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Zusammenfassung

Im Jahre 1992 führte Englert [3] ein Impuls-Energie-Funktional für
Atome ein und erörterte seinen Zusammenhang mit dem Thomas-
Fermi-Funktional (Lenz [8]). Wir integrieren dieses Modell in eine ma-
thematische Umgebung. Unter unseren Resultaten findet sich ein Be-
weis für die Existenz und Eindeutigkeit einer minimierenden Impuls-
dichte für dieses Impuls-Energie-Funktional; des Weiteren untersuchen
wir einige Eigenschaften des Minimierers, darunter auch den Zusam-
menhang mit der Euler-Gleichung.

Wir verknüpfen die Minimierer des Thomas-Fermi-Funktionals mit
dem Impuls-Energie-Funktional von Englert durch explizite Transfor-
mationen. Wie sich herausstellt, können auf diese Weise bekannte Er-
gebnisse aus dem Thomas-Fermi-Modell direkt auf das von uns be-
trachtete Modell übertragen werden. Wir erhalten sogar die Äquiva-
lenz der beiden Funktionale bezüglich ihrer Minima.

Abschließend betrachten wir impulsabhängige Störungen. Insbeson-
dere zeigen wir, dass die atomare Impulsdichte für große Kernladung
in einem bestimmten Sinne gegen den Minimierer des Impuls-Energie-
Funktionals konvergiert.

Die vorliegende Arbeit basiert auf Zusammenarbeit mit Prof. Dr.
Heinz Siedentop. Wesentliche Inhalte werden ebenfalls in einer ge-
meinsamen Publikation [27] erscheinen.





Abstract

In 1992, Englert [3] found a momentum energy functional for atoms
and discussed the relation to the Thomas-Fermi functional (Lenz [8]).
We place this model in a mathematical setting. Our results include a
proof of existence and uniqueness of a minimizing momentum density
for this momentum energy functional. Further, we investigate some
properties of this minimizer, among them the connection with Euler’s
equation.

We relate the minimizers of the Thomas-Fermi functional and the
momentum energy functional found by Englert by explicit transforms.
It turns out that in this way results well-known in the Thomas-Fermi
model can be transferred directly to the model under consideration.
In fact, we gain equivalence of the two functionals upon minimization.

Finally, we consider momentum dependent perturbations. In par-
ticular, we show that the atomic momentum density converges to the
minimizer of the momentum energy functional as the total nuclear
charge becomes large in a certain sense.

This thesis is based on joint work with Prof. Dr. Heinz Siedentop
and the main contents will also appear in a joint article [27].
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Introduction

Density functional theory is a method to investigate properties of phys-
ical systems, such as atoms, molecules or solids. The ground state of
these systems is of particular interest. The approach of this theory is
to consider a functional depending on the one-particle electron den-
sity where the minimum of this functional yields an approximation for
the ground state energy and the minimizer yields an approximation
for the ground state density. So, dealing with the variational prob-
lem of minimizing an energy functional which depends only on the
one-particle density reduces an initially multi-particle problem to a
one-particle problem. There exists a huge literature for the theory of
energy functionals of the spatial density, whereas the theory of energy
functionals of the momentum density gained by far less attention.

In the field of spatial density functionals the Thomas-Fermi model is
of outstanding importance. This statistical method of Thomas [26] and
Fermi [6, 7] was set on a mathematical footing by Lieb and Simon [10,
12, 13]. Their results include a proof that the Thomas-Fermi energy,
the minimum of the Thomas-Fermi functional (Lenz [8]), is asymptotic
to the ground state energy for large physical systems. More precisely,
if the total nuclear charge Z becomes large and the number of electrons
N increases simultaneously such that the ratio N/Z is fixed, then these
two energies are equal up to an error of order o(Z7/3). Moreover,
the Thomas-Fermi model provides the opportunity to determine the
linear response to perturbations that are local in position space since
Lieb and Simon [10, 12, 13] also show that the quantum mechanical
density converges weakly to the Thomas-Fermi minimizer for large
physical systems. Since then results on the Thomas-Fermi functional
were refined, e. g., by corrections to the asymptotic behavior of the
leading order (see, e. g., Siedentop and Weikard [20, 21, 22, 23, 24]).
Further the validity of the Thomas-Fermi theory was extended, e. g.,
to magnetic fields (Lieb, Solovej, and Yngvason [14, 15] and Erdős and
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Solovej [4, 5]).
For the treatment of momentum dependent perturbations the Thomas-

Fermi model does not apply to. In fact, it is well-known that the mo-
mentum density is not merely the Fourier transform of the spatial den-
sity and although there are techniques to deduce momentum densities
from the spatial ones, these rules are quite limited in their applica-
bility, as remarked by Englert [3] already. To pursue a self-consistent
determination of the momentum density Englert [3] introduced a mo-
mentum energy functional for atoms. This allows – in a natural way –
for the treatment of purely momentum dependent perturbations. He
also discussed the relation to the Thomas-Fermi functional.

The aim of this thesis is to place the model found by Englert [3] in a
mathematical setting. We shall prove the existence and uniqueness of a
minimizing density and furthermore that this density is asymptotically
exact to the quantum mechanical ground state density.

To start with, Chapter 1 contains some basic properties of the mo-
mentum functional introduced by Englert [3]. Among them we are
concerned with the question of convexity of this particular functional
which we denote by EmTF.

In Chapter 2 we introduce a new functional which emerged from
the original one simply by substitution. This new functional is strictly
convex and ensures therefrom uniqueness of a minimizing momentum
density, as far as it exists. Later, this will also entail the uniqueness
of any minimizer of EmTF, the momentum energy functional originally
introduced in the first chapter.

Chapter 3 covers the relation between the Thomas-Fermi functional
in position space and the energy functional EmTF in momentum space
by explicit transforms. This is extensively used in the next chapter
where we finally answer the question of existence of the minimizer.

In Chapter 4 we use the relation shown in the previous chapter
to gain equivalence of the two functionals upon minimization. This
allows us to transfer results from the Thomas-Fermi model directly
to the one under consideration. In particular, this implies that the
infimum of the momentum energy functional agrees with the ground
state energy up to the same order as the Thomas-Fermi energy does.
Further, we establish bounds on the minimizer and its connection with
Euler’s equation.
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Finally, in Chapter 5 we consider momentum dependent pertur-
bations. To be more precise, we prove that the atomic momentum
density converges on the scale Z2/3 to the minimizer of the momen-
tum energy functional. Hence, the momentum density functional gives
the right appropriate linear response to momentum dependent forces.
The proof uses coherent states. Schrödinger [19] derived these states
as Gaussian wave functions parametrized by points in phase space sat-
isfying minimal uncertainty. There exist various generalizations and
the concept of coherent states has become a topic of self-contained
interest.

Enclosed, in the appendix we also give an alternative proof for
the existence of the minimizer. There, we do not rely on the rela-
tion discussed in Chapter 3 and the known results from the Thomas-
Fermi model. Instead, we use variational methods on Banach spaces
equipped with the weak topology together with semicontinuity of the
functional in this weak topology in the spirit of Weierstrass. This is
a fairly standard strategy in the calculus of variations which has also
been used in the article of Lieb and Simon [13].

At the end of this introduction, we would like to briefly indicate a
difference regarding the general structure of energy functionals of the
one-particle density in position space and the one-particle density in
momentum space. For example, if we compare the Hamiltonian of an
atom with the Hamiltonian related to a molecule in position space then
we observe that in both cases the external potential appears as a sum
of one-particle multiplication operators. This suggests that a one-
particle spatial density functional corresponding to an atom should
have essentially the same general structure as a one-particle spatial
density functional corresponding to a molecule. On the other hand,
in momentum space we observe one-particle multiplication operators
in the kinetic term of the Hamiltonian but not in the potential terms.
Consequently, a one-particle momentum density functional suitable
for atoms is not necessarily easily adapted to molecules. However, in
the context of this thesis, we concentrate on the momentum energy
functional EmTF which is associated with an atom. Besides this, we
also want to refer to an article of Cinal and Englert [2] which is closely
related to the one of Englert [3]. They found the momentum energy
functional EmTF to be applicable in deriving a further momentum en-
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ergy functional which improves the approximation of the ground state
energy in higher order than o(Z7/3). In fact, they incorporate the cor-
rection corresponding to the strongly bound electrons, the so-called
Scott correction, into the existing momentum functional.

♦

The main part of this thesis is related to the article [27] which will
be published co-authored with Prof. Dr. Heinz Siedentop. We give
references for the corresponding propositions in the article. The for-
mulation of the associated proofs is taken mostly from that article
with more details and some intermediate steps where this seems ap-
propriate.

♦

Acknowledgments. I wish to thank Prof. Dr. Heinz Siedentop for
supervising me during my work on this project.

Thanks to all of my colleagues, friends, and family for various dis-
cussions, inspiring me, and having a good time together.

This work has also been partially supported by the DFG, the Ger-
man Research Council, through the SFB-TR 12 “Symmetries and Uni-
versality in Mesoscopic Systems”.
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1. The Momentum Energy Functional

1.1. The Quantum Mechanical Setting

The quantum mechanical system we will be concerned with is an atom
with N electrons of mass m and charge −e < 0 moving about one
fixed positive charge of magnitude eZ. This system is described by
the Hamiltonian

HN :=
N∑
n=1

(
− ~2

2m
∆n −

Ze2

|xn|

)
+

∑
1≤n<m≤N

e2

|xn − xm|
(1.1)

where ~ is Planck’s constant divided by 2π. This operator HN is self-
adjoint on the Hilbert space

∧N
n=1 L

2(R3 : Cq), the anti-symmetric
subspace of square integrable functions on R3 with values in Cq, where
q denotes the number of spin states. The corresponding ground state
energy is defined to be inf σ(HN), the infimum of the spectrum of HN .

Englert [3] derived an energy functional depending on the momen-
tum density τ for the ground state energy associated with HN . It
reads

EmTF(τ) :=

∫
R3

dξ ξ2

2m
τ(ξ)− 3

2
γ
−1/2
TF Ze2

∫
R3

dξ τ(ξ)
2
3

+ 3
4
γ
−1/2
TF e2

∫
R3

dξ

∫
R3

dη
(
τ<(ξ, η)τ>(ξ, η)

2
3 − 1

5
τ<(ξ, η)

5
3

)
(1.2)

where γTF := (6π2/q)2/3 ~2
2m

is the Thomas-Fermi constant, τ<(ξ, η) :=
min{τ(ξ), τ(η)}, and τ>(ξ, η) := max{τ(ξ), τ(η)}.

From now on we will use units where ~ = 2m = |e| = 1. We will
refer to the Hamiltonian in the new convention

HN =
N∑
n=1

(
−∆n −

Z

|xn|

)
+

∑
1≤n<m≤N

1

|xn − xm|
. (1.3)
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With our choice of units γTF = (6π2/q)2/3 and the energy functional
has the following form:

EmTF(τ) =: Km(τ)−Am(τ) +Rm(τ)

=

∫
R3

dξ ξ2τ(ξ)− 3
2
γ
−1/2
TF Z

∫
R3

dξ τ(ξ)
2
3

+ 3
4
γ
−1/2
TF

∫
R3

dξ

∫
R3

dη
(
τ<(ξ, η)τ>(ξ, η)

2
3 − 1

5
τ<(ξ, η)

5
3

)
.

(1.4)

1.2. Basic Properties of the Energy Functional

For the purpose of defining the functional EmTF it is sufficient to require
τ ∈ L1(R3, (1 + ξ2)dξ):

Theorem 1.1 (Conta and Siedentop [27, Theorem 1]). The functional
EmTF is well-defined on real-valued functions in L1(R3, (1 + ξ2)dξ).

