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Zusammenfassung

Im Jahre 1992 fithrte Englert [3] ein Impuls-Energie-Funktional fiir
Atome ein und erorterte seinen Zusammenhang mit dem Thomas-
Fermi-Funktional (Lenz [§]). Wir integrieren dieses Modell in eine ma-
thematische Umgebung. Unter unseren Resultaten findet sich ein Be-
weis fiir die Existenz und Eindeutigkeit einer minimierenden Impuls-
dichte fiir dieses Impuls-Energie-Funktional; des Weiteren untersuchen
wir einige Figenschaften des Minimierers, darunter auch den Zusam-
menhang mit der Euler-Gleichung.

Wir verkniipfen die Minimierer des Thomas-Fermi-Funktionals mit
dem Impuls-Energie-Funktional von Englert durch explizite Transfor-
mationen. Wie sich herausstellt, konnen auf diese Weise bekannte Er-
gebnisse aus dem Thomas-Fermi-Modell direkt auf das von uns be-
trachtete Modell iibertragen werden. Wir erhalten sogar die Aquiva-
lenz der beiden Funktionale beziiglich ihrer Minima.

Abschlielend betrachten wir impulsabhéngige Stérungen. Insbeson-
dere zeigen wir, dass die atomare Impulsdichte fiir grofle Kernladung
in einem bestimmten Sinne gegen den Minimierer des Impuls-Energie-
Funktionals konvergiert.

Die vorliegende Arbeit basiert auf Zusammenarbeit mit Prof. Dr.
Heinz Siedentop. Wesentliche Inhalte werden ebenfalls in einer ge-
meinsamen Publikation [27] erscheinen.






Abstract

In 1992, Englert [3] found a momentum energy functional for atoms
and discussed the relation to the Thomas-Fermi functional (Lenz [§]).
We place this model in a mathematical setting. Our results include a
proof of existence and uniqueness of a minimizing momentum density
for this momentum energy functional. Further, we investigate some
properties of this minimizer, among them the connection with Euler’s
equation.

We relate the minimizers of the Thomas-Fermi functional and the
momentum energy functional found by Englert by explicit transforms.
It turns out that in this way results well-known in the Thomas-Fermi
model can be transferred directly to the model under consideration.
In fact, we gain equivalence of the two functionals upon minimization.

Finally, we consider momentum dependent perturbations. In par-
ticular, we show that the atomic momentum density converges to the
minimizer of the momentum energy functional as the total nuclear
charge becomes large in a certain sense.

This thesis is based on joint work with Prof. Dr. Heinz Siedentop
and the main contents will also appear in a joint article [27].
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Introduction

Density functional theory is a method to investigate properties of phys-
ical systems, such as atoms, molecules or solids. The ground state of
these systems is of particular interest. The approach of this theory is
to consider a functional depending on the one-particle electron den-
sity where the minimum of this functional yields an approximation for
the ground state energy and the minimizer yields an approximation
for the ground state density. So, dealing with the variational prob-
lem of minimizing an energy functional which depends only on the
one-particle density reduces an initially multi-particle problem to a
one-particle problem. There exists a huge literature for the theory of
energy functionals of the spatial density, whereas the theory of energy
functionals of the momentum density gained by far less attention.

In the field of spatial density functionals the Thomas-Fermi model is
of outstanding importance. This statistical method of Thomas [26] and
Fermi [0, [7] was set on a mathematical footing by Lieb and Simon [10],
12 13]. Their results include a proof that the Thomas-Fermi energy,
the minimum of the Thomas-Fermi functional (Lenz [§]), is asymptotic
to the ground state energy for large physical systems. More precisely,
if the total nuclear charge Z becomes large and the number of electrons
N increases simultaneously such that the ratio N/Z is fixed, then these
two energies are equal up to an error of order o(Z7/?). Moreover,
the Thomas-Fermi model provides the opportunity to determine the
linear response to perturbations that are local in position space since
Lieb and Simon [10] 12} [13] also show that the quantum mechanical
density converges weakly to the Thomas-Fermi minimizer for large
physical systems. Since then results on the Thomas-Fermi functional
were refined, e.g., by corrections to the asymptotic behavior of the
leading order (see, e.g., Siedentop and Weikard [20], 211, 221 23], 24]).
Further the validity of the Thomas-Fermi theory was extended, e. g.,
to magnetic fields (Lieb, Solovej, and Yngvason [14, [15] and Erdds and



Solovej [4, [5]).

For the treatment of momentum dependent perturbations the Thomas-
Fermi model does not apply to. In fact, it is well-known that the mo-
mentum density is not merely the Fourier transform of the spatial den-
sity and although there are techniques to deduce momentum densities
from the spatial ones, these rules are quite limited in their applica-
bility, as remarked by Englert [3] already. To pursue a self-consistent
determination of the momentum density Englert [3] introduced a mo-
mentum energy functional for atoms. This allows — in a natural way —
for the treatment of purely momentum dependent perturbations. He
also discussed the relation to the Thomas-Fermi functional.

The aim of this thesis is to place the model found by Englert [3] in a
mathematical setting. We shall prove the existence and uniqueness of a
minimizing density and furthermore that this density is asymptotically
exact to the quantum mechanical ground state density.

To start with, Chapter [1| contains some basic properties of the mo-
mentum functional introduced by Englert [3]. Among them we are
concerned with the question of convexity of this particular functional
which we denote by &, 7F.

In Chapter [2] we introduce a new functional which emerged from
the original one simply by substitution. This new functional is strictly
convex and ensures therefrom uniqueness of a minimizing momentum
density, as far as it exists. Later, this will also entail the uniqueness
of any minimizer of &,,1r, the momentum energy functional originally
introduced in the first chapter.

Chapter [3| covers the relation between the Thomas-Fermi functional
in position space and the energy functional &, rr in momentum space
by explicit transforms. This is extensively used in the next chapter
where we finally answer the question of existence of the minimizer.

In Chapter [4] we use the relation shown in the previous chapter
to gain equivalence of the two functionals upon minimization. This
allows us to transfer results from the Thomas-Fermi model directly
to the one under consideration. In particular, this implies that the
infimum of the momentum energy functional agrees with the ground
state energy up to the same order as the Thomas-Fermi energy does.
Further, we establish bounds on the minimizer and its connection with
Euler’s equation.



Finally, in Chapter [5| we consider momentum dependent pertur-
bations. To be more precise, we prove that the atomic momentum
density converges on the scale Z%/3 to the minimizer of the momen-
tum energy functional. Hence, the momentum density functional gives
the right appropriate linear response to momentum dependent forces.
The proof uses coherent states. Schrodinger [19] derived these states
as Gaussian wave functions parametrized by points in phase space sat-
isfying minimal uncertainty. There exist various generalizations and
the concept of coherent states has become a topic of self-contained
interest.

Enclosed, in the appendix we also give an alternative proof for
the existence of the minimizer. There, we do not rely on the rela-
tion discussed in Chapter [3] and the known results from the Thomas-
Fermi model. Instead, we use variational methods on Banach spaces
equipped with the weak topology together with semicontinuity of the
functional in this weak topology in the spirit of Weierstrass. This is
a fairly standard strategy in the calculus of variations which has also
been used in the article of Lieb and Simon [13].

At the end of this introduction, we would like to briefly indicate a
difference regarding the general structure of energy functionals of the
one-particle density in position space and the one-particle density in
momentum space. For example, if we compare the Hamiltonian of an
atom with the Hamiltonian related to a molecule in position space then
we observe that in both cases the external potential appears as a sum
of one-particle multiplication operators. This suggests that a one-
particle spatial density functional corresponding to an atom should
have essentially the same general structure as a one-particle spatial
density functional corresponding to a molecule. On the other hand,
in momentum space we observe one-particle multiplication operators
in the kinetic term of the Hamiltonian but not in the potential terms.
Consequently, a one-particle momentum density functional suitable
for atoms is not necessarily easily adapted to molecules. However, in
the context of this thesis, we concentrate on the momentum energy
functional &,1r which is associated with an atom. Besides this, we
also want to refer to an article of Cinal and Englert [2] which is closely
related to the one of Englert [3]. They found the momentum energy
functional &, 1r to be applicable in deriving a further momentum en-



ergy functional which improves the approximation of the ground state
energy in higher order than o(Z7/?). In fact, they incorporate the cor-
rection corresponding to the strongly bound electrons, the so-called
Scott correction, into the existing momentum functional.

o

The main part of this thesis is related to the article [27] which will
be published co-authored with Prof. Dr. Heinz Siedentop. We give
references for the corresponding propositions in the article. The for-
mulation of the associated proofs is taken mostly from that article
with more details and some intermediate steps where this seems ap-
propriate.

