 (9)

9 in 8 : Θ′′′ = h(t, ẑ) (10)
9, 10 in 7 : 〈B′′, [θ′′]〉 = 〈[] ◦ [h(t, ẑ)], ẑ〉 (11)

11 in 6 : Θ′′ = g(ẑ, ŷ) (12)
11, 12 in 5 : 〈B′, [θ′]〉 = 〈[] ◦ [h(t, ẑ)] ◦ [g(ẑ, ŷ)], ŷ〉 (13)

13 in 4 : Θ′ = f(ŷ, x̂) (14)
14, 13 in 3 : 〈[β1, . . . , βm], [θ]〉 = 〈[h(t, ẑ), g(ẑ, ŷ), f(ŷ, x̂)], [x̂]〉 (15)

15 in 2 : Θ = p(x̂) (16)
15, 16 in 1 : comp(p(f(g(h(t))))) = c ([h(t, ẑ), g(ẑ, ŷ), (17)

f(ŷ, x̂), p(x̂)])

Figure 5.10: Transformation of a predicate in the SALMA-PSL compiler.

which is a synonym for all(. . .) but marks the contained term sequence as a
coherent evaluation unit that may not be separated by term transformations.

The example in Figure 5.10 illustrates the ideas sketched above. To make
it more readable, pet and pets were used as abbreviations for the functions
processEvalTerm and processEvalTerms from above. Otherwise, the exam-
ple adheres strictly to the rules from Definition 5.22. In this case, p is sup-
posed to be a situation-independent predicate, f , g, and h are unary situation-
independent functions, and t is a literal, e.g. an entity name.

5.5 The Evaluation Goal Schedule

With the concepts introduced in the last sections, it is now possible to describe
the evaluation goal schedule as one of the most important elements of the eval-
uation mechanism. Before a concise summary of the evaluation goal schedule

5.5. THE EVALUATION GOAL SCHEDULE 147

is provided in Section 5.5.4, the involved data structures and mechanisms are
introduced and explained by means of several detailed examples which grad-
ually add more complexity. The intention is to present the rationale behind
each design choice from the beginning and at the same time demonstrate their
consequences.

5.5.1 Basic Structure

As expected, temporal interval sequences act as the basic structure for keeping
track of the current state of the evaluation. The general idea is that the state
of a (partial) formula can be represented by three temporal interval sequences -
one that memorizes time points where the property was true, one for instances
where it was false, and one that marks time points where the evaluation was
not conclusive due to the involvement of temporal operators. The inconclusive
case means in fact that a new obligation is added to re-evaluate the formula
with the memorized start time as context in each future step until a conclusive
result can be found.

Figure 5.11 shows an exemplary possible concrete evaluation state of a
property. Here, a simulation was run for 18 time steps so far, and the following
property F was evaluated in each step:

F = implies(marking(item1) = 1,
until(5, marking(item1) >= 0, marking(item1) = -1))

The formula refers to a simple model that was created for testing different
formula structures. The fluent marking (which can be manipulated with the
corresponding action mark) associates an arbitrary term with an entity (here
item1). Property F requires that at any time point where marking(item1) = 1,
the same item will be marked with −1 within 5 time units, and until that,
the marking will not go below 0. This rather artificial example allows the
free construction of any desired scenario without semantic constraints and
dependencies that would normally be imposed on a more realistic model.

The top of Figure 5.11 shows the initial situation, i.e. the valuation of the
fluents for time step 0, and the simulation history by means of the sequence of
actions that occurred during the simulation so far. From the structure of the
formula, it is clear that each time where the marking of item1 is 1, the evalu-
ation result is open and hence the time point has to be marked and re-visited
in all following steps. In Figure 5.11, it can be seen that the evaluation of
the property actually resulted in three entries to the evaluation goal schedule
- each represented by a line in the schedule table. More precisely, the entry
with id 3 represents the whole formula F , while entries 1 holds the goal part
of the until-operator in F , and 2 holds the invariant. Each schedule entry first
of all contains the mentioned three temporal interval sequences to store posi-
tive, negative, and inconclusive (pending) outcomes. In Figure 5.11, the same

148 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

id link parameters level pending (?) positive (┬) negative (┴) cache id

1 1 [7, 7], [11, 11] [3, 6], [8, 10],
[12, 18]

2 1 [3, 6], [8, 10], [12, 18] [7, 7], [11, 11]

3

0 [14, 18] [3, 4], [8, 10] [12, 13]

formula cache

evaluation goal schedule

compiled formula ID

one([not(c_([marking(item1, _7582, s0), _7582 = 1])), until(5,
c_([marking(item1, _7601, s0), _7601 >= 0]), c_([marking(item1, _7614, s0), _7614 =
-1]))])

1

c_([marking(item1, _7632, s0), _7632 = -1]) 2

c_([marking(item1, _7650, s0), _7650 >= 0]) 3

one([not_ok, until(5, sched(_7674, cf(3)), sched(_7690, cf(2)))]) 4

F = implies(marking(item1) = 1, until(5, marking(item1) >= 0, marking(item1) = -1))

P: (0, 1, 2, 2) : 2

Q: (0, 1, 2, 3) : 1

2

3

4

Initial Situation

marking(item1, s0) = 0
time(s0) = 0

Simulation History

t= 3: mark(item1, 1) t= 5: mark(item1, 0) t= 7: mark(item1,-1)
t= 8: mark(item1, 1) t=11: mark(item1,-1) t=12: mark(item1, 0)

Figure 5.11: Example for a state snapshot of the evaluation goal schedule.

information is additionally summarized graphically in the interval diagram in
the bottom.

Besides the interval sequences, each scheduled goal contains a link to an
entry in the formula cache that keeps the corresponding part of the com-
piled formula that will be processed by the evaluation algorithm. As im-
plied by the arrows in the figure, the first cache entry that holds the whole
formula is added during the initial compilation phase. The other entries,
however, are added on the fly during evaluation to store parts of the for-
mula that might be rewritten according to the current state of the situation
when a new (sub-)goal is scheduled is created. In fact, the third sched-
ule entry is not linked to the original compiled formula but to a rewrit-
ten version in the fourth row of the cache. There, the negated constraint
not(c_([marking(item1, _7582, s0), _7582 = 1])) has been replaced by

5.5. THE EVALUATION GOAL SCHEDULE 149

not_ok, the internal representation of a negative result (⊥). This can easily
be understood when the fact is considered that the mentioned part actually
corresponds to the premise of the implication in the original formula, which
was translated using the equivalence A =⇒ B ≡ ¬A ∨ B. Since a sched-
ule entry is only created when the premise (marking(item1) = 1) is true, the
corresponding subformula can be replaced by a constant to avoid unnecessary
evaluation steps.

Other than this obvious optimization measure, the formula was further
rewritten by replacing the subformulas of the until operator by terms marked
with the special pseudo function sched. These expressions contain a refer-
ence to the cache entry that holds the original subformula as well as a logical
variable (denoted by a number with leading underscore). Each variable is in-
stantiated during property evaluation with the id of an entry in the evaluation
goal schedule, which is used to retrieve the relevant evaluation history of the
property subformula. These ids are on their part stored as link parameters in
the schedule entry (id 3) that is associated with the rewritten cache entry. In
this case, the first part of the until operator (P) is associated with the second
schedule entry and the second part (Q) with the third. The link parameters
of the schedule entry each contain also a subterm position path that is used
to locate the sched(...) expression in the cached formula and thereby select
the variable for instantiation. This indirection allows the evaluation algorithm
to re-use the same cache entry for subformulas (e.g. constraints) that appear
multiple times at different nesting levels in a formula.

With the information given above, it is now possible to interpret the situa-
tion visualized in Figure 5.11. At first, it can be noticed that the information
for the entry of the whole formula (id 3) starts not before 3 and contains
several gaps between 5 and 7, and at 11. This is due to the fact that the
whole formula is at the top level governed by the implication with the premise
marking(item1) = 1. When this premise is not true, then the formula evalu-
ates to true at once and there is no need to memorize the starting point. The
intervals [3, 4] and [8, 10] are labeled with > for entry id3. This corresponds
to the fact that entry id1, which refers to marking(item1) = −1, is true at
the points 7 and 11, which confirms all instances of the top level formula that
were scheduled within 5 time units before. Of course, this also requires that
the first part of the until operator was maintained between the start and the
confirmation, which is easily verified by a look at the diagram. In contrast,
the property instances scheduled at times 12 and 13 were already declared as
failed since the required goal of the until expression was not achieved within
the time limit of 5 steps. Finally, the last segment [14, 18] labeled as ? for id3.
This means that for each scheduled instance during this period both a positive
and a negative result is still possible.

150 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

5.5.2 Property Context and Variable Binding

The term rewriting mechanism mentioned before actually serves yet another
purpose that is worth being examined a bit further. When the premise of the
implication (marking(item1) = 1) was rewritten to not_ok at the creation of
the schedule entry, this actually created a context of the property at the given
time point, namely the fact that at that time, the premise was true. However,
the schedule context of a property can also contain more aspects. For instance,
consider the following formula:

F2 = implies(marking(item1) > 0,
let(x : marking(item1),

until(5, marking(item1) < 2 * x, marking(item1) =:= -1 * x)))

Here, the variable x is bound in the let-expression to remember the value
of the item’s marking at the time it was set to a value higher than 0. This
value is used in the until-expression to check that, within 5 time units, the
marking never exceeds twice its initial value, before it eventually is set to the
negative initial amount. This means that the value with which the current
marking is compared depends on the state (situation) in which the schedule
entry is created, i.e. it becomes a part of the context of the schedule entry.
In SALMA, this memorization is realized by rewriting the occurrences of the
bound variables. This can be seen in Figure 5.12. In this example, the marking
was first set to 42 at time 2 and then to 58 at time 4. This resulted in the
creation of two congruent but distinct sets of event schedule entries, 1 − 3
and 4− 5. By following the links between schedule entries and from schedule
entries to cache entries, one can see that the let expression has vanished and
the variable x in the products has been replaced by the value of the marking
at the scheduled time.

5.5.3 Nested Temporal Operators

Both examples that were presented so far demonstrate the flexibility of SALMA’s
evaluation goal schedule. However, the main reason for its relatively complex
reference-based design is the necessity to handle formulas with nested temporal
operators. For example, a different property from the same domain as before
might be the following:

G = implies(marking(item1) = 1,
until(20,

implies(
occur(grab(rob1, item1)),
until(10, carrying(rob1, item1), not(carrying(rob1,item1)))),

marking(item1) = 0))

Here, G requires that when an item’s marking is 1, then it holds for (at
least) 20 time units that whenever robot rob1 picks up item item1, then keeps

5.5. THE EVALUATION GOAL SCHEDULE 151

id link parameters level pending (?) positive (┬) negative (┴) cache id

1 1 [2, 4]

2 1 [2, 4]

3

0 [2, 3]

4 1 [4, 4]

5 1 [4, 4]

6 0 [4, 4]

formula cache

compiled formula ID

one([not(c_([marking(item1, _9337, s0), _9337 > 0])), let(x : _9352, c_([marking(item1, _9359, s0), _9352 = _9359]),
 until(5, c_([marking(item1, _9376, s0), *(2, x, _9383), _9376 < _9383]),
 c_([marking(item1, _9395, s0), *(-1, x, _9402), _9395 =:= _9402])))])

1

c_([marking(item1, _9419, s0), *(-1, 42, _9426), _9419 =:= _9426]) 2

c_([marking(item1, _9443, s0), *(2, 42, _9450), _9443 < _9450]) 3

one([not_ok, until(5, sched(_9473, cf(3)), sched(_9489, cf(2)))]) 4

c_([marking(item1, _9514, s0), *(-1, 58, _9521), _9514 =:= _9521]) 5

c_([marking(item1, _9538, s0), *(2, 58, _9545), _9538 < _9545]) 6

one([not_ok, until(5, sched(_9568, cf(6)), sched(_9584, cf(5)))]) 7

F2 = implies(marking(item1) > 0,
 let(x : marking(item1),
 until(5, marking(item1) < 2 * x, marking(item1) =:= -1 * x)))

P: (0,1,2,2) : 2

Q: (0,1,2,3) : 1

2

3

4

evaluation goal schedule

formula cacheformula cache

5

6

7
P: (0,1,2,2) : 5

Q: (0,1,2,3) : 4

Initial Situation

marking(item1, s0) = 0 time(s0) = 0

Simulation History

t= 2: mark(item1, 42) t= 4: mark(item1, 58)

Figure 5.12: State snapshot of evaluation goal schedule with variable.

holding it until it puts it down again within 5 time units. Figure 5.13 shows
the content of evaluation goal schedule and formula cache for an exemplary
test sequence that was conducted for 15 steps. At time 3, the outer until
operator was “activated” by marking item1 with 1. This caused the creation
of schedule entry 3, which represents, via the rewritten cache entry 4, the top-
level instance where the premise of the outer implication is true. Since the
marking of item1 was never changed, each time point beginning from 3 had to
be marked as pending because the goal (marking(item1) = 0) has not been
reached yet and the time limit has not been exceeded. The invariant part of
the outer until expression is true by default in time points where the expected
grab event does not occur. At these points, the inner until expression is not
evaluated at all and hence no nested schedule entry is created. However, at
time 5, the grab action was performed and the inner until expression enters the
picture. Now, a newly rewritten version of the top-level formula is added to

152 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

the cache and schedule (cache id 8, schedule id 7) in which the invariant part
is not any more linked to the plain inner subformula in the second schedule
entry (cache id 3) but to the new schedule entry 6 that represents the “active”
inner until expression. This entry in turn is connected to the schedule entries
4 and 5 that keep track of the whether the item is carried or not. The time
point 5 is registered as a singleton interval in the pending sequence of schedule
entry 7 that now acts as an alternative top-level “handler”. However, the grab
action does not occur in the following steps, so entry 7 remains inactive and
entry 3 takes over again.

A closer look at the schedule table reveals that eventually, the item is
dropped at time 10. This confirms the goal of the inner until expression for
all instances that were scheduled since time 5. In fact, the inner goal is also
satisfied for times 11 and 12, which altogether results in the interval [5, 12]
in the positive sequence of schedule entry 6. Finally, at time 13, the item is
picked up again. As expected, this results in new pending marks for schedule
entry 7 and 6.

Even though the example is still quite small, it already demonstrates how
the nesting of temporal operators adds complexity to the data structures in-
volved in evaluation. In fact, the main reason why the SALMA property
evaluation algorithm is capable of handling complex nested formulas is its
consequent use of interval-based representations and operations. This will be
explained in detail in the next sections.

5.5.4 A Formal Interface To The Evaluation Goal Schedule

After all main aspects of the evaluation goal schedule have been introduced
above, it is advisable to provide a more concise summary that facilitates refer-
ring to parts of the data structure or related mechanisms in the algorithms that
will be described below. What is actually needed is a kind of a formal interface
with which operators on the evaluation goal schedule can be referred to in an
unambiguous and compact way. In doing so, it is practicable to use a repre-
sentation of the schedule’s data structure that can be integrated seamlessly
in the imperative description of the algorithms. In fact, the examples above
demonstrate that it makes sense to represent the state of each goal instance
as a row or tuple in a table similar to a relational database.

Definition 5.23 (Evaluation goal schedule). The evaluation goal schedule
can be understood as a set of tuples of which each is identified by a unique
id and describes the state of one scheduled goal instance by means of interval
sequences and references as described above. Formally, this is written as

Schedgoal = {G1, . . . , Gn}

where

5.5. THE EVALUATION GOAL SCHEDULE 153

id link parameters level pending (?) positive (┬) negative (┴) cache id

1 1 [3, 15]

2 1 [13, 13] [3, 12], [14, 15]

3

0 [3, 4], [6, 12], [14, 15]

4 2 [10, 12] [5, 9], [13, 15]

5 2 [5, 9], [13,
15]

[10, 12]

6 1 [13, 15] [5, 12]

7 0 [5, 5], [13, 13]

formula cache

compiled formula ID

one([not(c_([marking(item1, _15912, s0), _15912 = 1])), until(20, one([
not(occur(grab(rob1, item1))), until(10, carrying(rob1, item1, s0), not(carrying(rob1,
item1, s0)))]), c_([marking(item1, _15958, s0), _15958 = 0]))])

1

c_([marking(item1, _15976, s0), _15976 = 0]) 2

one([not(occur(grab(rob1, item1))), until(10, carrying(rob1, item1, s0), not(carrying(rob1,
item1, s0)))])

3

one([not_ok, until(20, sched(_16032, cf(3)), sched(_16048, cf(2)))]) 4

not(carrying(rob1, item1, s0)) 5

carrying(rob1, item1, s0) 6

one([not_ok, until(10, sched(_16099, cf(6)), sched(_16115, cf(5)))]) 7

one([not_ok, until(20, sched(_16146, cf(7)), sched(_16162, cf(2)))]) 8

G = implies(marking(item1) = 1, until(20, implies(occur(grab(rob1, item1)), until(10, carrying(rob1, item1),
 not(carrying(rob1, item1)))), marking(item1) = 0))

P: (0,1,2,2) : 2

Q: (0,1,2,3) : 1

2

3

4

evaluation goal schedule

formula cacheformula cache

5

6

7

8

P: (0,1,2,2) : 5

Q: (0,1,2,3) : 4

P: (0,1,2,2) : 6

Q: (0,1,2,3) : 1

Initial Situation

marking(item1, s0) = 0 time(s0) = 0
carrying(rob1, item1, s0) = false

Simulation History

t= 3: mark(item1, 1) t= 5: grab(rob1, item1)
t=10: drop(rob1, item1) t=13: grab(rob1, item1)

Figure 5.13: Example for an evaluation goal schedule state with nested tem-
poral operators.

Gi = 〈idi, Ti,?, Ti,>, Ti,⊥, leveli, linkParamsi, cacheRefi〉

Here, the columns, which will be used without the index i in the following,
store all information that is needed to reconstruct the scheduled formula and
for calculating the result of temporal operator expressions based on the eval-
uation history. The first column, id is the unique identifier of the goal in the
evaluation goal schedule, T?, T>, and T⊥ are temporal interval sequences that
store the intervals where the evaluation result for the goal instance Gid was un-
determined, positive, or negative, respectively. Additionally, cacheRef holds a
pointer that references an entry in the formula cache which contains the goal’s

154 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

formula. How deep this (sub-)formula is nested within temporal operators is
indicated by the column level. Finally, linkParams contains subterm position
paths and the concrete sub-goal id’s that are used to construct the history of
goals with possibly nested temporal operators (see Section 5.5.1, paragraph in
the middle of page 149)).

In order to refer to the contents of a goal, a dot notation can be used
that is adopted from object-oriented programming languages. For instance,
if a goal is denoted by G, the interval sequences can be accessed with G.T?,
G.T>, and G.T⊥, respectively. Additionally, several functions are necessary
for the retrieval and manipulation of information in the schedule. Some of
these functions are of rather technical nature, and their semantics are hence
presented in a more informal style. In the following list, GOALS is the set of
all evaluation goals, IDsched represents the set of all possible evaluation goal

schedule ids, FormulaPSL the set of all possible SALMA-PSL formulas,
res

R
the set of all result mappings, IDcache the set of all cache ids, and Paths the
set of all possible position paths. With these conventions, the interface to the
evaluation goal schedule is modeled as follows:

loadFromSchedule(id) : IDsched → GOALS

Loads the evaluation goal with the given id from the schedule.

applyLinkParameters(id) : IDsched → FormulaPSL

Returns the instantiated formula of the goal with the given id. The
returned formula is created by substituting the link parameters for the
placeholders in the sched parts of the goal’s formula in the cache.

applyDecisions(id ,
res

R) : IDsched ×
res

R

Updates the evaluation goal schedule entry with the given id according
to the new results in the given mapping. More precisely, each interval

with a fixed decision in
res

R “moves” this segment from the undetermined
interval sequence T? from the schedule to one of the sequences T> or

T⊥, according to the label in the result mapping. Formally, when
res

R
denotes the set of all possible result mappings and G′id is the state of
the scheduled goal after the application of the results, then the effect
applyDecisions can be defined as follows:

〈id, T?, T>, T⊥, lev, lP, cR〉
applyDecisions(id ,

res

R)−−−−−−−−−−−−−→

〈id, T ′?, T ′>, T ′⊥, lev, lP, cR〉

5.6. THE FORMULA EVALUATION ALGORITHM 155

where

I r = {I ∈ IT (
res

R .intv) |
res

R .rmap(I) = r} for r ∈ {>,⊥, ?}

T ′? =

 ⋃
I∈I>∪I⊥

T? \I

 ∪ (⊕
I∈I?

I

)

T ′> = T> ∪
(
⊕

I∈I>
I

)
and T ′⊥ = T⊥ ∪

(
⊕

I∈I⊥
I

)

storeInSchedule(lev , cId , lp) : N0 × IDcache × P(Paths× IDsched)→ IDsched
Creates a new entry in the evaluation goal schedule that points to a formula
with id cId in the formula cache which is nested at level lev. Additionally, the
link parameters in lp are set up in the new goal, which potentially establishes
the links seen in the examples above. Here, Paths denotes the set of possible
subterm position paths and IDcache the set of ids in the formula cache. The
result of a call to storeInSchedule is the unique id that was assigned to the
newly created entry.

addNondetScheduleInterval(id , interval) : IDsched × IT Adds the given inter-
val to the sequence T? of the evaluation goal schedule entry with the
given id. In other words, it is declared that the evaluation result for each
time point within the given interval is undetermined. This also effec-
tively means that obligations to re-visit the property are added for each
of these time instances. In terms of the operations defined in Section 5.3,
this can simply be written as

〈id, T?, T>, T⊥, lev, lP, cR〉
addNondetScheduleInterval(id ,I)−−−−−−−−−−−−−−−−−−−→

〈id, T?⊕I, T>, T⊥, lev, lP, cR〉

With these definitions in place, it is now possible to express usages of
the evaluation goal schedule in a precise way that does not add unnecessarily
clutter to the presentation of the algorithms in the following section.

5.6 The Formula Evaluation Algorithm

The previous sections set the stage for the description of the main algorithms
that are responsible for the evaluation of SALMA-PSL formulas. The algo-
rithms are presented in a rather detailed fashion in order to allow the reader

156 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

to follow the involved mechanism throughout the whole evaluation process. In
a manner of speaking, this section is structured from the outside to the in-
side, starting with the top-level procedure that governs the evaluation process,
and then recursing downwards to the specialized algorithms that interpret the
individual constructs of the SALMA-PSL language. In each of the following
sections, notational elements as well as auxiliary terms and concepts are in-
troduced as required. First, however, it makes sense to establish some general
definitions that are used repeatedly throughout the algorithm descriptions.

5.6.1 General Definitions

One of the mechanisms that appears at several points in the following algo-
rithms, and that was already implicitly used above, is yet another form of
subterm substitution. Besides the unification-based substitution mechanism
introduced in Definition 5.20, in which the replaced subterm is located through
pattern matching, it is also necessary to be able to define the relevant position
within the path directly. The best way to do this is using a position path that
recursively specifies the indexes of the arguments that have to be traversed
in order to reach the desired location. In fact, this is obviously exactly what
has already been used for specifying the link parameters in the examples of
Section 5.5. Here, a formal definition is added in order to allow a detailed
understanding of the way in which formulas are manipulated during the eval-
uation process.

Definition 5.24 (Subterm substitution based on position paths).
Let Φ = φ(θ1, . . . , θn) be a term with n-ary functor φ. Furthermore, let
p̂1 = (p1,1, . . . , p1,l1) to p̂m = (pm,1, . . . , pm,lm) with ∀i, j. pi,j ∈ N0 be se-
quences of natural numbers, called position paths. For all p̂1, . . . , p̂m, it shall
hold that no position path is a prefix of the other. In that sense, let Ψ =
{p̂1 7→ θ∗1, . . . , p̂m 7→ θ∗m} denote a mapping that assigns the replacement terms
θ∗1, . . . , θ

∗
m to the positions p̂1, . . . , p̂m. Finally, let c denote a constant, i.e. a

number, an entity, or a function symbol with arity 0. Then the substitution
of the subterms at positions p̂1, . . . , p̂m with the corresponding replacement
terms, written substpos (Ψ,Φ), is recursively defined as follows:

5.6. THE FORMULA EVALUATION ALGORITHM 157

substpos (Ψ, c) = c

substpos ({(0) 7→ θ∗},Φ) = θ∗

substpos ({(0, p2, . . . , pl) 7→ θ∗},Φ) = substpos ({(p2, . . . , pl) 7→ θ∗},Φ)

substpos ({(p1, p2, . . . , pl) 7→ θ∗}, = φ(θ1, . . . , θp1−1,

φ(θ1, . . . , θn)) substpos ({(p2, . . . , pl) 7→ θ∗}, θp1) ,

θp1+1, . . . , θn) if p1 > 0

substpos ({(p1) 7→ θ∗}, φ(θ1, . . . , θn)) = φ(θ1, . . . , θp1−1, θ
∗, θp1+1, . . . , θn)

substpos ({p̂ 7→ θ∗} ∪Ψ,Φ) = substpos (Ψ, substpos ({p̂ 7→ θ∗},Φ))

Definition 5.24 is relevant for almost every algorithm below because the
position path of the currently evaluated subformula is constructed alongside
the recursive evaluation procedure and passed through as an argument of al-
most every function. Eventually, the generated path is used for rewriting the
formula according to gathered results. Merely a convention is the use of 0 as
a “pseudo-position” that refers to the entire term, which can be seen in the
second and third equation of Definition 5.24.