Proof. The first summand of EmTF(τ), the kinetic energy Km, is ob-
viously well-defined. The claim for the attraction Am follows from

∫
R3

dξ |τ(ξ)|
2
3 ≤

(∫
R3

dξ

(1 + ξ2)2

) 1
3
(∫

R3

dξ (1 + ξ2)|τ(ξ)|
) 2

3
<∞ (1.5)

by Hölder’s inequality. The repulsion Rm consists of two parts. Now,∫
R3

dξ

∫
R3

dη |τ<(ξ, η)|
5
3 ≤

∫
R3

dξ

∫
R3

dη |τ>(ξ, η)|
2
3 |τ<(ξ, η)|

≤ 2

∫
R3

dξ |τ(ξ)|
2
3

∫
R3

dη |τ(η)| (1.6)

which is finite by the previous argument.

For densities in momentum space we define the sets

J :=
{
τ ∈ L1(R3, (1 + ξ2)dξ) | τ ≥ 0

}
,

JN :=
{
τ ∈ J |

∫
R3 dξ τ(ξ) ≤ N

}
,

J∂N :=
{
τ ∈ J |

∫
R3 dξ τ(ξ) = N

}
.

8



In view of approximating the ground state energy via the minimal
energy of the functional for large atoms, i. e., in the simultaneous limit
Z → ∞, N → ∞ with the ratio N/Z fixed, the following scaling law
is of particular interest. It is implicitly given in the article [27].

Theorem 1.2. Let τ ∈ J . Let Z > 0 and τZ(ξ) = Z−1τ(Z−2/3ξ).
Then ∫

R3

dξ τZ(ξ) = Z

∫
R3

dξ τ(ξ) (1.7)

and

EmTF(τZ) = Z7/3EmTF,Z=1(τ) (1.8)

where EmTF,Z=1(τ) := Km(τ)− 3
2
γ
−1/2
TF

∫
R3 dξ τ(ξ)

2
3 +Rm(τ).

Proof. The assertion (1.7) follows by a direct change of the integration
variable. Likewise, we proceed in each term of (1.4) to get (1.8).

We are interested in results pertaining to the existence of a min-
imizer of the functional EmTF. For that reason convexity, and even
more strict convexity, would be a desirable property of EmTF. Clearly,
Km and −Am are convex in τ but the interaction term Rm of EmTF is
not. For example, consider the family of functions (τa)a≥1 on R3 given
by

τa(ξ) :=

{
1
a3
|ξ| ≤ a

0 |ξ| > a
(1.9)

and set τ ≡ τ1. Obviously,
∫
R3 dξ τa(ξ) =

∫
R3 dξ τ(ξ) holds for all

a ≥ 1. Moreover, define

d(a) := c−1
[
Rm

(τ + τa
2

)
− 1

2

(
Rm(τ) +Rm(τa)

)]
(1.10)

where c := 3
4
γ
−1/2
TF · 4

5
·
(
4π
3

)2
.

By an easy computation we get, on the one hand, that

1
2

(
Rm(τ) +Rm(τa)

)
= c 1+a

2
.
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On the other hand, since

(τ + τa)(ξ) =


1 + 1

a3
|ξ| ≤ 1

1
a3

1 < |ξ| ≤ a

0 a < |ξ|

we find

Rm

(τ + τa
2

)
= 2−5/3 c

[(
1+ 1

a3

)5/3
+5

2

(
1
a3

(
1+ 1

a3

)2/3−1
5

(
1
a5

))
(a3−1)+

(
1
a3

)5/3
(a3−1)2

]
.

All together, this leads to

d(a) = 2−5/3
[(

1+ 1
a3

)5/3
+ 5

2

(
1− 1

a3

)((
1+ 1

a3

)2/3− 1
5a2

)
+ (a3−1)2

a5

]
− 1+a

2

for any a ≥ 1. Therefrom, d(2) > 0 can be verified immediately which
implies that Rm is not convex in τ .
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2. The Functional Es

We introduce a further functional. It is strictly convex and so closely
related to EmTF that we may treat this new functional instead of EmTF

when investigating the existence and uniqueness of a minimizing den-
sity.

Let the functional Es of the momentum density τ̃ ≥ 0 be given by

Es(τ̃) :=

∫
R3

dξ ξ2τ̃(ξ)
3
2 − 3

2
γ
−1/2
TF Z

∫
R3

dξ τ̃(ξ)

+ 3
4
γ
−1/2
TF

∫
R3

dξ

∫
R3

dη
(
τ̃<(ξ, η)

3
2 τ̃>(ξ, η)− 1

5
τ̃<(ξ, η)

5
2

)
(2.1)

where τ̃< and τ̃> are defined analogously to τ< and τ>, respectively.
Indeed, Es is derived from EmTF(τ) by substituting τ → τ̃ 3/2, i. e.,

Es(τ̃) := EmTF(τ̃ 3/2). (2.2)

In analogy to EmTF we define the sets

J s :=
{
τ̃ ∈ L3/2(R3, (1 + ξ2)dξ) | τ̃ ≥ 0

}
,

J s
N :=

{
τ̃ ∈ J s |

∫
R3 dξ τ̃(ξ)

3
2 ≤ N

}
,

J s
∂N :=

{
τ̃ ∈ J s |

∫
R3 dξ τ̃(ξ)

3
2 = N

}
.

Theorem 2.1 (Conta and Siedentop [27]). Es is well-defined on J s.
In particular, τ̃ ∈ J s implies τ̃ ∈ L1(R3, dξ).

Proof. By construction (Eq. (2.2)) the finiteness of Es follows from
the same estimates as in the proof of Theorem 1.1 when substituting
τ → τ̃ 3/2.

Uniqueness of a minimizer, given that it exists, is an important
consequence of strict convexity. The treatment of the functional Es is
highly motivated by this particular property.
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Lemma 2.2 (Conta and Siedentop [27, Lemma 1]). The functional Es
is strictly convex on all of J s and on any convex subset of J s.

Proof. Let τ̃ ∈ J s
# where J s

# denotes J s or any convex subset of J s,
e. g., J s

N or J s
∂N . Obviously, the first term of Es is strictly convex, the

second is linear. Thus, it suffices to show convexity of the repulsion
term. Let θ denote the Heaviside function, i. e., θ(x) = 1 if x ≥ 0
and θ(x) = 0 otherwise, and define the positive part for x ∈ R by
[x]+ := max{0, x}. Then, we get∫ ∞

0

dr
(∫

R3

dξ [τ̃(ξ)− r2]+
)2

=

∫
R3

dξ

∫
R3

dη

∫ ∞
0

dr [τ̃(ξ)− r2][τ̃(η)− r2]θ(τ̃(ξ)− r2)θ(τ̃(η)− r2)

=

∫
R3

dξ

∫
R3

dη

∫ τ̃<(ξ,η)1/2

0

dr
(
τ̃(ξ)τ̃(η)− τ̃(ξ)r2 − τ̃(η)r2 + r4

)
=

∫
R3

dξ

∫
R3

dη
(
τ̃(ξ)τ̃(η)τ̃<(ξ, η)

1
2 − 1

3
τ̃(ξ)τ̃<(ξ, η)

3
2

− 1
3
τ̃(η)τ̃<(ξ, η)

3
2 + 1

5
τ̃<(ξ, η)

5
2

)
=

∫
R3

dξ

∫
R3

dη
(
τ̃>(ξ, η)τ̃<(ξ, η)

3
2 − 1

3
τ̃>(ξ, η)τ̃<(ξ, η)

3
2

− 1
3
τ̃<(ξ, η)

5
2 + 1

5
τ̃<(ξ, η)

5
2

)
= 2

3

∫
R3

dξ

∫
R3

dη
(
τ̃<(ξ, η)

3
2 τ̃>(ξ, η)− 1

5
τ̃<(ξ, η)

5
2

)
.

The assertion follows from this identity since the term in the first line
is obviously convex.

Corollary 2.3 (Conta and Siedentop [27]). Let J s
# denote J s or any

convex subset of J s, e. g., J s
N or J s

∂N . Then there is at most one
τ̃ ∈ J s

# such that
Es(τ̃) = inf

σ̃∈J s#
Es(σ̃).

Proof. Let τ̃1, τ̃2 ∈ J s
#. Suppose τ̃1 6= τ̃2 were minimizers of the

functional, i. e., Es(τ̃1) = Es(τ̃2) = inf τ̃∈J s# Es(τ̃). This contradicts

Es( τ̃1+τ̃22
) < inf τ̃∈J s# Es(τ̃), and therefore the strict convexity of Es.
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The proof of Lemma 2.2 offers an expedient integral representation
for the electron-electron interaction term of Es:

Definition 2.4. We write the electron-electron interaction term of Es
in the following convention:

Rs
m(τ̃) = 9

8
γ
−1/2
TF

∫ ∞
0

dr
(∫

R3

dξ [τ̃(ξ)− r2]+
)2
.
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3. Thomas-Fermi and the Momentum
Energy Functional

We wish to relate the momentum energy functional given in the first
chapter with the Thomas-Fermi functional. To this end, we first briefly
recall the definition of the Thomas-Fermi functional and some results
we will refer to in the sequel. Then, we define explicit transforms
which, eventually, the relation of the two functionals emerges from.

3.1. A Few Results on the Thomas-Fermi Functional

In the chosen units where ~ = 2m = |e| = 1 the well-known Thomas-
Fermi functional (Lenz [8]) reads

ETF(ρ) := K(ρ)−A(ρ) +R(ρ) (3.1)

= 3
5
γTF

∫
R3

dx ρ(x)
5
3 −

∫
R3

dx
Z

|x|
ρ(x) +D[ρ] (3.2)

where D[ρ] is the quadratic form of

D(ρ, σ) := 1
2

∫
R3

dx

∫
R3

dy
ρ(x)σ(y)

|x− y|
(3.3)

for one-particle electron densities ρ and σ in position space. The
Thomas-Fermi constant is given as before by γTF = (6π2/q)2/3. Math-
ematically this functional has been studied in detail by Lieb and
Simon [12, 13] and Lieb [10]. The Thomas-Fermi functional is well-
defined for functions in L1(R3) ∩ L5/3(R3) and we write

I :=
{
ρ ∈ L1(R3) ∩ L5/3(R3) | ρ ≥ 0

}
,

IN :=
{
ρ ∈ I |

∫
R3 dx ρ(x) ≤ N

}
,

I∂N :=
{
ρ ∈ I |

∫
R3 dx ρ(x) = N

}
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for densities in position space.
In the following we will use the notion of spherically symmetric

rearrangement, namely,

Definition 3.1. Let A ⊂ R3 and let |A| denote its Lebesgue measure.
If |A| < ∞ then A∗ is defined to be the closed ball centered at the
origin which has the same volume as A. We call A∗ the spherically
symmetric rearrangement of A.

For any function ρ ∈ Lp(R3), 1 ≤ p < ∞ its spherically symmetric
rearrangement ρ∗ is given by

ρ∗(x) :=

∫ ∞
0

dt χ{x∈R3||ρ(x)|>t}(x)

where χA denotes the characteristic function of the set A.

Now, the property of the Thomas-Fermi functional we want to men-
tion first is that it decreases under spherically symmetric rearrange-
ment, i. e.,

Lemma 3.2 (Lieb [10, Theorem 2.12]). Let ρ ∈ I and let ρ∗ denote
its spherically symmetric rearrangement. Then

ETF(ρ∗) ≤ ETF(ρ). (3.4)

Other important results we will employ are collected in the following
theorem:

Theorem 3.3 (Lieb and Simon [13, Theorems II.14, II.17, II.18, II.20]).
Let Z ≥ 0.