¢

Acknowledgments. 1 wish to thank Prof. Dr. Heinz Siedentop for
supervising me during my work on this project.

Thanks to all of my colleagues, friends, and family for various dis-
cussions, inspiring me, and having a good time together.

This work has also been partially supported by the DFG, the Ger-
man Research Council, through the SFB-TR 12 “Symmetries and Uni-
versality in Mesoscopic Systems”.



1. The Momentum Energy Functional

1.1. The Quantum Mechanical Setting

The quantum mechanical system we will be concerned with is an atom
with N electrons of mass m and charge —e < 0 moving about one
fixed positive charge of magnitude eZ. This system is described by
the Hamiltonian

N
h? 7Ze? e?
N ; 2m |0l > T — T (1.1)

1<n<m<N

where A is Planck’s constant divided by 27. This operator Hy is self-
adjoint on the Hilbert space /\f;f:1 L*(R? : C%), the anti-symmetric
subspace of square integrable functions on R? with values in C?, where
q denotes the number of spin states. The corresponding ground state
energy is defined to be inf o(Hy ), the infimum of the spectrum of Hy.

Englert [3] derived an energy functional depending on the momen-
tum density 7 for the ground state energy associated with Hy. It
reads

wln

Eure(r) = [ A $or(6) ~ hi°2¢ [ aer(©
+e [ e [ an (e

o
wlo

where yrp := (672/¢)%3 L is the Thomas-Fermi constant, 7 (£, 7) :=

min{7(&),7(n)}, and 7 (&, ) := max{r(¢), 7(n)}.
From now on we will use units where i = 2m = |e] = 1. We will

refer to the Hamiltonian in the new convention

Hy = Z(—An - é) _ m; (1.3)

E— x ’
n=1 1<n<m<N T m‘




With our choice of units ypr = (672/¢)?/® and the energy functional
has the following form:

Entr(T) = Kn(7) — Ap(7) + Ron(7)
_ / de €27(6) — $rp*2 / aer(e)}

iy Té”/ d£/ dn (7o (€. m)s (€)'} —

Wi
U!IH
oun)
7Y
3
SN—
SN—

1.2. Basic Properties of the Energy Functional

For the purpose of defining the functional &, it is sufficient to require
7€ LY(R3, (1 4 £2)dé):

Theorem 1.1 (Conta and Siedentop [27, Theorem 1]). The functional
Entr 18 well-defined on real-valued functions in L'(R3, (1 + £2)d¢).

Proof. The first summand of E,1r(7), the kinetic energy IC,,, is ob-
viously well-defined. The claim for the attraction A,, follows from

/Rgdﬁlﬂf)li < (/R %)é(/ﬂ@df(1+52)wg)\)g < oo (1.5)

by Holder’s inequality. The repulsion R,, consists of two parts. Now,

[ [ antratenti < [ ae [ aniremliien

2 [ agle@ [ anlrl (1)

which is finite by the previous argument. O]
For densities in momentum space we define the sets
J = {r e L'(R’ (14 &)d&) | r > 0},

IN = {T€j|fR3d€T(€)§N}a
Jon = {T€~7|fR3dfT(f):N}~



In view of approximating the ground state energy via the minimal
energy of the functional for large atoms, i. e., in the simultaneous limit
Z — 00, N — oo with the ratio N/Z fixed, the following scaling law
is of particular interest. It is implicitly given in the article [27].

Theorem 1.2. Let 7 € J. Let Z > 0 and 74(&) = Z7'7(Z72/3¢).
Then
[ derate) =2 [ aero (L7)
R3 R3
and
ngF(TZ) = Z7/35mTF,Z:1(T) (1-8)

where Enrr7-1(7) = Ky () — %’Y{éﬂ Jas dfT(f)% + Rn(T).

Proof. The assertion (|1.7)) follows by a direct change of the integration
variable. Likewise, we proceed in each term of ((1.4) to get (1.8). O

We are interested in results pertaining to the existence of a min-
imizer of the functional &,r. For that reason convexity, and even
more strict convexity, would be a desirable property of £, . Clearly,
K,, and —A,, are convex in 7 but the interaction term R,, of Enrr is
not. For example, consider the family of functions (7,),>1 on R3 given
by

& KEl<a
Ta(g) L {O ‘5’ > a (19)

and set 7 = 7. Obviously, [psdé7(§) = [ps dE7(§) holds for all
a > 1. Moreover, define

d(a) == ¢! [Rm(;”) — Y Ron(7) +Rm(ra))} (1.10)
where ¢ := %7;;/2 = (%’T)Q.

By an easy computation we get, on the one hand, that

%(Rm(T) + Rm<7'a)) = clT“.



On the other hand, since

1+ ¢ <1
(T+ 7)) =14 = 1<[f|<a
0 a < €]
we find
T+ T,
Rn(—57)

=270 e[ (145) 45 (3 (1) -1 (@) (- ()@ -12).
All together, this leads to

da) = 2R [(14 1)+ 5(1- ) (14 5)"°0 = &) + 52| - 1y

ad

for any a > 1. Therefrom, d(2) > 0 can be verified immediately which
implies that R,, is not convex in 7.

10



2. The Functional &,

We introduce a further functional. It is strictly convex and so closely
related to £, rr that we may treat this new functional instead of &, rr
when investigating the existence and uniqueness of a minimizing den-
sity.

Let the functional & of the momentum density 7 > 0 be given by

&)= [ aeer©l - 1tz [ acae)

+ S / 46 [ dn (&R (e = $7e(Em)f) - (21)

where 7. and 7. are defined analogously to 7. and 7, respectively.

Indeed, &, is derived from E,7r(7) by substituting 7 — 72, i.e.,

E(7) = Emrr (7). (2.2)
In analogy to &,rr we define the sets
T = {7 € PR, (1 4+ ¢7)dg)
Ty = {7 € T*| [ de7(6)?
Tin = {7 € T | [on dE7(€)3

Theorem 2.1 (Conta and Siedentop [27]). & is well-defined on J°.
In particular, 7 € J° implies 7 € L*(R3,d¢).

Proof. By construction (Eq. (2.2)) the finiteness of & follows from
the same estimates as in the proof of Theorem [1.1I] when substituting
T — 732, ]

Uniqueness of a minimizer, given that it exists, is an important
consequence of strict convexity. The treatment of the functional &; is
highly motivated by this particular property.

11



Lemma 2.2 (Conta and Siedentop [27, Lemma 1]). The functional &
is strictly convex on all of J° and on any convex subset of J*.

Proof. Let 7 € J, where J; denotes J* or any convex subset of J*,
e.g., Iy or J;y. Obviously, the first term of &; is strictly convex, the
second is linear. Thus, it suffices to show convexity of the repulsion
term. Let 6 denote the Heaviside function, i.e., (z) = 1 if x > 0
and 6(z) = 0 otherwise, and define the positive part for z € R by
[]4+ := max{0,z}. Then, we get

| ar ([ e -

- /]R [ ay /0 T dr ) — () — I0GE) — )0 — 1)

I
T
[oN
78 %
=
w
o
3
o\.»
/?z
™
3
=
(V)
[oN
3
N
~—~
I
N—r
Rt
—
R
N—
|
N
~—~
72
N—
3
[
|
N
—
3
S~—
S
o
+
=
=
N—

The assertion follows from this identity since the term in the first line
is obviously convex. O]

Corollary 2.3 (Conta and Siedentop [27]). Let Jj; denote J* or any
convex subset of J°, e.g., Iy or J5y. Then there is at most one
T € Jj such that
EJT) = inf &E,(0).
(7) = jnt. 0)
Proof. Let 71,75 € .7;5. Suppose 7; # T, were minimizers of the
functional, i.e., &(71) = &(72) = infzezy £(7). This contradicts
E(ME2) <infre 73 €5(7), and therefore the strict convexity of &. [

12



The proof of Lemma offers an expedient integral representation
for the electron-electron interaction term of &s:

Definition 2.4. We write the electron-electron interaction term of &,
in the following convention:

Re?) = bt [ ([ aefre - r)”

13






3. Thomas-Fermi and the Momentum
Energy Functional

We wish to relate the momentum energy functional given in the first
chapter with the Thomas-Fermi functional. To this end, we first briefly
recall the definition of the Thomas-Fermi functional and some results
we will refer to in the sequel. Then, we define explicit transforms
which, eventually, the relation of the two functionals emerges from.