Another convention that is ubiquitously used in the algorithms of this sec-
tion is the way in which return values of functions are handled. Many of these
functions return more than one value at once, e.g. the evaluation result of the
current subformula together with additional information that will be needed
for adding an entry to the goal schedule. To represent this, the pseudo-code
dialect of the algorithm descriptions uses tuples, both for the specification of
the returned value and for the assignment of a structured function result to
multiple variables. For instance, if a function f returns three values simulta-
neously, the function definition will contain a statement like return 〈x, y, z〉
and elsewhere in another algorithm, a call to f that stores returned values
in the variables a, b, and c, could be written as 〈a, b, c〉 ← f(. . .). Since the
names of the variables identify their purpose, some of the variables on the as-
signment side are omitted on occasion if they are not required for the further
computation.

As mentioned above, only those notational elements were defined here that
occur repeatedly in the following algorithm. Other elements will be defined
when they appear first or the reader is referred to definitions in previous sec-
tions. With this in mind, it is now time to approach the main entry point of
SALMA’s property evaluation mechanism.

158 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

simulate

Evaluation Goal
Schedule evaluate

scheduled
goals

evaluate registered
properties

determine
verdict

Figure 5.14: The SALMA property evaluation loop.

5.6.2 The Property Evaluation Loop

The property evaluation process in SALMA can best be understood as a loop
that integrates the simulation step, the processing of the evaluation goal sched-
ule, and the evaluation of the registered invariants and goals. This loop is
visualized in Figure 5.14.

Each cycle of the loop is entered with a simulation step that is performed
according to the semantics as described in Section 3.6. At the end of the
step, the simulation algorithm determines the time advance, i.e. the time of
the next scheduled event (tnext in Figure 5.14). As explained in Section 5.2,
tnext is passed as a parameter to the evaluation phase where it marks the end
of the interval for which the properties have to be tested. In the evaluation
phase itself, first the entries in the evaluation goal schedule are processed as
described in Section 5.5. Then, the algorithm iterates over all invariants and
goals in the property registry and evaluates them for all time points from the
current up to tnext. For both the scheduled goals and the new properties taken
directly from the registry, the evaluation produces a collection of results that
are combined to determine a verdict for the current step. This could lead to
the termination of the current simulation run if an invariant is violated or all
goals are met. Otherwise, the loop proceeds with the next simulation step.

The evaluation phase of the loop is described in Algorithm 5.1. First, it is
worth noticing that the goals from the schedule are processed in an order where
goals with a higher nesting level are evaluated before those with lower nesting
levels. This ensures that, when a formula part with a temporal operator is
evaluated, the intervals in the schedule that represent the subformulas of the

5.6. THE FORMULA EVALUATION ALGORITHM 159

operator have been updated already. For each of the scheduled goals, first
the actual formula is restored from the cache by applying the link parameters.
Then, this formula is evaluated by a call of the function evaluateFormula.
The end of the time advance, tend, is passed as the last parameter to determine
the time point up to which the evaluation should be performed. Additionally,
the interval sequence G.T?, which comprises the time instances for which no
conclusive result could be found for the property, is passed to provide the set
of start times of the goal instances that should be tested. Consequently, the
call to evaluateFormula returns a result mapping that assigns a result to each
of the intervals in G.T?. The result mappings for each goal are collected in
the associative list Rsched .

Next, the properties in the property registry are processed one by one.
Each property entry contains a unique user-defined name (P.name), which is
used to interpret results, as well as a reference to the formula cache (P.Idcache).
With this reference, the formula is loaded from the cache using the function
loadFromCache, which is not described in detail due to its purely technical
nature. After that, the type of the property is determined, i.e. whether it
is an invariant or a goal (see Definition 4.7 on page 97). According to this
distinction, the property is evaluated iteratively for all time steps between
the current time Tcur and tnext (see Algorithm 5.2). This yields yet another
result which is stored in a second associative list Rinstant . Additionally, the
function evaluateForAllTimesteps ensures that entries for the evaluation
goal schedule are created for all property instances for which no conclusively
result could be determined. Finally, the result mappings in Rsched and Rinstant

are returned and will be used by the simulation framework to determine a
verdict for the current simulation run.

The following subsections will describe all important ingredients of the
property evaluation loop. Most of the algorithmic details are covered in the
main formula evaluation function evaluateFormula in Algorithm 5.4 and the
sub-algorithms that handle the different cases during the recursion on the
formula structural. However, before these details are addressed, it is helpful
to take a closer look at the second phase of Algorithm 5.1 in which registered
properties are evaluated in a lookahead manner and entries for the evaluation
goal schedule are created.

160 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Algorithm 5.1: Top-level property evaluation procedure.
evaluationStep : N0 → 〈Res,Res〉

function evaluationStep(tnext)
Goals ← all scheduled property goals, sorted by goal level in

descending order
Rsched ← ∅
foreach G ∈ Goals do

Φ← applyLinkParameters(G.id)
res

R ← evaluateFormula(Φ, (0), G.level, 0, G.T?, tnext)

applyDecisions(G.id,
res

R) // updates goal schedule

Rsched ← Rsched ∪ {G 7→
res

R }
end
Tcur ← time(S0)
Rinstant ← ∅
foreach P ∈ Properties do

Φ← loadFromCache(P.Idcache)
if Φ = invariant(φ) then

mode← �
else

assume Φ = goal(φ)
mode← ♦

end
RP ← evaluateForAllTimesteps(mode, φ, (0), 0, 0, Tcur,

tnext, −1, −1)
Rinstant ← Rinstant ∪ {P 7→ RP }

end
return 〈Rsched ,Rinstant〉

end

5.6. THE FORMULA EVALUATION ALGORITHM 161

5.6.3 Lookahead Evaluation of Invariants And Goals

As explained above, all properties that are registered as invariant or goals
have to be evaluated for multiple instances, in which the referenced start time
is iteratively set to all points between the current time and the end of the
time-advance. Therefore, the algorithm must employ a lookahead technique in
order to evaluate formulas in the context of world states that have not been
calculated by the simulation yet. The basic mechanism for evaluating such
future states is to replace the default situation argument S0 with situation
terms that incorporate the time advance, i.e. with terms like do(tick(∆T), S0).
Although it would seem obvious to use the substitution mechanism defined in
Definition 5.20, this would also affect the content of nested temporal operators
that by themselves trigger iterations over future time steps. Therefore, an
alternative version of the substitution operator is needed that stops at temporal
operators.

Definition 5.25 (Subterm substitution with boundaries). The subterm sub-
stitution with boundaries substbterm(Ψ,Θ) works almost identically as the sub-
stitution defined in Definition 5.20 but does not recurse into occurrences of
temporal operators. Formally, this is expressed as follows:

1. substbterm(Ψ, c) =

{
θ′ if ∃θ.θ ' c ∧ θ 7→ θ′ ∈ Ψ

c otherwise

2. substbterm(Ψ,
φ(θ1, . . . , θn))

=

φ(θ1, . . . , θn) if φ ∈ {always,

eventually, until}
φ(substbterm(Ψ, θ1), . . . , otherwise

substbterm(Ψ, θn))

3. substbterm({θ 7→ θ′} ∪Ψ,Θ) = substbterm({θ 7→ θ′}, subsbterm(Ψ,Θ))

With this means for manipulating the situation context of a formula, the
lookahead iteration can be realized as shown in Algorithm 5.2. The function
evaluateForAllTimesteps expects several parameters: mode defines whether
the given formula is interpreted as an invariant (marked by a �) or as a goal
(♦). Then, the (partial) formula itself is passed in Φ together with its nesting
level and a position path in p̂Φ that locates Φ within the top-level formula.
Additionally, Tstart defines the start time that will be used as a reference
point for temporal operators contained in Φ, and Tend defines the upper time
bound of the iteration. When evaluateForAllTimesteps is used within the
top-level evaluation loop, these parameters correspond to the current time
and the end of the time-advance, respectively. As it will be explained in
Section 5.6.10 and below, this can differ when the function is called within

162 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

the evaluation of temporal operators. The last two arguments, Idsched and
Idcache hold the ids that are associated with the currently evaluated formula
in the evaluation goal schedule and in the cache, respectively. In case of the
direct evaluation of properties from the registry, as in Algorithm 5.1 above,
these ids do not exist yet and are therefore set to −1 as a signal for the
function evaluateAndSchedule that new entries must be created if scheduling
is necessary.

At the start of Algorithm 5.2, the variables t, Id′sched, and Id′cache, are
initialized directly with start values from the parameters. Besides that, there
are three variables that model the result of the iterative evaluation. First, T<def
will contain the earliest time point in the iteration at which a definite positive
outcome is determined. Similarly, T>poss represents the latest time point for
which it is still possible that Φ eventually evaluates to true. Both of these
time markers are not used in the main evaluation loop of Algorithm 5.1 but
will be important later for the efficient evaluation of temporal operators. Their
initial value is set to ?, which means in this case that no value has been set yet.
The third variable, R, is used to store a summarized result over all iteration
steps. Depending on whether evaluateForAllT imesteps is used in goal (♦)
or invariant mode (�), R is initialized with a default value either with ⊥ or
>, which will make sense once the design of the iteration below is understood.

The loop in Algorithm 5.2 iterates through all time steps between Tstart
and Tend by increasing the variables t and step. In the loop, a new situa-
tion term S is constructed that manifests a time advance of the number of
time steps currently held by steps. This situation term is inserted in Φ using
the bounded subterm substitution mechanism of Definition 5.25. The resulting
formula is then passed over to the function evaluateAndSchedule, which eval-
uates the formula and creates new entries in the evaluation goal schedule and
formula cache as necessary. The tuple that this function returns contains most
importantly the evaluation result for the current step itself, which is stored in
Rcur. Besides, it contains values for Idsched and Idcache that will differ from
the ids passed to evaluateForAllT imesteps originally when a new entry has
been created. These new pointers are stored in the loop variables Id′sched and
Id′cache and are used in subsequent iteration steps. Therefore, the results from
evaluating the following property instances will be integrated in the interval
lists of the existing schedule entry rather than in new ones (cf. Algorithm 5.3
below).

After Φ′ has been evaluated, the result of the current step Rcur is used
to update the result summary R. It can be seen that the loop is canceled as
soon as a conclusive result is determined. For an undetermined outcome (?),
the result summary R is set to ?. For the other cases, i.e. a positive outcome
in invariant mode or a negative outcome in goal mode, R is left untouched.
This means that as soon as one of the evaluation steps yields a ? outcome,
R remains ? until one of the unambiguous cases mentioned above flips R to
> or ⊥. The values of T<def and T>poss are also updated in an intuitive way:

5.6. THE FORMULA EVALUATION ALGORITHM 163

Algorithm 5.2: Iterative evaluation for all time steps.
function evaluateForAllTimesteps(mode, Φ, p̂Φ, level,

Tstart, Tend, Idsched, Idcache)
t← Tstart
step← 0
Id′sched ← Idsched, Id

′
cache ← Idcache

T<def ← T>poss ←?

R←

{
⊥ if mode = ♦
> otherwise

while t ≤ Tend do
S ← do(tick(step), S0)

Φ′ ← substbterm({S0 7→ S},Φ)
〈Rcur, Id′sched, Id′cache〉 ← evaluateAndSchedule(Φ′, p̂Φ, level,

step, t, Tend, Id′sched, Id
′
cache)

if Rcur = ⊥ then
if mode = � then

R← ⊥
if T>poss =? then T>poss ← t− 1
break

end
else if Rcur = > then

if T<def =? then T<def ← t

T>poss ← t

if mode = ♦ then
R← >
break

end
else /* undecided */

R←?
T>poss ← t

end
t← t+ 1, step← step+ 1

end
return 〈R, T<def , T

>
poss, Id

′
sched, Id

′
cache〉

end

164 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

both > and ? imply that a positive result is possible in this step; on the other
hand, when a negative result is found for an invariant at a certain time point,
it is clear that the step before the current step has to be the last one where a
positive outcome is even possible.

When the loop has been left, it must either have been canceled because a
definite result was found as described above, or the iteration has reached Tend.
In either cases, the function returns the result together with the time markers
and the possibly updated schedule and cache ids.

As mentioned before, the function evaluateForAllTimesteps is not only
responsible for testing whether an invariant holds or a goal is reached during a
certain timespan but also for creating schedule entries for those points between
Tstart and Tend for which the outcome is not certain yet. This happens in the
function evaluateAndSchedule shown in Algorithm 5.3, which is in fact the
only place where new entries are added to the evaluation goal schedule.

The parameters passed to the function evaluateAndSchedule are the known
components of the formula description, namely Φ, p̂Φ, and level, together
with the current time in Tcur and the end of the time-advance in Tend. In
addition to the absolute time parameters, there is also the parameter scur
that contains the number of steps taken relative to S0 in the iteration within
evaluateForAllTimesteps. Additionally, the parameters Idsched and Idcache
can either contain existing ids for the evaluation goal schedule and the formula
cache or markers that control the creation of new entries as described below.

The first step in Algorithm 5.3 is to actually evaluate Φ using the main
formula evaluation function that will be discussed in detail in the following
subsections. For that purpose, a new “singleton” temporal interval sequence
Ts is created that contains only the current time Tcur. The returned tuple
of evaluateFormula contains a result, a possibly rewritten version of Φ and
link parameters in the sense of Section 5.5 that are assigned to the variables
Rov, Φ′, and linkParams, respectively. Based on the result and the values in
Idsched and Idcache, the algorithm decides whether a new entry in the formula
cache is created or an existing cache entry is updated. Basically, a new entry
in created only if the Idcache is either new or −1, which indicates that no entry
for Φ exists yet, or the formula was rewritten, i.e. Φ′ 6= Φ. Intuitively, caching
is generally only necessary when a schedule entry has to be created because
the result is unclear yet, i.e. when Rov =?. However, for the evaluation of
the until operator (see Section 5.6.10), the algorithm relies on the schedule
history of the until operator’s subformulas also to query for definite results.
Therefore, the special new flag is needed to force caching and scheduling even
if Rov is > or ⊥. If the algorithm decides that a new cache entry is needed, it
first restores the situation argument that was rewritten in the calling function
evaluateForAllTimesteps (see Algorithm 5.2) and then use storeInCache,
which adds a new cache entry and returns the newly created cache id.

As mentioned before, a new entry in the evaluation goal schedule is created
either because a) this is enforced by the flag new, or b) because the evaluation

5.6. THE FORMULA EVALUATION ALGORITHM 165

Algorithm 5.3: Main evaluation goal scheduling mechanism.
function evaluateAndSchedule(Φ, p̂Φ, level, scur, Tcur, Tend,
Idsched, Idcache)

Ts ← ([Tcur, Tcur])
〈Rov,Φ′, linkParams〉 ← evaluateFormula(Φ, p̂Φ, level, scur,

Ts, Tend)

Φcache ←

Φ′ if Rov =? ∧ (Idcache ∈ {new,−1} ∨ Φ′ 6= Φ)

Φ if Idcache = new ∧Rov ∈ {>,⊥}
none otherwise

if Φcache 6= none then
/* Undo situation substitution done in

evaluateForAllTimesteps. */
Φ′cache ← substbterm({do(∗) 7→ S0},Φcache)
Id′cache ← storeInCache(p̂Φ, Φ′cache)

else
Id′cache ← Idcache

end
if Idsched = new ∨ (Idsched = −1 ∧Rov =?) ∨ Id′cache 6= Idcache then

Id′sched ← storeInSchedule(level, Id′cache, linkParams)
else

Id′sched = Idsched
end
if Id′sched 6= −1 then

if Rov =? then
addNondetScheduleInterval(Id′sched, [Tcur, Tcur])

else
applyDecisions(Id′sched, {[Tcur, Tcur] 7→ Rov})

end
end
return 〈Rovs, Id′sched, Id′cache〉

end

166 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

result is undetermined and no schedule entry exists yet, or c) because a new
cache entry was created and hence the cache reference of the existing schedule
entry is obsolete. In any case, storeInSchedule will not change any existing
schedule entry but create a new one that could exist next to other entries that
are linked to different versions of the same formula.

After the algorithm has ensured that a schedule entry exists if necessary,
the current time point is added to the proper interval sequence using one
of the functions addNondetScheduleInterval or applyDecisions that were
introduced in Section 5.5.4. At this point, the schedule is updated properly
and both the result and the possibly new cache and schedule ids are returned
to the caller.

5.6.4 Main Formula Evaluation Function

Now that the outer structure of the evaluation process has been explained,
it remains to discuss how formulas are actually interpreted. As mentioned
before, the main function that controls the recursive evaluation on a formula
is evaluateFormula, which is shown in Algorithm 5.4. The parameters of
evaluateFormula contain the familiar Φ, p̂Φ, level, scur, and Tend that already
appeared in previous algorithms. Additionally, the temporal interval sequence
Ts contains the time points for which Φ should be evaluated.

The basic structure of evaluateFormula consist of a distinction between a
series of cases, most of which are not shown in Algorithm 5.4 itself but in one
of the function fragments that are discussed in the following subsections. The
first case in Algorithm 5.4 applies when Φ is a result itself. This is possible
for formulas in the evaluation goal schedule that have been rewritten before
scheduling (cf. Section 5.5). In this case, the obtained single result does not
depend on the start time and is therefore assigned to all time points in Ts, using
the unique assignment operator |Φ from Definition 5.13, to produce the result

mapping
res

R that will be returned eventually. Besides
res

R , evaluateFormula
produces three other return values: Rov, which holds an “overall result”, i.e. a

summary over
res

R , Φ′, a possibly rewritten version of Φ that will be used for
scheduling, and linkParams, which contains links to subgoals in the evaluation
goal schedule as described in Section 5.5.

In all cases except Φ being a concrete result, Φ has to have the form
φ(θ1, . . . , θn), i.e. an expression with a functor φ and subterms θ1 to θn. Similar
to Section 5.4, this also includes expressions with operators for arithmetics or
comparisons that are originally used in infix notation, e.g. θ1 > θ2, which
is understood as > (θ1, θ2). Additionally, unary functions and predicates are
included, e.g. time. In all cases, the responsible function segments produce

the required return values
res

R , Rov and linkParams. Additionally, they might
populate the position-replacement map Ψ that is used in a position-path-based

5.6. THE FORMULA EVALUATION ALGORITHM 167

subterm substitution (see Definition 5.24) to produce a rewritten version of Φ
which is returned for scheduling.

Algorithm 5.4: Main formula evaluation function.

function evaluateFormula(Φ, p̂Φ, level, scur, Ts, Tend)
Tcur ← time(do(tick(scur), S0))
if Φ ∈ {>,⊥} then

res

R ← Ts|Φ
Rov ← Φ, Φ′ ← Φ, linkParams ← ∅

else
assume Φ = φ(θ1, . . . , θn)
switch Φ do

〈
res

R ,Rov,Ψ, linkParams〉 ← handle cases for Φ in Algorithms
5.5, 5.7, 5.8, and 5.11

Φ′ ←

{
Rov if Rov ∈ {>,⊥}
substpos(Ψ,Φ) otherwise

endsw
end

return 〈
res

R ,Rov,Φ
′, linkParams〉

end

The following subsections will discuss all cases in detail. The fragments
that are presented in Algorithms 5.5, 5.7, 5.8, and 5.11 use the variables that
are set up in evaluateFormula. Therefore, they prepare the values that
are eventually returned to the caller, i.e. either the function evaluateFor-
AllTimesteps or the schedule processing phase in evaluationStep.

5.6.5 Logical Connectives

An obvious choice for starting the case analysis within logical formulas is the
treatment of the logical connectives, i.e. negations, conjunctions, and disjunc-
tions. Algorithm 5.5 shows the corresponding fragment within
evaluateFormula. It comprises the cases for not, all, one, and also c , which is
a special synonym for all that marks a coherent evaluation unit. As described
in Section 5.4, implications are actually translated by means of the equivalence
A =⇒ B ≡ ¬A ∨B, so they do not need to be handled separately.

The first case in Algorithm 5.5 is the negation operator. Here, the nested
formula is evaluated as normal, and the result is negated using the operator
defined in Definition 5.15. Additionally, the result summary Rov is negated if

168 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Algorithm 5.5: Evaluation of logical connectives.
. . .
case Φ = not(θ)

〈
res

R′, R′ov, θ
′, linkParams〉 ← evaluateFormula(θ, p̂Φ ◦ 1, level,

scur, Ts, Tend)
res

R ← ¬
res

R′

Rov ←

{
¬R′ov if R′ov ∈ {>,⊥}
R′ov otherwise

Ψ← {(1) 7→ θ′}
end
case Φ = all([θ1, . . . , θn]) ∨ Φ = c ([θ1, . . . , θn])

〈
res

R ,Rov,Ψ, linkParams〉 ← evaluateConOrDisjunction(
∧, (θ1, . . . , θn), p̂Φ, level, scur, Ts, Tend)

end
case Φ = one([θ1, . . . , θn])

〈
res

R ,Rov,Ψ, linkParams〉 ← evaluateConOrDisjunction(
∨, (θ1, . . . , θn), p̂Φ, level, scur, Ts, Tend)

end
. . .

the result was definite, i.e. either > or ⊥. Finally, the rewritten subterm θ′ is
established as the single replacement term of the substitution mapping Ψ.

For the evaluation of conjunctions and disjunctions, the algorithm uses
the function evaluateConOrDisjunction from Algorithm 5.6, which expects
the operator as first argument. In Algorithm 5.6, every subformula in the
encompassed list is evaluated and the results are combined into one single result
mapping. For that, one of the logical operators ∧ or ∨ for result mappings
is used, which were introduced in Definition 5.16. The aggregation of results

is achieved by using a separate result mapping
res

R that is updated in every
iteration step by a conjunction or disjunction between itself and the result
mapping produced in the formula evaluation of the current step, using the
operators ∧ and ∨ from Definition 5.16).

Besides the calculation of the result, Algorithm 5.6 also compiles a substi-
tution set Ψ in which each subformula θi is either replaced by its rewritten

5.6. THE FORMULA EVALUATION ALGORITHM 169

Algorithm 5.6: Evaluation of conjunctions and disjunctions.
function evaluateConOrDisjunction(

op, (θ1, . . . , θn), p̂Φ, level, scur, Ts, Tend)
res

R ←

{
Ts|> if op = ∧
Ts|⊥ if op = ∨

Ψ← ∅
linkParams ← ∅
foreach i ∈ [1, n] do

〈
res

R′, R′ov, θ
′, linkParams ′〉 ← evaluateFormula(θi, p̂Φ ◦ 1 ◦ i,

level, scur, Ts, Tend)

if op = ∧ then
res

R ←
res

R ∧
res

R′ else
res

R ←
res

R ∨
res

R′

if R′ov =? then θ′′ ← θ′ else θ′′ ← R′ov
Ψ← Ψ ∪ {(1, i) 7→ θ′′}
linkParams ← linkParams ∪ linkParams ′

end

Rov ← summary(
res

R)

return 〈
res

R ,Rov,Ψ, linkParams〉
end

version θ′i, which is produced in the nested recursion of evaluateFormula, or
by its result if that is definite (i.e. > or ⊥). As discussed in Section 5.5, this
means that if the encompassing formula is added to the schedule, these definite
parts do not have to be evaluated again in future steps, which possibly leads
to a significant optimization. The leading index 1 in the position path, which
is also found above in the call to evaluateFormula, is necessary because the
subformulas θ1, . . . , θn are actually contained in a list which represents a nested
term by itself. After all subformulas have been evaluated, a summary Rov of

the combined result mapping
res

R is calculated as defined in Definition 5.17. Fi-
nally, the result mapping, its summary, the substitution set, and the combined
linkParams list, are returned to the calling instance of evaluateFormula,
where the updated formula Ψ′ is either produced by applying the substitution
Ψ or set to the result mapping summary if it is definite.

5.6.6 Relational Fluents and Predicates

The most basic element in which the recursion of the formula evaluation al-
gorithm inevitably ends is either a comparison, a predicate, or a relational
fluent. At this point, the algorithm relies on Prolog to perform the evaluation,

170 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

i.e. it either uses a built-in comparison operator or calls a Prolog goal that
realizes the predicate or the successor state axiom of the fluent. This is shown
in Algorithm 5.7. Here, comparison operators that are normally used in infix
notation are treated as predicates in prefix notation, e.g. = (θ1, θ2). The result
itself is determined directly by evaluating Φ as a Prolog expression. However,
this only works if all subterms θ1, . . . , θn are ground, i.e. they are either lit-
erals or Prolog variables that have been bound to values during the preceding
evaluation. In fact, the compilation process described in Section 5.4 ensures
that this is the case by collecting the subterms in a conjunction, ordered from
the innermost to the outermost. Since the subterms of a conjunction are eval-
uated “from left to right”, all variables are bound before the predicate or fluent
is evaluated.

Algorithm 5.7: Evaluation of relational fluents and predicates.
. . .
case Φ = p(θ1, . . . , θn) ∨ Φ = f(θ1, . . . , θn, S) where p is a

situation independent predicate or a comparison operator,
f is a boolean fluent, and S is a situation term.

assume ∀1 ≤ i ≤ n. θi is a ground term.
call Φ

Rov ←

> if calling Φ as a Prolog

goal evaluates to true
⊥ otherwise

res

R ← Ts|Rov

linkParams ← ∅
end
. . .