1. For all 0 ≤ N ≤ Z there exists a unique minimizer ρN of ETF

on I∂N .

2. For N > Z there exists no minimizer of ETF on I∂N .

3. For each N ≥ 0 there exists a unique minimizer ρN of ETF on
IN . Moreover, ρN ∈ I∂min{N,Z}.

4. Let ρZ be the unique minimizer of ETF on I∂Z. Then, for all
ρ ∈ I,

ETF(ρ) ≥ ETF(ρZ).
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The minimum of the Thomas-Fermi functional is an approximation
of the ground state energy. More precisely, suppose the ratio N/Z is
fixed, then

inf σ(HN) = inf
ρ∈IN
ETF(ρ) + o(Z7/3).

Moreover, there is a quantum mechanical limit for the density as well.
For the case of a neutral atom, i. e., N = Z, we have that

Z−2ρψZ ( ·Z−1/3)→ Z−2ρZ( ·Z−1/3) = ρ1 (3.5)

weakly in the limit Z → ∞. Here, ρψZ denotes the one-particle den-
sity of the quantum atom of charge Z and ρZ is the Thomas-Fermi
minimizer. These results, among others, assert Thomas-Fermi theory
in the regime of quantum mechanics and give rise to determine the
linear response of atoms to perturbations that are local in position
space.

We aim to prove some basic mathematical properties of EmTF. In
fact, we show equivalent results to Lemma 3.2 and Theorem 3.3 for the
momentum functional EmTF. This will establish the functional EmTF

in the regime of quantum mechanics. We will consider momentum
dependent perturbations as well.

3.2. Transforms between Position and Momentum
Functional

Now, we define the explicit transforms which transfer each term of
EmTF to the associated term of ETF as long as spherically symmetric
decreasing densities are concerned. We set

S : L1(R3)→ L1(R3)

τ 7→ ρ (3.6)

where ρ is given by

ρ(x) := q
(2π)3

∫
|x|<γ1/2TF |τ(ξ)|1/3

dξ (3.7)

for all x ∈ R3.
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For any function ρ ∈ L1(R3) and for any s ≥ 0 we define the Fermi
radius r by

r(s) := 0 if γ
1/2
TF |ρ(x)|1/3 ≤ s for a.e. x ∈ R3,

r(s) := inf
{
K | γ1/2TF |ρ(x)|1/3 > s for a.e. |x| ≤ K} otherwise.

(3.8)

This infimum can be understood, in some sense, as an essential supre-
mum of the set {|x| | γ1/2TF |ρ(x)|1/3 > s}, especially if ρ is spherically
symmetric. Now, based on the definition of the Fermi radius r we set

T : L1(R3)→ L1(R3)

ρ 7→ τ (3.9)

where τ is given by

τ(ξ) := γ
−3/2
TF r(|ξ|)3 (3.10)

for all ξ ∈ R3.

The first operator will be used to transfer a momentum density
into a position density and the second to transfer a position into a
momentum density. With this in view we prove the following results
on the operators S and T .

Lemma 3.4 (Conta and Siedentop [27, Lemma 4]).

1. The operator S is isometric on L1(R3).

2. If ρ ∈ L1(R3) and |ρ| spherically symmetric decreasing then

‖T (ρ)‖1 = ‖ρ‖1.

3. All elements in the image of S are spherically symmetric, non-
negative, and decreasing.

4. For every spherically symmetric ρ ∈ L1(R3), its image T (ρ) is
spherically symmetric, nonnegative, and decreasing.
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Proof. 1. The claim follows easily by direct computation interchanging
the integration with respect to x and the integration with respect to
ξ.

2. To treat T we may, without loss of generality, assume ρ ≥ 0.
Let ξ ∈ R3. By definition of r and since ρ is spherically symmetric
decreasing

|x| < r(|ξ|)⇒ γ
1/2
TF ρ(x)1/3 > |ξ| (3.11)

for almost every x ∈ R3, in the sense that almost every x ∈ R3 with
|x| < r(|ξ|) satisfies γ

1/2
TF ρ(x)1/3 > |ξ|. Likewise, the definition of r

provides that
|x| ≤ r(|ξ|)⇐ γ

1/2
TF ρ(x)1/3 > |ξ| (3.12)

for almost every x ∈ R3.
We have

‖T (ρ)‖1 = 3

4πγ
3/2
TF

∫
dξ

∫
|x|<r(|ξ|)

dx. (3.13)

By (3.11) we get the estimate

‖T (ρ)‖1 ≤ 3

4πγ
3/2
TF

∫
dξ

∫
γ
1/2
TF ρ(x)

1/3>|ξ|
dx

= 3

4πγ
3/2
TF

∫
dx

∫
γ
1/2
TF ρ(x)

1/3>|ξ|
dξ =

∫
dx ρ(x). (3.14)

On the other hand, if we allow for ≤ instead of strict inequality on
the integration constraints in (3.13) we can also reverse the inequality
in (3.14) using (3.12).

3. and 4. The claims follow directly from the definitions.

Now, we will see how the functionals ETF and EmTF are related via
the operators S and T , namely,

Lemma 3.5 (Conta and Siedentop [27, Lemma 4]).

1. For every spherically symmetric decreasing τ ∈ J

EmTF(τ) = ETF ◦ S(τ).

2. For every spherically symmetric decreasing ρ ∈ I

EmTF ◦ T (ρ) = ETF(ρ).
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Proof. 1. We treat each term of the energy functional individually. We
start with the potential terms, actually with the external potential
which is an easy variant of the interaction potential. Both follow by
explicit calculation.

We have

A(S(τ)) =

∫
dx

Z

|x|
S(τ)(x) = Z

∫
dx q

(2π)3

∫
|x|<γ1/2TF τ(ξ)

1/3

dξ
1

|x|

= Z

∫
dξ q

(2π)3
4π
2
γTF τ(ξ)

2
3 = 3

2
γ
−1/2
TF Z

∫
dξ τ(ξ)

2
3 . (3.15)

Now we exhibit the calculation for the interaction potential. Given
a radius a > 0 we set Ka := χ{x∈R3||x|<a} to be the characteristic
function of the open ball of radius a centered at the origin. We get

R(S(τ)) = 1
2

∫
dx

∫
dy

1

|x− y|(
q

(2π)3

)2 ∫
|x|<γ1/2TF τ(ξ)

1/3

dξ

∫
|y|<γ1/2TF τ(η)

1/3

dη (3.16)

=
(

q
(2π)3

)2 ∫∫
dξdη D(K

γ
1/2
TF τ(ξ)

1/3 , Kγ
1/2
TF τ(η)

1/3) (3.17)

=
(

3
4π

)2
γ
−1/2
TF

∫∫
dξdη D(K 3

√
τ<(ξ,η)

, K 3
√
τ>(ξ,η)

) (3.18)

= 9
(4π)2

γ
−1/2
TF

(∫∫
dξdη D[K 3

√
τ<(ξ,η)

]

+

∫∫
dξdη D(K 3

√
τ<(ξ,η)

, K 3
√
τ>(ξ,η)

−K 3
√
τ<(ξ,η)

)
)

(3.19)

= 9
(4π)2

γ
−1/2
TF

(∫∫
dξdη D[K 3

√
τ<(ξ,η)

]

+

∫∫
dξdη 1

2

∫
|x|< 3
√
τ<(ξ,η)

dx

∫
3
√
τ<(ξ,η)≤|y|< 3

√
τ>(ξ,η)

dy
1

|y|

)
(3.20)

= 9
(4π)2

γ
−1/2
TF

(∫∫
dξdη D[K1]τ<(ξ, η)

5
3

+

∫∫
dξdη 4π

2·3 τ<(ξ, η)2π
(
τ>(ξ, η)

2
3 − τ<(ξ, η)

2
3

))
(3.21)

= 3
4
γ
−1/2
TF

∫∫
dξdη τ<(ξ, η)τ>(ξ, η)

2
3 − 1

5
τ<(ξ, η)

5
3 (3.22)

20



where we used the scaling properties of D in (3.18) and Newton’s

Theorem B.5 to get (3.20). In particular, D[K1] = (4π)2

15
follows by a

simple computation.
Now we turn to the remaining term, the kinetic energy. It trans-

forms as

K(S(τ)) = 3
5
γTF

∫
dxS(τ)(x)

5
3 = 3γTF

∫
dx

∫
0≤t≤S(τ)(x)1/3

dt t4

= 3
4π
γTF

∫
dξξ2

∫
|ξ|3≤S(τ)(x)

dx. (3.23)

Given that S(τ)(x) ≥ |ξ|3 implies γ
1/2
TF τ(γ

1/2
TF ξ)

1/3 ≥ |x|, which is equiv-
alent to the statement that 3

4π

∫
|x|<τ(η)1/3 dη ≥ |ξ|3 implies τ(ξ)1/3 ≥

|x|, we have

3
5
γTF

∫
dxS(τ)(x)

5
3 ≤ 3

4π
γTF

∫
dξ ξ2

∫
|x|≤γ1/2TF τ(γ

1/2
TF ξ)

1/3

dx (3.24)

=

∫
dξ ξ2τ(ξ). (3.25)

Suppose 3
4π

∫
|x|<τ(η)1/3 dη ≥ |ξ|3 would not imply τ(ξ)1/3 ≥ |x|. Then

|ξ|3 ≤ 3
4π

∫
|x|<τ(η)1/3

dη < 3
4π

∫
τ(ξ)<τ(η)

dη ≤ 3
4π

∫
|ξ|>|η|

dη = |ξ|3 (3.26)

where we used in the last inequality that τ is spherically symmetric
and decreasing.

On the other hand, 3
4π

∫
|x|<τ(η)1/3 dη ≥ |ξ|3 follows from τ(ξ)1/3 > |x|

as

|ξ|3 = 3
4π

∫
|η|≤|ξ|

dη ≤ 3
4π

∫
τ(ξ)≤τ(η)

dη ≤ 3
4π

∫
|x|<τ(η)1/3

dη (3.27)

using in the first inequality again that τ is spherically symmetric and
decreasing. Thus we can reverse the inequality in (3.24), i. e.,

3
5
γTF

∫
dxS(τ)(x)

5
3 ≥ 3

4π
γTF

∫
dξ ξ2

∫
|x|<γ1/2TF τ(γ

1/2
TF ξ)

1/3

dx (3.28)

=

∫
dξ ξ2τ(ξ). (3.29)
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2. To prove that EmTF ◦T (ρ) = ETF(ρ) we proceed as in 1. We begin
with the kinetic energy:

Km(T (ρ)) =

∫
dξ ξ2γ

−3/2
TF r(|ξ|)3 = 3

4π
γ
−3/2
TF

∫
dξ ξ2

∫
|x|<r(|ξ|)

dx

= 3
4π
γ
−3/2
TF

∫
dξ ξ2

∫
|ξ|<γ1/2TF ρ(x)

1/3

dx = K(ρ) (3.30)

where we used (3.11) and (3.12) in the penultimate identity.
For the external potential we get

Am(T (ρ)) = 3
2
γ
−3/2
TF Z

∫
dξ r(|ξ|)2 = 3γ

−3/2
TF Z

∫
dξ

∫
0≤t<r(|ξ|)

dt t

= Z 3
4π
γ
−3/2
TF

∫
dξ

∫
|x|<r(|ξ|)

dx 1
|x| = Z 3

4π
γ
−3/2
TF

∫
dx 1
|x|

∫
|ξ|<γ1/2TF ρ(x)

1/3

dξ

= Z

∫
dx

1

|x|
ρ(x) (3.31)

using again (3.11) and (3.12) in the penultimate identity.
Finally we go to Rm. Adapting the steps (3.22) to (3.16) yields

Rm(T (ρ)) = 1
2

∫∫
dxdy

1

|x− y|
(

q
(2π)3

)2 ∫
|x|<r(|ξ|)

dξ

∫
|y|<r(|η|)

dη

= 1
2

(
q

(2π)3

)2 ∫∫
dxdy

1

|x− y|

∫
|ξ|<γ1/2TF ρ(x)

1/3

dξ

∫
|η|<γ1/2TF ρ(y)

1/3

dη

= R(ρ) (3.32)

using (3.11) and (3.12) once more.
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4. Results on the Minimal Energy
and the Minimizer

4.1. Existence and Uniqueness Results

The following theorem establishes EmTF as the momental analogue of
the Thomas-Fermi functional (cf. Theorem 3.3).

