Conta, Verena von (2015): Statistical theory of the atom in momentum space. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik |
Vorschau |
PDF
Conta_Verena_von.pdf 551kB |
Abstract
In 1992, Englert [Phys. Rev. A, 45;127--134] found a momentum energy functional for atoms and discussed the relation to the Thomas-Fermi functional (Lenz [Z. Phys., 77;713--721]). We place this model in a mathematical setting. Our results include a proof of existence and uniqueness of a minimizing momentum density for this momentum energy functional. Further, we investigate some properties of this minimizer, among them the connection with Euler's equation. We relate the minimizers of the Thomas-Fermi functional and the momentum energy functional found by Englert by explicit transforms. It turns out that in this way results well-known in the Thomas-Fermi model can be transferred directly to the model under consideration. In fact, we gain equivalence of the two functionals upon minimization. Finally, we consider momentum dependent perturbations. In particular, we show that the atomic momentum density converges to the minimizer of the momentum energy functional as the total nuclear charge becomes large in a certain sense. This thesis is based on joint work with Prof. Dr. Heinz Siedentop and the main contents will also appear in a joint article.
Dokumententyp: | Dissertationen (Dissertation, LMU München) |
---|---|
Keywords: | statistical theory in momentum space, asymptptic behavior of the momentum density |
Themengebiete: | 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fakultäten: | Fakultät für Mathematik, Informatik und Statistik |
Sprache der Hochschulschrift: | Englisch |
Datum der mündlichen Prüfung: | 13. April 2015 |
1. Berichterstatter:in: | Siedentop, Heinz |
MD5 Prüfsumme der PDF-Datei: | 3802a6966c9e4640aaad4caa2632b4d1 |
Signatur der gedruckten Ausgabe: | 0001/UMC 23232 |
ID Code: | 18695 |
Eingestellt am: | 23. Sep. 2015 07:30 |
Letzte Änderungen: | 23. Oct. 2020 21:36 |