5.6.7 Functions and Functional Fluents

When discussing the evaluation of relational fluents and predicates, it was as-
sumed that variables occurring in the predicate or relational fluent expression
are bound beforehand. This binding actually occurs directly at the evaluation
of functional fluents or situation-independent functions. As before, operators
like +,−, ∗ are understood as functions, i.e. +(θ1, θ2) etc. Analogically to
the case with relational fluents or predicates, functions are directly evaluated
as Prolog expressions. The difference is that a function or functional fluent
expects one uninstantiated variable as its last argument (before the situation
term), which will contain the result after evaluation of the function. Like

5.6. THE FORMULA EVALUATION ALGORITHM 171

before, it can be seen that the property compiler ensures that all arguments
except the result variable are literals or Prolog variables that have been in-
stantiated in the preceding evaluation. After Φ has been evaluated as a Prolog
expression, the result variable will be instantiated. Of course, this is only
guaranteed if the Prolog goal in f or g indeed binds a value to θn. For both
Prolog’s built-in operators and functional fluents that have been specified by
means of effect axioms (see Section 3.2.4), this is automatically true. For all
other user-defined functions, the modeler is responsible for establishing the
correct structure.

Algorithm 5.8: Evaluation of functions and functional fluents.
. . .
case Φ = f(θ1, . . . , θn, S) ∨ Φ = g(θ1, . . . , θn) where f is a

non-boolean fluent, g is a situation independent
function or operator, and S is a situation term.

assume θ1, . . . , θn−1 are literals or instantiated Prolog variables
assume θn is uninstantiated Prolog variable
call Φ /* binds all variables in Φ */

assume θn is instantiated

res

R ← Ts|>
Rov ← >, linkParams ← ∅

end
. . .

5.6.8 Action Occurrences

Besides regular functions and predicates that are evaluated as described above,
there is also the special function lastTime and the predicate occur that re-
fer to the last occurrence of an event or action. Both are realized through
the action clock store that is integrated in SALMA’s progression mechanism.
In fact, the first time a concrete action or event instance is executed in a
progression step, a time-stamp is created by adding a dynamic clause to the
Prolog database that stores the current time. At each subsequent occurrence
of the same action or event instance, this dynamic clause is replaced by an up-
dated version with the latest occurrence time. The special function lastT ime
provides direct access to this time-stamp by instantiating the Prolog variable
passed as the last argument in the same ways as during the evaluation of reg-
ular functions. On the other hand, occur simply compares the time-stamp to
the current time in order to test whether the action instance was part of the

172 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

last progression step.

Algorithm 5.9: Evaluation of action occurrence tests.
. . .
case Φ = occur(α)

Tcur ← time(do(tick(scur), S0))
Tα ← actionClock(α)

Rov ←

{
> if Tcur = Tα

⊥ otherwise
res

R ← Ts|Rov

linkParams ← ∅
end
case Φ = lastT ime(α, v)

assume v is an uninstantiated Prolog variable.)
v ← actionClock(α)
res

R ← Ts|>
linkParams ← ∅

end
. . .

5.6.9 Variable Assignments

When expressions get more complex, one common way to enhance readability is
using variables to store the values of sub-expressions for later reuse. Inspired by
functional programming languages, the SALMA-PSL offers the let-construct
that binds the current value of an expression to a variable that is valid within
a nested subformula.

Algorithm 5.10 shows how such a formula is evaluated in SALMA. Here,
the expression let(x : x̂,Θ′,Φ′) is the compilation result from a formula of the
form let(x : Θ,Φ) (see Definition 5.22), where x̂ is a fresh Prolog variable,
Θ′ is the compilation result of the expression x̂ = Θ, and Φ′ is the compiled
version of Φ. Since = is treated like a normal predicate by the SALMA-PSL
compiler and interpreter, Θ′ is actually a c -term term that can be evaluated
directly with evaluateFormula. In the recursion, this will eventually lead to
the evaluation of the predicate =, which is interpreted directly as a Prolog goal
(see Algorithm 5.7). Due to the standard Prolog semantics, this will assign
the current value of Θ to x̂. After that, x̂ will contain a ground term that
is then substituted for all occurrences of the variable symbol x in Φ′. The
resulting expression is then evaluated as a regular formula with a second call
to evaluateFormula. As described in Section 5.6.4, this returns a rewritten

5.6. THE FORMULA EVALUATION ALGORITHM 173

Algorithm 5.10: Handling let-expressions.
. . .
case Φ = let(x : x̂,Θ′, φ)

assume x̂ is a fresh (uninstantiated) Prolog variable.
assume Θ′ = c ([θ1, . . . , θn,= (x̂, v)]) where v is a Prolog variable
that is instantiated during evaluation of θ1, . . . , θn.
evaluateFormula(Θ′, p̂Φ, level,

scur, Ts, Tend)
φ′ ← substbterm({x 7→ x̂}, φ)

〈
res

R ,Rov,Φ
′′, linkParams〉 ← evaluateFormula(φ′, p̂Φ, level,

scur, Ts, Tend)
Ψ← {(0) 7→ Φ′′}

end
. . .

version of the evaluated formula, which is stored in the variable Φ′′. In the
end, Φ′′ is set as a replacement for the entire original formula (selected by the
position path (0)) in the final substitution Ψ. Back in evaluateFormula, Ψ is
used to create a rewritten formula version that is stored in the evaluation goal
schedule when an entry needs to be created. Effectively, this means that the
let-expression is eliminated in the schedule entry and the value for the variable
x is fixed as the value of Θ at the current situation.

5.6.10 Evaluation of Temporal Operators

As one would expect, the major part of the evaluation algorithm’s complexity
is found within the cases for temporal operators. In fact, it is the ability to
use interval operations for realizing the semantics of the temporal operators
that makes SALMA’s evaluation algorithm efficient. Therefore, this subsection
discusses the involved strategies and design decisions in detail. Algorithm 5.11
gives an overview of the three cases for temporal operators, namely eventually,
always, and until. It can be seen that eventually and always are handled
by the same function that distinguishes the cases via its first parameter. This
implies that the evaluation of both operators is similar to some extent, which is
indeed confirmed below. On the other hand, there are several special difficulties
for the evaluation of the until operator, so this case is handled separately in
order to achieve a comprehensible presentation.

174 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Algorithm 5.11: Evaluation of temporal operators.
. . .
case Φ = always(Tmax, P)

〈
res

R ,Rov,Ψ, linkParams〉 ← evaluateAlwaysOrEventually(�, P ,
p̂Φ, level, scur, Ts, Tend, Tmax)

end
case Φ = eventually(Tmax, P)

〈
res

R ,Rov,Ψ, linkParams〉 ← evaluateAlwaysOrEventually(♦, P ,
p̂Φ, level, scur, Ts, Tend, Tmax)

end
case Φ = until(Tmax, P,Q)

〈
res

R ,Rov,Ψ, linkParams〉 ← evaluateUntil(P , Q,
level, p̂Φ, scur, Ts, Tend, Tmax)

end

A Common procedure for always(Tmax, P) and eventually(Tmax, P)

The common scaffolding for the evaluation of always and eventually is the
function shown in Algorithm 5.12. First, the upper time bound for the evalu-
ation interval T> is calculated as the minimum of the end of the time advance
Tend and the evaluation limit Tlim. The latter is given by the latest point that
is reachable from any point in the start time interval sequence Ts within the
time bound of the operator Tmax. To calculate this, the operator maxt from
Definition 5.11 is used, which yields the latest time point in the given interval
sequence. The other relevant time point, Tcur, is determined as before by eval-
uating the fluent time for the situation given by the current step scur. After
these initializations have been made, the algorithm has to distinguish between
two cases. First, the subformula P of the temporal operator could be of the
form sched(Idsched, Idcache), which implies that in fact the original subformula
at this position has been scheduled as a subgoal because at least for one time
instance the result of the evaluation was not definite. In this case, the formula
is loaded from the cache using the id that was conveyed in the sched-term.
Otherwise, if P is no sched-term, it is used directly for the further evaluation
and the ids for the formula cache and the schedule are set to −1, which act as
commands that will cause the creation of new entries as required.

The next step is to evaluate the subformula for all distinct time steps
from the current time Tcur to the interval end T>. As expected, this is per-
formed by the function evaluateForAllTImesteps from Algorithm 5.2 that
was already presented as part of the top-level property evaluation procedure
(Algorithm 5.1). It was shown before that during this iteration, schedule en-

5.6. THE FORMULA EVALUATION ALGORITHM 175

tries are created for each time point for which the evaluation did not pro-
duce a definite result (?). Therefore, it can be assumed after the call to
evaluateForAllTImesteps that the evaluation goal schedule is set up with
all entries that are necessary for further calculations. The variables Id′sched
and Id′cache contain either −1 or the ids that refer to the relevant entries in the
schedule and the cache for P after the lookahead evaluation, which could have
been created in this process. Besides the updated ids, the call to evaluateFor-
AllTImesteps returns three other values, namely the result summary Rov1, the
time of the earliest positive definite outcome, T<def , and the time of the latest
possibility for a positive outcome, T>poss. While these time markers were ig-
nored in the top-level evaluation procedure (Algorithm 5.1), they are crucial
for the evaluation of temporal expressions.

At this point, the treatment of always and eventually diverges into the
functions handleAlways and handleEventually that are shown in Algorithms
5.13 and 5.15 and are discussed below. Both functions return a result mapping
res

R1 and an interval sequence T ′s that contains the start times from Ts for which
no definite result could be determined. Consequently, the intervals in T ′s are
labeled with ? and combined with the results from before into the final result

mapping
res

R . In the rest of Algorithm 5.12, a result summary is determined
and, if the result is not entirely definite, a sched-term is established as replace-
ment for P that, together with the link parameters that are created along the
way, reference the goal that represents P in the evaluation goal schedule.

In the following, the individual algorithms for the evaluation of always and
eventually are described. Although they are structured very similarly, the full
functions are shown to make them easier to understand.

The Evaluation of always(Tmax, P)

Algorithm 5.13 shows the function handleAlways, which expects as arguments
the previously calculated result summary of the lookahead evaluation Rov1,
the time of the latest possible positive result T>poss, the time bound of the
always-expression Tmax, the evaluation interval end T>, the start time interval
sequence Ts, and the schedule id of the goal that represents the subformula P ,
which could also be −1 as described above.

The interval-based calculations described above are visualized in Figure 5.15.
In the top row (Figure 5.15a), the first part of handleAlways can be seen, where
the algorithm tries to leverage results from the lookahead evaluation that was
done beforehand. This is possible when a negative result was found at some
point in evaluateForAllTimesteps. Then, T>poss will point to the last time at
which a positive result is still possible, which has to be the step just before the
one in which the negative result was found. This implies that all scheduled in-
stances of P that start not longer than Tmax before T>poss will be terminated by
the negative result. Therefore, these time points can be marked as negative,

176 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Algorithm 5.12: Evaluation of always or eventually.
function evaluateAlwaysOrEventually(mode, P , p̂Φ, level, scur,

Ts, Tend, Tmax)
T>start ← maxt(Ts)
Tlim ← T>start + Tmax
T> ← min(Tlim, Tend)
Tcur ← time(do(tick(scur), S0))
if P = sched(Idsched, Idcache) then

P ′ ← loadFromCache(Idcache)
else

P ′ ← P, Idsched ← −1, Idcache ← −1
end
〈Rov1, T

<
def , T

>
poss, Id

′
sched, Id

′
cache〉 ←

evaluateForAllTimesteps(mode, P ′, p̂Φ ◦ 2, level + 1,
scur, Tcur, T>, Idsched, Idcache)

assume A schedule entry has been added for every time point
where the evaluation of P yielded ?.

if mode = � then

〈
res

R1, T
′
s〉 ← handleAlways(Rov1, T>poss,

Tmax, T>, Ts, Id′sched)
else

〈
res

R1, T
′
s〉 ← handleEventually(Rov1, T<def ,

Tmax, T>, Ts, Id′sched)
end
res

R2 ← T ′s|?
res

R ←
res

R1 ∪
res

R2

Rov ← summary(
res

R)
if Rov =? then

Ψ← {2 7→ sched(∗, Id′cache)} /* ∗ represents
a placeholder for the concrete schedule id */

linkParams ← {p̂Φ ◦ 2 7→ Id′sched}
else

Ψ← ∅, linkParams ← ∅
end

return 〈
res

R ,Rov,Ψ, linkParams〉
end

5.6. THE FORMULA EVALUATION ALGORITHM 177

which is done by building the intersection of Ts with the described interval
and labeling it with the unique assignment operator |, which creates a result

mapping that is stored in the variable
res

R1. The relative complement of the
original start times Ts and the said interval yields an interval sequence that
contains the time start time instances for which the result is still open. How-
ever, it is still possible that more definite results can be found. First, if there
is an entry for P in the evaluation goal schedule, the evaluation history could
convey enough information to determine additional results. This is pursued in
the function checkScheduleAlways in Algorithm 5.14.

In Algorithm 5.14, the goal evaluation history is loaded from the schedule
using the given id. By matching all intervals within the negative history G.T⊥
against the start times Ts, it is possible to mark all those instances as failed that
are at most Tmax time units before a time point with negative result. Similar
to the first step in handleAlways, this labeling of multiple time instances is
reduced to a single intersection between an interval sequence and an interval.
The result mapping that is created in this way is appended to a collective

result mapping
res

Rtot that is returned later, and as before, the sequence of
undetermined start time intervals is updated using the relative complement.
Figure 5.15c shows an example for the negative labeling of several interval
segments based on one interval from G. T⊥.

The other source for determining definite results is the positive history
G.T>. Indeed, this sequence might contain positive intervals that are at least
as long as Tmax. Then, any goal instance that starts within that interval and
at least Tmax time units before its end, can be labeled as positive because
the invariant is guaranteed to have been fulfilled within the given time bound.
This can be seen in Figure 5.15d. All results that are calculated based on the
evaluation history are returned back to handleAlways, together with the start
time intervals for no results have been found, yet, which will later be marked
with ?, as shown in Algorithm 5.12.

Back in handleAlways, it is also possible that no schedule entry exists.
However, some definite results can still be found if the overall result of the
lookahead evaluation was positive. This means that there must have been
positive results for all time points up to T>. Hence, all instances in Ts that
begin at least Tmax time units before T> must be satisfied and can be la-
beled with >. Figure 5.15b shows the involved interval operations. It can
be seen that the algorithm effectively assumes that the evaluation results for
the subformula P have also been positive for all relevant time points that are
overlapped by intervals in Ts. Indeed, this assumption is justified because if
any of these time points had yielded a negative result, then the intervals in
Ts that are within a distance of Tmax would have been negated already in a
previous evaluation step.

178 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Algorithm 5.13: Handling of temporal operator always.

function handleAlways(Rov1, T>poss, Tmax, T>, Ts, Idsched)
if Rov1 = ⊥ then

// See Figure 5.15a
Tl ← T>poss − Tmax
res

R1 ← (Ts ∩[Tl, T
>])|⊥

T ′s ← Ts \[Tl, T>]
else

res

R1 ← ∅, T ′s ← Ts
end

if T ′s 6= ∅ then
if Idsched > −1 then

〈
res

R2, T
′′
s 〉 ← checkScheduleAlways(Idsched, T ′s, Tmax)

else
// There is no schedule entry for the subformula P.
if Rov1 = > then

// See Figure 5.15b
Tr ← T> − Tmax
res

R2 ← (T ′s ∩[0, Tr])|>
T ′′s ← T ′s \[0, Tr]

else
res

R2 ← ∅, T ′′s ← T ′s
end

end
else

res

R2 ← ∅, T ′′s ← ∅
end

return 〈
res

R1 ∪
res

R2, T
′′
s 〉

end

5.6. THE FORMULA EVALUATION ALGORITHM 179

Algorithm 5.14: Calculating schedule decisions for always.

function checkScheduleAlways(Idsched, Ts, Tmax)
G← loadFromSchedule(Idsched)

T ′s ← Ts
res

Rtot ← ∅
/* Negate all starting points within range of ⊥

instances. */
foreach [T1, T2] ∈ G.T⊥ do

// See Figure 5.15c
Tl ← max(0, T1 − Tmax)
res

R ← (T ′s ∩[Tl, T2])|⊥
res

Rtot ←
res

Rtot ∪
res

R

T ′s ← T ′s \[Tl, T2]
end
/* Confirm goals that are entirely covered in >

intervals. */
foreach [T1, T2] ∈ G.T> do

// See Figure 5.15d
if T2 − T1 ≥ Tmax then

Tr ← T2 − Tmax
res

R ← (T ′s ∩[T1, Tr])|>
res

Rtot ←
res

Rtot ∪
res

R

T ′s ← T ′s \[T1, Tr]
end

end

return 〈
res

Rtot, T
′
s〉

end

180 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

(a) Determining ⊥ instances through lookahead evaluation results.

(b) Determining > instances through lookahead evaluation results.

(c) Determining ⊥ instances through schedule history.

(d) Determining > instances through schedule history.

Figure 5.15: Calculation of results for always.

5.6. THE FORMULA EVALUATION ALGORITHM 181

The Evaluation of eventually(Tmax, P)

As expected, the operator eventually is treated very similarly to its always
counterpart. In fact, the only difference is that the roles of positive results are
reversed. This means that exactly the same structure that is used to “reject”
goal instances based on negative lookahead results in the case of always is used
to confirm goal instances with positive results. The same congruence obviously
holds also for the other cases. Therefore, it is not very instructional to discuss
the algorithms for eventually in detail. Nonetheless, both the algorithms
(Algorithm 5.15, 5.16) and the interval diagrams (Figure 5.16) are included
here for the sake of completeness.

182 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Algorithm 5.15: Handling of temporal operator eventually.

function handleEventually(Rov1, T<def , Tmax, T
>, Ts, Idsched)

if Rov1 = > then
Tl ← T<def − Tmax
res

R1 ← (Ts ∩[Tl, T
>])|>

T ′s ← Ts \[Tl, T>]
else

res

R1 ← ∅, T ′s ← Ts
end

if T ′s 6= ∅ then
if Idsched > −1 then

〈
res

R2, T
′′
s 〉 ← checkScheduleEventually(Idsched, T ′s, Tmax)

else
// There is no schedule entry for P.
if Rov1 = ⊥ then

Tr ← T> − Tmax
res

R2 ← (T ′s ∩[0, Tr])|⊥
T ′′s ← T ′s \[0, Tr]

else
res

R2 ← ∅, T ′′s ← T ′s
end

end
else

res

R2 ← ∅, T ′′s ← ∅
end

return 〈
res

R1 ∪
res

R2, T
′′
s 〉

end

5.6. THE FORMULA EVALUATION ALGORITHM 183

(a) Determining > instances through lookahead evaluation results.

(b) Determining ⊥ instances through lookahead evaluation results.

(c) Determining > instances through schedule history.

(d) Determining ⊥ instances through schedule history.

Figure 5.16: Calculation of results for eventually.

184 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Algorithm 5.16: Calculating schedule decisions for eventually.

function checkScheduleEventually(Idsched, Ts, Tmax)
G← loadFromSchedule(Idsched)

T ′s ← Ts
res

Rtot ← ∅
/* Acknowledge all starting points within range of >

instances. */
foreach [T1, T2] ∈ G.T> do

Tl ← max(0, T1 − Tmax)
res

R ← (T ′s ∩[Tl, T2])|>
res

Rtot ←
res

Rtot ∪
res

R

T ′s ← T ′s \[Tl, T2]
end
/* Handle time-outs. */
foreach [T1, T2] ∈ G.T⊥ do

if T2 − T1 ≥ Tmax then
Tr ← T2 − Tmax
res

R ← (T ′s ∩[T1, Tr])|⊥
res

Rtot ←
res

Rtot ∪
res

R

T ′s ← T ′s \[T1, Tr]
end

end

return 〈
res

Rtot, T
′
s〉

end

Evaluation of until(Tmax, P,Q)

For the efficient evaluation of until-expressions, the algorithm has to extend
and combine the ideas from the handlers for eventually / always so that
definite results can be found as early as possible. The main procedure for until
is shown in Algorithm 5.17. The first part performs an initialization that is very
similar to that of the Algorithms 5.13 and 5.15. Of course, two subformulas
have to be set up, namely P for the invariant part and Q for the goal part.
After the initialization, lookahead evaluation is performed for both P and Q,
with Q treated like an eventually formula (♦) and P as in always (�). It is
worth noticing that for Q, the iteration is not necessarily performed up to the
general end of the evaluation period (T>), but only to the earliest point where

5.6. THE FORMULA EVALUATION ALGORITHM 185

Algorithm 5.17: Evaluation of until.

function evaluateUntil(P , Q, p̂Φ, level, scur, Ts, Tend, Tmax)
T>start ← maxt(Ts)
Tlim ← T>start + Tmax
T> ← min(Tlim, Tend)
Tcur ← time(do(tick(scur), S0))
if P = sched(Idsched,P , Idcache,P) then

P ′ ← loadFromCache(Idcache,P)
else

P ′ ← P
Idsched,P ← new, Idcache,P ← new // force scheduling

end
if Q = sched(Idsched,Q, Idcache,Q) then

Q′ ← loadFromCache(Idcache,Q)
else

Q′ ← Q, Idsched,Q ← new, Idcache,Q ← new
end
〈T<def ,Q, Id

′
sched,Q, Id

′
cache,Q〉 ← evaluateForAllTimesteps(♦,

Q′, p̂Φ ◦ 3, level + 1, scur, Tcur, T>, Idsched,Q, Idcache,Q)
if T<def ,Q 6=? then T>P ← T<def ,Q else T>P ←?

〈Id′sched,P , Id′cache,P 〉 ← evaluateForAllTimesteps(�, P ′, p̂Φ ◦ 2,
level + 1, scur, Tcur, T>P , Idsched,P , Idcache,P)

assume all relevant results between Tcur and T>

have been added to the goal schedule.

〈
res

R , T ′〉 ← checkScheduleUntil(Id′sched,P , Id
′
sched,Q, Ts, Tmax)

res

R ←
res

R ∪T ′|?

Rov ← summary(
res

R)
if Rov =? then

Ψ← {2 7→ sched(∗, Id′cache,P), 3 7→ sched(∗, Id′cache,Q)}
linkParams ← {p̂Φ ◦ 2 7→ Id′sched,P , p̂Φ ◦ 3 7→ Id′sched,Q}

else
Ψ← ∅, linkParams ← ∅

end

return 〈
res

R ,Rov,Ψ, linkParams〉
end

186 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

a positive definite result for Q is found – if that is the case. Another specialty
of the until-case is that the creation of evaluation goal schedule entries is forces
by the new flag, even in cases where the lookahead evaluation produced only
definite results. This guarantees that a history for both P and Q exists that
contains all results up to T>. The evaluation algorithm can therefore use the
same decision mechanisms over the whole relevant time span, which allows for
a much clearer design. In that sense, the function checkScheduleUntil in
Algorithm 5.18 arranges all schedule-based calculations into four phases that
are by themselves sourced out to four separate functions.

In the first phase, the function confirmScheduledUntilGoals (Algorithm
5.19) uses the evaluation goal history of both P and Q to determine instances
that can be confirmed definitively. First, this is possible when the goal Q is
true directly at the start time of a goal instance, i.e. when the intersection
between an interval in GQ. T> and Ts is not empty. Figure 5.17a demonstrates
this situation. Therefore, the function in Algorithm 5.19 iterates through all
intervals in the positive history of Q and successively fills a result mapping
with >-entries that are retrieved by means of the intersection operator from
Definition 5.8. Besides that, the start time points that are confirmed in this
way are “cut out” of Ts by the relative complement and the iteration is canceled
at the end of the loop body if Ts is empty.

As shown at in the right part of Figure 5.17a, even if Q is not true at an
instance’s start, a positive outcome can still be confirmed when a true result
for Q is found within Tmax time units and P is true up to that point. The
second part of this condition is equivalent to the existence of an interval in
GP. T> that is left adjacent to a positive Q interval. If such an interval exists,
then all time points can be confirmed that are both within that interval and

Algorithm 5.18: Calculating schedule decisions for until.

function checkScheduleUntil(Idsched,P , Idsched,Q, Ts, Tmax)
GP ← loadFromSchedule(Idsched,P)
GQ ← loadFromSchedule(Idsched,Q)

T ′ ← Ts /* unhandled start times */

〈
res

R1, T
′〉 ← confirmScheduledUntilGoals(T ′, GP , GQ, Tmax)

〈
res

R2, T
′〉 ← rejectUntilGoalsP(T ′, GP)

〈
res

R3, T
′〉 ← rejectUntilGoalsPQ(T ′, GP , GQ)

〈
res

R4, T
′〉 ← detectTimedOutUntilGoals(T ′, GQ, Tmax)

return 〈
res

R1 ∪
res

R2 ∪
res

R3 ∪
res

R4, T
′〉

end

5.6. THE FORMULA EVALUATION ALGORITHM 187

not farther than Tmax from the positive Q interval. This is done in the middle
block of Algorithm 5.19, again using the intersection operator and the relative
complement to compile results and to remove handled start times from Ts.

After all positive results have been gathered, the produced result mapping
is returned to checkScheduleUntil together with a temporal interval sequence
T ′ that contains the “unhandled” start times, i.e. the goal instances that have
not been confirmed yet. In the next step, this remaining start time interval
sequence is passed to the function rejectUntilGoalsP (Algorithm 5.20) that
processes cases in which goal instances can be rejected because P is known
to be violated at their start point (see right part of Figure 5.17b). On the
other hand, goal instances can also be identified as failed when the period
between their start and the earliest time point where Q is true is interrupted
by a negative outcome for P . Transferred to the interval-based viewpoint,
this situation can be identified when an interval of GQ. T⊥ overlaps intervals of
GP. T⊥. Then, all goal instances that start within the interval with negative Q
and before the last time point in the overlapped region of GP. T⊥ are inevitably
interrupted and can thus be marked as failed (see Algorithm 5.21 and left
part of Figure 5.17b). Finally, in the last step of checkScheduleUntil, the
algorithm searches for goal instances that have expired their time bounds (see
Algorithm 5.22 and Figure 5.17c). After all these possible definite cases have
been handled, the result for evaluateUntil is combined very similarly to the
cases for eventually and always.