Theorem 4.1 (Conta and Siedentop [27, Theorem 2]). Let Z ≥ 0.

1. For all N ≥ 0, we have infτ∈J∂N EmTF(τ) = infρ∈I∂N ETF(ρ).

2. Let 0 ≤ N ≤ Z. If ρN is the unique minimizer of ETF on I∂N
then T (ρN) is the unique minimizer of EmTF on J∂N .

3. For N > Z there exists no minimizer of EmTF on J∂N .

4. For each N ≥ 0 there exists a unique minimizer τN of EmTF on
JN . Moreover, τN ∈ J∂min{N,Z}.

5. Let τZ be the unique minimizer of EmTF on J∂Z. Then, for all
τ ∈ J ,

EmTF(τ) ≥ EmTF(τZ).

The proof of Theorem 4.1 is based on the relation of the functionals
ETF and EmTF that was indicated in Lemma 3.5. Thus, in order to
apply this lemma we want to restrict the two functionals to spher-
ically symmetric decreasing densities. We overcome this problem if
we can ensure that EmTF decreases under spherically symmetric rear-
rangement since the same result holds for ETF (Lemma 3.2).

Lemma 4.2 (Conta and Siedentop [27, Lemma 5]). Let τ ∈ J and
let τ ∗ denote its spherically symmetric rearrangement (Definition 3.1).
Then

EmTF(τ ∗) ≤ EmTF(τ). (4.1)
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Proof. The attraction Am is obviously invariant under rearrangement.
The repulsion Rm is – by definition – a superposition of rearranged
terms only, i. e., is also trivially invariant.

Let |A| denote the Lebesgue measure of any subset A of R3. Since
Km(τ) =

∫∞
0

dt
∫

dξ ξ2χ{ξ∈R3|τ(ξ)>t}(ξ), it suffices to show that for any
A ⊂ R3 with finite measure∫

dξ ξ2χA(ξ) ≥
∫

dξ ξ2χA∗(ξ) =

∫
|ξ|≤R

dξ ξ2

where R is defined by |A| = 4π
3
R3, i. e., the radius of the ball A∗ :=

BR(0) centered at the origin which has the same volume as A. Now
define the sets B := BR(0) \A, C := A \BR(0), and D := A∩BR(0).
Then |B| = |C|, and thus∫

A∗
dξ ξ2 =

∫
B

dξ ξ2 +

∫
D

dξ ξ2 ≤ R2

∫
B

dξ +

∫
D

dξ ξ2

≤
∫
C

dξ ξ2 +

∫
D

dξ ξ2 =

∫
A

dξ ξ2.

Corollary 4.3 (Conta and Siedentop [27]). Every minimizer τ ∈ J
of EmTF is spherically symmetric decreasing.

Now, we can prove Theorem 4.1:

Proof. 1. The two functionals ETF and EmTF decrease under spherically
symmetric rearrangement (Lemma 3.2 and Lemma 4.2). So, as far as
minimization is concerned, we may restrict both functionals to spheri-
cally symmetric decreasing densities ρ and τ . Under this restriction S
and T preserve the norm and hence Statement 1 of Lemma 3.5 implies
that

inf
τ∈J∂N

EmTF(τ) ≥ inf
ρ∈I∂N

ETF(ρ)

whereas Statement 2 implies the reverse inequality. This proves the
first assertion of Theorem 4.1.

2. Since ETF has a unique minimizer ρN on I∂N if N ≤ Z (Theo-
rem 3.3), it follows from the preceding step and Lemma 3.5, State-
ment 2 that T (ρN) minimizes EmTF on J∂N .
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It remains to show that there is no other minimizer of the momen-
tum functional. This follows from the strict convexity of Es (Lem-
ma 2.2). Indeed, suppose that τN 6= τ ′N were two different minimiz-
ers of EmTF on J∂N . Then, since infτ∈J∂N EmTF(τ) = infτ∈J s∂N Es(τ)
(Eq. (2.2)), we obtain two different minimizers τ̃N 6= τ̃ ′N of Es on J s

∂N

from the substitutions τ̃
3/2
N = τN and (τ̃ ′N)3/2 = τ ′N . But this contra-

dicts Corollary 2.3.
3. Suppose τN is a minimizer of EmTF on J∂N for some N > Z. Then

S(τN) has to be a minimizer of ETF by Statement 1 and Lemma 3.5,
Statement 1 but this does not exist (Theorem 3.3).

4. Again, if τN minimizes EmTF on JN then S(τN) minimizes ETF on
IN . Thus,

∫
τN =

∫
S(τN) = min{Z,N}. Uniqueness of τN follows

from the strict convexity of Es as in the proof of Statement 2.
5. The claim follows from Statement 2 and Statement 4.

4.2. Properties of the Minimizing Density and Euler’s
Equation

We start with a bound on the minimizer. By the definition of T , the
relation between r and τ as given by (3.10), and Theorem 4.1 any
bound on the position space density implies a corresponding bound
on the momentum space density.

Lemma 4.4 (Conta and Siedentop [27]). Let τ be the minimizer of
EmTF on J , then

τ(ξ) ≤ γ
−3/2
TF

Z3

|ξ|6
(4.2)

for almost every ξ ∈ R3. Furthermore, there exists ξ0 ∈ R3 \ {0} such
that

τ(ξ) ≤
(
3
π

) 3
2γ
−3/2
TF

1

|ξ|3/2
(4.3)

for almost every ξ ∈ R3 satisfying |ξ| < |ξ0|.

Proof. Let ρ be the Thomas-Fermi minimizer on I. Then ρ obeys

ρ(x) ≤ γ
−3/2
TF

Z3/2

|x|3/2
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for almost every x ∈ R3 as a consequence of the corresponding Euler
equation in position space (see, e. g., Lieb and Simon [13]). This im-
plies the first bound in the proposition since τ can be represented in
terms of ρ by means of T as defined in Eq. (3.10). In this case,

τ(ξ) = T (ρ)(ξ)

= γ
−3/2
TF

(
inf
{
K | γ1/2TF |ρ(x)|1/3 > |ξ| for a.e. |x| ≤ K}

)3
= γ

−3/2
TF

(
inf
{
K | Z

1/2

|x|1/2
≥ γ

1/2
TF |ρ(x)|1/3 > |ξ| for a.e. |x| ≤ K

})3
≤ γ

−3/2
TF

(
sup
{
|x| | Z

1/2

|x|1/2
> |ξ|

})3
= γ

−3/2
TF

(
sup
{
|x| | Z

|ξ|2
> |x|

})3
≤ γ

−3/2
TF

( Z

|ξ|2
)3

= γ
−3/2
TF

Z3

|ξ|6
(4.4)

for almost every ξ ∈ R3. Indeed, the infimum exists as ρ is unbounded
(see, e. g., Lieb and Simon [13]).

Likewise, the second bound in the proposition is a consequence of
the Sommerfeld bound [13, 25] concerning the asymptotics of ρ at in-
finity. In position space there exists some x0 ∈ R3 \ {0} such that

ρ(x) ≤ 27π−3γ
−3/2
TF

1

|x|6

for almost every x ∈ R3 with |x| ≥ |x0|. Moreover, since ρ is spheri-
cally symmetric decreasing (Lemma 3.2) we can find some ξ0 ∈ R3\{0}
such that γ

1/2
TF ρ(x)1/3 ≥ |ξ0| for almost every |x| < |x0|. Thus, for al-

most every ξ ∈ R3 with |ξ| < |ξ0| we get

τ(ξ) = γ
−3/2
TF

(
inf
{
K | γ1/2TF |ρ(x)|1/3 > |ξ| for a.e. |x| ≤ K}

)3
= γ

−3/2
TF

(
inf
{
K | γ1/2TF |ρ(x)|1/3 > |ξ| for a.e. |x0| ≤ |x| ≤ K}

)3
≤ γ

−3/2
TF

(
sup
{
|x| | 3π−1 1

|x|2
> |ξ|

})3
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= γ
−3/2
TF

(
sup
{
|x| |

(
3
π

)1/2 1

|ξ|1/2
> |x|

})3
≤
(
3
π

)3/2
γ
−3/2
TF

1

|ξ|3/2
. (4.5)

Note that the second identity holds since ρ is spherically symmetric
decreasing.

The following property of the minimizer will be applied for the
derivation of the Euler equation hereafter.

Lemma 4.5 (adapted from Conta and Siedentop [27, Lemma 2]). The
minimizer of EmTF on J is strictly positive almost everywhere. More-
over, the minimizer of EmTF on JN for each N > 0 is strictly positive
almost everywhere.

Proof. Let τ be a minimizer of EmTF. Suppose that the set Nτ :=
{ξ ∈ R3|τ(ξ) = 0}, on which τ vanishes, would not be of measure zero.
Then pick any function σ ∈ J with τ(ξ)σ(ξ) = 0 for almost all ξ ∈ R3

which is not identical zero onNτ and satisfies
∫
R3 dξ σ(ξ) ≤

∫
R3 dξ τ(ξ).

For any 0 < ε ≤ 1 we define the function

τε := τ + ε
(
σ −

∫
σ∫
τ
τ
)
.

Note that τε ∈ J and
∫
τε =

∫
τ . Then by the integral representation

of the interaction term (Definition 2.4) together with the substitution
τ̃ 3/2 = τ we get

EmTF(τε)− EmTF(τ)

= 3
2
γ
−1/2
TF Z

∫
R3

dξ
(

1−
(
1− ε

∫
σ∫
τ

) 2
3

)
τ(ξ)

2
3 − 3

2
γ
−1/2
TF Z

∫
R3

dξ ε2/3σ(ξ)
2
3

+ 3
2
· 3
4
γ
−1/2
TF

∫ ∞
0

dr
(∫

R3

dξ
[(

1− ε
∫
σ∫
τ

) 2
3 τ(ξ)

2
3 − r2]+

+

∫
R3

dξ [ε2/3σ(ξ)
2
3 − r2]+

)2
− 3

2
· 3
4
γ
−1/2
TF

∫ ∞
0

dr
(∫

R3

dξ [τ(ξ)
2
3 − r2]+

)2
+O(ε) (4.6)
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≤ −ε2/3 3
2
γ
−1/2
TF Z

∫
R3

dξ σ(ξ)2/3 +O(ε)

+ 3
2
· 3
4
γ
−1/2
TF

∫ ∞
0

dr
(∫

R3

dξ [τ(ξ)
2
3 − r2]+

+

∫
R3

dξ [ε2/3σ(ξ)
2
3 − r2]+

)2
− 3

2
· 3
4
γ
−1/2
TF

∫ ∞
0

dr
(∫

R3

dξ [τ(ξ)
2
3 − r2]+

)2
(4.7)

= −ε2/3 3
2
γ
−1/2
TF Z

∫
R3

dξ σ(ξ)
2
3 +O(ε)

+ 2 · 3
4
· 3
2
γ
−1/2
TF

∫ ∞
0

dr
(∫

R3

dξ [τ(ξ)
2
3 − r2]+

)
×
(∫

R3

dη[ε2/3σ(η)
2
3 − r2]+

)
(4.8)

≤ −ε2/3 3
2
γ
−1/2
TF Z

∫
R3

dξ σ(ξ)
2
3 +O(ε)

+ 9
4
γ
−1/2
TF

[∫ ∞
0

dr
(∫

R3

dξ [τ(ξ)
2
3 − r2]+

)2] 1
2

×
[∫ ∞

0

dr
(∫

R3

dη [ε2/3σ(η)
2
3 − r2]+

)2] 1
2

= −ε2/3 3
2
γ
−1/2
TF Z

∫
R3

dξ σ(ξ)
2
3 +O(ε5/6) (4.9)

where in the first inequality we used that 1−ε
∫
σ∫
τ
≤
(
1−ε

∫
σ∫
τ

)2/3 ≤ 1.