3.1. A Few Results on the Thomas-Fermi Functional

In the chosen units where h = 2m = |e| = 1 the well-known Thomas-
Fermi functional (Lenz [§]) reads

Exe(p) = K(p) — Alp) + R(p) (31)
=ty [ dwp)f = [ ar Zolw)+ Dl (32

where D[p] is the quadratic form of

o) ;zgésdx/mdy% (3.3)

for one-particle electron densities p and ¢ in position space. The
Thomas-Fermi constant is given as before by yrp = (672/¢)*?. Math-
ematically this functional has been studied in detail by Lieb and
Simon [12], 13] and Lieb [I0]. The Thomas-Fermi functional is well-
defined for functions in L'(R?®) N L53(R?) and we write

T:={pe L"(R*NLVAR|p>0},
Iy :={p€T]| [psdzp(x) <N},
Ion ={p €| [adzp(z) = N}

15



for densities in position space.
In the following we will use the notion of spherically symmetric
rearrangement, namely,

Definition 3.1. Let A C R? and let |A| denote its Lebesgue measure.
If |[A] < oo then A* is defined to be the closed ball centered at the
origin which has the same volume as A. We call A* the spherically
symmetric rearrangement of A.

For any function p € LP(R?), 1 < p < oo its spherically symmetric
rearrangement p* is given by

p(x) = / At X faers|p(a) >0} ()
0

where x4 denotes the characteristic function of the set A.

Now, the property of the Thomas-Fermi functional we want to men-
tion first is that it decreases under spherically symmetric rearrange-
ment, i.e.,

Lemma 3.2 (Lieb [I0, Theorem 2.12]). Let p € T and let p* denote
its spherically symmetric rearrangement. Then

Err(p") < Err(p). (3.4)

Other important results we will employ are collected in the following
theorem:

Theorem 3.3 (Lieb and Simon [I3, Theorems I1.14, 11.17, I1.18, 11.20]).
Let Z > 0.

1. For all0 < N < Z there exists a unique minimizer py of Err
on Loy .

2. For N > Z there exists no minimizer of Erp on Loy .

3. For each N > 0 there exists a unique minimizer py of Errp on
In. Moreover, pn € Lymin{N,7}-

4. Let pz be the unique minimizer of Ergp on Lgyz. Then, for all
p el
Err(p) = Err(pz)-

16



The minimum of the Thomas-Fermi functional is an approximation
of the ground state energy. More precisely, suppose the ratio N/Z is
fixed, then

info(Hy) = inf Erp(p) 4+ o(Z73).
PEIN

Moreover, there is a quantum mechanical limit for the density as well.
For the case of a neutral atom, i.e., N = Z, we have that

Z72pp, (- 27V = Z72pp(- 2713 = py (3.5)

weakly in the limit Z — oo. Here, p,, denotes the one-particle den-
sity of the quantum atom of charge Z and pz is the Thomas-Fermi
minimizer. These results, among others, assert Thomas-Fermi theory
in the regime of quantum mechanics and give rise to determine the
linear response of atoms to perturbations that are local in position
space.

We aim to prove some basic mathematical properties of &,rr. In
fact, we show equivalent results to Lemma (3.2]and Theorem [3.3|for the
momentum functional &€,tr. This will establish the functional &,1r
in the regime of quantum mechanics. We will consider momentum
dependent perturbations as well.

3.2. Transforms between Position and Momentum
Functional

Now, we define the explicit transforms which transfer each term of
Entr to the associated term of Erp as long as spherically symmetric
decreasing densities are concerned. We set

S LYR?) — LY(R?)

T p (3.6)
where p is given by
pla) = gty [ e (3.7)
B St <rtf2imore

for all x € R3.

17



For any function p € L*(R?) and for any s > 0 we define the Fermi
radius r by

r(s):=0 if 7%/F2|p(1:)|1/3 < s forae. r€R’
r(s) :=inf{K | fy%/Fz\p(:c)P/?’ > s for ae. || < K} otherwise.
(3.8)

This infimum can be understood, in some sense, as an essential supre-

mum of the set {|z| | v |p(x)|*/® > s}, especially if p is spherically

symmetric. Now, based on the definition of the Fermi radius r we set

T: LY(R?) — L'(R?)
p—T (3.9)

where T is given by
7(€) = r(l€])° (3.10)

for all £ € R3.

The first operator will be used to transfer a momentum density
into a position density and the second to transfer a position into a
momentum density. With this in view we prove the following results
on the operators S and T

Lemma 3.4 (Conta and Siedentop [27, Lemma 4]).
1. The operator S is isometric on L'(R3).

2. If p € LY(R3) and |p| spherically symmetric decreasing then

IT(p)llx = NIl

3. All elements in the image of S are spherically symmetric, non-
negative, and decreasing.

4. For every spherically symmetric p € L*(R?), its image T(p) is
spherically symmetric, nonnegative, and decreasing.

18



Proof. 1. The claim follows easily by direct computation interchanging
the integration with respect to x and the integration with respect to
€.

2. To treat T" we may, without loss of generality, assume p > 0.
Let ¢ € R3. By definition of r and since p is spherically symmetric
decreasing

1/2
2] < r(&l) = 1 (@) > I¢] (3.11)
for almost every x € R?, in the sense that almost every x € R3 with

lz| < r(|¢]) satisfies 'y%/sz( )3 > |€]. Likewise, the definition of r

provides that

2] < r(l€]) < (@) > ¢ (3.12)
for almost every x € R3.
We have
7o) = 255 [ de . (3.13)
TR || <r(|€])

By (3.11)) we get the estimate

1T < s / d de
TTE Yo p(2) /3> €]

prE / /wTpr>1/3>|a|d£: / da p(z). (3.14)

On the other hand, if we allow for < instead of strict inequality on
the integration constraints in (3.13)) we can also reverse the inequality

in (3.14) using (B.12).

3. and 4. The claims follow directly from the definitions. O

Now, we will see how the functionals Etp and E,1r are related via
the operators S and 7', namely,

Lemma 3.5 (Conta and Siedentop [27, Lemma 4]).

1. For every spherically symmetric decreasing T € J
ngF(T) = gTF @) S(T)
2. For every spherically symmetric decreasing p € T

Emtr 0 T(p) = Exr(p).

19



Proof. 1. We treat each term of the energy functional individually. We
start with the potential terms, actually with the external potential
which is an easy variant of the interaction potential. Both follow by

explicit calculation.
We have
1

Z q
A = /dm HS(”(I) N Z/dx @n? /|a:<71/27(5>1/3 a ]
/d§ @7 2 WTFT(Q”)% = gygéﬂZ/dfT(g); (3.15)

Now we exhibit the calculation for the interaction potential. Given
a radius a > 0 we set K, := X{ser3|j«|<a} 10 be the characteristic
function of the open ball of radius a centered at the origin. We get

1
:%/dx/dy
|z — |

(L)Q/ dg/ dn (3.16)
C Jalenirons  Ji<atigrms

() 2//d§d77D(K e e K v e) (3.17)
= (&)’ //dgan v Kymen) (3.18)

2 Té/Q //déan (577]

/ / dedn DKy e K g mmiem — 53 T<(§,n>)>

(3.19)
= 47r2 ’li“l*l/2 //dfan (577]

1
+ [ [ agans [ s | i)
x| < /< (€m) Yre@m<ul<Ym@m Yl

(3.20)

= @ 55/2 //dfan (K7 (€,7)3
/ / dedn 25 7o (&2 ()} — m-(€.m)F)) G20
=i //dgdm< & (&) = (€ ) (3.22)

20



where we used the scaling properties of D in (3.18) and Newton’s

Theorem |B.5| to get (3.20). In particular, D[K;]| = % follows by a
simple computation.