188 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Algorithm 5.19: Confirmation of until goals.

function confirmScheduledUntilGoals(Ts, GP , GQ, Tmax)

T ′ ← Ts,
res

R ← ∅
foreach [Ts,Q, Te,Q] ∈ GQ. T> do

/* Confirm instances where Q holds directly at the
start point. */

res

R1 ← (T ′ ∩[Ts,Q, Te,Q])|>
T ′ ← T ′ \[Ts,Q, Te,Q]

/* If P has been true continuously for an interval
before Ts,Q, we can confirm additional goals. */

if ∃[ts, te] ∈ GP. T> . Ts,Q ∈ [ts, te] then
Tl ← max(ts, Ts,Q − Tmax)
res

R2 ← (T ′ ∩[Tl, Ts,Q])|>
T ′ ← T ′ \[Tl, Ts,Q]

else
res

R2 ← ∅
end
res

R ←
res

R ∪
res

R1 ∪
res

R2

if T ′ = ∅ then break
end

return 〈
res

R , T ′〉
end

5.6. THE FORMULA EVALUATION ALGORITHM 189

Algorithm 5.20: Rejection of until goals that lie within a ¬P -interval.
function rejectUntilGoalsP(Ts, GP)

T ′ ← Ts /* unhandled start times */
res

R ← ∅
foreach [Ts, Te] ∈ GP. T⊥ do

res

R′ ← (T ′ ∩[Ts, Te])|⊥
res

R ←
res

R ∪
res

R′

T ′ ← T ′ \[Ts, Te]
if T ′ = ∅ then break

end

return 〈
res

R , T ′〉
end

Algorithm 5.21: Rejection of inevitably interrupted until goals.

function rejectUntilGoalsPQ(Ts, GP , GQ)
T ′ ← Ts /* unhandled start times */
res

R ← ∅
foreach [Ts,Q, Te,Q] ∈ GQ. T⊥ do

Tintr ← GP. T⊥ ∩[Ts,Q, Te,Q]

if Tintr 6= ∅ then
Tr ← maxt(Tintr)
res

R′ ← (T ′ ∩ [Ts,Q, Tr])|⊥
res

R ←
res

R ∪
res

R′

T ′ ← T ′ \[Ts,Q, Tr]
end

if T ′ = ∅ then break
end

return 〈
res

R , T ′〉
end

190 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

Algorithm 5.22: Rejection of expired until goals.

function detectTimedOutUntilGoals(Ts, GQ, Tmax)

T ′ ← Ts

res

R ← ∅
foreach [Ts, Te] ∈ GQ. T⊥ do

if Te − Ts ≥ Tmax then
res

R′ ← (T ′ ∩[Ts, Te − Tmax])|⊥
res

R ←
res

R ∪
res

R′

T ′ ← T ′ \[Ts, Te − Tmax]

end

if T ′ = ∅ then break
end

return 〈
res

R , T ′〉
end

5.6. THE FORMULA EVALUATION ALGORITHM 191

(a) Determining > instances.

(b) Detecting terminated goal instances.

(c) Detecting expired goal instances.

Figure 5.17: Calculation of results for until.

192 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

5.7 Validation of the Property Evaluation
Mechanism

The detailed description of the property evaluation algorithm in this chapter
presented a semi-formal justification for the claim that the mechanism that
is based on querying and manipulating temporal interval sequences indeed
realizes the semantics of the SALMA property specification language as defined
in Section 4.1. A formal proof for the algorithm’s correctness would not add
much further insight and would be very complex to do thoroughly. Therefore,
such a formal proof has not been done in the context of this thesis.

Instead, an extensive collection of automated tests has been used to gain
confidence in the correctness of SALMA’s property evaluation module. One
part of these tests are complete simulation experiments with predictable prob-
abilistic outcomes that are combined with SALMA-PSL properties for which
the success probability can be calculated in closed form. An example for such
a setup was already presented in Section 4.3. These kinds of system level tests
can certainly increase the confidence that SALMA as a full statistical model
checking stack works as expected. However, they focus on demonstrating ex-
pected functionality instead of systematically testing for errors. In some sense,
such tests could be regarded as acceptance tests since they focus on what the
user actually expects from the software (see, e.g. [PY08, Chap. 2.1, Chap.
22.3]). On the other hand, tests that are suitable for helping the developer
with detecting faults, should be functional tests with much finer granularity
that systematically attempt to cover different paths of the property evalua-
tion algorithm. In fact, what is needed are subsystem- or module tests (see
[PY08, Chap. 21]) that operate directly on the Prolog interface to the property
evaluation mechanism and the situation calculus model instead of using the
full simulation stack. This avoids any probabilistic uncertainty and facilitates
locating faults.

One of the main challenges for the creation of automatized tests for more
complex algorithms is that the test code itself can become hard to understand
and validate for human reviewers, which would significantly degrade the value
of these tests. Therefore, it is necessary to create suitable abstractions for
describing test scenarios, i.e. collections of concrete inputs together with ex-
pected outcomes. For SALMA’s property evaluation mechanism, a test case
is represented by a SALMA PSL property, a deterministic sequence of actions
and events with fixed occurrence times, and of expectations for the verdicts and
evaluation schedule states at given points in time. Along these lines, a Prolog
test API has been created that integrates a simple domain model, which is
roughly similar to the delivery robots example from Chapter 3. Figure 5.18
shows one test case that was specified with this API. It refers to the formula
that is included in the top of the figure. This property requires that any robot
that grabs an item continues carrying that item until it trespasses a certain

5.7. VALIDATION OF THE EVALUATION MECHANISM 193

goal within a given time limit. As in the example in Section 4.3, all robots
move strictly along the x-axis by one unit in each time step, which makes it
easy to predict the behavior of the system.

The test case in Figure 5.18 is specified using the function runTest of the
test API. All necessary information is passed via three lists of terms. First,
a sequence of ev terms is given that contain events or actions together with
the time steps at which they occur. The second list specifies expectations for
the verdicts that are yielded by the property evaluation module at each time
step. Each expect term contains the start and the end of an interval together
with the verdict that is expected for each step within this interval. Similarly,
the third list contains expectations for the content of the evaluation schedule
that are represented by intervals together with lists that contain terms with
the pattern s(t1, t2) : result. Each of these terms declares a mapping of
an interval to an evaluation result, so each list in an expect corresponds to a
result mapping in the sense of Section 5.3.3. In the example in Figure 5.18, the
first list describes a scenario in which the first robot grabs its item at time step
0 and the second robot does the same at step 3. The second list declares that
the evaluation of F yields a positive verdict in every step except in the steps
where the grab actions happen. At these points, i.e. step 0 and 3, both robots
have not yet reached their goal (xpos > 20) and the occurrence of the grab
action “activates” the until operator. Therefore, a conclusive verdict cannot
be determined in steps 0 and 3 and in both steps a corresponding evaluation
goal has to be scheduled. This also has to be reflected by the content of the
evaluation schedule, which is verified by the expectations that are given in
the third list in the call to runTest. What is not shown here is that runTest
initializes the model with a test fixture in which the two robots rob1 and rob2
are at the positions 〈x = 10, y = 10〉 and 〈x = 10, y = 20〉, respectively. This
means that if the test case shown in Figure 5.18 is executed, all expectations
will be fulfilled and the test is successful. On the other hand, if the event
sequence or any of the expectations were altered, the test case would fail with
an assertion exception that describes the failure.

Using the high-level language described above, it is possible to systemati-
cally construct test cases that, when executed together as a test suite, achieve
a high test coverage, i.e. exercise a significant part of the property evaluation
mechanism. Although several different coverage criteria have been defined
in the software testing literature, the most widely used are statement cover-
age and branch coverage, which measure the ratio of statements or condition
branches that are traversed during execution of the test suite (see [PY08,
Chap. 12]). One reason why these criteria are chosen so frequently is that
statement and branch coverage can easily be measured automatically. This is
done using code instrumentation, which essentially means inserting auxiliary
statements at certain points in the tested program that record when they are
executed. However, although ECLiPSe actually provides facilities for perform-
ing this instrumentation automatically, it was not possible to leverage them

194 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

test case(until_ok_two_robots) :-
F = forall(r: robot, forall(i: item,

implies(occur(grab(r,i)),
until(15, carrying(r, i), xpos(r) > 20)))),

runTest(F, 20,
[ev(0, grab(rob1, item1)),

ev(3, grab(rob2, item2))],
[expect(0, 0, nondet),

expect(1, 2, ok),
expect(3, 3, nondet),
expect(4, 20, ok)],

[expect(1, 3, [s(0,0) : nondet]),
expect(4, 10, [s(0,0) : nondet, s(3,3) : nondet]),
expect(11, 11, [s(0,0) : ok, s(3,3) : ok]),
expect(12, 20, [])]).

Figure 5.18: Example test cases for the property evaluation mechanism.

for the SALMA property evaluation mechanism because the instrumentation
failed for a technical reason that could not be resolved in time. As a prag-
matic solution for this problem, the instrumentation has been done manually.
First, machine-readable comments were added to the Prolog source code of the
property evaluation module to mark the (relevant) branches of the algorithm.
Then, a Python script was used to generate a copy of that source code with
the markers replaced by statements that record any entrance of their branch
by increasing a counter in a globally accessible hash table. Additionally, a
CSV file is created that contains a list of all inserted probes together with the
corresponding source file and line number. The test API provides a command
report_coverage that compares the content of this CSV file with the probe
counters in the hash table and uses this to calculate a coverage ratio. Guided
by this metric, a test suite has been created that covers all relevant branches
of the property evaluation algorithm and the property compiler. It is publicly
available together with the main source code of the SALMA toolkit at the
SALMA website [Kro16].

As mentioned in the beginning of this chapter, not only the correctness of
the property evaluation algorithm is important but also its efficiency. In par-
ticular, an efficient handling of the evaluation goal schedule is crucial for cases
in which temporal operators have to be evaluated for many consecutive time
steps. An example for a case like this can be seen in formula F in Figure 5.19.
With a naive approach, every step in which a robot is carrying an item would
cause the addition of a new entry to the evaluation schedule. Since all entries
of the schedule have to be re-evaluated in each step, this would mean that the
run time of evaluation steps increase approximately linearly over time. For

5.7. VALIDATION OF THE EVALUATION MECHANISM 195

F = forall(r: robot, forall(i: item,
implies(carrying(r, i), eventually(2000, xpos(r) > 3000))))

G = forall(r: robot, forall(i: item,
implies(carrying(r, i),

let(maxX : xpos(r) + 2000, eventually(2000, xpos(r) > maxX)))))

Figure 5.19: Example formulas for testing the efficiency of the property eval-
uation mechanism.

long-running experiments, this can obviously become problematic, especially
since this effect is amplified for formulas with nested temporal operators.

However, as this chapter described, SALMA’s property evaluation algo-
rithm uses an interval-based approach in which many goal schedule instances
can be handled together. In fact, for the formula F , the algorithm is able to
merge all goal instances to one single interval. This also means that the run
time for each evaluation step should approximately stay constant. In contrast
to this, formula G in Figure 5.19 is constructed in a way so that the property
evaluation algorithm cannot merge scheduled goals because the robot’s target
is set to a new value in each step through the binding of the variable maxX.
This effectively means that a new version of the property G is created in each
time step and has to be scheduled separately. As mentioned above, this means
that the runtime of evaluation steps for property G should increase over time.
To verify these expectations, two simulations were performed, with a length of
1000 steps each, and for each simulation only one of the two properties were
registered. In each step, all robots moved one step further along the X-axis
but no other event or action was performed during the simulation runs. The
durations of the property evaluation phase (∆T) in each step were measured
using the high-resolution timer provided by the operating system, which has
a resolution of 1 µs. Figure 5.20 shows the results for both simulation runs. In
the left diagram, which contains the graph for the evaluation of F , it can be
seen that the evaluation run-times for F stay almost constant between 0.4 ms
an 7.1 ms over the whole simulation. The peaks occur at random points and
have to be caused by internal effects within the ECLiPSe interpreter or the op-
erating system. On the other hand, the graph with the evaluation run-times
for G in the right diagram clearly shows the predicted linear growth.

Altogether, this example demonstrates the benefit of the interval-based
representation of the evaluation goal schedule that was described in this chap-
ter. However, it also reveals that for some cases, the algorithm is not able to
coalesce the schedule entries and therefore a growth of the schedule size cannot
be avoided, which leads to an increase of the evaluation step run-time. In cases

196 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

0 200 400 600 800 1000

step no.

0

1

2

3

4

5

6

7

8

∆
T

[m
s]

Evaluation times for F

0 200 400 600 800 1000

step no.

0

50

100

150

200

250

300

350

∆
T

[m
s]

Evaluation times for G

Figure 5.20: Evaluation run-times for formulas F an G from Figure 5.19.

when bounds of temporal operator are set very high like in F or G, this could
lead to significant performance problems. Some of these problematic cases
could certainly be mitigated by further optimization of the evaluation algo-
rithm. In general, however, the modeler remains responsible for avoiding these
situations by choosing appropriate time bounds, constraints, and conditions
for the checked formulas.

5.8 Summary

This chapter presented the most complex part of SALMA that can also be
regarded as one of the most significant contributions of this thesis, namely an
efficient evaluation mechanism for properties specified in the SALMA property
specification language (SALMA-PSL), which was introduced in Chapter 4 as
a first-order variant of time-bounded LTL that is tied closely to the situation
calculus. The chapter explained both the technical architecture and the al-
gorithmic design of the evaluation mechanism in detail. It was shown that
essentially two main ideas can be found at its foundation: the consequent use
of logic programming principles within the property evaluation algorithm and
an evaluation goal scheduling mechanism that uses temporal interval sequences
to represent the recorded history of property evaluation results in an efficient
way.

The chapter first introduced the overall structure of the property evaluation
process in SALMA and described its main goals as well as the challenges it
has to face. In particular, it was explained how the fact that the SALMA
simulation uses event scheduling with variable time advances imposes special
requirements for formula interpretation and for the way the evaluation system
keeps track of states for which a conclusive decision about the property result
cannot be made immediately.

Following this introduction, a specialized data structure called temporal
interval sequence was presented and defined formally together with a set of
operators that are used within the property evaluation algorithm. Addition-

5.9. RELATED WORK 197

ally, it was described how SALMA-PSL formulas are translated by the property
compiler to an intermediate language that is closer to the native Prolog exe-
cution structure and can therefore be interpreted more easily.

Based on this foundation, the evaluation goal scheduling mechanism was
described, which uses the temporal interval sequences defined before to keep
track of the property evaluation results for all passed time points. It was shown
how the interval-based representation together with a multi-layer reference
scheme and optimizations through term rewriting were used to achieve an
efficient solution for evaluation goal scheduling.

The property evaluation algorithm itself was presented in great detail. In
particular, it was shown how the temporal operators of the SALMA property
specification language can be handled by means of operations on temporal
interval sequences. As demonstrated in this chapter, this approach often allows
the evaluation module to calculate and store the result of a formula for many
time instances at once. It is obvious that this is much more efficient than
handling each instance separately.

Instead of a formal proof for the correctness of the introduced algorithms,
the chapter provided more comprehensible justifications for their design by
means of detailed interval diagrams. Additionally, it was explained how auto-
mated tests can be realized that systematically exercise all relevant parts of
the algorithm and validate the results. Finally, the efficiency benefits of the
algorithm’s interval-based representation of the evaluation state were demon-
strated by means of a short performance experiment.

5.9 Related Work

One of the core technical aspects of SALMA’s formula evaluation approach is
that the state of the algorithm is represented as a series of temporal intervals.
The data structures and the operations that are used in SALMA to query
and update the temporal data were defined rather rigorously in Section 5.3
of this chapter, mainly with the purpose of setting the stage for the later
discussion of the evaluation algorithm itself. To some extent, the temporal
interval sequences used in this chapter provide similar functionality as interval
trees [CLRS01, sec. 14.3], which are basically balanced binary search trees that
store intervals in their nodes. However, although the tree-based representation
would be more efficient in the general case, SALMA realizes interval sequences
by regular Prolog lists. This makes sense since data is always accesses in linear
order within each iteration of the SALMA evaluation algorithm, so the benefits
of using a balanced tree structure would not come into effect.

Another important part of the SALMA property evaluation module that
was described in this chapter is evaluation goal scheduling, i.e. the way the
evaluation algorithm keeps track of states for which the decision is still pend-
ing whether they satisfy a formula containing temporal operators. This aspect

198 CHAPTER 5. EFFICIENT PROPERTY EVALUATION

is typically not addressed in the description of statistical model checking ap-
proaches. Typically, like in [SVA04], the evaluation procedure is described in
a functional fashion in which the algorithm can traverse through the samples
by means of recursion. In contrast to this, it could be said that SALMA uses
a reactive approach since the evaluation progresses as a result of reactions to
events and actions that are submitted by the simulation engine in each step.
In this respect, the SALMA property evaluation mechanism actually bears re-
semblance to runtime verification and runtime monitoring approaches. There,
properties, which are often specified in temporal logics like LTL, are evaluated
against action and event traces that are generated by the system at runtime.
This means that a reactive evaluation structure is inevitable, and different
solutions have been designed for that. For instance, in [BLS11] the authors
describe a mechanism that synthesizes automata-based monitors for LTL and
timed LTL (TLTL) formulas. Similar to SALMA’s representation of the eval-
uation state of a subformula by means of three values (>, ⊥, and ?), they
actually use a three-valued temporal logic they call LTL3 that is able to ex-
press the fact it may not yet be possible to make a definite decision for a given
formula at the current time step. A different approach for runtime verification
is presented in [BGHS04], where rewriting rules are used to transform formu-
las in each step so that the resulting formulas capture the updated evaluation
state.

As mentioned before, one of the core benefits of SALMA’s first-order ver-
sion of LTL as property description language is that it allows expressing re-
quirements on a more concrete level than with the widely used propositional
style. As runtime verification is per definition concerned with the concrete
behavior of the real system, it is not surprising that there have been attempts
to lift the property specification languages in runtime verification from propo-
sitional temporal logics to first-order versions. For example, in [BKV13], the
authors describe a runtime monitoring approach that is able to detect violation
or compliance of monitored action sequences with respect to properties formu-
lated in a first-order variant of LTL. The monitor construction algorithm uses
an automaton type the authors call spawning automaton that extends is con-
structed similar to the generalized Büchi automaton (GBA) that is typically
used as a monitor for LTL. The spawning automaton adds a spawning function
that is triggered when an event occurs and creates sub-automata for quanti-
fied subformulas in which the bound variables are instantiated corresponding
to the attributes of the event. From this point on, incoming events are routed
through to these spawned sub-automata and the conjunction or disjunction
over their verdicts realize the quantification over all instances observed so far.
In this sense, these sub-automata are similar to entries on the evaluation goal
schedule of SALMA (cf. Section 5.5). However, although automata-based
monitoring is clearly less computationally expensive than SALMA’s evalua-
tion algorithm, the latter allows for much more flexibility, e.g. the integration
of custom Prolog functions or predicates. However, it could be worth inves-

5.9. RELATED WORK 199

tigating a combined solution in which monitors for suitable subformulas are
precompiled into automata to optimize the evaluation efficiency.

Chapter 6

Modeling Information
Transfer in Cyber Physical

Multi-Agent Systems

In this chapter, an extension of SALMA (and the situation calculus in general)
is presented which explicitly addresses one aspect that is particularly important
for cyber-physical [Lee08] multi-agent systems, namely the distributed gather-
ing and transfer of information. Agents not only have to continuously sense
their environment, but also share these readings with other agents, acquire
information of others, and participate in coordination activities. In the cyber-
physical context, these information transfer processes are subject to stochas-
tic effects, e.g. due to sensor errors or unreliable communication channels.
Furthermore, accuracy and timing of information transfer can strongly influ-
ence the behavior of the whole system. In particular, the efficacy of mecha-
nisms for self-adaptation or optimization typically degrades when certain time-
constraints are violated or the accuracy of sensors is insufficient.

Using pure logical formalisms like the basic situation calculus for describing
such scenarios results in rather verbose and tedious representations that are
not practicable in more complex cases. What is needed instead are high-level
constructs that establish a bridge between the underlying logical semantics
and the typical requirements for modeling information transfer in multi-agent
CPS. Although higher-level extensions on top of the situation calculus have
been designed for related aspects like sensing and knowledge (e.g. [SL03]), there
has, to the author’s knowledge, not been a detailed reflection of information
propagation in CPS in the context of the situation calculus.

Therefore, in the context of this thesis a generic model of information trans-
fer was developed that is based on a stochastic timed version of the situation
calculus and allows capturing a wide range of effects that may be imposed on
information transfer processes. Additionally, a set of macro-like abstractions

201

202 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

for common information transfer scenarios within CPS were defined, such as
message passing or sensor data propagation. This creates a concise interface
for the modeler that hides the stochastic details of information propagation
but makes them fully accessible in simulation and verification.

In the following sections, the scene is first set by means of an example from
the e-mobility domain, namely the automatic parking lot assignment scenario
that was already mentioned shortly in the introduction of this thesis. The main
contribution of this chapter starts in Section 6.2, where the generic model for
information transfer is introduced and it is described how this model is mapped
to the situation calculus. After that, Section 6.3 defines several extensions
to SALMA’s modeling language that provide pragmatic abstractions for the
information transfer model. This is continued in Section 6.4, where the focus
is set on the use of SALMA for statistical model checking in the context of
information transfer processes. As an evaluation of the presented approach,
Section 6.5 discusses its application to the parking lot assignment example
that was introduced in the introduction of this thesis and describes experiences
gained during first concrete experiments.

Remark: The content of this chapter has mainly been taken over from
[KB16] which is the result of a collaboration with Tomáš Bureš during his stay
at the PST chair. Besides giving valuable advice on the structure of that paper,
Tomáš provided background information about the e-mobility case study that
was used as an example and about cyber-physical systems in general. Addition-
ally, he contributed to the elicitation and description of related work.

6.1 Running Example: Optimized Parking Lot
Assignment

As a running example to illustrate the information transfer extension of SALMA,
a scenario was used that was derived from the e-mobility case-study of the EU
project ASCENS 1 that has been described before, e.g., in [B+13]. The case
study focuses on a scenario in which electric vehicles compete for parking lots
with integrated charging stations (PLCS) in an urban area. The goal is to
find an optimal assignment of PLCS to vehicles. Technically, the assignment
is performed by an agent called super-autonomic manager (SAM) that acts as
a central communication hub for vehicle requests and monitors the capacity
of all PLCS in the system. Figure 6.1 shows an overview of the communi-
cation protocol between all agent roles. The basic idea is that vehicles send
assignment requests to the SAM, including a start time, a duration, and a list
of preferred PLCS that is compiled by the vehicle’s on-board computer. The
SAM tries to find optimal suggestions for parking lot assignments, based on
the knowledge about driver’s intentions, and on occupancy information that is

1www.ascens-ist.eu

www.ascens-ist.eu

6.2. A GENERIC MODEL FOR INFORMATION TRANSFER 203

sent repeatedly by the PLCS. The suggested PLCS assignments are sent back
to the vehicles, who in turn send reservation requests to the corresponding
stations. Each PLCS checks again whether reservations can be granted and
responds accordingly. This two-stage protocol allows reservations to be made
even when the SAM is not reachable. In this case, vehicles would simply send
out requests to the PLCS that is closest to the intended destination and a
PLCS would grant reservations on a first-come first-served basis.

In fact, true to the distributed CPS principle, all the agents (vehicles,
PLCS, SAM) are autonomous and communicate via some wireless data trans-
mission infrastructure like a VANET or 3G/4G network. This implies that
neither transmission delays nor the possibility of errors can be neglected. At
the same time, timing clearly plays an important role in the scenario described
above. First of all, the reservation service would simply not be accepted if the
delay between reservation requests and reservation responses was too high.
Also, the communication timing affects the convergence of the optimization,
thus it directly influences the functionality of the distributed CPS.

PLCS
SAM

1.:Oplcs-prefs,Ostart,OdurationO

2.:Oplcs-assignment

3.:Os
tart,Od

uration

4.:OO
KO|OF

ULL PLCS
FOfreeOslots

FOfreeOslots

Figure 6.1: Optimized parking lot assignment scenario.

6.2 A Generic Situation Calculus Model for
Information Transfer

In order to use SALMA for analyzing scenarios like the one described in Sec-
tion 6.1, concepts like sensing and communication have to be mapped to
SALMA’s modeling language framework. As a first step, a generic model
for information transfer in the situation calculus is developed. This model is
able to describe both sensing and inter-agent communication in a unified way
and allows capturing stochastic effects with a variable level of detail. This
section introduced the main principles of this model and outlines how they
are expressed by means of situation calculus concepts. After that, Section 6.3
shows how the model is actually used in SALMA through a set of high-level
language constructs that facilitate addressing the main interaction patterns in
CPS.