In the second inequality we applied the Cauchy-Schwarz inequality.
And finally, scaling the powers of ε out yields the given estimate.

In fact, this implies that

EmTF(τε)− EmTF(τ) < 0,

for sufficiently small ε. Hence, τ cannot be a minimizer.

Now, we turn to the proof of Euler’s equation.

Lemma 4.6 (Conta and Siedentop [27, Lemma 3]). The Euler equa-
tion which the minimizer of EmTF on J satisfies is

γ
1/2
TF |ξ|

2τ(ξ)
1
3 − Z +

∫
R3

dη
(
3
2
τ(η)

2
3 τ<(ξ, η)

1
3 − 1

2
τ<(ξ, η)

)
= 0. (4.10)
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Proof. Instead of deriving the Euler equation for EmTF we use Es (see
Eq. (2.2)).

Let τ̃ be the minimizer which is strictly positive almost everywhere
because of Lemma 4.5. Thus we can pick any σ ∈ L3/2(R3, (1 + ξ2)dξ)
with |σ| ≤ τ̃ . Then, for ε ∈ [−1, 1], τ̃ + εσ is an allowed trial function
and the function F (ε) = Es(τ̃ + εσ) has a minimum at zero. We show
that F is differentiable at zero.

The first two terms of F are obviously differentiable. For the deriva-
tive of the kinetic term we obtain 3

2

∫
R3 dξ ξ2σ(ξ)τ̃(ξ)1/2 at ε = 0 and

for the derivative of the external potential evaluated at the origin we
get 3

2
γ
−1/2
TF Z

∫
R3 dξ σ(ξ). Thus, we concentrate on

T (ε) := ε−1
∫ ∞
0

dr
[(∫

R3

dξ [τ̃(ξ) + εσ(ξ)− r2]+
)2

−
(∫

R3

dξ [τ̃(ξ)− r2]+
)2]

=

∫ ∞
0

dr

∫
R3

dξ

∫
R3

dη
[τ̃(ξ) + εσ(ξ)− r2]+ − [τ̃(ξ)− r2]+

ε

×
(
[τ̃(η) + εσ(η)− r2]+ + [τ̃(η)− r2]+

)
=:

∫ ∞
0

dr

∫
R3

dξ

∫
R3

dη I(ε, r, ξ, η).

(4.11)

Since |a+−b+| ≤ |a−b| for real a and b (Lemma B.1) and since |ε| ≤ 1
we get

|σ(ξ)|
(
[τ̃(η) + |σ(η)| − r2]+ + [τ̃(η)− r2]+

)
to be an integrable majorant of the integrand I independent of ε.
Indeed, we have∫ ∞

0

dr

∫
R3

dξ

∫
R3

dη |σ(ξ)|[τ̃(η) + |σ(η)| − r2]+

≤
∫
R3

dξ |σ(ξ)|
∫ ∞
0

dr

∫
R3

dη [2τ̃(η)− r2]+

=

∫
R3

dξ |σ(ξ)| 2
3

∫
R3

dη 23/2 τ̃(η)
3
2 <∞ (4.12)
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as |σ| ≤ τ̃ . Now, to apply dominated convergence, we split the integral
in two parts, namely the part where the pointwise limit of I exists and
the rest. Consider [a+εb]+−[a]+

ε
for a, b ∈ R in the limit where ε tends

to zero. In the case where a = 0, this limit does not exist. Whereas,
if a < 0 then [a+εb]+−[a]+

ε
→ 0, and if a > 0 then [a+εb]+−[a]+

ε
→ b. In

summary, [a+ εb]+ → [a]+ as ε→ 0 for a 6= 0. This finally results in

lim
ε→0

T (ε) = lim
ε→0

∫ ∞
0

dr

∫
τ̃(ξ)=r2

dξ

∫
R3

dη I(ε, r, ξ, η)

+ lim
ε→0

∫ ∞
0

dr

∫
τ̃(ξ)6=r2

dξ

∫
R3

dη I(ε, r, ξ, η)

= 2

∫ ∞
0

dr

∫
R3

dξ

∫
R3

dη σ(ξ)θ(τ̃(ξ)− r2)[τ̃(η)− r2]+.

(4.13)

Indeed, the integration with respect to r restricted to τ̃(ξ) = r2 yields
zero.

In fact, this proves that F is differentiable. Hence, integration with
respect to r yields

∫
R3

dξ σ(ξ)
[
3
2
ξ2τ̃(ξ)

1
2 − 3

2
γ
−1/2
TF Z

+ 3
2
· 3
4
γ
−1/2
TF

∫
R3

dη
(
2 τ̃(η)τ̃<(ξ, η)

1
2 − 2

3
τ̃<(ξ, η)

3
2

)]
= 0. (4.14)

Since σ is arbitrary we arrive at the desired Euler equation (4.10) after
substituting τ̃ 3/2 = τ .

Since the integrand in (4.10) is nonnegative, the Euler equation
implies the following pointwise bound on the minimizer:

τ(ξ) ≤ γ
−3/2
TF

Z3

|ξ|6
. (4.15)

In particular, this bound we got already from Lemma 4.4.
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4.3. The Virial Theorem

Theorem 4.7 (Virial Theorem). If τ minimizes EmTF on any JN ,
then

2Km(τ) = Am(τ)−Rm(τ). (4.16)

Proof. Suppose τ is the minimizer of EmTF on JN and define τλ(ξ) :=
λ−3τ(λ−1ξ) for some λ > 0. Note that τλ ∈ JN with ‖τλ‖1 = ‖τ‖1.
Scaling yields

EmTF(τλ) = λ2Km(τ)− λAm(τ) + λRm(τ). (4.17)

Consider EmTF(τλ) as a function of λ. Then EmTF(τλ) is differentiable
for positive λ and has its unique minimum at λ = 1. Thus,

0 =
dEmTF(τλ)

dλ

∣∣∣∣
λ=1

= 2Km(τ)−Am(τ) +Rm(τ). (4.18)

If τ is the minimizer of EmTF on J then another relation between
Km(τ), Am(τ), and Rm(τ) can be easily achieved via minimization,
namely,

Theorem 4.8. If τ minimizes EmTF on J , then

3Km(τ) = 2Am(τ)− 5Rm(τ). (4.19)

Proof. Suppose τ is the minimizer of EmTF on J and define τλ(ξ) :=
λτ(ξ) for some λ > 0. Then the same reasoning as in the preceding
proof gives

0 =
dEmTF(τλ)

dλ

∣∣∣∣
λ=1

= Km(τ)− 2
3
Am(τ) + 5

3
Rm(τ). (4.20)

Corollary 4.9. If τ minimizes EmTF on J , then the following ratio
holds:

Km(τ) : Am(τ) : Rm(τ) = 3 : 7 : 1.

31



Proof. The assertion follows from (4.16) and (4.19).

Remark. The Virial Theorem can be also obtained using the opera-
tor T and the Virial Theorem for ETF (Lieb and Simon [13, Theorem
II.22]). The same applies to the corollary when using the correspond-
ing relation between K(ρ), A(ρ), and R(ρ) for the atomic Thomas-
Fermi density ρ (Lieb and Simon [13, Corollary II.24]).

32



5. Asymptotic Exactness of Englert’s
Statistical Model of the Atom

In this chapter we show that the atomic momentum density converges
on the scale Z2/3 to the minimizer of the momentum energy functional
EmTF. Note that in the semiclassical regime this corresponds to the
scale where ~ = Z−1/3 (cf. Eq. (3.5)).

As indicated already in the introduction this limit theorem for the
density is essential to determine the linear response of atoms to pertur-
bations that are local in momentum space. As a result of Theorem 4.1
from the previous chapter we already know that the ground state en-
ergy is asymptotic to the infimum of the momentum energy functional
EmTF of the same order as the Thomas-Fermi energy is. Therefore,

inf σ(HN) = inf
τ∈JN

EmTF(τ) + o(Z7/3)

if the ratio N/Z is fixed. Now, we shall consider the Hamiltonian
HN perturbed by some momentum dependent potential ϕZ(ξ) :=
Z4/3ϕ(Z−2/3ξ), namely,

HN,α := HN − α
N∑
n=1

ϕZ(−i∇n) (5.1)

with some α ∈ R. In fact, in the proposition of the limit theorem we
will have some requirements on α and ϕ.

We shall consider the simultaneous limit Z → ∞, N → ∞ such
that the ratio N/Z is fixed. In order to simplify notation we avoid the
introduction of a scaling parameter which incorporates the dependence
of N and Z. Moreover, the case where N 6= Z requires the notion of
an approximate ground state. So, we start with the introduction of
some useful notations:
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1. Let ψN ∈
∧N
n=1 L

2(R3 : Cq) =: H be a sequence of normalized
vectors such that

inf σ(HN)− 〈ψN , HNψN〉
Z7/3

→ 0

as Z →∞, N →∞ under the subsidiary condition that N/Z is
fixed. We call ψN an approximate ground state of HN .

2. The one-particle ground state density of any normalized vector
ψ ∈ H is defined by

ρψ(x) := N

q∑
σ1=1

· · ·
q∑

σN=1

∫
R3(N−1)

dx2 · · · dxN

× |ψ(x, σ1;x2, σ2; . . . ;xN , σN)|2

in position space and

τψ(ξ) := N

q∑
σ1=1

· · ·
q∑

σN=1

∫
R3(N−1)

dξ2 · · · dξN

× |ψ̂(ξ, σ1; ξ2, σ2; . . . ; ξN , σN)|2

in momentum space where ψ̂ denotes the Fourier transform of ψ
on
∧N
n=1 L

2(R3). The rescaled one-particle momentum density
of ψ is given by

τ̃ψ(ξ) := Zτψ(Z2/3ξ).

3. We denote the set of all trace class operators on L2(R3 : Cq) by
S1(L2(R3 : Cq)). Then

S := {γ ∈ S1(L2(R3 : Cq)) | 0 ≤ γ ≤ 1}

is called the set of fermionic one-particle density matrices.

4. The one-particle density matrix of a normalized N -particle state
ψ ∈ H is denoted by γψ and it satisfies tr γψ = N .
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5. Every γ ∈ S has a spectral decomposition into orthonormal
eigenvectors ej ∈ L2(R3 : Cq) and the corresponding eigenvalues
0 ≤ λj ≤ 1. We write

τγ(ξ) :=

q∑
σ=1

∑
j

λj|êj(ξ, σ)|2

for the momentum density of γ. Here êj denotes the Fourier
transform of ej on L2(R3). The rescaled momentum density of
γ is given by

τ̃γ(ξ) := Zτγ(Z
2/3ξ).

6. Let ρN be the minimizer of the Thomas-Fermi functional ETF

on IN (see Theorem 3.3). Then ρN obeys the Thomas-Fermi
equation

γTFρ
2/3
N = [φN − µ]+

where µ is some positive constant and φN denotes the Thomas-
Fermi potential which is given by

φN := Z/| · | − ρN ∗ | · |−1.