Now we turn to the remaining term, the kinetic energy. It trans-
forms as

K(S()) = %7TF/d$S( )8 = 37Tp/dx/ de ¢
0<t<S()(x)1/3
= 15 )TF / deg? / dz. (3.23)
635 (r) (@)

Given that S(7)(z) > [£]? 1mphes LT (Y3 > ||, which is equiv-
alent to the statement that > flr\<7 s dn = €7 implies T(&)V3 >
||, we have

b [ deS()@) < Some [ age? /| T 320

(v )3

OT

= /dgg 7(§). (3.25)

Suppose 3= [ crmyis 41 = [€]* would not imply 7(€)Y3 > |x|. Then

P / dy < & / <i [ day=ef (3.26)
lz|<T(n)1/3 T(&§)<T(n) |€]>n|

where we used in the last inequality that 7 is spherically symmetric
and decreasing.
On the other hand, 2 fa:|<7'(77)1/3 dn > |€? follows from 7(£)Y/3 > |x|

=i asg [ w<i dy (327
[nl<I€l T(§)<T(n) || <7 (n)1/3

using in the first inequality again that 7 is spherically symmetric and
decreasing. Thus we can reverse the inequality in (3.24)), i.e.,

- / de S(r)(2)} > e / de €2 / de (3.28)
el <o

TF5)1/3

- / d¢ &27(8). (3.29)

as
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2. To prove that E,rroT(p) = E1r(p) we proceed as in 1. We begin
with the kinetic energy:

Kn(T(p)) = /dff Yo r(€])° 4”%3/2/(igf /|< (3)

i faee [ ar=k() @0
[€]<yrp p(2)1/3

where we used (3.11)) and (3.12)) in the penultimate identity.
For the external potential we get

An(T(0) = 3922 [ agr(lel? =3072°2 [ ag att
o<t<r(lé])
= 73 3/2/d§ dr ity = 23y 3/2/ %/
|z[<r (&) €] <val2 p(a) 1/3
1

using again (3.11)) and (3.12)) in the penultimate identity
Finally we go to R,,. Adapting the steps (3.22) to - 3.16]) yields

/ / dedy ——— ) / d¢ / dn
Iw - yl el<r(el)  Jlyl<r(nl)

/ / dzdy d¢ / dn
|17 — | €| < p(x)1/3 Inl <7 py)1/3

= R(p) (3.32)

using and ( - once more. O
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4. Results on the Minimal Energy
and the Minimizer

4.1. Existence and Uniqueness Results

The following theorem establishes &£, 1r as the momental analogue of
the Thomas-Fermi functional (cf. Theorem [3.3).

Theorem 4.1 (Conta and Siedentop [27, Theorem 2]). Let Z > 0.
1. For all N > 0, we have inf ¢z, Enrr(T) = inf ez, Err(p).

2. Let 0 < N < Z. If py is the unique minimizer of Err on Lyn
then T(py) is the unique minimizer of Enrr on Jon-

3. For N > Z there exists no minimizer of Entr on Jon -

4. For each N > 0 there exists a unique minimizer Ty of Entr on
In. Moreover, Tn € Jomin{N,z}-

5. Let 77 be the unique minimizer of Entr on Jaz. Then, for all
TeJ,
Entr(T) > Emtr(T2).

The proof of Theorem {4.1]is based on the relation of the functionals
Err and Ey,rr that was indicated in Lemma [3.5] Thus, in order to
apply this lemma we want to restrict the two functionals to spher-
ically symmetric decreasing densities. We overcome this problem if
we can ensure that &,rr decreases under spherically symmetric rear-
rangement since the same result holds for Epp (Lemma .

Lemma 4.2 (Conta and Siedentop [27, Lemma 5]). Let 7 € J and
let T* denote its spherically symmetric rearrangement (Definition .
Then

Emtr(77) < Emtr(7). (4.1)
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Proof. The attraction A,, is obviously invariant under rearrangement.
The repulsion R,, is — by definition — a superposition of rearranged
terms only, i.e., is also trivially invariant.

Let |A| denote the Lebesgue measure of any subset A of R?. Since
Kn(r) = [7°dt [ d€ X eersjr(e)>)(€), it suffices to show that for any
A C R? with finite measure

/ de 2 (€) > / 4E 2y 40 (6) = /|5 e

where R is defined by |A| = 4FR?, i.e., the radius of the ball A* :=
Bgr(0) centered at the origin which has the same volume as A. Now
define the sets B := Bg(0) \ A, C := A\ Bg(0), and D := AN Bg(0).
Then |B| = |C], and thus

ae=[aer [ae<r [ay [ ae
A* B D B D
s/cdééer/Ddé?:/AdééQ.

[]

Corollary 4.3 (Conta and Siedentop [27]). Every minimizer T € J
of Emtr s spherically symmetric decreasing.

Now, we can prove Theorem 4.1

Proof. 1. The two functionals Etp and &, rr decrease under spherically
symmetric rearrangement (Lemma and Lemma . So, as far as
minimization is concerned, we may restrict both functionals to spheri-
cally symmetric decreasing densities p and 7. Under this restriction S
and T preserve the norm and hence Statement 1 of Lemma|3.5|implies
that

inf ngF<T) Z inf gTF(p)
pELsN

T€JaN

whereas Statement 2 implies the reverse inequality. This proves the
first assertion of Theorem K.l

2. Since Erp has a unique minimizer py on Zyy if N < Z (Theo-
rem [3.3)), it follows from the preceding step and Lemma , State-
ment 2 that T'(py) minimizes Ey,rr on Jon-
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It remains to show that there is no other minimizer of the momen-
tum functional. This follows from the strict convexity of & (Lem-
ma . Indeed, suppose that 7y # 7y were two different minimiz-
ers of Enrr on Jyny. Then, since inf ¢z, Emtr(T) = infrezs, Es(T)
(Eq. (2:2))), we obtain two different minimizers 7y # 7 of & on J5y
from the substitutions 73> = 7y and (7)¥? = 74. But this contra-
dicts Corollary [2.3]

3. Suppose 7y is a minimizer of £, tr on Jyy for some N > Z. Then
S(7y) has to be a minimizer of Erg by Statement 1 and Lemma ,
Statement 1 but this does not exist (Theorem [3.3).

4. Again, if 7y minimizes &, rr on Jy then S(7x) minimizes Epp on
ZIn. Thus, [7nv = [ S(7v) = min{Z, N}. Uniqueness of 7y follows
from the strict convexity of £ as in the proof of Statement 2.

5. The claim follows from Statement 2 and Statement 4. O

4.2. Properties of the Minimizing Density and Euler’s
Equation

We start with a bound on the minimizer. By the definition of T, the
relation between r and 7 as given by , and Theorem any
bound on the position space density implies a corresponding bound
on the momentum space density.

Lemma 4.4 (Conta and Siedentop [27]). Let 7 be the minimizer of
Entr on J, then
—3/2 Z3
7(§) < Yrp W (4.2)

for almost every & € R3. Furthermore, there exists & € R3\ {0} such

that \ )
&) < () (4.3)

for almost every & € R3 satisfying |&] < |&o.
Proof. Let p be the Thomas-Fermi minimizer on Z. Then p obeys

Z3/2
—3/2
p(x) < yo 27
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for almost every x € R? as a consequence of the corresponding Euler
equation in position space (see, e.g., Lieb and Simon [13]). This im-
plies the first bound in the proposition since 7 can be represented in
terms of p by means of T" as defined in Eq. . In this case,

(&) =T(p)(§)
/ (mf{K | 71/2 ( N3 > || for ace. 2| < K})3

1/2 1/3 ‘ <K 3
| |1/2 > yrp lp(@)]° > €] for ae. |z] <

sup{|x| I |1/2 > 1¢})”

(e
(

—753/2(511 {lal | 25 e > lel})’
<

—3/2 i) -3/2 4" A
i35

—3/2
YTF

-3/2
YTF

(4.4)

for almost every £ € R3. Indeed, the infimum exists as p is unbounded
(see, e.g., Lieb and Simon [13]).

Likewise, the second bound in the proposition is a consequence of
the Sommerfeld bound [13] 25] concerning the asymptotics of p at in-
finity. In position space there exists some xy € R?\ {0} such that

for almost every x € R3 with |z| > |zo|. Moreover, since p is spheri-

cally symmetric decreasing (Lemmal3.2)) we can find some & € R*\ {0}
such that ’y%é?p( )3 > |&| for almost every |z| < |xg|. Thus, for al-

most every £ € R3 with [£] < |&| we get

3
(&) = VTF 2(inf{ K | v | p(x)[V? > |¢] for ace. |z] < K})
= oo (inf{ K | v |p(z >|1/3 > [¢| for ae. |ao| < |a| < K})?

< vt (sup{Jaf | 357 > kel })
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—3/2 12 1 3
i 112" > 1)

32 32 1
S(%) Trr P (4.5)

Note that the second identity holds since p is spherically symmetric
decreasing. O]

The following property of the minimizer will be applied for the
derivation of the Euler equation hereafter.

Lemma 4.5 (adapted from Conta and Siedentop [27, Lemma 2]). The
manimizer of Entr on J is strictly positive almost everywhere. More-
over, the minimizer of Enrr on Jn for each N > 0 is strictly positive
almost everywhere.