204 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

idle
time = T0

f(~x) = y(0)

domain(Message) = Ω

preparing
time = T0

f(~x) = y(0)

spec(m) = ~x@c
content(m) =?

domain(Message) = Ω ∪ {m}

preparing
time = T1 = T0 +Dp

f(~x) = y(Dp)

spec(m) = ~x@c
content(m) =?

domain(Message) = Ω ∪ {m}

transferring
time = T1

f(~x) = y(Dp)

spec(m) = ~x@c
content(m) = yi = y(Dp) + ε1
domain(Message) = Ω ∪ {m}

transferring
time = T2 = T1 +Dt

f(~x) = y(Dp+Dt)

spec(m) = ~x@c
content(m) = yi

domain(Message) = Ω ∪ {m}

finished
time = T2

f(~x) = y(Dp+Dt)

g(a2, ~x) = ya = yi + ε2
domain(Message) = Ω
tstampf (a1, ~x) = T2

initiateTransfer(a1, c, ~x)
(τ∗ ◦ tick ◦ τ∗)Dp

...

(τ∗ ◦ tick ◦ τ∗)Dt

...

transferStarts(m, ε1)

(sensor) error
transferEnds(m, ε2)

(transmission) error

p
rep

ara
tio

n
p

h
a

se
tra

n
sfer

p
h

a
se

Figure 6.2: Overview of the general information transfer model.

In general, the approach is based on the notion that information is trans-
ferred from a source fluent to a destination fluent that is directly accessible
by the receiving agent. The source fluent can either represent a feature of
the physical world or data created by some artificial process, e.g. a message
queue. A connector is a virtual entity that defines modalities of an informa-
tion transfer process, including the fluent endpoints and the types and roles
of participating agents. The messages that are transmitted over connectors
are treated as first-level model citizens by representing them as entities of the
dedicated sort Message. Both the content and the state of each message are
stored separately by a set of auxiliary fluents and evolve independently as re-
sult to several types of events. This representation provides great flexibility
for the realization of arbitrary propagation structures.

In the following, the information transfer model will first be introduced
from a more abstract perspective as a combination of two general phases of
the information propagation. Later, Section 6.2.2 will describe more concretely
how this model is actually integrated into SALMA.

6.2.1 Information Transfer Phases

Based on the foundational concepts described above, two phases of information
transfer are distinguished, which is visualized in Figure 6.2:

A) The preparation phase starts when an agent (a1 in Figure 6.2) initiates
the information transfer (sensing or communication). For that, the agent
specifies a connector (c) and a parameter vector (#»x) that fully qualifies the
information source and, in case of a point-to-point transmission, contains
the identity of the receiving agent. In response to this action, a new mes-
sage (m) is created and initialized with the transfer metadata but without
content yet. Depending on the concrete scenario, the actual transfer can

6.2. A GENERIC MODEL FOR INFORMATION TRANSFER 205

be delayed for various reasons, for instance because sensors or communica-
tion devices have to be initialized first. This means that there may be an
arbitrary sequence of time steps (tick events), which could be interleaved
with actions and events (denoted as τ in Figure 6.2) that change the infor-
mation source (f) but are not recognized by the agent. Hence, after that
sequence, the actual value that is eventually used as message content can
deviate from the value of the information source that was present at the
time when the transfer was initiated.

B) The transfer phase follows the preparation phase and begins when a
transferStarts event occurs. At that point, the current value of the source
fluent f is fixated as the content of the message. This message is now
transferred to its destination over the connector c whose stochastic char-
acteristics are specified within the simulation model. Like above, this phase
may take an arbitrary amount of time during which unrecognized or unre-
lated actions and events occur. Eventually, a transferEnds event finishes
the transfer process. Thereupon, the destination fluent instance g(a2,

#»x)
is updated and the message entity is removed. This moment, as well as the
starting points of both phases, are memorized in timestamp fluents that
can, for instance, be used to reason about the age of a measurement.

The diagram in Figure 6.2 omits the fact that, due to malfunctions and
disturbances in the environment, the transfer could fail at any time, which
would be represented by an additional event transferFails. Additionally, the
transfer process may be affected by stochastic errors that eventually cause the
received value to deviate from the original input, which is reflected by the error
terms ε1 and ε2 in the events transferStarts and transferEnds.

In general, both stochastic errors and delays are governed by a set of prob-
ability distributions that are used during simulation to decide when the events
mentioned above occur and which errors they introduce. By adjusting these
parameters, a wide variety of different scenarios can be modeled, ranging from
nearly perfect local sensing to wireless low-energy communication with inter-
ferences. This topic is examined further in Section 6.2.4.

6.2.2 Information Transfer Paradigms

The generic abstract model presented above contains several degrees of free-
dom, in particularly with respect to how the content of messages is set, and
how the recipients are determined. These variation points have to be handled
according to the particular kind of information transfer. In the following, four
classes of information transfer are presented which cover the typical scenarios
in cyber-physical multi agent systems. To make this section more comprehen-
sible, the situation calculus semantics of each class is described in a reduced
form by means of annotated state diagrams. A more detailed axiomatization
will be given later in Section 6.2.5.

206 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

Figure 6.3: Unicast channel based communication.

Generally, the following basic types of information transfer are identified:

1. Channel-based communication: An agent actively sends data to one
or several other agents. The well-known channel paradigm fits well to the
asynchronous communication style predominant in CPS and to the rela-
tional way of identifying information in the situation calculus. As usual, a
distinction is made between the following communication schemes:

a) Unicast (point-to-point): Figure 6.3 shows a unicast message transfer
from agent src to agent dest via channel c. Here, a message is sent from
the source to a single destination that is specified when the transfer is ini-
tiated. In the situation calculus model, this means that the specification
of the message spec(m) is set when the message is created. This specifi-
cation includes all relevant static information about the message, namely
the channel (c), the message type (uc for unicast), source and destina-
tion, as well as source and destination roles (rs and rd, respectively)
and the original message content (msg). The actual transferred content
(fluent Ctrans) of this message is set when the transfer starts, possibly
tampered by an error ε originating in the preparation phase. When the
message transfer ends successfully (event transferEnds occurs), a tuple
is added to the channel’s incoming message queue (queuein). This mes-
sage tuple identifies source and destination, their roles with respect to
the channel definition, and the eventually received message content that
again might incorporate an error originating from the transfer phase. In
contrast, when the transfer fails (event transferFails occurs) either dur-
ing the preparation or transfer phase, the information is lost. In both
cases, the message entity is removed from the model.

6.2. A GENERIC MODEL FOR INFORMATION TRANSFER 207

Figure 6.4: Multicast channel based communication.

b) Multicast: here, the destination of the message transfer is not speci-
fied directly when the message is sent but instead via some shared ad-
dress property. This case is shown in Figure 6.4. Other than in the
unicast case, the specification of the source message m does not con-
tain the destination. Instead, the destinations are chosen on the arrival
of a transferStarts event by evaluating the channels ensemble predicate
(see Section 6.2.3). For each selected recipient, the source message is
replicated and hence transferred on an independent path. In particular,
terminating messages (transferEnds and transfer) occur independently
for each message, which allows capturing phenomena that are caused by
lack of synchronization or deviating information among agents.

2. Generalized sensing: an agent acquires information about a feature of
the world that can be assessed through sensing. This can be refined further
into local (or direct) and remote sensing:

a) Direct (local) sensing: the querying agent can produce the desired
result on its own, although the sensing process may take a considerable

208 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

Figure 6.5: Local sensing.

amount of time and can be disturbed by internal or external factors.
In Figure 6.5, agent ag uses its local sensor sen to make a measurement.
Different from the communication models explained above, the trans-
ferred content of the sensor message (Sentrans) is not specified at the
creation of the message but retrieved from the sensed fluent (fsen) when
transferStarts occurs. Also, the received sensor values are not written to
a queue like messages but are used to update a local sensor view fluent
(sen in Figure 6.5) that the agent can access.

b) Remote sensing: the agent cannot observe the desired information
itself by using its local sensors but has to gather information from one
or several other agents.
The remote sensing abstraction reflects the delays and disturbances of
the involved communication processes but abstracts away their techni-
cal details. In particular, both for direct and remote sensing, the most
recently retrieved value is made available in a local fluent that can be ac-
cessed without considering the underlying infrastructure. In SALMA’s
situation calculus model, remote sensing is realized very similar to reg-
ular intentional multicast message communication as described above.
Figure 6.6 shows the transmission of data from the local sensor sen of
agent src to recipients within the ensemble that is defined for the re-
mote sensor rsen. The first main difference from multicast message
transmission is that the transferred content is not defined explicitly by
the sending agent but instead taken from the local sensor (sen) that is
declared as the information source. Furthermore, the ensemble is speci-
fied from the perspective of the receiving agents. After the destination
messages have been created, the rest of the transfer is identical to the
multicast case from Figure 6.4.
As mentioned above, remote sensing tries to hide the communication

6.2. A GENERIC MODEL FOR INFORMATION TRANSFER 209

Figure 6.6: Transmission of remote sensor data.

infrastructure and therefore present the acquired data similar to local
sensor data. This is achieved with the remote sensor view, a fluent
that keeps the most recent value from each source. The actualization of
this fluent is shown if Figure 6.7. It can be seen that this update step
has to be performed actively by the receiving agents. This is intended
as it resembles the asynchronous nature of remote sensing and allows
capturing effects caused by delayed updates, etc. However, this aspect
is by default hidden from the modeler as a background process that is
installed automatically according to the remote sensor declarations in
the model (see Section 6.3.3).

6.2.3 Predicate-based Addressing

An important concern that arises in modeling multi-agent information prop-
agation is how the set of receiving agents is determined. In many cases, it is
either impossible or impracticable to do this statically. A particularly elegant
alternative, supported by SALMA, is predicate-based addressing [L+14]. In this
approach, the set of recipients for each information transfer is determined by
a characteristic ensemble predicate that is evaluated for each (properly typed)

Figure 6.7: Reception of remote sensor data.

210 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

agent pair. An ensemble predicate may describe intentional selection criteria
as well as intrinsic constraints imposed by agent attributes or the environment.
For instance, the Prolog code in Figure 6.8, which is taken from the e-mobility
example, declares an ensemble for the multicast channel assignment. The
predicate selects all super-autonomous manager agents within a given maxi-
mum distance from a vehicle as recipients of messages that this vehicle sends
on the channel. One intuitive interpretation of this “ensemble” would be that is
simply reflects the maximum transmission range of the communication devices
with which the vehicles are equipped.

6.2.4 Influence of the Choice of Probability Distributions

Although the core information transfer mechanisms of SALMA are to a large
extend determined by situation calculus axioms, the concrete characteristics
of the model are governed by the choice of probability distributions for the
occurrence of the events transferStarts, transferEnds, and transferFails.
In Section 3.4.2 it was already shown that the SALMA framework provides
access to common predefined distributions like Gaussian or exponential, but
also allows using custom distributions by using Python functions that have full
access to the current system state. In particular, this allows defining situation-
dependent distributions for the events involved in information transfer pro-
cesses. For example, a reasonable choice for the duration of the transmission
of messages with variable sizes would be a Gaussian distribution with a mean
that is derived from the package size and the currently available channel band-
width. If the channel and the size of messagem are denoted with chan(m) and
size(m), and if it is assumed that there is a function currentBandwidth(c, S)
that returns the currently available bandwidth capacity of channel c at situ-
ation S, then a distribution for the delay of the transferEnds event could be
given as in (6.1) below.

P (∆T = δt | transferEnds(m), S) ∼ N (µ, σ2)

where µ =
size(m)

currentBandwidth(chan(m), S)

and σ = Fµ

(6.1)

ensemble(assignment, Vehicle, SAM, S) :-
distance(Vehicle, SAM, D, S), D < max_comm_dist.

Figure 6.8: Example for an ensemble predicate.

6.2. A GENERIC MODEL FOR INFORMATION TRANSFER 211

The factor F is used to express the standard deviation of the delay as a
linear function of the mean. This could be a constant value based on experience
or a function of factors like the current message load of the communication
link.

The chosen value of δt is used to schedule the transferEnds event according
to Definition 3.27 in Section 3.6. Before that, however, a choice is made
between transferEnds and transferFails according to another distribution that
represents the likelihood of failures. Additionally, the error amount ε that
is introduced by transferEnds is sampled from a third distribution. As the
preparation phase is treated analogically, the whole information transfer of
a message is technically governed by six probability distributions altogether.
This creates a large variety of configuration choices and allows modeling a
wide range of scenarios. While setting up the distributions for a simulation
from scratch can clearly become a devious task for more complex models,
the SALMA framework already offers several abstractions and pattern-based
solutions that can reduce the effort significantly. In the future, these may
be extended with additional pattern-based configuration macros that encode
domain knowledge, experience, or empirical data.

6.2.5 Axiomatization of the Information Transfer Model

While the use of state transition diagrams above helped to present a compre-
hensible overview of the information transfer model, it has to be formalized
as situation calculus axioms that can be integrated into SALMA system mod-
els. This axiomatization is mainly based upon message entities whose state
and associated content is described by a set of fluents that will be defined be-
low. Additionally, each message carries static meta-information that is defined
through a set of constants that are initialized when the message is created.

Definition 6.1 (Message meta-data). Let m be a message entity. The meta-
data that describes the static properties of m is defined by the following con-
stants:

type(m): Indicates whether m is a unicast message, a
multicast source or destination message, a lo-
cal sensor message or a remote sensor source
message. This is encoded by the value of
type(m) being one of unicast, multicastSrc,
multicastDest, sensor, or remoteSensorSrc.

src(m): The agent that acts as the source of the mes-
sage.

dest(m): The agent that is determined as the recipient
of the message m.

212 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

locSen(m): For a remote sensor message m, locSen(m) con-
tains a pointer to the fluent that represents the
local sensor view from which the transferred in-
formation originates.

srcMsg(m): For a multicast destination message, srcMsg(m)
points to the corresponding multicast source
message.

channel(m): The channel on which a message is transmitted.
For remote sensor messages, this corresponds to
the name of the remote sensor.

sensor(m): For a local sensor message m, refers to the sen-
sor name that is also the name of the fluent that
acts as the local sensor view of the sensor.

srcFluent(m): For a local sensor message, contains a reference
to the source fluent that represents the sensed
feature of the world.

srcRole(m): For a channel-based message contains the role
of the sender.

destRole(m): For a channel-based message contains the role
of the receiver.

oppositeRole(c, r): For a channel c and a role r, oppositeRole(c, r)
denotes the other role that is defined in the
channel declaration of c.

The representation of messages as entities requires that they can be created
and removed dynamically as effect to actions and events. Unlike traditional
realizations of the situation calculus, SALMA supports this by using a special
(meta-)fluent domain(sort) to store the sets of entities that manifest the cur-
rent domains of all sorts in the model. Creation and destruction of entities can
therefore be controlled through regular successor state axioms. For the sort
Msg, which represents the type of all messages, this is given in the following
definition.

Definition 6.2 (Active message domain). Let Agents be the set of all agents
that are defined in the system. The domain of the sort Msg, which represents
the set of all messages that currently exist in the system, is defined by the

6.2. A GENERIC MODEL FOR INFORMATION TRANSFER 213

following SSA:

domain(Msg, do(a, s)) = D ≡ a = newMsg(m) ∧D = domain(Msg, s) ∪ {m}∨
(∃m, ε. Φ1(a,m, ε)

∧ ((type(m) = multicastDest ∧D = domain(Msg, s)\{m, srcMsg(m)})
∨ (type(m) 6= multicastDest ∧D = domain(Msg, s)\{m})))

∨ (∃m, ε. Φ2(a,m, ε)

∧D = domain(Msg, s)
∪ {m′ | d ∈ Agents ∧multicastCopy(m′,m, d)

∧ ensemble(channel(m), src(m), d)})
∨ ((@m, ε. Φ1(a,m, ε) ∨ Φ2(a,m, ε)) ∧D = domain(Msg, s))

(6.2)

with

Φ1(a,m, ε) ≡ a = transferEnds(m, ε) ∨ a = transferFails(m) (6.3)
Φ2(a,m, ε) ≡ a = transferStarts(m, ε) (6.4)

∧ type(m) ∈ {multicastSrc, remoteSensorSrc}

In the definition above, the action newMsg actually represents a creation
mechanism whose technical details are slightly different. This is due to the
fact that when the message is created in an agent process, a new name for the
message entity has to be created and returned to be used in the remainder of
the procedure.

The predicate multicastCopy that is used in the definition above relates a
source message sent on a multicast or remote sensor channel to a copy of this
message for a given destination.

Definition 6.3 (Multicast copy). Let m be a message that is transferred on a
multicast or remote sensor channel. Thenm′, the copy ofm that is transmitted
to the destination d, is defined by the following predicate:

multicastCopy(m′,m, d) ≡ channel(m) = channel(m′)

∧ type(m′) = multicastDest ∧ dest(m′) = d ∧ src(m) = src(m′)

∧ srcMsg(m′) = m

∧ destRole(m′) = oppositeRole(channel(m), srcRole(m))

(6.5)

214 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

The life cycle model of a message is realized by two fluents that act as state
flags.

Definition 6.4 (Message life cycle). The state of a message is defined by two
separate mutual exclusive boolean fluents awaitingTransfer and transferring
that define whether it is waiting to be transferred or currently being transfered.
The state idle in the diagrams above corresponds with both fluents being false.
If awaitingTransfer is true and transferring is false, this encodes the state
preparing from before. Finally, transferring being true represents the state of
a message during the actual transfer process. This is realized by the following
successor state axioms.

awaitingTransfer(m, do(a, s)) ≡ a = requestTransfer(m)

∨ ((@ε. a = transferStarts(m, ε)) ∧ a 6= transferFails(m) ∧
awaitingTransfer(m, s))

(6.6)

transferring(m, do(a, s)) ≡ (∃ε. a = transferStarts(m, ε))
∨ ((@ε. a = transferEnds(m, ε)) ∧ a 6= transferFails(m) ∧

transferring(m, s))
(6.7)

The action requestTransfer is the entry point with witch agents initiate the
information transfer. Therefore, it can only be executed when the message is
in the idle state.

Poss(requestTransfer(m), s) ≡ ¬awaitingTransfer(m, s)
∧ ¬transferring(m, s)

(6.8)

The actual start of the information transfer is marked by the event
transferStarts.

Poss(transferStarts(m, ε), s) ≡ awaitingTransfer(m, s) (6.9)

A message has been transferred successfully when transferEnds occurs.
However, source messages of multicast or remote sensor transmissions are not
ended explicitly this way but are removed when all of their multicast copies
have arrived or failed (cf. Definition 6.2).

Poss(transferEnds(m, ε), s) ≡ transferring(m, s)

∧ type(m) /∈ {multicastSrc, remoteSensorSrc}
(6.10)

6.2. A GENERIC MODEL FOR INFORMATION TRANSFER 215

An information transfer can fail at any time after the transfer has been
requested. For multicast and remote sensor transfers, the same argument
holds as for transferEnds.

Poss(transferFails(m), s) ≡ (awaitingTransfer(m, s)
∨ transferring(m, s)) ∧ type(m) /∈ {multicastSrc, remoteSensorSrc}

(6.11)

Besides the state of a message, its content has to be encoded in the situation
calculus, too. For that, it is necessary to distinguish between channel-based
information transfer processes and sensors.

Definition 6.5 (Channel-based message transmission content). The content
of active messages that are channel-based (including remote sensors) is defined
by the fluent Ctrans whose content is set when a transferStarts event for the
message occurs. For remote sensors, the content is received from the corre-
sponding source sensor, i.e. from the fluent that is referenced by the locSen
property of the message. For directly sent messages, the content is received
from the message constant Cout that is set during a Send statement (see Sec-
tion 6.3.2).

∀m, s. domain(Msg, s) =⇒ Ctrans(m, do(a, s)) = y ≡(
∃ε.a = transferStarts(m, ε) ∧ (

(type(m) = remoteSensorSrc

∧ locSen(m) = fl

∧ y = fl(src(m), s) + ε)

∨ (type(m) 6= remoteSensorSrc

∧ y = Cout(m, s) + ε))
)

∨
(
@ε.a = transferStarts(m, ε)
∧ y = Ctrans(m, s)

)

(6.12)

For multicast destination copies, it holds that their content is always equal
to the content of the original message. Deviations that are inflicted on individ-
ual message paths are aggregated when the message arrives at the destination
(cf. Definition 6.6).

∀m.∀s. type(m) = multicastDest ∧m ∈ domain(Msg, s) =⇒
Ctrans(m, s) = Ctrans(srcMsg(m), s)

(6.13)

216 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

At the receiving side of a channel-based information transfer process, mes-
sages arrive at queues from which they can be extracted in agent processes
using the Receive statement (see Definition 6.12).

Definition 6.6 (Incoming message queue). Let c be the channel on which a
message m is transferred, then for each agent, an incoming message queue for
the channel c is defined by the following axiom:

queuein(c, do(a, s)) = y ≡
(∃m, ε. a = transferEnds(m, ε) ∧ channel(m) = c

∧ y = {msg(src(m), srcRole(m), dest(m), destRole(m),

time(m, s), Ctrans(m, s) + ε)} ∪ queuein(c, s)

∨ ((∃ag, r. a = cleanQueue(ag, c, r))
∧ y =

{
e | e ∈ queuein(c, s) ∧ dest(e) 6= ag ∧ destRole(e) 6= r

}
)

∨ ((∀m, ε. a 6= transferEnds(m, ε)) ∧ (∀ag, r. a 6= cleanQueue(ag, c, r))
∧ y = queuein(c, s))

(6.14)

Here, the received content of the message including the error term is given
by Ctrans(m, s) + ε. This received value and other relevant information of the
message, namely source, destination, the roles of sender and receiver, and a
time stamp, are encapsulated in a term with the functor msg and appended
to the message queue. As a convenience for referring to the parts of these
terms, a dot notation with the structure msg .«field»is used below, i.e. msg .src,
msg .srcRole, msg .dest , and so on.

The action cleanQueue is performed by the receiving agent as part of the
Receive statement (see Definition 6.12) to remove already received messages.
As one would expect, cleanQueue is idempotent and can be performed at any
time, i.e.

Poss(cleanQueue(ag, c, r), s) ≡ > (6.15)

For sensor-based information transfer processes, receiving agents access a
fluent that acts as a local view which contains the most recent sensor value.

Definition 6.7 (Local sensor view). Let sen be the name of a local (direct)
sensor. Then the model contains a corresponding fluent with the same name

6.2. A GENERIC MODEL FOR INFORMATION TRANSFER 217

that stores the result of the last measurement as defined below. The notation
«sen» is used below as a placeholder for the actual sensor name.

«sen»(ag, do(a, s)) = y ≡
(∃m, ε. Φ(ag, a,m, ε) ∧ y = sentrans(m, s) + ε)

∨ ((@m, ε.Φ(ag, a,m, ε)) ∧ y = «sen»(ag, s))

(6.16)

where

Φ(ag, a,m, ε) ≡a = transferEnds(m, ε) ∧ sensor(m) = «sen»
∧ src(m) = ag

(6.17)

The fluent sentrans that appeared in 6.16 stores the information that is
actually transferred during sensing. Its value is a snapshot of the source fluent
content at the time when the transfer starts.

Definition 6.8 (Transmitted local sensor data). The information that is trans-
ferred by a local sensor is stored in the fluent sentrans.

∀m, s. m ∈ domain(Msg, s) =⇒ sentrans(m, do(a, s)) = y ≡
(∃ε.Φ(m, a, ε) ∧ f = srcF luent(m)

∧ y = f(src(m), s) + ε)

∨ ((@ε.Φ(m, a, ε)) ∧ y = sentrans(m, s))

(6.18)

where

Φ(m, a, ε) ≡ a = transferStarts(m, ε) ∧ type(m) = sensor (6.19)

To achieve a unified transparent view on direct and remote sensing, the
most recent values that are acquired by remote sensors are made accessible
through a fluent that can be treated in the same way as the fluent view of
local sensors.

Definition 6.9 (Remote sensor view). Let «rsen» be the name of a remote
sensor and let as be an agent that has a type which is eligible as a source for

218 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

«rsen». Then a fluent with the name «rsen» exists that contains the most
recently received value. This fluent is defined by the following SSA:

«rsen»(ad, as, do(a, s)) = y ≡
(a = updateRemoteSensor(ad, «rsen»)∧
∃msg . (msg ∈ queuein(«rsen», s)
∧msg .dest = ad ∧msg .src = as ∧ y = msg .content

∧ (@msg ′. msg ′ ∈ queuein(«rsen», s) ∧msg ′.time > msg .time))

∨ (a 6= updateRemoteSensor(ad, «rsen») ∧ y = «rsen»(ad, as, s))

(6.20)

Here, msg and msg′ are message terms as specified in Definition 6.6.
The functions src and dest are used in this context to extract the source
and the destination from this term. Similarly, content accesses the content
part of the message term and tstamp the message’s time stamp. The action
updateRemoteSensor is called automatically by background processes of the
agents that own remote sensors (see Section 6.3.3).

6.3 Information Transfer in SALMA Models

In order to turn the generic information transfer model into a practical solution
for modeling distributed cyber-physical systems, SALMA provides high-level
constructs that reflect the way a modeler normally thinks about information
transfer processes in a CPS. These constructs can be seen as macros that
are internally mapped to situation calculus axioms, agent process fragments,
and probability distributions. Altogether, this creates an instantiation of the
generic schema from Section 6.2 that integrates seamlessly with the rest of
the model. In the remainder of this section, the most important elements of
this high-level language are introduced, and their integration into the gen-
eral simulation semantics of SALMA and the information transfer model from
Section 6.2 are explained.

6.3.1 Connector Declaration Macros

SALMA’s high-level language support for communication and generalized sens-
ing spans across several sections of the model. First, all connectors, i.e. local
sensors, remote sensors, and channels are declared in the domain model. This
is done with the Prolog predicates channel, sensor, and remoteSensor, that
are shown in Figure 6.9.