In particular, µ is uniquely determined by φN . These quantities
scale as

φN(x) =: φ(Z,N, x) = Z4/3φ(1, N/Z, Z1/3x),

µ =: µ(Z,N) = Z4/3µ(1, N/Z).

For references see, e. g., Lieb and Simon [12] or Lieb [10].

7. For α ∈ R, the effective one-particle Hamiltonian corresponding
to the Thomas-Fermi potential is given by

hN,α := −∆− φN − αϕZ(−i∇)

and we write hN,α(ξ, x) for its Hamilton function.

The following lemma provides a lower bound to the sum of the
negative eigenvalues of the one-particle Hamiltonian hN,α.
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Lemma 5.1 (Neutral Case N = Z: Conta and Siedentop [27, Lemma
6]). Let α ∈ R. Let µ ≥ 0 and hN,α be given as in Notation 6 and 7
above. Assume 0 ≤ (1 + | · |−2)ϕ ∈ L∞(R3), ϕ uniformly continuous,
and |α| < v/2 with v := 1/(‖| · |−2ϕ‖∞). Then, for every γ ∈ S,

tr (hN,αγ) ≥ q
(2π)3

∫
hN,α(ξ,x)<−µ

dξdxhN,α(ξ, x)− o(Z7/3) (5.2)

uniformly in α for large Z when the ratio N/Z is fixed.

Remark. The corresponding result for the unperturbed one-particle
Hamiltonian hN,0 can be found in the article of Lieb [10, Section V.A.2].
There he shows that, for all γ ∈ S,

tr (hN,0γ) ≥ q
(2π)3

∫
hN,0(ξ,x)<−µ

dξdxhN,0(ξ, x)− constZ7/3−1/30

if N = O(Z). We will follow his proof modified by the momentum
operator ϕZ .

Proof of Lemma 5.1. Note that due to the Thomas-Fermi equation
and the requirements on α and ϕ in the hypothesis of the lemma we
have

q
(2π)3

∫
hN,α(ξ,x)<−µ

dξdx ≤ q
(2π)3

∫
1
2
ξ2−φN (x)<−µ

dξdx ≤ constN (5.3)

and likewise

q
(2π)3

∫
hN,α(ξ,x)<0

dξdxhN,α(ξ, x) ≥ −constZ
7
3

if N = O(Z).
Next, we follow the lower bound of Lieb’s asymptotic result (Lieb [10,

Theorem 5.1]). To this end let g ∈ C∞0 (R3) be a spherically symmetric
positive function with supp(g) contained in the unit ball,

∫
g2 = 1,

and gR(x) := R3/2g(Rx) its dilatation by R. Note that ĝR = ĝR−1

holds for the Fourier transform of gR. Furthermore, let fξ,x(r) :=
eiξ·rgR(r − x) be the coherent states in L2(R3) and define the projec-
tion πξ,x := |fξ,x〉〈fξ,x| ⊗ Iσ where Iσ denotes the identity operator in
spin space.
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For any function ej ∈ L2(R3 : Cq) we have

〈ej, ej〉 =

∫
dξdx

q∑
σ=1

|F
(
gR( · − x)ej( · , σ)

)
(ξ)|2

=

∫
dξdx

q∑
σ=1

∣∣∣ 1
(2π)3/2

∫
R3

dr e−iξ·r gR(r − x)ej(r, σ)
∣∣∣2

= 1
(2π)3

∫
dξdx 〈ej, πξ,xej〉 (5.4)

where F denotes the Fourier transform on L2(R3). We compute:

q∑
σ=1

∫
R3

dx (φN ∗ |gR|2)(x)|ej(x, σ)|2

=

q∑
σ=1

∫
dξdxφN(x)|F(gR( · − x)ej( · , σ)(ξ))|2

= 1
(2π)3

∫
dξdxφN(x)〈ej, πξ,xej〉. (5.5)

Moreover,
q∑

σ=1

∫
R3

dx (ϕZ ∗ |ĝR|2)(−i∇x)|ej(x, σ)|2 (5.6)

=

q∑
σ=1

∫
R3

dξ (ϕZ ∗ |ĝR|2)(ξ)|êj(ξ, σ)|2 (5.7)

=

q∑
σ=1

∫
dξdxϕZ(ξ)|F(ĝR(ξ − · )êj( · , σ))(x)|2 (5.8)

=

q∑
σ=1

∫
dξdxϕZ(ξ)

∣∣∣ 1
(2π)3/2

∫
R3

dp ei(ξ−p)·x ĝR(ξ − p)êj(p, σ)
∣∣∣2 (5.9)

=

q∑
σ=1

∫
dξdxϕZ(ξ)

∣∣∣ 1
(2π)3/2

(
(ei · ·x ĝR) ∗ êj( · , σ)

)
(ξ)
∣∣∣2 (5.10)

=

q∑
σ=1

∫
dξdxϕZ(ξ)|F(gR( · − x)ej( · , σ))(ξ)|2 (5.11)

= 1
(2π)3

∫
dξdxϕZ(ξ)〈ej, πξ,xej〉. (5.12)
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Thus, the identity

q∑
σ=1

∫
R3

dx |∇xej(x, σ)|2 = 1
(2π)3

∫
dξdx ξ2〈ej, πξ,xej〉 − ‖ej‖22 ‖∇gR‖22

(5.13)

can be easily verified by

1
(2π)3

∫
dξdx ξ2〈ej, πξ,xej〉 =

q∑
σ=1

∫
dξdp (ξ − p)2 |ĝR(p)|2|êj(ξ, σ)|2

=

q∑
σ=1

∫
dξdp ξ2 |ĝR(p)|2|êj(ξ, σ)|2 +

q∑
σ=1

∫
dξdp p2 |ĝR(p)|2|êj(ξ, σ)|2

=

q∑
σ=1

∫
R3

dx |∇xej(x, σ)|2 + ‖ej‖22 ‖∇gR‖22. (5.14)

Indeed, replacing ϕZ by the square function in line (5.7) – line (5.12)
yields the first equality. The second holds since g is spherically sym-
metric. Eq. (5.4), (5.5), and (5.13) are also stated in the proof of
Lieb [10, Theorem 5.1]. It follows that for any γ ∈ S written in the
form γ =

∑
j λj|ej〉〈ej| (cf. Notation 5) we have

tr (hN,αγ) = 1
(2π)3

∫
dξdx

(
hN,α(ξ, x) + µ1h(ξ, x)

)∑
j

λj〈ej, πξ,xej〉

− µ tr1hγ

− tr γR2‖∇g‖22 − tr [(φN − φN ∗ |gR|2)γ]

− α tr
[
[(ϕZ − ϕZ ∗ |ĝR|2)(−i∇)]γ

]
(5.15)

where 1h is the projection to the negative spectral subspace of hN,α+µ
and 1h(ξ, x) its symbol. Since we are interested in a lower bound we
may assume tr γ ≤ constZ. Furthermore, 0 ≤

∑
j λj〈ej, πξ,xej〉 ≤ q

hence

tr (hN,αγ) ≥ q
(2π)3

∫
hN,α(ξ,x)<−µ

dξdx (hN,α(ξ, x) + µ)

− constZR2‖∇g‖22 − tr [(φN − φN ∗ |gR|2)γ]

− α tr
[
[(ϕZ − ϕZ ∗ |ĝR|2)(−i∇)]γ

]
. (5.16)
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The right hand side of the first line is the wanted main term added
by an error term of order O(Z). Indeed, sneaking in the constant
µ generates an error term just of the same order as the phase space
volume (Eq. (5.3)) which is uniformly in α. This is negligible compared
to the error of order o(Z7/3) which the remaining terms bring up.
Actually, if we choose R = Z1/2 then the third line consists of error
terms of order O(Z7/3−1/30) (Lieb [10, Theorem 5.1]). The term in the
last line is new and to see that it is a further error term we need an
additional argument.

We have

|tr [(ϕZ(−i∇)− (ϕZ ∗ |ĝR|2)(−i∇))γ]|

≤ Z7/3

∫
R3

dξ

∫
R3

dp τ̃γ(ξ)|ϕ(ξ)− ϕ(ξ − p)||ĝZ1/6(p)|2. (5.17)

However, the integral of the right hand side converges to zero by uni-
form continuity of ϕ and the fact that ĝ ∈ S(R3). To see this we show
that ‖ϕ − ϕ ∗ |ĝZ1/6|2‖∞ is arbitrarily small for large Z: Let ε > 0.
Since ϕ is uniformly continuous, there exists δ > 0 such that |p| < δ
implies |ϕ(ξ)− ϕ(ξ − p)| < ε

2
for all ξ, p ∈ R3.

Note that ĝ is a Schwartz function and hence there exists a constant
c > 0 such that

|ĝ(p)|2 < c

|p|4
(5.18)

for all p ∈ R3. Moreover, for every ε, there is a Z0 > 0 such that

2Z−1/6c ‖ϕ‖∞
∫
|p|>δ

dp |p|−4 < ε
2

for all Z > Z0. With this choice, we estimate∫
R3

dp |ϕ(ξ)− ϕ(ξ − p)||ĝZ1/6(p)|2

=

∫
|p|<δ

dp |ϕ(ξ)− ϕ(ξ − p)||ĝZ1/6(p)|2

+

∫
|p|>δ

dp |ϕ(ξ)− ϕ(ξ − p)||ĝZ1/6(p)|2

≤ ε
2

+ 2‖ϕ‖∞c
∫
|p|>δ

dp
Z1/2

(Z1/6|p|)4
≤ ε

2
+ ε

2
. (5.19)
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Thus, Z > Z0 implies∫
R3

dξ

∫
R3

dp τ̃γ(ξ)|ϕ(ξ)−ϕ(ξ−p)||ĝZ1/6(p)|2 ≤ ε

∫
R3

dξ τ̃γ(ξ) = const ε.

This proves that the last line of (5.16) is an error term of order o(Z7/3)
and that it is uniformly in α. In fact, this finishes the proof.

Now, the previous lemma allows us to prove the following asymp-
totic result for the density of the momentum functional EmTF:

Theorem 5.2 (Neutral Case N = Z: Conta and Siedentop [27, The-
orem 3]). Let ψN be an approximate ground state of HN and τN the
minimizer of EmTF on JN . Assume (1 + | · |−2)ϕ ∈ L∞(R3) and ϕ
uniformly continuous. Then, for λ = N/Z fixed,

lim
N→∞

∫
R3

dξ ϕ(ξ)τ̃ψN (ξ) =

∫
R3

dξ ϕ(ξ)τλ(ξ). (5.20)

Proof. First we remark that it suffices to proof the theorem for positive
ϕ since we can split ϕ into the part where it is strictly positive and
strictly negative and do the proof separately for those cases.

The proof of Lieb’s asymptotic result on the atomic energy [10, The-
orem 5.1] implies

〈ψN , HN,0ψN〉 ≤ ETF(ρN) + constZ11/5

= q
(2π)3

∫
hN,0(ξ,x)<−µ

dξdxhN,0(ξ, x) + constZ11/5.