Proof. Let 7 be a minimizer of &,r. Suppose that the set N, :=
{€ € R3|7(£) = 0}, on which 7 vanishes, would not be of measure zero.
Then pick any function o € J with 7(£)o(€) = 0 for almost all £ € R?
which is not identical zero on N, and satisfies [5, d§ o(§) < [os dET(E).
For any 0 < ¢ < 1 we define the function
Te ZIT+€(O'— %7)
Note that 7. € J and [ 7. = [ 7. Then by the integral representation

of the interaction term (Definition together with the substitution
732 = 1 we get

5mTF(7—5) - ngF<T)
=37 [ g (1= (1= f)P)r©)f - 397 [ aeeate)?
S [T ([ el iroi -

+

N

|
[\ %)
Jiéw
H
e
~
no
o
3
—
o
A
Bl
~~
I
N—
[MIN]
|
-
N
+
N—
[N}
_l’_
S
—~
™
SN~—
—~
H~
=)
~—
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< e 37177 / A€ o(£)* 1+ 0()
R3

i [T ([ actrot -
+ [ deltoof -7
-3 / Tar /R el -7, (4.7)

-2 [ deal)l+0(e)
w23 m? [Car ([ acrot =)
X ( /R 3 dne¥3a(n)s — 7“2]+> (4.8)
< =047 [ deo©) +0()
+ 3w [ : ar ([ et - )]’ |
« [/0 dr (/R an[2Po(n)t — )]’

== hi"Z [ deo(o) + 0l (49)
R3

win

where in the first inequality we used that 1 —& % < (1 — %)2/3 <1.

In the second inequality we applied the Cauchy-Schwarz inequality.
And finally, scaling the powers of € out yields the given estimate.
In fact, this implies that

SmTF(TE) - ngF(T) < 07

for sufficiently small €. Hence, 7 cannot be a minimizer. [

Now, we turn to the proof of Euler’s equation.

Lemma 4.6 (Conta and Siedentop [27, Lemma 3]). The Euler equa-
tion which the minimizer of Entr on J satisfies is

AP =2+ [ an Grmira(en? - drelen) = 0. (410)
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Proof. Instead of deriving the Euler equation for &,1r we use & (see

Eq. (2.2)).

Let 7 be the minimizer which is strictly positive almost everywhere
because of Lemma . Thus we can pick any o € L32(R?, (1 +£2)d¢)
with |o| < 7. Then, for € € [-1,1], 7 + €0 is an allowed trial function
and the function F'(e) = &(7 + €0) has a minimum at zero. We show
that F' is differentiable at zero.

The first two terms of F' are obviously differentiable. For the deriva-
tive of the kinetic term we obtain 2 [, d¢&%0(£)7(€)"/? at € = 0 and
for the derlvatlve of the external potential evaluated at the origin we
get Q’yTF °z ng d€ o(€). Thus, we concentrate on

T(e) = e / Car( / AE[FE) +e0(§) - )

~( / aE[FE) - L) |

=/ dr/ d¢ 7(§) +ea(§) =y —[F(©) =]+

€

x ([F(n) +ea(n) =2l + [F(n) = r°]4)
=: /Ooodr/RSdf R3dn](5,r,f,n).

Since |ay —by| < |a—0b| for real a and b (Lemma [B.1)) and since |e] < 1

we get
(1 ([F(n) + lo ()| = |4 + [F(n) — 7))

to be an integrable majorant of the integrand I independent of e.
Indeed, we have

| ar [ e [ antot@iizin + ot - 171
< [ acioto) / ar [ dnl2r(a) -2l

/ NGIE / W22t < oo (412)

(4.11)
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as |o| < 7. Now, to apply dominated convergence, we split the integral
in two parts, namely the part where the pointwise limit of I exists and
the rest. Consider w for a,b € R in the limit where ¢ tends
to zero. In the case where a = 0, this limit does not exist. Whereas,
ifa<0thenw—>0, andifa>0thenw—>b. In
summary, [a + €b]; — [a]; as € — 0 for a # 0. This finally results in

lim 7'(¢) = lim dr/ df/ dnI(e,r,&,n)
e—0 e—0 0 F(£)=r2 R3

+lim/ dr/ d¢ | dnl(e,r & n)
==0.Jo Fe)#2 IR

e / dr / ¢ [ ano(@or(©) = )5 — L
(4.13)

Indeed, the integration with respect to r restricted to 7(£) = r? yields
zZero.

In fact, this proves that F is differentiable. Hence, integration with
respect to r yields

Since o is arbitrary we arrive at the desired Euler equation (4.10)) after
substituting 7%/2 = 7. O

Since the integrand in (4.10]) is nonnegative, the Euler equation
implies the following pointwise bound on the minimizer:

(6) < vgﬁ/f—l?;. (4.15)

In particular, this bound we got already from Lemma [4.4]
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4.3. The Virial Theorem

Theorem 4.7 (Virial Theorem). If 7 minimizes Entr on any Jn,
then
21 (1) = A (T) — R (7). (4.16)

Proof. Suppose 7 is the minimizer of &,1r on Jy and define 7,(§) :=
AT3T(ATLE) for some A > 0. Note that 7, € Jx with [|7a]l1 = |71
Scaling yields

Entr(T2) = MK (7)) — M (7) + AR (7). (4.17)

Consider &y,rr (7)) as a function of \. Then &E,,rr(7y) is differentiable
for positive A and has its unique minimum at A = 1. Thus,

. dngF<T)\)

0= 0 . = 2K (1) — Ap(7) + Rin(7). (4.18)

]

If 7 is the minimizer of &£, on J then another relation between
K (1), An(7), and R,,(7) can be easily achieved via minimization,
namely,

Theorem 4.8. If 7 minimizes E,tr on J, then
B (7) = 2A,,(T) — BR (7). (4.19)

Proof. Suppose 7 is the minimizer of &,1r on J and define 7,(§) :=
A7(€) for some A > 0. Then the same reasoning as in the preceding
proof gives

_ dngF (7' /\)

0
dA

= Kn(7) = 2A45,(7) 4+ 2R (7). (4.20)

O

Corollary 4.9. If 7 minimizes Eynrr on J, then the following ratio
holds:
Kon(T) s Ap(7) : Rpp(1) =3 :7: 1.
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Proof. The assertion follows from (4.16)) and (4.19). O

Remark. The Virial Theorem can be also obtained using the opera-
tor T and the Virial Theorem for Erp (Lieb and Simon [13, Theorem
I1.22]). The same applies to the corollary when using the correspond-
ing relation between K(p), A(p), and R(p) for the atomic Thomas-
Fermi density p (Lieb and Simon [I3, Corollary I1.24]).
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5. Asymptotic Exactness of Englert’s
Statistical Model of the Atom

In this chapter we show that the atomic momentum density converges
on the scale Z%/3 to the minimizer of the momentum energy functional
Entr. Note that in the semiclassical regime this corresponds to the
scale where h = Z~1/3 (cf. Eq. (3.5)).

As indicated already in the introduction this limit theorem for the
density is essential to determine the linear response of atoms to pertur-
bations that are local in momentum space. As a result of Theorem
from the previous chapter we already know that the ground state en-
ergy is asymptotic to the infimum of the momentum energy functional
Entr of the same order as the Thomas-Fermi energy is. Therefore,

info(Hy) = inf Ewre(r) +o(Z7%)
TEIN

if the ratio N/Z is fixed. Now, we shall consider the Hamiltonian

Hy perturbed by some momentum dependent potential ¢z(§) :=
Z403(272/5¢), namely,

N
Hyo=Hy —a) @z(=iV,) (5.1)

n=1

with some o € R. In fact, in the proposition of the limit theorem we
will have some requirements on o and .

We shall consider the simultaneous limit Z — oo, N — oo such
that the ratio N/Z is fixed. In order to simplify notation we avoid the
introduction of a scaling parameter which incorporates the dependence
of N and Z. Moreover, the case where N # Z requires the notion of
an approximate ground state. So, we start with the introduction of
some useful notations:
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1. Let Yy € A\, L*(R? : C%) =: H be a sequence of normalized

vectors such that

info(Hy) — (Yn, HNn)

VAlE -0

as Z — oo, N — oo under the subsidiary condition that N/Z is
fixed. We call ¥y an approximate ground state of Hy.

. The one-particle ground state density of any normalized vector

Y € H is defined by

q q
py(x) =N Z » Z /Rguv_n dzy - -day
on=1

o1=1
X |U(x, 015 29,095 ... ; 2N, ON)|?
in position space and
q q
(€)== NUIZZI "Uél /]R?s(Nl) d§y---dén

X |¢(§701§§270—2§'-~§§NaUN>|2

in momentum space where Qﬂ denotes the Fourier transform of v
on AN, L*(R?). The rescaled one-particle momentum density
of ¢ is given by

7 (&) i= Z1y(Z%/3¢).