For channel, the modeler specifies a name for the channel, two roles with
associated agent sorts, and the channel’s mode, i.e. whether it is a unicast or

6.3. INFORMATION TRANSFER IN SALMA MODELS 219

channel(«name», «role1»:«sort1», «role2»:«sort2», «mode»).
sensor(«name», «ownerSort», «srcFluent»).
remoteSensor(«name», «ownerSort», «localSensor»,

«localSensorOwnerSort»).

Figure 6.9: Connector declaration predicates.

channel(assignment, veh:vehicle, sam:plcssam, unicast).
channel(reservation, veh:vehicle, plcs:plcs, unicast).
sensor(freeSlotsL, plcs, freeSlots).
remoteSensor(freeSlotsR, sam, freeSlotsL, plcs).

Figure 6.10: Connector declarations in the e-mobility example.

a multicast channel. All channels are bi-directional and the roles are used to
distinguish message queues.

The sensor declaration defines the name of the local sensor, the sort of
agents that own this sensor, and the fluent that represents the actual informa-
tion source. This fluent is supposed to be qualified solely by the owning agent,
i.e. it must be a function of the form Agent × Situation → T with T being
an arbitrary type. Similarly, the remoteSensor declaration also establishes a
sensor for the owning agent type. However, instead of connecting it to a fluent,
it defines a link to a local sensor that is owned by another agent. Both local
and remote sensor declarations add fluents of the same name to the model that
provide a current view on the acquired information (see Section 6.2.2). Addi-
tionally, a time-stamp fluent is installed for each sensor that records the time
of the latest measurement or remote data retrieval, respectively. Finally, the
declarations for both local and remote sensors are used to automatically install
background processes that hide the sensing infrastructure (see Section 6.3.3).

An example for the use of the predicates described above can be found
in Figure 6.10 that contains all connector declarations from the e-mobility
example.

Here, assignment is defined to be a channel over which agents of the sort
vehicle can communicate directly with agents of the sort plcssam in order
to request and receive a PLCS assignment. The other channel reservation
is used by vehicles to request slot reservations from PLCS agents and by the
latter to acknowledge or deny these requests. The sensors of type freeSlotsL
allow PLCS agents to count the current number of free slots at their station,
i.e. access the fluent freeSlots. This information is propagated to the SAM
via remote sensors of type freeSlotsR that effectively install channels and

220 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

pprocreq = Procedure([
Receive("assignment", "sam", "assignment_requests"),
Assign(assignments, processRequests),
Iterate(assignments, [v, p],

Send("assignment", Term("aresp", p), "sam", v, "veh"))])
p1 = TriggeredProcess(pprocreq,

"message_available", [SELF, "assignment", "sam"])

Figure 6.11: Assignment request processing procedure in the e-mobility exam-
ple.

periodic background processes at each SAM and PLCS agent which transmit
and receive the content of freeSlotsL, respectively.

6.3.2 Specialized Process Elements For Information Transfer

With the necessary declarations in place, the communication and sensing in-
frastructure can be used in agent processes by means of several special state-
ments of the SALMA process definition language. As an example, the process
p1 shown in Figure 6.11 is installed on PLCSSAM agents in the e-mobility
example. It handles incoming requests from vehicles, calculates optimal as-
signments, and sends them back to the vehicles.

The process p1 is executed when messages are available at the SAM’s in-
coming message queue of the assignment channel. First, all available assign-
ment requests are retrieved from the queue with a call to Receive which stores
a message list in the variable req. The actual assignment selection logic is in-
tegrated by means of an external Python function processRequests, which
is not presented here for the sake of brevity. Through the Assign statement,
the function is called with the received request list as a parameter and the
function’s result is stored in the variable assignments. One of the most im-
portant inputs for this optimization is the number of free slots at each PLCS.
This information is made available by the remote sensor freeSlotsR from
above that transparently gathers occupancy information from all PLCS (see
Section 6.3.3). The result of processRequests, stored in assignments, is a
list of tuples that assign each requesting vehicle to a PLCS. The agent pro-
cess iterates over this list and sends to each vehicle v in that list a response
term (functor aresp) that contains the PLCS identifier which is stored in the
iteration variable p.

Based on the definitions from Section 3.6 and Section 6.2, the process
elements used above can be defined accurately within the context of SALMA’s
simulation semantics and the situation calculus for information transfer. The

6.3. INFORMATION TRANSFER IN SALMA MODELS 221

most basic case is sending messages on a unicast channel like assignment from
the example above.

Definition 6.10 (Unicast send). Let as be an agent and m a fresh message.
Also, let c, msg, dest, rs, and rd be terms that can be evaluated at the current
simulation state to a unicast channel, a viable message term, an agent, and
roles defined for channel c, respectively. Furthermore, let the value of spec(m)
be a tuple term that encodes the content of the message meta-data defined in
Definition 6.1. Then, the following rule defines the interpretation of the Send
statement:

〈{(pid, as,Send(c,msg, rs,dst, rd) ◦ σ, η)} ∪ Prun,
Pact, Pwait, Pidle, Act, Evt,F〉

−→ 〈{(pid, as, Act(requestTransfer(m)) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle,
Act, Evt,F ′〉

where F ′ = F [domain(Msg) 7→ Jdomain(Msg)KF ∪ {m},
spec(m) 7→ 〈JcKF ,η, as, JrsKF ,η, JdstKF ,η, JrdKF ,η, JmsgKF ,η〉]

The result of the rule above, i.e. the direct interpretation of the Send
statement, does not yet capture the state that will eventually be reached in the
simulation step in which the message is sent. Instead, this resulting state has
to be derived using the rules from the simulation semantics of Section 3.6 and
the axioms from Section 6.2.5. For the Send statement, the important aspect
is that the state of the created message eventually ends up in the preparing
state (awaitingTransfer(m) = >) within the same simulation step.

Lemma 6.1. Let A −→n B denote the proposition that B results from A
through n applications of semantic rules. Then, with m, c, msg, rs, dst, rd,
and F ′ defined as in Definition 6.10, the following holds:

∃n so that
〈{(pid, as,Send(c,msg, rs,dst, rd) ◦ σ, η)} ∪ Prun,

Pact, Pwait, Pidle, Act, Evt,F〉
−→n 〈{(pid, as, σ, η)} ∪ Pnrun, ∅, Pnwait, Pnidle, Actn, Evtn,Fn〉

and JawaitingTransfer(m)KFn = > ∧ JtimeKFn = JtimeKF

222 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

Proof. First, the right hand side of the rule in Definition 6.10 represents the
state directly after unfolding the Send statement. Let this state be denoted
by St. At some step r after this unfolding, the simulation engine will have
processed the Act statement, which yields a state Str:

∃r ∈ N0.

〈{(pid, as, Act(requestTransfer(m)) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle,
Act, Evt,F ′〉 −→r Str−1

Def.3.23−→ 〈P rrun, P ract ∪ {(pid, as, σ, η)}, P rwait, P ridle, Actr ∪ {requestTransfer(m)},
Evt,F ′〉 = Str

In the derivation above, the fluent database in state Srr is the same as
in St. This can be seen from the premises of the rules in Section 3.6, which
reveal that as long as there are still running processes, the system is neither
able to perform a progression step nor a time advance or a process activation.

Before the action requestTransfer(m) is eventually applied in a progression
step, there can be several transitions, including other progression steps. Even-
tually, in some step s after Str, the system will be in a state Str+s where it is
just about to progress the action requestTransfer(m).

∃s ∈ N0. St
r −→s 〈∅, P r+sact ∪ {(pid, as, σ, η)}, P r+swait, P

r+s
idle ,

Actr+s ∪ {requestTransfer(m)}, Evts,Fs〉 = Str+s

Since the entity m has been created during the Send statement, it is only
known in the same process. Therefore, the state of m cannot have been altered
yet and thus JawaitingTransfer(m)KFs = ⊥. With (6.8) from Definition 6.4,
this means Jposs(requestTransfer(m))KFs = >. Hence, the progression can
be performed, i.e.

Str+s
Def.3.24−→ 〈∅, P r+sact ∪ {(pid, as, σ, η)}, P r+swait, P

r+s
idle , Act

r+s, Evts,Fs+1〉
= Str+s+1

where
Fs+1 = progress(Fs, requestTransfer(m))

With (6.6) from Definition 3.24, it holds that

JawaitingTransfer(m)KFs+1 = >

The system can proceed with performing progression steps or other transi-
tions until all actions have been applied and the sending process is re-activated:

6.3. INFORMATION TRANSFER IN SALMA MODELS 223

∃u ∈ N0.St
r+s+1 −→u 〈∅, P r+s+uact ∪ {(pid, as, σ, η)}, P r+swait, P

r+s
idle , ∅, Evt

s+u,

Fs+1+u〉
Def.3.25−→ 〈P r+urun ∪ {(pid, as, σ, η)}, ∅, P r+swait, P

r+s
idle , ∅, Evt

s+u,Fs+1+u〉

Since the message entity m was created within the process pid, no other
process has been able to alter the state of m. Additionally, since the state
of m is idle, the poss axioms in Definition 6.4 forbid that any information
transfer event is scheduled for m. Therefore, JawaitingTransfer(m)KFs+1+u =
>. Furthermore, no time advance was possible throughout the transitions
described above. Therefore, JtimeKFs+1+u = JtimeKF . With n = r + s + u,
this proves the lemma.

As described in Section 6.2.2, the model for multicast channel-based com-
munication differs from the unicast case mostly in the transmission phase. In
fact, sending a multicast message merely means to leave out the destination.

Definition 6.11 (Multicast send). Let as, m, msg, and rs be defined as in
Definition 6.10. However, let c now refer to a multicast channel. Then

〈{(as,Send(c,msg, rs) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉 −→
〈{(as, Act(requestTransfer(m)) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle,

Act, Evt,F ′〉

where F ′ = F [domain(Msg) 7→ Jdomain(Msg)KS ∪ {m},
spec(m) 7→ 〈JcKF ,η,mcs, as, JrsKF ,η, JmsgKF ,η〉]

With an identical argumentation as above, it can be shown that the multi-
cast message will be eventually awaiting transferral within the same simulation
step.

Lemma 6.2. With the same notation as in Lemma 6.1, it holds that

∃n so that
〈{(as,Send(c,msg, rs) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉
−→n 〈{(as, σ, η)} ∪ Pnrun, Pnact, Pnwait, Pnidle, Actn, Evtn,Fn〉

where JawaitingTransfer(m)KFn = > ∧ JtimeKFn = JtimeKF

224 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

Proof. The proof works almost exactly like in Lemma 6.1 and is therefore not
repeated.

Agents that are receiving messages from unicast or multicast channels must
select those messages from the channel’s message queue that are sent to the
receiving agent and that match the requested destination role. In fact, the
Receive statement removes all matching messages from the queue and stores
the resulting set in a variable.

Definition 6.12 (Receive). Let a, refer to an agent, and let c be a term that
denotes a channel in the current evaluation context η. Furthermore, let the
evaluation of rd in η refer to a role of c. Finally, let v be a variable name that
is unbound in η. Then,

〈{(a,Receive(c, rd,v) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉 −→
〈{(as, Act(cleanQueue(as, c, rs)) ◦ σ, η′)} ∪ Prun, Pact, Pwait, Pidle,

Act, Evt,F〉

whereM = {mt | mt ∈ Jqueuein(c)KF ,η ∧
∃as∃rs∃ϑ.mt = 〈as, rs, a, JrdKF ,η, ϑ〉}

η′ = η[v 7→ M]

Besides transferring the received messages to the current environment, the
effect of the Receive statement is the removal of received messages from the
input queue. This is shown in the following lemma.

Lemma 6.3. With the notation and definitions from above, it holds that

∃n so that
〈{(a,Receive(c, rd,v) ◦ σ, η)} ∪ Prun, Pact, Pwait, Pidle, Act, Evt,F〉
−→n 〈{(as, σ, ηn)} ∪ Pnrun, Pnact, Pnwait, Pnidle, Actn, Evtn,Fn〉

where Jqueuein(JcKF ,η)KFn ∩ M = ∅

Proof. At first, it can be shown with a similar proof as in Lemma 6.1 that
there is an intermediate step before n, in which cleanQueue(as, c, rs) is applied
in progression. Let F ′ denote the fluent database just before and F ′′ the fluent
database right after this progression step. The contents of the queues are not
known at this point since they could have been altered by other information
transfer processes. However, due to the successor state axiom for queuein
from Definition 6.6, it holds that Jqueuein(c)KF ′′ =

{
e | e ∈ Jqueuein(c)KF ′ ∧

6.3. INFORMATION TRANSFER IN SALMA MODELS 225

dest(e) 6= ag ∧ destRole(e) 6= r
}
. Since dest(e) = ag ∧ destRole(e) = r

corresponds to the condition in the definition of M in Definition 6.12, all
messages inM must either be deleted in this step or must have been deleted
already by another call of cleanQueue. This means that Jqueuein(c)KF ′′ ∩ M =
∅. Afterwards, until the receiving process is reactivated in step n, the queue
content could change due to other occurrences of transferEnds or cleanQueue.
However, the messages in M cannot be added again once they are deleted.
Therefore, it still holds that Jqueuein(JcKF ,η)KFn ∩ M = ∅. This concludes
the proof.

The three statements presented above are actively used within agent pro-
cesses to realize the respective agent’s role in message-based communication
processes. Additionally, there are three further statements that are necessary
to implement the information transfer processes described in Section 6.2.2:

• Sense(c) initiates local sensing on sensor c as shown in Figure 6.5.

• TransmitRemoteSensorReading(rs) initiates the transmission of sensor
data according to the specification of remote sensor rs along the lines of
Figure 6.6.

• UpdateRemoteSensor(rs) processes the received data on remote sensor
rs and updates the remote sensor view accordingly (see Figure 6.7).

The semantical interpretations of the statements mentioned above are very
similar to those presented in the Definitions 6.10, 6.11, and 6.12 and are there-
fore not presented in detail. Besides that, these elements would very rarely
be used explicitly within agent process definitions. Instead, they are used by
implicit background processes as described in Section 6.3.3.

6.3.3 Transparent Sensing Infrastructure

With the process elements introduced in the end of the last section, it would
be possible to treat local and remote sensing as explicit agent tasks in the
same manner as communication with other agents. However, this would lead
to process definitions that mix core agent logic with infrastructure elements.
In fact, it is closer to common realistic agent architectures to place sensing
facilities into a separate layer and make the sensed information available in
a transparent way. To achieve that, the SALMA framework automatically
installs some background processes:

For each local sensor, an update process is installed at each agent that
owns such a sensor. This process repeatedly executes Sense, i.e. initiates the
sensing process. The actual sensor view fluent is updated after a delay that
depends on the probability distributions that are set up for the specific sensor.
By default, the update process is set up as periodic with a fixed period that
is set up once in the simulation setup. However, other scheduling schemes are

226 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

. . .
If("freeSlotsL(self) > 0", [

Act("add_reservation", [SELF, vehicle]),
Send("reservation", Term("rresp", SELF, True), "plcs", vehicle, "veh")],
[# ELSE
Send("reservation", Term("rresp", SELF, False), "plcs", vehicle, "veh")])

. . .

Figure 6.12: Excerpt from reservation processing process of PLCS agents.

also possible, e.g. to reflect adaptive sensing strategies that try to optimize
energy consumption.

Similarly, a transmission process is installed for each remote sensor at each
agent of the remote data source type. This process transmits the most recent
value of the configured local sensor to the remote sensor data sinks in the
ensemble. By default, the transmission process is configured as periodic with
a fixed period that would normally be set significantly longer than for the
monitored local sensor. In addition to the transmission process, a reception
process is created for each data sink agent, i.e. each owner of a remote sensor.
Here, received remote sensor data is processed as described in Figure 6.7. In
contrast to the other background processes, the reception handler is installed
as a triggered process that is executed as soon as new data becomes available.

With the implicit background processes in place, the modeler can access
the most recent values of local and remote sensors in the same way as di-
rectly available fluents. For instance, the code fragment in Figure 6.12 is
taken from the e-mobility example and shows an excerpt from the PLCS agent
process that handles reservation requests by vehicles. Here, the condition
freeSlotsL(self) > 0 is used to test whether free slots are available at a
PLCS, and hence to decide whether to accept or reject a request.

6.4 Statistical Model Checking for Information
Transfer Processes

It was already shown in Chapter 4 that the SALMA-PSL makes it possible
to refer directly to entities and agents, and to reason about their properties
and relations. Since messages and connectors are also represented as entities,
this means that all elements of communication and sensing processes can be
examined with fine granularity. Additionally, the SALMA-PSL provides a set
of specialized functions and predicates that can be used together with the
fluents defined in Section 6.2.2 and Section 6.2.5 to create an intuitive way for
reasoning about the content of the information transfers, e.g.:

6.4. SMC FOR INFORMATION TRANSFER 227

P1 = forall(v:vehicle, implies(messageSent(v, assignment, ?, ?, ?, ?),
eventually(100, currentTargetPLCS(v) \= none)))

P2 = forall(s:plcssam, forall(p:plcs, age(freeSlotsR, s, p) =< 10))
P3 = forall(s:plcssam, forall(p:plcs, abs(freeSlotsR(s, p) - freeSlotsL(p)) =< 1))
P4 = forall(p:plcs, forall(v:vehicle, implies(

occur(add_reservation(p, v)),
eventually(10, messageSent(p, reservation, plcs, v, vehicle,

rresp(p, true))))))

Figure 6.13: Example SALMA-PSL properties of information transfer pro-
cesses.

• messageSent(chan, src, rs, dst, rd,msg) is a predicate that is true if, in
the current time step, a message with content msg has been sent from
source agent src to destination dst on channel chan with the given source
and destination roles rs an rd.

• messageAvailable(chan, dst, rs) is a predicate that is true if the incom-
ing message queue of agent dst for channel chan contains at least one
message that addresses dst with role rs.

• src(m), dest(m), and con(m) are functions that return the source, des-
tination, and the connector of a given message.

• age(sen, a, [ar]) is a function that returns the age of the most recent
value for the local or remote sensor sen of agent a. If sen is a remote
sensor, then age refers to the value transmitted by the remote agent ar.

Examples for the use of the SALMA property specification language in the
context of information transfer processes can be found in Figure 6.13. The
invariant P1 requires that when any vehicle agent sends an assignment request
to the SAM, it will not take longer than 100 time units until a target PLCS has
been set. The question marks in the predicate messageSent serve as wild-card
arguments for pattern matching, which achieve here that the recipient of the
message, the involved roles, and the content of the message are ignored.

As other examples, P2 and P3 are invariants that define, for all measure-
ments acquired by the remote sensor freeSlotsR, a maximum value age of 10
time units and a maximum deviation of 1 from the original sensor freeSlotsL.

Finally, property P4 demonstrates how the content of a message can be
used directly in SALMA-PSL expressions. The property, which refers to the
example in Figure 6.12, states that every time a reservation is made by a
PLCS agent (action add_reservation), a positive acknowledgment message
must be sent within 10 time units. In order to test that, the content of the sent

228 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

message has to be compared to the expected content according to Figure 6.12
(rresp(p, true)).

Altogether, while it was demonstrated before in this thesis that the ability
to use a first first-order logic language greatly facilitates the expression of
complex properties, it becomes apparent that these benefits are particularly
valuable for properties that reason about the details of communication and
sensor data propagation.

6.5 Experimental Evaluation

In order to test the presented approach and its integration in the SALMA
toolkit, a reduced version of the scenario introduced in Section 6.1 was im-
plemented. It contains only a simple mock-up version of the optimization
mechanism but realizes the full communication structure.

In the model that was used for the experiment, the map on which vehicles
are moving around is represented by a weighted graph with three different node
types: crossings, point of interests (POIs), and parking lots with charging sta-
tions (PLCS). The edges represent roads that lead from a start node to an end
node. As usual, the lengths of these roads are represented by the weights in the
graph. Figure 6.14a shows the undirected graph that was originally specified
as a GraphML [BEH+02] file and used to derive the map for the experiment.
The undirected edges were translated to two directed edges in opposite direc-
tion with lengths that were derived from the geometrical information stored
in the original file.

Vehicles are modeled as agents that move around the map to reach a cer-
tain point of interest (POI) that is randomly assigned to them at the beginning
of the simulation. The vehicle agent then communicates with the super au-
tonomous manager (SAM) and the PLCS agents according to the scheme in
Figure 6.1. First it requests an assignment of a PLCS that is as close as pos-
sible to the vehicle’s POI. In the current version, the SAM agent only uses a
trivial optimization strategy that merely assigns the first PLCS with free slots.
After the assignment has been made, the vehicle requests a reservation at the
assigned PLCS. Once this reservation has been granted, the vehicle agent sets
its target PLCS and calculates an optimal route to the assigned PLCS. To do
this, a Python function was integrated as shown in Section 3.4.5 and the ac-
tual computation was performed using the graph algorithm library NetworkX
[Net16].

The communication between vehicles, the SAM, and PLCS agents, is per-
formed by agent processes like the ones shown in Figure 6.11 and Figure 6.12.
In contrast, the actual vehicle movement is not performed by explicit agent
processes but encoded directly in the situation calculus model of the simula-
tion. There, the position of each vehicle is represented either by a current node
or by the current road the vehicle is driving on. The current route followed

6.5. EXPERIMENTAL EVALUATION 229

v
3

v0, v2

v
1

v4

c1

c8

pl3

pl2

pl1

c4

c3

c7

pl4

c5

c2

c6
poi1

poi3

poi2

crossing

parking lot

point of
interest

<
 d
is
t(
c3
,c
7)

>

(a) Manually created weighted graph
with different node types.

v
3

v0, v2

v
1

v4

v
3

v0, v2

v4

v
1

c1

poi3

c8

pl3

pl2

pl1

c4

c3

c7

pl4

c5

c2

c6 poi1

poi2

(b) Automatically generated visualiza-
tion of one simulation step.

Figure 6.14: Graph-based map used for the e-mobility experiment.

by a vehicle is given as a list of roads that in sequence lead from the current
position to the target PLCS. A more exact location on the road is actually not
represented directly in the model. Instead, the road length is used as a factor
for the delay with which events are scheduled that update make the vehicle
move to the next route segment. This style of sparse simulation with pure
event-scheduling is very well suited for the discussed example, in which the
focus is set on the information transfer aspects rather than vehicle behavior
or traffic.

The simulation of the e-mobility example can be run in three different
modes: visualization, estimation, and hypothesis test. In visualization mode,
the simulation is performed until all vehicles have arrived at their target PLCS.
Meanwhile, the positions of all vehicles on the map are visualized in each step
as annotations on the map. For instance, Figure 6.14b shows a step of a
simulation run with five vehicles (v0 to v4) where each vehicle is currently
located on a road, which is shown by labeling all edges with the ids of the
vehicles on the corresponding road. Additionally, textual information about
the simulation state in each step is written to a log file. Figure 6.15 contains
the output for the 102nd step of an e-mobility simulation run. Lines 2 to
4 show the actions and events that were performed in this step. It can be
seen that transferStarts messages occurred for the messages 231 and 228, both
without an error term. The messages that currently exist in the system are
listed from line 5 to line 18. It turns out that both messages belong to local
sensors of the type freeSlotsL, which is used by PLCS agents to “measure” the
available capacity. Each message line in the log output contains the message
specification and the transferred content, separated by a colon. In this case,
the transferred content is set now for both sensor messages. In fact, the last
four lines of the output each confirm that the transferred values coincide with

230 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

1 Step 102 (t = 116)
2 Actions: [(’transferStarts’, (231, None)), (’enterNextRoad’, (’v4’,)),
3 (’transferStarts’, (228, None)), (’arriveAtRoadEnd’, (’v3’,))]
4 #227: msg(’freeSlotsL’, ’sensor’, ’pl4’, ()) : None
5 #228: msg(’freeSlotsL’, ’sensor’, ’pl3’, ()) : 10
6 #229: msg(’freeSlotsL’, ’sensor’, ’pl2’, ()) : None
7 #231: msg(’freeSlotsL’, ’sensor’, ’pl1’, ()) : 10
8 v4: r19(c3-c6=193) - [’r29(c6-pl3=170)’] - pl3 / None
9 v0: c2 - [’r24(c2-c8=128)’, ’r6(c8-poi2=331)’, ’r32(poi2-pl4=60)’] - pl4 / None

10 v2: r24(c2-c8=128) - [’r6(c8-poi2=331)’, ’r32(poi2-pl4=60)’] - pl4 / None
11 v3: c5 - [’r26(c5-c1=124)’, ’r2(c1-pl1=193)’] - pl1 / None
12 v1: pl3 - [’r10(pl3-c4=320)’, ’r16(c4-c8=431)’, ’r6(c8-poi2=331)’,
13 ’r32(poi2-pl4=60)’] - pl4 / None
14 pl1:plcs: real = 10, local = 10, remote = 10
15 pl2:plcs: real = 10, local = 10, remote = 10
16 pl4:plcs: real = 10, local = 10, remote = 10
17 pl3:plcs: real = 10, local = 10, remote = 10

Figure 6.15: Log output for one step of an e-mobility simulation run.

the true numbers of free slots of the PLCS pl1 and pl3, to which the messages
belong. This conforms closely to the information transfer model for local
sensing described in Figure 6.5.

The visualization and verbose logging of simulation steps can be used to
do a qualitative evaluation of the model, i.e. to verify that the modeled system
behaves in a plausible way that is consistent with intuitive expectations. For in-
stance, it is easy to verify that the agents in fact exchange the intended message
types, and that calculated routes actually lead to the intended destinations.
Once the basic functionality of the simulation has been tested, the simulation
can be executed in estimation or hypothesis testing mode. This means that
multiple trials are executed and each simulation run will be stopped as soon
as all registered goals are fulfilled or a registered invariant has been violated.