Moreover, using Lieb’s correlation inequality [9] and D[ρψN − ρN ] ≥ 0
we obtain

〈ψN ,
∑

1≤i<j≤N

1

|xi − xj|
ψN〉

≥ D(ρψ, ρN) +D[ρN ]− const

∫
R3

dx ρψN (x)
4
3 .
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By the Cauchy-Schwarz inequality and the Lieb-Thirring inequality
for the kinetic energy [16, 17] we have that for N = O(Z)∫

R3

dx ρψN (x)
4
3 ≤

(
N

∫
R3

dx ρψN (x)
5
3

) 1
2

≤ constN
1
2

(
〈ψN ,−

N∑
n=1

∆nψN〉
) 1

2 ≤ constZ5/3

since the kinetic energy 〈ψN ,−
∑N

n=1 ∆nψN〉 performs as O(Z7/3).
Later, we will consider the limit when α → 0. Thus, let α ∈ R

be small enough, e. g., |α| < 1
2
‖ ϕ
|·|2‖∞ (cf. proposition of Lemma 5.1).

Then

αZ7/3

∫
R3

dξ ϕ(ξ)τ̃ψN (ξ) = 〈ψN , HN,0ψN〉 − 〈ψN , HN,αψN〉 (5.21)

≤ ETF(ρN) + constZ11/5

−
(
〈ψN ,

N∑
n=1

hN,α,n ψN〉 −D[ρN ]− const

∫
R3

dx ρψN (x)
4
3

)
(5.22)

= q
(2π)3

∫
hN,0(ξ,x)<−µ

dξdxhN,0(ξ, x)− tr (hN,αγψN ) + constZ11/5

(5.23)

≤ q
(2π)3

∫
hN,0(ξ,x)<−µ

dξdxhN,0(ξ, x)

− q
(2π)3

∫
hN,α(ξ,x)<−µ

dξdxhN,α(ξ, x) + o(Z7/3) (5.24)

= αZ7/3

∫
R3

dξ ϕ(ξ)τλ(ξ)

− q
(2π)3

∫
hN,α(ξ,x)<−µ
hN,0(ξ,x)>−µ

dξdxhN,α(ξ, x) (5.25)

+ q
(2π)3

∫
hN,α(ξ,x)>−µ
hN,0(ξ,x)<−µ

dξdxhN,α(ξ, x) + o(Z7/3) (5.26)

where we used (5.2) in the second inequality.
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Since

− q
(2π)3

∫
hN,α(ξ,x)<−µ
hN,0(ξ,x)>−µ

dξdxhN,0(ξ, x) ≤ µ q
(2π)3

∫
hN,α(ξ,x)<−µ
hN,0(ξ,x)>−µ

dξdx

the bound on α allows to estimate the phase space volume in the shell
as O(Z) independent of α (cf. Eq. (5.3)). In line (5.26) we dismiss a
negative term. For the remaining phase integral in the energy shell in
line (5.25) recall Notation 6. Then scaling yields

α q
(2π)3

∫
hN,α(ξ,x)<−µ
hN,0(ξ,x)>−µ

dξdxϕZ(ξ) = αZ7/3 q
(2π)3

∫
h̃λ,α(ξ,x)<−µ̃
h̃λ,0(ξ,x)>−µ̃

dξdxϕ(ξ)

(5.27)
where µ̃ := µ(1, λ) is uniquely related to φ(1, λ, x) via the Thomas-
Fermi equation and

h̃λ,α(ξ, x) := ξ2−φ(1, λ, x)−αϕ(ξ) = ξ2− 1

|x|
+(ρλ∗| · |−1)(x)−αϕ(ξ).

The integral on the right hand side of Eq. (5.27) depending only on λ
and α is of order o(α). Indeed, ϕ(ξ)χ{(ξ,x)∈R6| 1

2
ξ2−φ(1,λ,x)<−µ(1,λ)}(ξ, x) is

an integrable majorant independent of α. Thus, we get the announced
asymptotics in α via dominated convergence. We proceed equivalently
with α q

(2π)3

∫
hN,α(ξ,x)>−µ
hN,0(ξ,x)<−µ

dξdxϕZ(ξ), the remaining phase integral in

the energy shell in line (5.26).
Eventually, we arrive at

αZ7/3

∫
R3

dξ ϕ(ξ)τ̃ψN (ξ)

≤ αZ7/3

∫
R3

dξ ϕ(ξ)τλ(ξ)

− q
(2π)3

∫
hN,α(ξ,x)<−µ
hN,0(ξ,x)>−µ

dξdxhN,α(ξ, x)

+ q
(2π)3

∫
hN,α(ξ,x)>−µ
hN,0(ξ,x)<−µ

dξdxhN,α(ξ, x) + o(Z7/3)

= αZ7/3

∫
R3

dξ ϕ(ξ)τλ(ξ) + Z7/3o(α) + o(Z7/3).
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Now, dividing first by Z7/3 and sending N to ∞ yields

α lim sup
N→∞

∫
R3

dξ ϕ(ξ)τ̃ψN (ξ) ≤ α

∫
R3

dξ ϕ(ξ)τλ(ξ) + o(α). (5.28)

For α ≥ 0, dividing by α and choosing α ↓ 0 yields the desired upper
bound. If we reverse the sign of α then taking α ↑ 0 yields the reverse
inequality for the limes inferior. Hence

lim sup
N→∞

∫
R3

dξ ϕ(ξ)τ̃ψN (ξ) ≤
∫

dξ ϕ(ξ)τλ(ξ)

≤ lim inf
N→∞

∫
R3

dξ ϕ(ξ)τ̃ψN (ξ).

In fact, this shows the wanted result.
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Appendix





A. Existence and Uniqueness of the
Minimizer: An Alternative Proof

In the following we shall give another proof of the existence of the
minimizer of EmTF which is not based on the known results in Thomas-
Fermi theory.

Instead of studying EmTF we first turn to Es given by (2.1). Besides
the strict convexity (Lemma 2.2) Es offers the advantage that we may
apply Banach-Alaoglu (Theorem B.3) to extract weakly converging
sequences in J s

N . From there we want to infer the existence of the
minimizer via weak lower semicontinuity of Es. This idea has also
been used by Lieb and Simon [13].

Before we go into detail we want to say a word about notation: In
this chapter we will write Lp for Lp(R3, dξ) for all 1 ≤ p ≤ ∞ as
commonly used in literature and Lpwt for Lp(R3, ξ2dξ), the weighted
Lp-space.

Now, we start with:

Lemma A.1. Let τ̃ ∈ J s and let (τ̃n)n∈N be a sequence in J s. If
0 ≤ r < 3

2
and ‖τ̃n − τ̃‖L3/2(R3,|ξ|rdξ) + ‖τ̃n − τ̃‖L3/2

wt
→ 0 as n → ∞,

then

lim
n→∞

Es(τ̃n) = Es(τ̃). (A.1)

Moreover, each term of Es(τ̃n) converges to the corresponding term of
Es(τ̃) and, if ‖τ̃n − τ̃‖L3/2 + ‖τ̃n − τ̃‖L3/2

wt
→ 0 as n → ∞, then (A.1)

implies that Es is norm continuous on J s in the L3/2 ∩ L3/2
wt topology.

Proof. The kinetic energy is obviously continuous. For the external
potential the continuity in the L3/2(R3, |ξ|rdξ)∩L3/2

wt topology follows
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immediately from

‖τ̃n − τ̃‖1 ≤
(∫
|ξ|≤1

dξ 1
|ξ|2r

) 1
3
(∫

R3

dξ |ξ|r|τ̃n(ξ)− τ̃(ξ)|
3
2

) 2
3

+
(∫
|ξ|>1

dξ 1
|ξ|4

) 1
3
(∫

R3

dξ |ξ|2|τ̃n(ξ)− τ̃(ξ)|
3
2

) 2
3

(A.2)

for all 0 ≤ r < 3
2
.

We are left to prove continuity of Rs
m. Recalling the integral rep-

resentation of the interaction term (Definition 2.4) we consider the
following estimate:∣∣∣∫ ∞

0

dr
[(∫

R3

dξ [τ̃n(ξ)− r2]+
)2
−
(∫

R3

dξ [τ̃(ξ)− r2]+
)2]∣∣∣ (A.3)

≤
∫ ∞
0

dr

∫
R3

dξ

∫
R3

dη
∣∣[τ̃n(ξ)− r2]+ − [τ̃(ξ)− r2]+

∣∣ (A.4)

×
(
[τ̃n(η)− r2]+ + [τ̃(η)− r2]+

)
(A.5)

≤
∫
R3

dξ |τ̃n(ξ)− τ̃(ξ)|
∫ ∞
0

dr

∫
R3

dη
(
[τ̃n(η)− r2]+ + [τ̃(η)− r2]+

)
(A.6)

where we used |a+ − b+| ≤ |a − b| for a, b ∈ R (Lemma B.1) in the
second inequality.

Let τ̃n, τ̃ ∈ J s with properties as required in the proposition. Then,
applying (A.2) the first integral in (A.6) vanishes as n → ∞. To see
that |Rs

m(τ̃n)−Rs
m(τ̃)| → 0, which will finish the proof, it suffices to

show that the remaining integral expression in (A.6) is bounded. In
fact,∫ ∞

0

dr

∫
R3

dη
(
[τ̃n(η)− r2]+ + [τ̃(η)− r2]+

)
= 2

3

∫
R3

dη (τ̃n(η)
3
2 + τ̃(η)

3
2 ) (A.7)

where the right hand side is obviously bounded.
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With the lemma just proven and the convexity of Es (Lemma 2.2)

we can now prove the weak lower semicontinuity of Es in L
3/2
wt .

Theorem A.2. For each N < ∞, let τ̃ ∈ L3/2
wt and let (τ̃n)n∈N be a

sequence in J s
N . If τ̃n ⇀ τ̃ in L

3/2
wt , then τ̃ ∈ J s

N and

Es(τ̃) ≤ lim inf
n→∞

Es(τ̃n). (A.8)

Moreover, if Es(τ̃) = limn→∞ Es(τ̃n), then each term in Es(τ̃n) con-
verges to the corresponding term in Es(τ̃) and ‖τ̃n − τ̃‖L3/2

wt
→ 0.

Proof. We have τ̃n ⇀ τ̃ in L
3/2
wt with τ̃ ∈ L3/2

wt . Since τ̃n ∈ J s
N for all

n ∈ N the sequence (τ̃n)n∈N is bounded in L3/2. Thus, we may apply
Banach-Alaoglu (Theorem B.3) to come to a subsequence weakly con-

verging in L3/2 ∩L3/2
wt with τ̃ ∈ L3/2 ∩L3/2

wt . Indeed, τ̃ ∈ J s
N . To prove

this, note that τ̃ ≥ 0, τ̃ 1/2 ∈ L3, and
∫
R3 dξ τ̃n(ξ)3/2 ≤ N . Then, the

weak convergence of (τ̃n)n∈N in L3/2 and Hölder’s inequality yield∫
R3

dξ τ̃(ξ)
3
2 = lim

n→∞

∫
R3

dξ τ̃(ξ)
1
2 τ̃n(ξ)

≤ lim
n→∞

(∫
R3

dξ τ̃(ξ)
3
2

) 1
3
(∫

R3

dξ τ̃n(ξ)
3
2

) 2
3 ≤

(∫
R3

dξ τ̃(ξ)
3
2

) 1
3
N2/3.

(A.9)

This certainly implies
∫
R3 dξ τ̃(ξ)

3
2 ≤ N .

From Lemma A.1 and Lemma 2.2 we deduce that Es is L3/2 ∩L3/2
wt -

norm continuous and convex on J s
N . Hence, Es is weakly lower semi-

continuous on J s
N by Lemma B.2, which gives (A.8).

In particular, each term of Es is norm continuous and convex on
J s
N , thus each term is weakly lower semicontinuous. This in turn

implies that, if Es(τ̃) = limn→∞ Es(τ̃n), then each term converges. In

particular, ‖τ̃‖
L
3/2
wt

= limn→∞ ‖τ̃n‖L3/2
wt

. Furthermore, L
3/2
wt is uniformly

convex. Then by Theorem B.4 weak convergence and convergence of
the norms imply strong convergence.