. We denote the set of all trace class operators on L*(R? : C?) by

S!(L*(R? : CY)). Then
S={ye&(L*(R*:CY))|0<~y<1}

is called the set of fermionic one-particle density matrices.

. The one-particle density matrix of a normalized N-particle state

Y € H is denoted by v, and it satisfies try, = N.



5. Every v € S has a spectral decomposition into orthonormal
eigenvectors e; € L*(R? : C?) and the corresponding eigenvalues
0 < \; < 1. We write

q

() =) > Alé(& o)

o=1 j

for the momentum density of . Here é; denotes the Fourier
transform of e; on L?(R?). The rescaled momentum density of
v is given by

7,(&) = ZT,Y(Z2/3§).

6. Let py be the minimizer of the Thomas-Fermi functional Epp
on Zy (see Theorem [3.3). Then py obeys the Thomas-Fermi
equation

2/3
'VTFPJ\; = [¢N - U]+

where p is some positive constant and ¢ denotes the Thomas-
Fermi potential which is given by

on =2/ 1= pxx| 7

In particular, p is uniquely determined by ¢5. These quantities
scale as

on(x) = ¢(Z,N,z) = Z*3¢(1,N/Z, Z*3x),
pw=:p(Z,N)=Z*3u(1,N/Z).

For references see, e. g., Lieb and Simon [12] or Lieb [10].

7. For a € R, the effective one-particle Hamiltonian corresponding
to the Thomas-Fermi potential is given by

hne = —A— ¢y —apz(—iV)
and we write hy (€, x) for its Hamilton function.

The following lemma provides a lower bound to the sum of the
negative eigenvalues of the one-particle Hamiltonian Ay q.

35



Lemma 5.1 (Neutral Case N = Z: Conta and Siedentop [27, Lemma
6]). Let o € R. Let p > 0 and hyo be given as in Notation [6] and[7]
above. Assume 0 < (14 |-|7%)p € L™(R?), ¢ uniformly continuous,
and |a| < v/2 with v :=1/(||] - | %¢|l«). Then, for every v € S,

tr (hva?) > Gl / déda hyo(€,2) —o(Z73)  (5.2)
hN,a(£7$)<_.“‘

uniformly in « for large Z when the ratio N/Z is fized.

Remark. The corresponding result for the unperturbed one-particle
Hamiltonian hy o can be found in the article of Lieb [10, Section V.A.2].
There he shows that, for all v € S,

tr (hnoy) > #/ dédx hy (€, ) — const Z7/3-1/30

hno(&x)<—p

if N = 0(Z). We will follow his proof modified by the momentum
operator ¢z.

Proof of Lemmal5.1. Note that due to the Thomas-Fermi equation
and the requirements on « and ¢ in the hypothesis of the lemma we
have

(25)3 / dédz < #/ dédx < const N (5.3)
hya(6w)<—p 30N (@)<—p

and likewise
(23r)3 / dédz hy o (&, ©) > —const 75
by o (§x)<0

it N=0(2).

Next, we follow the lower bound of Lieb’s asymptotic result (Lieb [10),
Theorem 5.1]). To this end let g € C5°(R?) be a spherically symmetric
positive function with supp(g) contained in the unit ball, [¢* = 1,
and gp(r) := R¥%g(Rz) its dilatation by R. Note that gr = Gr-1
holds for the Fourier transform of gr. Furthermore, let fe.(r) =
e¥7gr(r — x) be the coherent states in L?(R?) and define the projec-
tion e, 1= | fex)(fen| ® I, where I, denotes the identity operator in
spin space.
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For any function e; € L*(R? : C?) we have

(epes) = [ aede 3 IF(gn(- = 2)es(- ) O

o=1
q

= /dgdx >

o=1

2

W /5 dre T gr(r — x)e;(r, a)’
R

= ﬁ/dfdx (e, Tepe;) (5.4)

where F denotes the Fourier transform on L*(R3). We compute:

> [ de(on +lanf)a)les (e )

=Y [ dede (@l Flgnl- — )i )N

— ok / e éx () (e, Tenes). (5.5)

Moreover,
Zq; [ e oz Gy ) (5.6)
- Z / €z * TROI (€, o) (5.7)
= Z [ e en©IFGR(E - (- ) (5.3)
= X: / d&dxw(ﬁ)\ﬁ /R 3 dp P gr(& — p)é;(p, o) i (5.9)
= i/dﬁdﬂfw(ﬁ) e (€77 gr) *éj(-,o))(é)(2 (5.10)
= i/dfdm@Z@)’}-(gR(‘ —x)e;(+,0))(E)] (5.11)
— by [ dedogal)les meacs). (5.12)
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Thus, the identity

q
> [ delVaesw o)l = g [ dsda e meaes) = e 1V0nl
o=1
(5.13)

can be easily verified by
. / deda (ej, meaes) = 3 / dedp (€ - p)? [GR(p)P1é5(&, 0)
o=1
=" [acane G Ple € P + Y [ dedns® Gl Ples € o)
o=1 o=1

q
= Z/W dz |Vaej(z, o) + |le;l3 | Varll-  (5.14)
o=1 y

Indeed, replacing ¢z by the square function in line (5.7]) — line ([5.12))
yields the first equality. The second holds since g is spherically sym-

metric. Eq. (5.4), (5.5), and (5.13) are also stated in the proof of

Lieb [10, Theorem 5.1]. It follows that for any v € S written in the
form v =37, Ajle;)(e;| (cf. Notation [5)) we have

tr (hyay) = ﬁ /dfd:c (hN,a(f,x) + p (¢, :c))z Nj(ej, Te we;)

J

— ptr Lpy
—tryR?|| Vg2 — tr [(on — dn * |gr|H)7]
—atr[[(¢z — ¢z * R (=iV)]"] (5.15)

where 1 is the projection to the negative spectral subspace of hy o+ p
and 1,(&, z) its symbol. Since we are interested in a lower bound we
may assume try < const Z. Furthermore, 0 < . Aj{ej, me.€5) < ¢
hence

tr (hva) = s / A€dz (hya(€, 7) + 1)

hN,a(£7m)<7:u
— const ZR?||Vgll; — tr [(on — dn *[grl*)7]
—atr [[(vz — ¢z *|gr*)(=iV)]7]. (5.16)
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The right hand side of the first line is the wanted main term added
by an error term of order O(Z). Indeed, sneaking in the constant
i generates an error term just of the same order as the phase space
volume (Eq. ) which is uniformly in .. This is negligible compared
to the error of order o(Z7/3) which the remaining terms bring up.
Actually, if we choose R = Z'/2 then the third line consists of error
terms of order O(Z7/371/39) (Lieb [10, Theorem 5.1]). The term in the
last line is new and to see that it is a further error term we need an
additional argument.

We have
e [(2(~19) ~ (7 * Gl ) (~iV) )]
<7 [ a [ ap©1e() — ol6 = Dlznso). (617

However, the integral of the right hand side converges to zero by uni-
form continuity of ¢ and the fact that ¢ € S(R?). To see this we show
that [|¢ — ¢ * |g41/6]?||e is arbitrarily small for large Z: Let € > 0.
Since ¢ is uniformly continuous, there exists § > 0 such that |p| < ¢
implies [p(§) — ¢(§ —p)| < § for all £, p € R®.

Note that g is a Schwartz function and hence there exists a constant

¢ > 0 such that c

9(p)|* < e (5.18)

for all p € R3. Moreover, for every ¢, there is a Zy > 0 such that

22‘1/66||90||oo/ dplp| ™ < ¢

p|>6
for all Z > Z,. With this choice, we estimate

/R dplp(§) = o€ =PIz ()P
_ /| L (&) = 9(& = P)laze (p)]?

+ / dp (&) — (€ — PG00
|p|>d

Z1/2
<5+ 2||<P||ooc/ de <

Ip|>6

+ (5.19)

N ™
NI
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Thus, Z > Z, implies
/, d¢ [ dp 7 (O)le(€) = =p)l|gzs ()] < 6/, d¢ 7,(§) = conste.
3 R3 R3

This proves that the last line of (5.16) is an error term of order o( Z7/3)
and that it is uniformly in a. In fact, this finishes the proof. O

Now, the previous lemma allows us to prove the following asymp-
totic result for the density of the momentum functional &, 1p:

Theorem 5.2 (Neutral Case N = Z: Conta and Siedentop [27, The-
orem 3]). Let ¥y be an approximate ground state of Hy and Ty the
minimizer of Entr on Jy. Assume (1 + |- ]72)p € L¥(R?) and ¢
uniformly continuous. Then, for X\ = N/Z fized,

lim [ de (€ () = / 4 p(E)ma(E). (5.20)

N—oo R3 R3

Proof. First we remark that it suffices to proof the theorem for positive
@ since we can split ¢ into the part where it is strictly positive and
strictly negative and do the proof separately for those cases.