For the concrete experiment that is presented here, the invariant P1 from
Figure 6.13 was registered as a single property. As mentioned before, this
property requires that each time a vehicle sends out an assignment request, it
receives the response within a given time limit, which in turn sets the fluent
currentTargetPLCS of the vehicle. The probability that this invariant is satis-
fied on a given simulation run depends mainly on the probability distributions
for transmission delays and failures, and on the time limit that is specified
for the until operator. As a first step, 5 vehicles were used and a normal
distribution with a mean of 5 timesteps and a variance of 1 was set up for
all message delays. Furthermore, the probability that a message transfer fails
during the preparation phase was set to 0.1 and the probability that it fails
during the transfer phase to 0.2. Using this fixed simulation setup, the ex-
periment was performed iteratively while the time limit in the until operator
of property P1 was increased from 5 time units to 145 time units in steps of
5. For each of the 28 configurations, 50 simulation runs were performed. The

6.5. EXPERIMENTAL EVALUATION 231

0 20 40 60 80 100 120 140

Tmax: time limit for property P1 [time units]

0.0

0.2

0.4

0.6

0.8

1.0

p
s
:

p
ro

p
o
rt

io
n
 o

f
su

cc
e
ss

e
s

0.0 0.2 0.4 0.6 0.8 1.0

pf: probability of transmission failure per message

0.0

0.2

0.4

0.6

0.8

1.0

p
s
:

p
ro

p
o
rt

io
n
 o

f
su

cc
e
ss

e
s

Figure 6.16: Proportion of successful simulation runs for varying time limits
and transmission failure probabilities.

left graph in Figure 6.16 shows the proportion ps of successful simulation runs
for each different time limit. It can be seen that there is virtually no chance
for success below 55 time units while on the other hand success seems to be
almost certain for time limits over 145. However, these results clearly are only
valid for the given distributions of transmission failures. To gain some insight
into the effect of increasing failure rates, a second iterative experiment was
performed whose results are shown in the right diagram of Figure 6.16. This
time a fixed time limit of 110 time units was used while the failure probability
for the message transfer phase pf was increased from 0 to 1 in steps of 0.05.
As before, 50 simulation runs were performed for each value of ps. The results
reveal that for the chosen time limit, failure probabilities below 0.2 appear to
be unproblematic whereas failure probabilities of above 0.5 effectively prohibit
success. The steepness of the decline between pf = 0.2 and pf = 0.4 is a
little surprising and might be worth being analyzed further, although this is is
beyond the scope of this section.

Another question that was examined is how strongly the execution times
of the simulations depend on the model complexity. In particular, it can be ex-
pected that an increasing number of agents will lead to an increased number of
transferred messages, which in turn increases the simulation complexity since
messages are treated as entities. To reproduce this effect, the time limit was
set to 500 so that every simulation run is guaranteed to succeed and the num-
ber of vehicles was increased from 1 to 30. For each vehicle number, batches
of 20 simulation runs were performed and the execution times were recorded.
The median values of these measured times are plotted in Figure 6.17. This
curve reveals a dependence that is nearly linear, with a range between about
0.5s for one vehicle and about 31s for 30. At first sight this suggests that it
would be unrealistic to extend the simulation to hundreds or even thousands
of vehicles, which is not unusual for traffic simulation. Of course, supporting
large numbers of agents is possible, but only if the workload is distributed by

232 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

0 5 10 15 20 25 30

number of vehicles

0

5

10

15

20

25

30

35

m
e
d
ia

n
 s

im
u
la

ti
o
n
 r

u
n
ti

m
e
 [

s]

Figure 6.17: Mean simulation run times for varying vehicle numbers.

running simulations on many machines. However, even though emerging vir-
tualization and cloud computing technologies make parallelization both simple
and affordable, it is still obvious that SALMA will never be able to compete
with specialized traffic simulation solutions.

On the other hand, for simulation experiments in which the focus is set
on analyzing communication and sensing scenarios as in this chapter, it is
questionable whether it is actually necessary to simulate that many vehicle
agents with the same granularity as it was shown in the current example.
Instead, it might be sufficient to choose one or a few representatives for those
classes of agent behavior that differ with respect to how agents communicate
or sense their environment. Other aspects of the system can often be modeled
with a much higher level of abstraction with lower computational demand.
For instance, in the e-mobility scenario of this example, it would be possible
to add very simple agents to the map that simulate basic traffic effects. Again,
SALMA intentionally leaves the choice of the right level of detail to the modeler
in order to allow finding a suitable compromise between accuracy and efficiency.

It is clear that there are many parameters that could be varied in the
simulation of the automatic parking lot assignment scenario, including PLCS
capacity, and the probability distributions for message delays, etc. Further-
more, the Python function that realizes the PLCS assignment can be replaced
to test different optimization schemes and their sensitivity to factors like de-
lays or transmission errors. Such a detailed evaluation is clearly far beyond the
scope of this thesis. However, the experiences gained during the development
of the model and through experimentation show that proposed information
transfer model is well applicable even for “real life” communication scenar-
ios. In particular, the declarative high-level extensions of SALMA’s modeling
languages that were introduced in Section 6.3 have proven to be suitable for
creating concise and readable models. For instance, the declarative part of the
e-mobility example model that sets up communication and sensing infrastruc-

6.6. SUMMARY 233

ture requires only about 30 lines in the style of the examples in Section 6.3.1.

6.6 Summary

This chapter presented a new logic-based approach for modeling channel-based
communication, sensing, and other kinds of information transfer processes
within cyber-physical multi-agent systems. High-level modeling language ex-
tensions were introduced, which can be integrated seamlessly into SALMA
domain models, agent processes, or property specifications. These constructs
provide a familiar viewpoint for modeling communication and sensing pro-
cesses in cyber-physical systems and help to embrace their stochastic nature,
like transmission delays and errors. At the same time, the information transfer
model has a precise formal semantics based on the situation calculus, which
means it can be integrated as a natural layer in any SALMA system model.
A major advantage of this approach is that it allows fine-grained reasoning
about the inner details of information transfer processes.

One of the main distinguishing features that make the presented model
suitable for describing cyber-physical systems is its ability to integrate both
local and remote sensing in agent processes in a unified and transparent way
that hides the details of how the sensed data is propagated from its origin to the
sensing agent. At the same time, the characteristics of the sensing processes
can be controlled precisely by choosing appropriate probability distributions
for the events that govern the message life cycle.

Accompanying the extensions for SALMA’s system modeling languages,
several specialized functions and predicates were added to SALMA’s property
specification language. They allow referring to all relevant properties of the
communication and sensing processes in the simulated system model, like mes-
sage payloads, queue contents, or time stamps that mark when messages are
sent or received. Generally speaking, it can be seen that modeling informa-
tion transfer is much facilitated by using a first-order logic language like the
SALMA PSL.

The presented approach was tested during the development of a simulation
model that was derived from the a case study of the EU research project
ASCENS 2. This example describes a system in which autonomous agents
collaborate to find an optimal assignment of parking lots. The SALMA model
that was developed for this scenario covers all aspects of information transfer
that were discussed in this chapter, namely channel-based communication,
local and remote sensing, and ensemble-based multicast messaging. Several
simulation and statistical model checking experiments were conducted with
this model and results were described in this chapter. The experience that was
gained from developing the model and conducting the presented experiments
shows that the approach offers great flexibility with respect to the level of

2www.ascens-ist.eu

www.ascens-ist.eu

234 CHAPTER 6. MODELING INFORMATION TRANSFER IN CPS

detail and accuracy with which both the system model and corresponding
requirements are formulated.

6.7 Related Work

The primary contribution of the extensions to the SALMA approach that were
presented in this chapter lies in providing high-level constructs for modeling
and distributed communication of agents with realistic semantics. Therefore,
it makes sense to look into the related work from three main areas: (1) commu-
nication models for the situation calculus, (2) coordination languages for dis-
tributed agents, and (3) simulations of network communication in distributed
systems.

From the perspective of the situation calculus, the transfer of information
has traditionally been viewed from an epistemic perspective, i.e. as knowl-
edge that agents gain through (communication) actions. Surprisingly enough,
there are no systematic approaches that introduce in the frame of a situation
calculus a communication model reflecting properties of real-life computer net-
works. In this respect, a partial approach is provided by [M+95], where the
epistemic model has been extended to model inter-agent communication by
means of channels in a similar way as in the model described in this chapter.
However, neither time nor stochastic effects are covered. In contrast to that,
the approach presented in [Sch03] combines the epistemic model with time
and concurrency and allows reasoning about time-related aspects like the age
of measurements.

Unlike the approaches mentioned above, SALMA’s method of modeling
information transfer does not consider knowledge in the epistemic sense but
leaves the interpretation of transferred information to the agent processes.
While this perspective appears to be better suited in the particular context
of cyber-physical systems, it would be possible to combine both views in a
straight-forward way.

Another perspective is provided by coordination languages for distributed
agents, which are typically not based on the situation calculus. Rather they
provide their own process algebras to define the behavior of distributed agents.
These approaches are primarily represented by SCEL [CCC+14] and its indi-
rect predecessor KLAIM [BBN+03]. They feature communication based on
structure knowledge exchange via tuple-spaces. The process algebra they use
for specification of the behavior of agents is typically based on or at least
inspired by π-calculus.

In their original form the coordination languages do not consider time
and communication uncertainty, which makes them unfit for realistic model-
ing of network communication. However, extensions exist that feature these
concerns forming a relatively large family of stochastic process algebras like
TIPP [GHR93], PEPA [Hil96], EMPA [BG96, ACB10], stochastic π-calculus

6.7. RELATED WORK 235

[Pri95, CM13], StoKlaim [DNKL+07] or a unifying framework by Nicola et
al [NLLM13]. Targeting the framework of SCEL, which is arguably closest to
the approach presented here, the ideas of stochastic process algebras are well
integrated in [L+14], where the authors introduce a stochastically timed pro-
cess calculus that is centered around predicate-based communication. Similar
to SALMA’s information transfer model, the most detailed semantical variant
they describe distinguishes between a preparation and a transmission phase
and allows assigning separate probability distributions for delays and errors
to each of them. However, since the semantics is based on continuous time
Markov chains (CMTC), only exponential distributions can be used and delays
or errors are effectively determined at the start of each phase. This can be too
coarse-grained in very dynamic situations, e.g. when the movement of agents
affects the likelihood of transmission errors too much to be neglected.

Targeting specifically the analysis of communication and processing in
distributed systems, network simulators, e.g. OMNet++ [Var10] and ns-3
[HLR+16] provide very accurate estimates. The simulators feature an agent-
like approach, where the simulated network consists of a number of modules
(representing end-devices and network components) mutually communicating
by exchanging messages. These modules are triggered by a discrete simula-
tor based on timing needed for message processing, communication latencies,
etc. To achieve simulation of environment when agent mobility is involved,
the network simulators can be integrated with mobility and traffic simulators,
e.g. MATSim [HNA16] or Sumo [KEBB12].

Compared to SALMA, network simulators provide significantly more pre-
cise estimates in terms of network communication latencies. However, com-
pared to the situation calculus and the high-level interaction patterns presented
in this chapter, the low-level perspective of these network simulators make it
harder to describe the system architecture and coordination structure in a
concise way. Furthermore, there is no option of verification against properties
formulated in temporal logic in simulators like OMNet++ or ns-3.

Chapter 7

Conclusion and Outlook

At the bottom line, it could be said that SALMA, the approach that is pre-
sented in this thesis, proposes yet a new solution for modeling, simulation,
and model-based verification. More precisely, SALMA concentrates on statis-
tical model-checking, a paradigm that aims to overcome the infamous state
space explosion problem by using statistical sampling instead of exhaustive
search through the state space. Although statistical model checking is a rather
new concept, it is becoming more and more popular and there are now sev-
eral mature tools that provide support for different combinations of modeling
paradigms and statistical methods. This chapter summarizes the main points
where SALMA differs from other simulation tools or statistical model check-
ers. Additionally, an outlook about possible improvements is given and some
promising directions for future work are outlined.

7.1 Key Achievements of the Thesis

The most significant difference that SALMA makes is that it puts first order
logic right into the center of its modeling approach for both the system itself
and the properties that should be verified. For the system model, SALMA
makes use of the situation calculus, an approach for modeling dynamic sys-
tems in first order logic that dates back several decades. Although the situation
calculus has been used in the context of simulating agent-based systems, in
particular as part of the programming language GoLog (see Section 2.2.4),
SALMA appears to be the first approach that actually integrates it into a
fully-fledged solution for discrete event simulation. As this thesis has shown,
this paves the way for a very tight integration with the property specification
language that SALMA uses, which is a first-order version of linear tempo-
ral logics (LTL). In fact, SALMA’s support for first-order logic includes the
free composition of formulas from user-defined signatures, including arbitrar-
ily nested functions and a unification-based equality operator for terms. This

237

238 CHAPTER 7. CONCLUSION AND OUTLOOK

makes SALMA stand out from other solutions for statistical model checking,
whose property specification languages are basically propositional versions of
LTL or CTL — except some limited additions like the support for quantifiers
over arrays in UPPAAL (see Section 2.4).

Throughout the previous chapters, it was shown that the support for first-
order logic is more than syntactical sugar. In fact, the tight integration of
a logic-based system model and the property specification language creates
a very high degree of flexibility that allows referring directly to all relevant
facets of the system. This becomes particularly obvious in Chapter 6, which
describes an extension of the basic modeling languages of SALMA that can be
used to describe information transfer processes, i.e. communication between
agents or using sensors to acquire information. One of the key aspects of
the proposed model is that it allows capturing the stochastic nature of these
processes, like occasional message failures or delays. In order to integrate
these aspects in the simulated system model, they were formalized by means
of a set of situation calculus axioms and several event types that govern the
life-cycle of messages. Additionally, some convenient high-level primitives for
communication and sensing were added to the language. The usability of the
approach was demonstrated through a mid-sized example from the domain of
e-mobility.

A full software stack for discrete event simulation and statistical model
checking has been implemented by the author in the context of this thesis. In
particular, this includes the development of efficient algorithms for the evalu-
ation of formulas specified in SALMA’s property specification language. This
had to be done from scratch because SALMA’s combination of logic program-
ming and statistical model checking has not been described before. In par-
ticular, the first-order structure of the evaluated formulas together with the
support for nested temporal operators require special care in order to make
the evaluation efficient. The solution that was eventually developed during
this thesis involves a combination of term rewriting, result caching, and an
interval-based representation of evaluation states that often avoids unneces-
sary evaluation steps (see Chapter 5).

One key goal for the design of SALMA’s modeling languages and the simu-
lation framework is to give the modeler as much freedom as possible in choosing
the right level of abstraction for each individual aspect of the model. To a large
degree, this has been achieved by a close integration of SALMA’s specialized
modeling languages with the underlying general-purpose programming lan-
guages Python and Prolog. For instance, the agent behavior model for parking
lot assignment example in Chapter 6 uses a popular graph algorithm library
for calculating shortest paths through a map (see Section 6.5). The result-
ing route is then directly stored as a list in a fluent in the situation calculus
model. There it can be analyzed and manipulated directly within axioms and
property formulas using Prolog’s extensive support for list and term process-
ing. This ability to integrate details like transmitted data and to propagate

7.2. POSSIBLE IMPROVEMENTS AND EXTENSIONS 239

it throughout all layers of the model can help significantly to avoid making
forced abstractions that could conceal important effects and mechanisms of
the system.

All components of SALMA’s simulation and statistical model checking
toolkit have been tested extensively by means of unit and integration tests.
Additionally, the correctness and usability of the approach in its entirety has
been validated with several complete examples, in particular the multi-robot
example that was described in Chapter 3 and Chapter 4 and the parking lot
assignment scenario from Chapter 6. The experience gained from developing
these models and conducting experiments with them has shown that the cho-
sen design of the modeling languages and the simulation framework strongly
facilitates the creation of comprehensive, extensible, and maintainable models.

7.2 Possible Improvements and Extensions

During the development of the SALMA toolkit and by working with the exam-
ples, several points were identified where improvements of the approach would
be particularly important. For most of the recognized problems, more or less
concrete ideas about possible solutions emerged.

First of all, one of the most obvious problems with SALMA as an approach
for discrete event simulation is the computational cost of updating the world
state through the progression mechanism of the situation calculus. In fact,
simulations that are developed with more low-level frameworks like Repast
(see [Col03]) run much faster than SALMA simulations where in each step all
fluent instances have to be updated by evaluating the corresponding successor
state axioms. Although part of that performance drawback has to be accepted
as price that has to be paid for the declarative modeling style SALMA offers,
there is plenty of room for improvement. In particular, the current implemen-
tation of the progression mechanism evaluates the successor state axiom for
all fluent instances and uses these axioms to decide whether a given action or
event affects the value. However, it would often be possible to prune a sig-
nificant part of the evaluation branches. For instance, the effect axioms (see
Section 3.2.4) could be analyzed to determine whether or not any instance of
a fluent might be affected by the action. Additionally, there are many actions
or events that affect only one particular entity or agent that is included as an
“identity” argument of the action term. In these cases, the set of fluent in-
stances that have to be inspected could be pruned significantly. Besides these
rather simple strategies, there are certainly many other more sophisticated cri-
teria for pruning fluent instances. For example, the effects of actions or events
are limited to a certain spatial vicinity. This could be exploited by a strategy
that limits the selection of fluent instances based on their positions. Of course,
in order to make this search efficient, a spatial index for entities and agents
would have to be created using suitable spatial data structures like R-trees

240 CHAPTER 7. CONCLUSION AND OUTLOOK

[Gut84].
Although the performance of individual simulations can certainly be im-

proved significantly by measures like those described above, it is inevitable for
larger scenarios to employ parallelization. In fact, it was already mentioned
before in this thesis that one of the most promising aspects of statistical model
checking is that it can easily be scaled horizontally by just adding more ma-
chines that run simulations in parallel. Since these simulations are indepen-
dent, this can be done without any change of the SALMA toolkit by simply
aggregating the output of multiple separate simulation processes. However,
in order to make the approach actually scalable to a large number of nodes,
some kind of coordination infrastructure layer would have to be added that
takes care of tasks like propagating simulation parameters, gathering results,
or restarting crashed nodes. Due to the availability of technologies for realiz-
ing distributed systems that have emerged in the context of cloud computing
and “Big Data”, realizing such services has almost become routine work. For
instance, the Mesos platform [HKZ+11] provides a layer of abstraction over
the resources of machines in a cluster that could be leveraged to schedule and
coordinate distributed simulations in an almost completely transparent way.

Besides performance and scalability, there are several other technical as-
pects of the SALMA toolkit that could be improved significantly. One topic
that is particularly important when statistical model checking is used to test
complex properties is how to analyze and report the reasons why a property
is violated during individual simulation runs. In the current version, only the
properties that have failed are identified. However, a detailed error report
should contain information about which subformulas have been violated and
which entities or agents were responsible for these violations. This could help
a lot during debugging and for forming a better understanding of the model.
The main challenge is to present this data in a comprehensive way. First of
all, in statistical model checking it is often not enough to look at the outcome
of single simulation runs but instead these results have to be aggregated and
grouped in a way so that recurring patterns can be identified.

All improvements that were outlined above are mainly technical and could
be realized in a more or less straightforward manner. In addition to that, there
are some issues that would require more extensive research. One of these topics
is the support for nested probabilistic operators, a feature that has been widely
discussed in the statistical model checking literature (see also Section 2.5 and
Section 4.5). In short, what makes this difficult is that in order to evaluate
a formula like always(T, P (Φ) ≥ pmin), it is necessary to estimate the success
probability of the sub-formula Φ in every step within T time units. If the
default statistical model checking mechanism was used for that, this would
require to start a new simulation experiment with multiple runs for each state.
Depending on the simulated model and the structure of Φ, each of these sim-
ulations could take significant time to finish, which means that any feasible
execution strategy without massive use of parallelization would be impracti-

7.3. OUTLOOK 241

cable even for moderately complex models. In fact, the property evaluation
algorithm would have to be extended so that it spawns a set of new parallel
simulation jobs in each state and keeps track of the results. As mentioned be-
fore, there are now many powerful technologies that could be used to distribute
these simulations on large clusters, which could even be provisioned dynami-
cally on cloud computing platforms like the Amazon Elastic Compute Cloud
(EC2) [Ama16]. Nevertheless, it is clear that the high computational effort
for running such large numbers of simulations can make the use of statistical
model checking economically unviable. One generally different approach that
might help to overcome this problem could be to combine statistical model
checking with methods that are able to calculate probabilities directly. This
idea is followed in [YKNP06] where numerical methods for probabilistic model
checking are integrated in a statistical model checker to provide a limited sup-
port for nested probabilistic operators. In the context of SALMA, adopting
such a hybrid strategy would require to find a way to automatically project
parts of the model into a more abstract representation like a discrete Markov
chain. While this approach could certainly only be used for a very restricted
class of nested subformulas, it would definitely be worthwhile to investigate
further in this direction.

7.3 Outlook

It is safe to assume that discrete event simulation and statistical model check-
ing will continue to gain importance in the near future. As described above,
this is on the one hand due to the fact that simulation-based methods can be
scaled almost linearly by parallelization. Nowadays, tools exist that allow the
automatic provisioning and management of virtual machines on various cloud
computing platforms. Researchers are now actually able to create a cluster
of virtual machines in the cloud, deploy and run a distributed simulation on,
aggregate the results, and tear down the cluster from their laptops with some
simple commands. This makes simulation-based methods like statistical model
checking feasible and attractive for use cases for which the cost and effort of
using these methods at an appropriate scale used to be too high.

Although most examples presented in this thesis were taken from the do-
main of cyber-physical systems, the SALMA approach might also fit very well
for analyzing systems that are much more common in the current IT landscape.
In particular, most popular applications on the Internet have grown so much
that they now depend on complex distributed system architectures that make
massive use of parallelization of both computational power and storage capac-
ity. Of course, these system structures also impose challenges regarding how to
maintain data consistency even in the presence of failures. As the now famous
CAP theorem [GL02] shows, compromises have to be made between guaran-
teeing consistency and availability for distributed systems in which network

242 CHAPTER 7. CONCLUSION AND OUTLOOK

partitions can occur. However, realizing such a trade-off can be very hard.
On the one hand, if guarantees for consistency are weakened, for instance to-
wards a notion of “eventual consistency”, then having to cope with possible
(temporal) inconsistency becomes a complex and error-prone responsibility of
the application. On the other hand, approaches to achieve guaranteed con-
sistency are also notoriously hard to implement in practice. For example, the
Jepsen project [Kin16] regularly performs systematic tests of popular software
products like distributed database systems or message brokers. In many cases,
these tests revealed that data can be corrupted when partitions occur in cer-
tain situations. Since all of the tested products are used in production and
these faults escaped the quality assurance processes of the respective projects,
this demonstrates how important rigorous testing and simulation is.

This is where SALMA might come in. Although eventually, a pure virtual
simulation cannot replace a test of the actual systems, it could be used to
conduct simulations first whose results could help to steer the testing process.
With its ability to model message transfer, delays, and network errors in a
very flexible way and, as shown in Chapter 6, SALMA seems like a natural
fit for this task. Furthermore, it allows to model data and data access opera-
tions on a semantic level that can easily be extended with additional aspects
like location, mobility, or storage constraints. Altogether, SALMA’s flexibility
and pragmatic approach could help introducing discrete event simulation and
statistical model checking into non-academic “real-life” domains where formal
methods are usually not used because they are too difficult or costly to apply.
For many projects, this might be a valuable addition to the usual verification
and validation techniques. Additionally, the experience gained in such environ-
ments could be an important information source for the further development
of the SALMA approach and for future research regarding statistical model
checking and related fields.

Appendix A

Publications of Christian
Kroiß

2016

Christian Kroiß and Tomáš Bureš. Logic-based modeling of information trans-
fer in cyber–physical multi-agent systems. Future Generation Computer
Systems, 56:124 – 139, 2016. (Own contribution: Main author. Supported
by co-author mainly during the description of the case study and the elic-
itation and description of related work.)

2014

Christian Kroiß and Tomáš Bureš. Logic-based modeling of information trans-
fer in cyber-physical multi-agent systems. In Second International Work-
shop on Formal Methods for Self-Adaptive Systems (FMSAS 2014), 2014.
(Own contribution: Main author. Supported by co-author mainly during
the description of the case study and the elicitation and description of
related work.)

Christian Kroiß. Simulation and statistical model checking of logic-based
multi-agent system models. In 8th International Conference on Agent
and Multi-Agent Systems: Technologies and Applications (KES-AMSTA
2014), pages 151–160, 2014. (Own contribution: Sole author.)

Christian Kroiß. A statistical model checker for situation calculus based
multi-agent models (extended abstract). In Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2014), pages 1567–1568. International Foundation for Autonomous
Agents and Multiagent Systems, 2014. (Own contribution: Sole author.)

243

244 APPENDIX A. PUBLICATIONS OF CHRISTIAN KROIß

2012

Andreas Schroeder, Annabelle Klarl, Philip Mayer, and Christian Kroiß. Teach-
ing agile software development through lab courses. In Global Engineering
Education Conference (EDUCON), 2012 IEEE, pages 1–10. IEEE, 2012.
(Own contribution: Support during conceptual design and realization of
exercises.)

2010

Chris Dijksterhuis, Christian Kroiß, and Dick de Waard. Adaptive driv-
ing support - information about the vehicle‘s lateral position. In Dick
de Waard, Arne Axelsson, Martina Berglund, Björn Peters, and Clemens
Weikert, editors, Human Factors: A system view of human, technology
and organisation, pages 71–87. Shaker Publishing, 2010. (Own contribu-
tion: Implementation of a software component that was used for realizing
adaptation mechanisms in a car driving simulation experiment.)