Remark. Alternatively, one could deduce τ̃ ∈ J s
N from the weak con-

vergence in L
3/2
wt as well. Suppose

∫
dξ τ̃ 3/2 > N . Then there ex-

ists some R > 0 such that
∫
|ξ|>R dξ τ̃ 3/2 > N , otherwise we would
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have N <
∫

dξ τ̃(ξ)3/2 = limR→0

∫
|ξ|>R dξ τ̃(ξ)3/2 ≤ N . Further, since∫

|ξ|>R dµ τ̃3/2

|ξ|6 ≤
1
R6

∫
dµ τ̃(ξ)3/2, where dµ denotes the measure ξ2dξ,

we have that | · |−2χ{ξ∈R3||ξ|>R}τ̃
1/2 ∈ L3

wt. Now, the weak convergence

of (τ̃n)n∈N in L
3/2
wt and Hölder’s inequality yield∫

|ξ|>R
dξ τ̃(ξ)

3
2 = lim

n→∞

∫
R3

dµχ{ξ∈R3||ξ|>R}(ξ)
τ̃(ξ)1/2

|ξ|2/3
τ̃n(ξ)

|ξ|4/3

≤ lim
n→∞

(∫
|ξ|>R

dξ τ̃(ξ)
3
2

) 1
3
(∫

R3

dξ τ̃n(ξ)
3
2

) 2
3

≤
(∫
|ξ|>R

dξ τ̃(ξ)
3
2

) 1
3
N

2
3 (A.10)

and the claim follows by contradiction.

To prove the existence of a minimizer for Es by means of the weak
lower semicontinuity result we need a preliminary lemma. The unique-
ness of the minimizer is then already guaranteed by Corollary 2.3.

Lemma A.3. Es is bounded from below on J s
N . Moreover, Es is coer-

cive in L
3/2
wt on J s.

Proof. Assume τ̃ ∈ J s. Let X := ‖τ̃‖L3/2 and Y := ‖τ̃‖
L
3/2
wt

. For the

external potential we have

‖τ̃‖1 ≤
(∫
|ξ|≤1

dξ
) 1

3
(∫

R3

dξ τ̃(ξ)
3
2

) 2
3

+
(∫
|ξ|>1

dξ
1

ξ4

) 1
3
(∫

R3

dξ ξ2τ̃(ξ)
3
2

) 2
3
<∞. (A.11)

This together with the positivity of the electron-electron interaction
term gives

Es(τ̃) ≥ Y 3/2 − 3
2
γ
1/2
TFZ constX − 3

2
γ
−1/2
TF Z constY. (A.12)

Obviously, Es is coercive in the weighted L3/2-norm and X ≤ N2/3

if τ̃ ∈ J s
N . We conclude that Es is bounded from below by an N -

dependent constant and coercive in Y .
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Theorem A.4. For each N <∞, Es has a unique minimizer on J s
N .

Furthermore,

inf{Es(τ̃) | τ̃ ∈ J s
∂N} = inf{Es(τ̃) | τ̃ ∈ J s

N}.

Proof. Es is bounded from below and coercive on J s
N in L

3/2
wt by the

previous lemma. Consequently, there exists a minimizing sequence
(τ̃n)n∈N in J s

N which is bounded in L
3/2
wt , i. e.,

lim
n→∞

Es(τ̃n) = inf{Es(τ̃) | τ̃ ∈ J s
N}

such that supn∈N ‖τ̃n‖L3/2
wt

< ∞. Applying Banach-Alaoglu (Theo-

rem B.3) we get to a weakly converging subsequence in L
3/2
wt which we

denote by (τ̃n)n∈N as well. Thus, we have τ̃n ⇀ τ̃ in L
3/2
wt for some

τ̃ ∈ L
3/2
wt , τ̃ ≥ 0. By the weak lower semicontinuity of Es (Theo-

rem A.2) we get

Es(τ̃) ≤ lim
n→∞

Es(τ̃n) = inf{Es(τ̃) | τ̃ ∈ J s
N}

which proves the existence of a minimizer.
The uniqueness follows directly from the strict convexity of Es (Lem-

ma 2.2) as proven in Corollary 2.3.
It remains to show inf{Es(τ̃) | τ̃ ∈ J s

∂N} = inf{Es(τ̃) | τ̃ ∈ J s
N}. Of

course,
inf{Es(τ̃) | τ̃ ∈ J s

∂N} ≥ inf{Es(τ̃) | τ̃ ∈ J s
N}.

To obtain the reverse inequality let τ̃ be the minimizer of Es on J s
N ,

i. e., Es(τ̃) = inf{Es(τ̃) | τ ∈ J s
N}. Assume

∫
R3 dξ τ̃(ξ)3/2 = M < N .

Suppose that there exists a sequence (τ̃n)n∈N in J s
∂N which satisfies

‖τ̃n − τ̃‖L3/2(R3,|ξ|rdξ) → 0 as n → ∞ for some 0 < r ≤ 3/2, then the
strong continuity of Es (Lemma A.1) implies

inf{Es(τ̃) | τ̃ ∈ J s
∂N} ≤ lim

n→0
Es(τ̃n) = inf

τ̃∈JN
Es(τ̃)

since inf{Es(τ̃) | τ̃ ∈ J s
∂N} ≤ Es(τ̃n) and limn→0 Es(τ̃n) = Es(τ̃) =

inf{Es(τ̃) | τ̃ ∈ J s
N}.

The construction of the required sequence (τ̃n)n∈N will finish the
proof. Pick any σ̃ ∈ J s such that

∫
R3 dξ σ̃(ξ)3/2 = N −M and define
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τ̃n(ξ)3/2 := τ̃(ξ)3/2 + n3σ̃(nξ)3/2. Clearly,
∫
R3 τ̃n(ξ)3/2 = N . Note that

τ̃n ≥ τ̃ as σ̃ ≥ 0. Applying (a + b)2/3 ≤ a2/3 + b2/3 for positive a, b
(Lemma B.1) we get

‖τ̃n − τ̃‖3/2L3/2(R3,|ξ|rdξ) =

∫
R3

dξ |ξ|r(τ̃n(ξ)− τ̃(ξ))
3
2

≤
∫
R3

dξ |ξ|rn3σ̃(nξ)
3
2 = 1

nr

∫
R3

dξ |ξ|rσ̃(ξ)
3
2 (A.13)

for every 0 < r ≤ 2.

Definition A.5. EmTF(N,Z) ≡ inf{EmTF(τ) | τ ∈ J∂N}

Now, we can prove the following statement related to EmTF:

Theorem A.6. For each N < ∞, EmTF has a unique minimizer on
JN . Furthermore,

EmTF(N,Z) = inf{EmTF(τ) | τ ∈ JN} = inf{Es(τ) | τ ∈ J s
N}.

Proof. Let τ̃ ∈ J s
N be the minimizer of Es. Then 0 ≤ τ̃ 3/2 = τ is the

unique minimizer of EmTF on JN since infτ∈JN EmTF(τ) = infτ∈J sN Es(τ)
(Eq. (2.2)). Likewise, EmTF(N,Z) = inf{Es(τ̃) | τ̃ ∈ J s

∂N} which
completes the proof using Theorem A.4.

Corollary A.7. EmTF(N,Z) is monotone nonincreasing in N .

Remark. Actually, this follows immediately from Theorem A.6. But
in the following proof we want to show that one can always add any
unwanted piece of τ at the origin without increasing the energy.

Proof of Corollary A.7. Let (δn)n∈N be a Dirac sequence such that
δn(ξ) := n3δ(nξ) and δn ∈ J . Take, for example, δ(ξ) = 3

4π
if

0 ≤ |ξ| ≤ 1 and δ(ξ) = 0 otherwise.
We shall prove that

EmTF(τ + δn)− EmTF(τ) < const 1
n
. (A.14)

In fact, this shows that if N increases, we may add δn arbitrarily close
to the origin by taking the limit n→∞. So, in order to prove (A.14),
first note that

Km(τ + δn) = Km(τ) + 1
n2Km(δ). (A.15)
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Due to (a + b)2/3 ≤ a2/3 + b2/3 for positive a, b (Lemma B.1) we get
the following estimate for the attraction term:∣∣∣∫

R3

dξ (τ(ξ) + δn(ξ))
2
3 − τ(ξ)

2
3

∣∣∣ ≤ ∫
R3

dξ δn(ξ)
2
3 = 1

n

∫
R3

dξ δ(ξ)
2
3 .

(A.16)
Finally, the estimate for the electron-electron interaction of EmTF, re-

calling Rs
m(τ̃) = const

∫∞
0

dr
(∫

R3 dξ [τ̃(ξ) − r2]+

)2
(Definition 2.4),

reads:∣∣∣∫ ∞
0

dr
[(∫

R3

dξ [(τ(ξ) + δn(ξ))
2
3 − r2]+

)2
(A.17)

−
(∫

R3

dξ [τ(ξ)
2
3 − r2]+

)2]∣∣∣ (A.18)

≤
∫
R3

dξ
(
(τ(ξ) + δn(ξ))

2
3 − τ(ξ)

2
3

)
(A.19)

×
∫ ∞
0

dr

∫
R3

dη
(
[(τ(η) + δn(η))

2
3 − r2]+ + [τ(η)

2
3 − r2]+

)
(A.20)

≤
∫
R3

dξ δn(ξ)
2
3

[
2
3

∫
R3

dη (τ(η) + δn(η)) + 2
3

∫
R3

dη τ(η)
]

(A.21)

= 1
n

∫
R3

dξ δ(ξ)
2
3 2
3

∫
R3

dη (2τ(η) + δ(η)) . (A.22)

We get the first inequality equivalently to the inequalities (A.3) – (A.6)
in the proof of Lemma A.1. Next, we apply (a + b)2/3 ≤ a2/3 + b2/3

for a, b ≥ 0 (Lemma B.1) to the integral in (A.19) and evaluate the
integration with respect to r. Eventually, this proves (A.14).
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B. Supplemental Material

This chapter gathers two simple inequalities and well-known results
in functional analysis which we refer to in this thesis. For details see,
e. g., Brezis [1] if not stated otherwise.

Lemma B.1. Let a, b ∈ R. Then

1. |a+ − b+| ≤ |a− b|.

2. |a+ b|2/3 ≤ |a|2/3 + |b|2/3.

Proof. The first claim follows for example by observing the different
cases for a and b, respectively. For the second claim, notice that any
concave function f : [0,∞) → [0,∞) with f(0) = 0 is subadditive.
Hence, we have |a+ b|2/3 ≤ (|a|+ |b|)2/3 ≤ |a|2/3 + |b|2/3.

Lemma B.2. Let X be a Banach space. Assume the map F : X → R
to be convex and norm continuous on X. Then F is weakly lower
semicontinuous on X.

Theorem B.3 (Banach-Alaoglu). Let X be a Banach space and let
X∗ denote its dual space. Then B∗ := {φ ∈ X∗ | ‖φ‖X∗ ≤ 1} is
compact in the weak-∗-topology. If X is reflexive, then every bounded
sequence has a weakly convergent subsequence.

Theorem B.4. Let X be a uniformly convex Banach space. Let
τn, τ ∈ Lp for n ∈ N such that τn → τ in the weak Lp topology and
lim supn ‖τn‖p ≤ ‖τ‖p. Then τn → τ in the strong Lp topology.

Theorem B.5 (Newton’s Theorem [11, 18]). Assume x ∈ R3 \ {0}
and R ≥ 0. Then ∫

|y|≤R
dy

1

|x− y|
≤ 1

|x|

∫
|y|≤R

dy.

Equality holds if |x| ≥ R.
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