The proof of Lieb’s asymptotic result on the atomic energy [10, The-
orem 5.1] implies

(Un, Hyoton) < Err(pn) + const 21/

= G / dédz hyo(€, ) 4 const Z11/°,
hno(&z)<—p

Moreover, using Lieb’s correlation inequality [9] and D[py, — pn] > 0
we obtain

ol

> D(py, pv) + Dlpn] — const /

dz PN (37) :
R3

40



By the Cauchy-Schwarz inequality and the Lieb-Thirring inequality
for the kinetic energy [16, [I7] we have that for N = O(Z)
1

/Rgdxpw(xﬁ < (N/Rgdxpw@) )’

N 1
< const N3 <<1/)N, — Z An¢N>> * < const Z°/3
n=1

wlot

since the kinetic energy (¢, — Zf:[:l A,y ) performs as O(Z7/3).

Later, we will consider the limit when o — 0. Thus, let « € R
be small enough, e.g., |a| < %Hﬁ’—QHOO (cf. proposition of Lemma .
Then

aZ3 /RS d€ (&) Tyy (&) = (U, Hyon) — (Un, Hyotbn)  (5.21)

< Err(pn) + const Z11/°

ol

)

N
= (0, 3 v ) = Dlpw] — comst [ e puy(@)
n=1 R3

(5.22)
- # / dédz hno(&, ) — tr (hn,aYey) + const AR
hn,o(§x)<—p
(5.23)
< (23)3/ dédz hn (€, x)
hno(§z)<—p
- #/ dédx hy o (€, x) + 0(Z7/3) (5.24)
hN,a(grx)<7,U'
a2 [ deplen(©)
R
~ @ A o (62)<—p dedz hya(8, ) (5.25)

hno(&x)>—p

+ G /uv,a@,xb—u déda huya(€,2) +o(Z77) (5.26)

ho(&:@)<—u

where we used ([5.2]) in the second inequality.
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Since

4 g
(27T)3 \/,;N,a<§,1)<u dfdx th(S? :E) S /J/ (27r)3 /LN,Q(§,I)<H dgdx

hn,0(&x)>—p hno(&z)>—p

the bound on « allows to estimate the phase space volume in the shell

as O(Z) independent of « (cf. Eq. (5.3)). In line (5.26]) we dismiss a
negative term. For the remaining phase integral in the energy shell in

line (5.27)) recall Notation [fl Then scaling yields

q — 7/3_4
@ [l e, dedroz©@ = a2t [ dedap(e)
hN,0(&2)>—p hy,0(&@)>—0

(5.27)
where fi := p(1, ) is uniquely related to ¢(1, A\, z) via the Thomas-
Fermi equation and

Fal6,2) = €91 A 2) —ap(€) = €~ 4 (pax| - |7 (@) —a 0l6).

]

The integral on the right hand side of Eq. (5.27) depending only on A
and « is of order o(«). Indeed, ga({)x{(w)eRq%52_¢(17A7$)<_H(17/\)}(5, x)is
an integrable majorant independent of . Thus, we get the announced
asymptotics in o via dominated convergence. We proceed equivalently

with a# Jrnatem>—un d€dx p£(§), the remaining phase integral in
hn (&) <—p

the energy shell in line ([5.26)).
Eventually, we arrive at

AL d T,
27 [ dpl§)7un(©
<az / A€ p(€)a(€)
R3

— =1 dédz hy o (€, x)

2m)° Jhy atea)<—n
hn o(&2)>—p

_4q _ 7/3
45 [, d600bra(€0) + o(27F)
hn (&) <—p

— 0z / A€ p(E)ma(€) + Z730(a) + o( Z7/%).
RB
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Now, dividing first by Z7/3 and sending N to oo yields
atimswp [ de (€7 (6 <o [ aEoOn(E) ol (529
R

N—o0 R3

For a > 0, dividing by a and choosing « | 0 yields the desired upper
bound. If we reverse the sign of « then taking « 1 0 yields the reverse
inequality for the limes inferior. Hence

nnmupA;d5¢@ﬁuN@>sy/d§¢@wu@>

N—o0

smm@%mmmy

N—oo

In fact, this shows the wanted result. O
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Appendix






A. Existence and Uniqueness of the
Minimizer: An Alternative Proof

In the following we shall give another proof of the existence of the
minimizer of £, tr which is not based on the known results in Thomas-
Fermi theory.

Instead of studying &£, r we first turn to & given by . Besides
the strict convexity (Lemma[2.2) & offers the advantage that we may
apply Banach-Alaoglu (Theorem to extract weakly converging
sequences in Jy. From there we want to infer the existence of the
minimizer via weak lower semicontinuity of &. This idea has also
been used by Lieb and Simon [13].

Before we go into detail we want to say a word about notation: In
this chapter we will write LP for LP(R3,d¢) for all 1 < p < oo as
commonly used in literature and L, for LP(R3 £2d€), the weighted
LP-space.

Now, we start with:

Lemma A.1. Let 7 € J° and let (T,)nen be a sequence in J*. If
0 <7 <2 and |70 — 7l a2 (g grag) + 1Tn — %HLz/tz —0 asn — oo,
then

lim &,(7,) = &(7). (A.1)

n—0o0

Moreover, each term of E5(7,) converges to the corresponding term of
E(T) and, if |70 — T2 + ([T — Tl 32 = 0 as n — oo, then (A.1)
wt

implies that & is norm continuous on J*° in the L3/ N Li}/tz topology.

Proof. The kinetic energy is obviously continuous. For the external
potential the continuity in the L¥2(R3, |€]"d¢) N L¥? topology follows

wt
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immediately from

2

170 — Tl < (/£|<1d§?>é</ de |€]7 7€) _%(§)|g>§
+(A| i)’ (/ dé |¢7(6) = 7(©)1F)” (A2)

fora110§r<§.

We are left to prove continuity of R; . Recalling the integral rep-
resentation of the interaction term (Definition we consider the
following estimate:

[ al([ actro-r) = ([ areo-m)]) @
< [Car [ ae [ anlm© = - O -7 (A4)
< () =+ )~ L) ()

< [Lacm@ =701 [ ar [ an (o -+ o - 7)
(A6

where we used |a; — by | < |a —b| for a,b € R (Lemma in the
second inequality.

Let 7,,, 7 € J?® with properties as required in the proposition. Then,
applying the first integral in (A.6]) vanishes as n — oco. To see
that RS (7.) — R:,(7)| — 0, which will finish the proof, it suffices to
show that the remaining integral expression in is bounded. In
fact,

| ar [ an (e =+ 7 = 7)
=% [ an(i? + 7o)

3
2

) (A7)

where the right hand side is obviously bounded. O
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With the lemma just proven and the convexity of & (Lemma [2.2))
. . 13)2
we can now prove the weak lower semicontinuity of & in L, .

Theorem A.2. For each N < oo, let T € Lf’u/f and let (T,)nen be a

sequence in Jy. If T, = T in Lif, then 7 € Jy5 and

£,(7) < liminf &(%,). (A.8)
n—oo

Moreover, if E(T) = lim, o E(T), then each term in E4(7,) con-
verges to the corresponding term in E,(T) and |7, — T|| 32 — 0.
wt

Proof. We have 7, — 7 in L¥? with # € L¥?. Since 7, € J3 for all
n € N the sequence (7, )ney is bounded in L3/2. Thus, we may apply
Banach-Alaoglu (Theorem to come to a subsequence weakly con-
verging in L3/%N Li’u/tz with 7 € L32n qu/f. Indeed, 7 € Jy. To prove
this, note that ¥ > 0, 71/2 € L3, and [p, d 7,(£)** < N. Then, the
weak convergence of (7,)ney in L*? and Hélder’s inequality yield

JR G S CRAG

n—o0 R3

< gggo%s dﬁf(f)g)é(/w df%n<€)3>§ < (/Rs d&%(f)i)éN:Z’.g)

This certainly implies [p, d€ 7(& )% < N.

From Lemma and Lemma [2.2 we deduce that &, is L¥2n L¥*-
norm continuous and convex on Jy. Hence, & is weakly lower semi-
continuous on Jy by Lemma , which gives .