2009

Christian Kroiss, Nora Koch, and Alexander Knapp. UWE4JSF: A model-
driven generation approach for web applications. In Proceedings of the 9th
International Conference on Web Engineering, pages 493–496. Springer-
Verlag, 2009. (Own contribution: Main author. The paper presents results
of the diploma thesis.)

Gilbert Beyer, Moritz Hammer, Christian Kroiss, and Andreas Schroeder. A
component-based approach for realizing user-centric adaptive systems. In
Mobile Wireless Middleware, Operating Systems, and Applications – Work-
shops, pages 98–104. Springer, 2009. (Own contribution: Participation in
development and description of the software framework.)

Gilbert Beyer, Christoph Mayer, Christian Kroiss, and Andreas Schroeder.
Person aware advertising displays: Emotional, cognitive, physical adapta-
tion capabilities for contact exploitation. In Proceedings of the 1st Work-
shop on Pervasive Advertising at Pervasive, 2009. (Own contribution:
Participation in development and description of the software framework.)

Daniel Ruiz-González, Nora Koch, Christian Kroiss, José-Raúl Romero, and
Antonio Vallecillo. Viewpoint synchronization of UWE models. In Proc.
5th International Workshop on Model-Driven Web Engineering, pages 46–
60, 2009. (Own contribution: Implementation of model transformations.)

245

2008

Juan Carlos Preciado, Marino Linaje, Rober Morales-Chaparro, Fernando
Sanchez-Figueroa, Gefei Zhang, Christian Kroiß, and Nora Koch. De-
signing rich internet applications combining UWE and RUX-method. In
Web Engineering, 2008. ICWE’08. Eighth International Conference on,
pages 148–154. IEEE, 2008. (Own contribution: Implementation of model
transformations.)

2006

Christian Kroiss and Gefei Zhang. Tool supported modeling of mobile systems.
In Proceedings of the 10 th IASTED International Conference on Software
Engineering and Applications, 2006. (Own contribution: Co-author, the
paper presents results of the “Fortgeschrittenenpraktikum ”).

Bibliography

[AC98] Alan Agresti and Brent A Coull. Approximate is better than “ex-
act” for interval estimation of binomial proportions. The Ameri-
can Statistician, 52(2):119–126, 1998.

[ACB10] Alessandro Aldini, Flavio Corradini, and Marco Bernardo.
Stochastically timed process algebra. In A Process Algebraic Ap-
proach to Software Architecture Design, pages 75–124. Springer
London, 2010.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[Ama16] Amazon Web Services, Inc. Amazon Elastic Compute Cloud
(EC2). http://aws.amazon.com/ec2, May 2016.

[B+13] Tomáš Bureš et al. A Life Cycle for the Development of Auto-
nomic Systems: The e-Mobility Showcase. In 3rd Workshop on
Challenges for Achieving Self-Awareness in Automatic Systems,
pages 71–76. IEEE, 2013.

[BA12] M. Ben-Ari. Mathematical Logic for Computer Science. Springer
London, 3 edition, 2012.

[BBN+03] Lorenzo Bettini, Viviana Bono, Rocco De Nicola, Gianluigi Fer-
rari, Daniele Gorla, Michele Loreti, Eugenio Moggi, Rosario
Pugliese, Emilio Tuosto, and Betti Venneri. The klaim project:
Theory and practice. In Corrado Priami, editor, Global Comput-
ing. Programming Environments, Languages, Security, and Anal-
ysis of Systems, number 2874 in Lecture Notes in Computer Sci-
ence, pages 88–150. Springer Berlin Heidelberg, 2003.

247

http://aws.amazon.com/ec2

248 BIBLIOGRAPHY

[BCD01] Lawrence D Brown, T Tony Cai, and Anirban DasGupta. Interval
estimation for a binomial proportion. Statistical Science, pages
101–117, 2001.

[BCINN04] Jerry Banks, Jon S. Carson II, Barry L. Nelson, and David M.
Nicol. Discrete-event system simulation. Prentice Hall, Upper
Saddle River, NJ, 4th edition, 2004.

[BCM92] Jr Burch, Em Clarke, and Kl McMillan. Symbolic model checking:
10 20 states and beyond. Information and . . . , 98(2):142–170,
1992.

[BCR+16] Fabio Bellifemine, Giovanni Caire, Giovanni Rimassa, Agostino
Poggi, Federico Bergenti, Tiziana Trucco, Danilo Gotta, Elisa-
betta Cortese, Filippo Quarta, and Giosuè Vitaglione. Jade web-
site - java agent development framework. http://jade.tilab.
com, March 2016.

[BDG+98] Jürgen Bohn, Werner Damm, Orna Grumberg, Hardi Hungar,
and Karen Laster. First-order-CTL model checking. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 1530
LNCS:283–295, 1998.

[BEH+02] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Him-
solt, and M Scott Marshall. Graphml progress report structural
layer proposal. In Graph Drawing, pages 501–512. Springer, 2002.

[BG96] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of
concurrent processes with nondeterminism, priorities, probabili-
ties and time. Technical report, University of Bologna, 1996.

[BGHS04] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik
Sen. Rule-based runtime verification. Verification, Model, pages
44–57, 2004.

[BK00] Fahiem Bacchus and Froduald Kabanza. Using temporal logics
to express search control knowledge for planning. Artificial Intel-
ligence, 116(1-2):123–191, 2000.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model
checking. MIT Press, Cambridge, Massachusetts, 2008.

[BKV13] Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. From
propositional to first-order monitoring. In Runtime Verification,
pages 59–75. Springer, 2013.

http://jade.tilab.com
http://jade.tilab.com

BIBLIOGRAPHY 249

[Bla06] Paul E Black. Manhattan distance. Dictionary of Algorithms and
Data Structures, 18:2012, 2006.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Run-
time Verification for LTL and TLTL. ACM Transactions on Soft-
ware Engineering and Methodology, 20(4):1–64, 2011.

[BPR99] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.
JADE–A FIPA-compliant agent framework. Proceedings of
PAAM, pages 97–108, 1999.

[BRS+00] Craig Boutilier, Raymond Reiter, Mikhail Soutchanski, Sebastian
Thrun, et al. Decision-theoretic, high-level agent programming in
the situation calculus. In AAAI/IAAI, pages 355–362, 2000.

[CBRZ01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded Model Checking using SAT Solving. Journal of Formal
Methods in System Design, 19(1):7–34, 2001.

[CCC+14] Giacomo Cabri, Nicola Capodieci, Luca Cesari, Rocco De Nicola,
Rosario Pugliese, Francesco Tiezzi, and Franco Zambonelli. Self-
expression and dynamic attribute-based ensembles in SCEL. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Ap-
plications of Formal Methods, Verification and Validation. Tech-
nologies for Mastering Change, number 8802 in Lecture Notes
in Computer Science, pages 147–163. Springer Berlin Heidelberg,
October 2014.

[CCG02] Alessandro Cimatti, Edmund Clarke, and E Giunchiglia. Nusmv
2: An opensource tool for symbolic model checking. Computer
Aided Verification, 2404(November):359–364, 2002.

[CE82] Edmund M Clarke and E Allen Emerson. Design and synthesis
of synchronization skeletons using branching time temporal logic.
Springer, 1982.

[CGL94] E M Clarke, O Grumberg, and D E Long. Model checking and
abstraction. ACM Transactions on Programming Languages and
Systems, 16(5):1512–1542, 1994.

[CLRS01] Thomas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest,
and Clifford Stein. Introduction to algorithms, volume 6. MIT
press Cambridge, 2 edition, 2001.

[CM13] Luca Cardelli and Radu Mardare. Stochastic pi-calculus revis-
ited. In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors,
Theoretical Aspects of Computing – ICTAC 2013, number 8049 in

250 BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 1–21. Springer Berlin
Heidelberg, 2013.

[Col03] Nick Collier. Repast: An extensible framework for agent sim-
ulation. The University of Chicago’s Social Science Research,
36:2003, 2003.

[CZ11] Em Clarke and Paolo Zuliani. Statistical model checking for
cyber-physical systems. Automated Technology for Verification
and Analysis, 1041377(2005):1–12, 2011.

[DEDC12] Pierre Deransart, AbdelAli Ed-Dbali, and Laurent Cervoni. Pro-
log: the standard: reference manual. Springer Science & Business
Media, 2012.

[dev15] SciPy developers. The SciPy Stack specification. http://www.
scipy.org/stackspec.html, 2015.

[DGLL00] Giuseppe De Giacomo, Yves Lespérance, and Hector J Levesque.
Congolog, a concurrent programming language based on the sit-
uation calculus. Artificial Intelligence, 121(1):109–169, 2000.

[DNKL+07] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele
Loreti, and Mieke Massink. Model checking mobile stochastic
logic. Theor. Comput. Sci., 382(1):42–70, August 2007.

[DS12] M.H. DeGroot and M.J. Schervish. Probability and Statistics.
Addison-Wesley, 4 edition, 2012.

[DvLF93] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas.
Goal-directed requirements acquisition. Science of Computer Pro-
gramming, 3(50):3–30, 1993.

[ecl06] The ECLiPSe Constraint Programming System Website. http:
//eclipseclp.org/, March 2006.

[Fow10] Martin Fowler. Domain-specific languages. Pearson Education,
2010.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education, 1994.

[GHR93] Norbert Götz, Ulrich Herzog, and Michael Rettelbach. Mul-
tiprocessor and distributed system design: The integration of
functional specification and performance analysis using stochas-
tic process algebras. In Performance Evaluation of Computer and
Communication Systems, Joint Tutorial Papers of Performance

http://www.scipy.org/stackspec.html
http://www.scipy.org/stackspec.html
http://eclipseclp.org/
http://eclipseclp.org/

BIBLIOGRAPHY 251

’93 and Sigmetrics ’93, pages 121–146, London, UK, UK, 1993.
Springer-Verlag.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services.
ACM SIGACT News, 33(2):51, 2002.

[GLLS09] Giuseppe De Giacomo, Yves Lespérance, Hector J Levesque, and
Sebastian Sardina. IndiGolog: A High-Level Programming Lan-
guage for Embedded Reasoning Agents. MultiAgent Program-
ming, pages 31–72, 2009.

[Gly89] P W Glynn. A {GSPM} formalism for discrete event systems.
Proceedings of the IEEE, 77(1):14–23, 1989.

[Goo16] Google Self-Driving Car Project.
https://www.google.com/selfdrivingcar/, March 2016.

[GS05] Radu Grosu and SA Smolka. Monte carlo model checking. Tools
and Algorithms for the Construction and . . . , (631), 2005.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the 1984 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’84, pages
47–57, New York, NY, USA, 1984. ACM.

[GvLH+96] Patrice Godefroid, J van Leeuwen, J Hartmanis, G Goos, and
Pierre Wolper. Partial-order methods for the verification of con-
current systems: an approach to the state-explosion problem, vol-
ume 1032. Springer Heidelberg, 1996.

[Hil96] Jane Hillston. A Compositional Approach to Performance Mod-
elling. Cambridge University Press, New York, NY, USA, 1996.

[HJG08] Gerard J Holzmann, Rajeev Joshi, and Alex Groce. Swarm Ver-
ification. 2008 23rd IEEEACM International Conference on Au-
tomated Software Engineering, 27(2):1–6, 2008.

[HKNP06] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David
Parker. PRISM: A tool for automatic verification of probabilis-
tic systems. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 3920 LNCS:441–444, 2006.

[HKZ+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica.
Mesos: A platform for fine-grained resource sharing in the data
center. In NSDI, volume 11, pages 22–22, 2011.

252 BIBLIOGRAPHY

[HLP01] K. Havelund, M. Lowry, and J. Penix. Formal analysis of a space-
craft controller using SPIN. IEEE Transactions on Software En-
gineering, 27(8):749–765, 2001.

[HLR+16] Tom Henderson, Mathieu Lacage, George Riley, Mitch Watrous,
Gustavo Carneiro, Tommaso Pecorella, et al. ns-3: A Discrete-
Event Network Simulator. http://www.nsnam.org/, April 2016.

[HNA16] Andreas Horni, Kai Nagel, and Kay W. Axhausen, editors. The
Multi-Agent Transport Simulation MATSim. Ubiquity, London,
2016.

[Hol97] Gerard J Holzmann. The Model Checker. IEEE TRANSAC-
TIONS ON SOFTWARE ENGINEERING, 23(5):279–295, 1997.

[Hol00] G.˜J. Holzmann. Logic Verification of {ANSI-C} Code with
{S}pin. Proc.\ SPIN, pages 131–147, 2000.

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Mod-
elling and reasoning about systems. Cambridge University Press,
2004.

[JCL09] Sumit K Jha, Edmund M Clarke, and Christopher J Langmead.
A bayesian approach to model checking biological systems. . . . in
Systems Biology, (2005):218–234, 2009.

[Jen96] Henrik E. Jensen. Model checking probabilistic real time systems.
pages 247–261, 1996.

[Kar96] Pim Kars. The application of promela and spin in the bos project.
In Proc. Second SPIN Workshop, 1996.

[KB16] Christian Kroiß and Tomáš Bureš. Logic-based modeling of in-
formation transfer in cyber–physical multi-agent systems. Future
Generation Computer Systems, 56:124 – 139, 2016.

[KEBB12] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura
Bieker. Recent development and applications of SUMO - Simu-
lation of Urban MObility. International Journal On Advances in
Systems and Measurements, 5(3&4):128–138, December 2012.

[Kin16] Kyle Kingsbury. Jepsen - distributed systems safety analysis.
http://jepsen.io/, May 2016.

[KN07] Marta Kwiatkowska and Gethin Norman. Stochastic model check-
ing. Formal Methods for Performance, 2007.

http://www.nsnam.org/
http://jepsen.io/

BIBLIOGRAPHY 253

[Kro14a] Christian Kroiß. A statistical model checker for situation calculus
based multi-agent models (extended abstract). In 13th Interna-
tional Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2014), pages 1567–1568, 2014.

[Kro14b] Christian Kroiß. Simulation and statistical model checking of
logic-based multi-agent system models. In 8th International Con-
ference on Agent and Multi-Agent Systems: Technologies and Ap-
plications (KES-AMSTA 2014), pages 151–160, 2014.

[Kro16] Christian Kroiß. The salma tolkit website - simulation and
analysis of logic-based multi-agent system models. http://www.
salmatoolkit.org/, June 2016.

[L+97] Hector J Levesque et al. Golog: A logic programming language for
dynamic domains. The Journal of Logic Programming, 31(1):59–
83, 1997.

[L+14] Diego Latella et al. Stochastically timed predicate-based commu-
nication primitives for autonomic computing. Technical report,
QUANTICOL Project, 2014.

[Law14] A. Law. Simulation Modeling and Analysis. 2014.

[LCRP+05] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan,
and Gabriel Balan. Mason: A multiagent simulation environment.
Simulation, 81(7):517–527, 2005.

[LDB10] Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical
model checking: An overview. In Runtime Verification, pages
122–135. Springer, 2010.

[Lee08] Edward A Lee. Cyber physical systems: Design challenges. In
11th IEEE International Symposium on Object Oriented Real-
Time Distributed Computing (ISORC 2008), pages 363–369, 2008.

[LP99] Tim Lechler and Bernd Page. Desmo-j: An object oriented dis-
crete simulation framework in java. In Proceedings of the 11th
European Simulation Symposium, pages 46–50, 1999.

[LPR98] Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for
the situation calculus. Linköping Electronic Articles in . . . , 3(18),
1998.

[LPY95] Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-Checking
for Real-Time Systems. In Proc. of Fundamentals of Computation
Theory, number 965 in Lecture Notes in Computer Science, pages
62–88, August 1995.

http://www.salmatoolkit.org/
http://www.salmatoolkit.org/

254 BIBLIOGRAPHY

[LR97] Fangzhen Lin and Raymond Reiter. How to Progress a Database.
Artificial Intelligence, 92:131–167, 1997.

[M+95] Daniel Marcu et al. Distributed software agents and communi-
cation in the situation calculus. In International Workshop on
Intelligent Computer Communication, pages 69–78, 1995.

[MV03] K Muller and Tony Vignaux. Simpy: Simulating systems in
python. ONLamp. com Python Devcenter, 2003.

[NCO+13] Michael J. North, Nicholson T. Collier, Jonathan Ozik, Eric R.
Tatara, Charles M. Macal, Mark Bragen, and Pam Sydelko. Com-
plex adaptive systems modeling with repast simphony. Complex
Adaptive Systems Modeling, 1(1):1–26, 2013.

[Net16] NetworkX developer team. NetworkX - High-productivity soft-
ware for complex networks. https://networkx.github.io/,
April 2016.

[NLLM13] Rocco de Nicola, Diego Latella, Michele Loreti, and Mieke
Massink. A uniform definition of stochastic process calculi. ACM
Comput. Surv., 46(1):5:1–5:35, July 2013.

[PG07] Fernando Pérez and Brian E. Granger. IPython: a system for
interactive scientific computing. Computing in Science and Engi-
neering, 9(3):21–29, May 2007.

[Pid95] Michael Pidd. Object-orientation, discrete simulation and the
three-phase approach. Journal of the Operational Research Soci-
ety, pages 362–374, 1995.

[Plo04] Gordon D. Plotkin. A structural approach to operational seman-
tics. J. Log. Algebr. Program., 60-61:17–139, 2004.

[Pnu77a] Amir Pnueli. The temporal logic of programs. In Foundations
of Computer Science, 1977., 18th Annual Symposium on, pages
46–57. IEEE, 1977.

[Pnu77b] Amir Pnueli. The temporal logic of programs. In Foundations
of Computer Science, SFCS ’77, pages 46–57, Washington, DC,
USA, 1977. IEEE Computer Society.

[Pri95] C. Priami. Stochastic π-calculus. The Computer Journal,
38(7):578–589, January 1995.

[pri16] PRISM Manual - Statistical Model Checking. http:
//www.prismmodelchecker.org/manual/RunningPRISM/
StatisticalModelChecking, 02 2016.

https://networkx.github.io/
http://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
http://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
http://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking

BIBLIOGRAPHY 255

[PY08] M. Pezzè and M. Young. Software testing and analysis: process,
principles, and techniques. Wiley, 2008.

[Pyt15a] Python Software Foundation. The Python Language Ref-
erence. https://docs.python.org/3/reference/index.html,
July 2015.

[Pyt15b] Python Software Foundation. The Python Standard Library.
https://docs.python.org/3/library/index.html, July 2015.

[Rei01] Raymond Reiter. Knowledge in action: logical foundations for
specifying and implementing dynamical systems. MIT press, 2001.

[Şah05] Erol Şahin. Swarm Robotics: SAB 2004 International Workshop,
Santa Monica, CA, USA, July 17, 2004, Revised Selected Papers,
chapter Swarm Robotics: From Sources of Inspiration to Domains
of Application, pages 10–20. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005.

[San05] Susan M Sanchez. Work smarter, not harder: guidelines for de-
signing simulation experiments. In Proceedings of the 37th con-
ference on Winter simulation, pages 69–82. Winter Simulation
Conference, 2005.

[Sch03] Richard B Scherl. Reasoning about the interaction of knowledge,
time and concurrent actions in the situation calculus. In 18th
International Joint Conference on Artificial Intelligence (IJCAI-
03), pages 1091–1098, 2003.

[Sco98] Rs Scowen. Extended BNF-a generic base standard. Software
Engineering Standards Symposium, 3(1):6–2, 1998.

[SL03] Richard B Scherl and Hector J Levesque. Knowledge, action, and
the frame problem. Artificial Intelligence, 144(1):1–39, 2003.

[SLB08] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Al-
gorithmic, game-theoretic, and logical foundations. Cambridge
University Press, 2008.

[SS10] Joachim Schimpf and Kish Shen. ECLiPSe - from LP to CLP.
CoRR, abs/1012.4240, 2010.

[ST01] John Slaney and Sylvie Thiébaux. Blocks World revisited, volume
125. 2001.

[sta15] StatsModels: Statistics in Python. http://statsmodels.
sourceforge.net, July 2015.

https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
http://statsmodels.sourceforge.net
http://statsmodels.sourceforge.net

256 BIBLIOGRAPHY

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical
model checking of black-box probabilistic systems. In Computer
Aided Verification, pages 202–215. Springer, 2004.

[SVA05a] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical
model checking of stochastic systems. Computer Aided Verifica-
tion, 2005.

[SVA05b] Koushik Sen, Mahesh Viswanathan, and Gul Agha. VeStA: A
statistical model-checker and analyzer for probabilistic systems.
QEST 2005 - Proceedings Second International Conference on the
Quantitative Evaluation of SysTems, 2005:251–252, 2005.

[Var96] M Vardi. An automata-theoretic approach to linear temporal
logic. Logics for concurrency, 1996.

[Var10] Andras Varga. Modeling and Tools for Network Simulation, chap-
ter OMNeT++, pages 35–59. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[VW86] M Y Vardi and P Wolper. An automata-theoretic approach to
automatic program verification, 1986.

[W+45] Abraham Wald et al. Sequential tests of statistical hypotheses.
Annals of Mathematical Statistics, 16(2):117–186, 1945.

[Woo09] Michael Wooldridge. An introduction to multiagent systems. John
Wiley & Sons, 2009.

[WSTL12] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn
Lager. SWI-Prolog. Theory and Practice of Logic Programming,
12(1-2):67–96, 2012.

[WTM04] Fang Wang, Sofiène Tahar, and Otmane Ait Mohamed. First-
Order LTL Model Checking Using MDGs. pages 441–455, 2004.

[YKNP06] Håkan L S Younes, Marta Kwiatkowska, Gethin Norman, and
David Parker. Numerical vs. statistical probabilistic model check-
ing. International Journal on Software Tools for Technology
Transfer, 8(3):216–228, 2006.

[You05a] Hakan Lorens Samir Younes. Verification and Planning for
Stochastic Processes with Asynchronous Events. Phd thesis,
Carnegie Mellon University, 2005.

[You05b] HLS Younes. Ymer: A statistical model checker. Computer Aided
Verification, 3576:429–433, 2005.

BIBLIOGRAPHY 257

[YS02] HLS Younes and RG Simmons. Probabilistic verification of dis-
crete event systems using acceptance sampling. Computer Aided
Verification, 2002.

[ZPK00] Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. The-
ory of modeling and simulation: integrating discrete event and
continuous complex dynamic systems. Academic press, 2000.

	Contents
	Introduction
	An Overview of the SALMA Approach
	Main Contributions of the Thesis
	Overview of the Thesis

	Background
	Multi-Agent Systems
	The Situation Calculus
	Quantitative Time and Clocks
	Processes and Concurrency
	Stochastic and Exogenous Actions
	GoLog

	Discrete Event Simulation
	Temporal Logics and Model Checking
	Statistical Model Checking
	Sample Sizes and Sequential Hypothesis Tests

	Multi-Agent Simulation with SALMA
	A Simple Simulation Example: Delivery Robots
	Axiomatization of System Domains
	The SALMA Sort System
	Fluents and Constants
	Actions and Events
	Effect Axioms and Derived Fluent Functions
	Action Precondition and Schedulability Axioms
	Representation of Time in SALMA

	The SALMA Agent Process Definition Language
	Notation
	Agent Control Procedures
	Agent Process Types

	The SALMA Simulation Framework
	Initial Setup
	Configuration of Actions and Events
	Creating Entities, Agents, and the Initial Situation
	Defining and Performing a Simulation Experiment
	Mechanisms for Language Integration

	The Delivery Robots Experiment Revisited
	SALMA Simulation Semantics
	Basic Definitions
	Core Simulation Semantics
	Semantics of Other SALMA-APDL Elements
	Remarks

	Summary
	Related Work

	Statistical Model Checking in SALMA
	SALMA's Property Specification Language
	Syntax and Language Structure
	Examples
	Semantics of SALMA-PSL Properties

	Framework Support for Statistical Model Checking
	A Detailed Predictable Example
	Summary
	Related Work

	Efficient Property Evaluation
	Overview of the Evaluation Mechanism
	Variable Time Advances
	Discrete Temporal Interval Sequences
	Unlabeled Temporal Interval Sequences
	Intersection Operators
	Result Mappings

	The Property Compiler
	The Evaluation Goal Schedule
	Basic Structure
	Property Context and Variable Binding
	Nested Temporal Operators
	A Formal Interface To The Evaluation Goal Schedule

	The Formula Evaluation Algorithm
	General Definitions
	The Property Evaluation Loop
	Lookahead Evaluation of Invariants And Goals
	Main Formula Evaluation Function
	Logical Connectives
	Relational Fluents and Predicates
	Functions and Functional Fluents
	Action Occurrences
	Variable Assignments
	Evaluation of Temporal Operators

	Validation of the Evaluation Mechanism
	Summary
	Related Work

	Modeling Information Transfer in CPS
	Running Example: Optimized Parking Lot Assignment
	A Generic Model for Information Transfer
	Information Transfer Phases
	Information Transfer Paradigms
	Predicate-based Addressing
	Influence of the Choice of Probability Distributions
	Axiomatization of the Information Transfer Model

	Information Transfer in SALMA Models
	Connector Declaration Macros
	Specialized Process Elements For Information Transfer
	Transparent Sensing Infrastructure

	SMC for Information Transfer
	Experimental Evaluation
	Summary
	Related Work

	Conclusion and Outlook
	Key Achievements of the Thesis
	Possible Improvements and Extensions
	Outlook

	Publications of Christian Kroiß
	Bibliography