In particular, each term of & is norm continuous and convex on
JxN, thus each term is weakly lower semicontinuous. This in turn
implies that, if £(7) = lim, o E(7), then each term converges. In
particular, ||7|| L2 = limy, o0 || 70| L2 Furthermore, L*? is uniformly
convex. Then by Theorem [B.4] weak convergence and convergence of
the norms imply strong convergence. O

Remark. Alternatively, one could deduce 7 € J5 from the weak con-
vergence in LY? as well. Suppose [d¢732 > N. Then there ex-
ists some R > 0 such that f‘£|>R dé 732 > N, otherwise we would

49



have N < [d¢7(£)%? = limgo fl&\>R d¢ 7(€)*/? < N. Further, since
flf\>R duTz—‘/; < 45 [ du7(£)*?, where du denotes the measure £2d¢,
we have that | - |*2X{5€R3||§|>R}7~'1/2 € L3,. Now, the weak convergence
of (7n)nen in qu/tz and Holder’s inequality yield

~ /2~
0 = tim [ v (6 & F(O
oo 671907 =l [ dinicman© g i

[N

1 2

<Jim ([ aer©1)"([ aeniof)’

< (/gdeg%(g)S)éNf (A.10)

win

and the claim follows by contradiction.

To prove the existence of a minimizer for £ by means of the weak
lower semicontinuity result we need a preliminary lemma. The unique-
ness of the minimizer is then already guaranteed by Corollary [2.3

Lemma A.3. & is bounded from below on J3. Moreover, E is coer-
.. 13/2
cive in Lw/t on J°.

Proof. Assume 7 € J°. Let X := [|7||32 and Y := ||| ;s/2. For the
wt
external potential we have

< ([ ae)'([ nevcor)’

¥ (L» de 5_14>(/R dggQ%(g)i)g <o (A1)

This together with the positivity of the electron-electron interaction
term gives

EJ(F) > Y2 = 3127 const X — 3y Z const Y. (A-12)

Obviously, & is coercive in the weighted L??-norm and X < N?2/3
it 7 € Jy. We conclude that & is bounded from below by an N-
dependent constant and coercive in Y. O
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Theorem A.4. For each N < 0o, & has a unique minimizer on Jy.
Furthermore,

nf{E,(7) | 7 € Tin} = inf{E,(7) | 7 € T3}

Proof. & is bounded from below and coercive on Jy in Lf’f by the
previous lemma. Consequently, there exists a minimizing sequence

(Fu)nen in J3 which is bounded in L2 i.e.,

lim E(Ty) = inf{&(F) | 7 € T5}

such that sup,cy ||7al|,32 < oo. Applying Banach-Alaoglu (Theo-
wt

rem |B.3]) we get to a weakly converging subsequence in Li,/tz which we

denote by (7,)nen as well. Thus, we have 7,, — 7 in L?U/f for some

Fe 3?7 > 0. By the weak lower semicontinuity of & (Theo-

wt )

rem |A.2)) we get
E(7) < lim &(7,) = inf{&(7) | T € T} }

which proves the existence of a minimizer.

The uniqueness follows directly from the strict convexity of & (Lem-
ma as proven in Corollary .

It remains to show inf{&(7) | 7 € T5y} = Inf{&(7) | T € T }. Of
course,

inf{&(7) | 7 € Tsn} > inf{&(T) | T € TN}

To obtain the reverse inequality let 7 be the minimizer of & on J5,
ie, &(F) = inf{&(7F) | 7 € T§}. Assume [p, dE7(€)*?* =M < N.
Suppose that there exists a sequence (7,)nen in Jjy which satisfies
170 — Tl L3/2(ms ¢jragy — 0 as n — oo for some 0 < r < 3/2, then the
strong continuity of & (Lemma implies

. . s V< N -
inf{&(7) |7 € Tyn} < 71113% E(Th) %161}7fN E(7T)
since inf{&(7) | 7 € Tin} < Es(Tn) and lim, o E(7) = E(T) =
inf{&(7) | 7€ I}
The construction of the required sequence (7, )neny Will finish the
proof. Pick any ¢ € J* such that [p, d€5(£)** = N — M and define
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7(§)¥? = F()%? 4+ n35(n€)*?. Clearly, [ps 7,(£)*? = N. Note that
7. > 7 as & > 0. Applying (a + b)¥? < a?/? + b*? for positive a, b
(Lemma [B.1)) we get

I = F1as gy = [, AS1€F G (E) = 70)?
A€ [€"nP5(nd)2 = L [ del¢fa()2  (A.
< [ aclerntotngt = & [ acierae? (a3

for every 0 < r < 2. O
Definition A.5. E,rp(N, Z) = inf{Eu1r(7) | T € Ton}
Now, we can prove the following statement related to &, 1p:

Theorem A.6. For each N < oo, Enrr has a unique minimizer on
JIn. Furthermore,

EmTF(N Z) = 1Ilf{ngF(T> ‘ T € jN} = iIlf{gS(T ’ T € j]f;}

)
Proof. Let 7 € J¥ be the minimizer of £&. Then 0 < 7%/ = 7 is the
unique minimizer of &, rr on Jy since inf ¢ 7, Entr(T) = nfTe 75 Es (1)
(Eq. (2.2)). Likewise, Entr(N,Z) = inf{&(7) | T € jBN} which
completes the proof using Theorem O

Corollary A.7. E,1r(N, Z) is monotone nonincreasing in N .

Remark. Actually, this follows immediately from Theorem But
in the following proof we want to show that one can always add any
unwanted piece of 7 at the origin without increasing the energy.

Proof of Corollary[A.7. Let (0,)nen be a Dirac sequence such that
0,(€) == n*§(n€) and 6, € J. Take, for example, §(§) = 2 if
0 < €] <1 and §(€) = 0 otherwise.

We shall prove that

EmtTr(T + 6,) — Emtr(T) < const % (A.14)

In fact, this shows that if N increases, we may add d,, arbitrarily close
to the origin by taking the limit n — oo. So, in order to prove ((A.14)),
first note that

K (T 4 63) = Kin(7) + 5K(9). (A.15)
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Due to (a + b)%3 < a*? + b*/® for positive a,b (Lemma [B.1)) we get
the following estimate for the attraction term:

JRGGERACIERGE

< [ acaoi =1 [ acsiob.
R3 R3
(A.16)
Finally, the estimate for the electron-electron interaction of &, p, re-

2
calling RS, (7) = const [~ dr (ng d¢ [7(¢) — r2]+> (Definition ,

reads:

[ arl( [ aetirte) +uent - L) (A17)

- ([ acrr©f - )] (A18)

< [ dg(r©) + et - ) (A.19)

< [T [ an(lrm )t =+ ) = 17.)

(A.20)

< [ sz [ e +am+3 [ dr] @2
—1 [ aca(©3 [ ancertn)+ s, (A22)

We get the first inequality equivalently to the inequalities -
in the proof of Lemma . Next, we apply (a + b)%? < a?/3 + v?/3
for a,b > 0 (Lemma to the integral in and evaluate the
integration with respect to r. Eventually, this proves (A.14)). n
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B. Supplemental Material

This chapter gathers two simple inequalities and well-known results
in functional analysis which we refer to in this thesis. For details see,
e. g., Brezis [1] if not stated otherwise.

Lemma B.1. Let a,b € R. Then
1. |CL+ —b+| S ’a—b|
2. la +b]* < |al?? + |b]?/3.

Proof. The first claim follows for example by observing the different
cases for a and b, respectively. For the second claim, notice that any
concave function f : [0,00) — [0,00) with f(0) = 0 is subadditive.
Hence, we have |a + b|%® < (|a| + |b))?/? < |a]?/® + |b|*/3. O

Lemma B.2. Let X be a Banach space. Assume the map F : X — R
to be conver and norm continuous on X. Then F is weakly lower
semicontinuous on X.

Theorem B.3 (Banach-Alaoglu). Let X be a Banach space and let
X* denote its dual space. Then B* := {¢p € X* | ||¢|lx+ < 1} is
compact in the weak-x-topology. If X 1is reflexive, then every bounded
sequence has a weakly convergent subsequence.

Theorem B.4. Let X be a uniformly conver Banach space. Let
Tn, T € LP for n € N such that 1, — 7 in the weak LP topology and
limsup, ||7.ll, < ||7|lp. Then 7, = T in the strong LP topology.

Theorem B.5 (Newton’s Theorem [I1, [18]). Assume z € R3\ {0}
and R > 0. Then

1 1
/ dy —— < — dy.
wi<r 1T =yl T [z Jiy<r

Equality holds if |x| > R.
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