Logo Logo
Hilfe
Kontakt
Switch language to English
Untersuchung der putativen Interaktion der Hyaluronansynthase mit dem Aktinzytoskelett in humanen mesenchymalen Stammzellen
Untersuchung der putativen Interaktion der Hyaluronansynthase mit dem Aktinzytoskelett in humanen mesenchymalen Stammzellen
Hintergrund: Hyaluronan (HA) ist ein wichtiger Bestandteil von vielen Geweben und Flüssigkeiten des Körpers. HA beeinflusst die Makro- und Mikroumgebung und kann direkt über Rezeptoren wie CD44 (cluster of differentiation 44) und RHAMM (receptor for HA mediated motility) mit den Zellen wechselwirken. Dadurch hat HA Einfluss auf die Aktivierung, Migration und Proliferation von Zellen sowie auf den Umbau der extrazellulären Matrix. HA kann das Verhalten der Osteoblasten, Osteozyten und Osteoklasten beeinflussen und ist somit ein wichtiger Faktor sowohl für die gesunde Knochenhomöostase als auch für die Frakturheilung. Hyaluronansynthasen (HAS) sind komplexe Membranproteine, die für die Synthese von HA verantwortlich sind. Bei Säugetieren sind drei Isoformen bekannt: HAS1, HAS2 und HAS3. Sie zeigen eine hohe Homologie in ihrer Sequenz und Struktur, unterscheiden sich aber in Stabilität, Syntheserate und Länge des HA. Der genaue Regulierungsmechanismus der HAS ist noch nicht bekannt. Bisher wurde über eine Regulation durch externe Signalmoleküle, Ubiquitinierung oder Phosphorylierung berichtet. In der vorliegenden Arbeit wurde ein Modellsystem zur Untersuchung der Regulation der Aktivität der HAS aufgebaut. Mit diesem sollte die Interaktion der HAS mit dem Aktinzytoskelett als möglicher Regulationsmechanismus untersucht werden. Methoden: Zu diesem Zweck wurden drei Zelllinien hergestellt. Zum einen hTERT immortalisierte hMSCs (human mesenchymal stem cells), die sogenannten SCP1, welche jeweils eine der HAS-Isoformen, fusioniert mit einem eGFP-Tag, stabil exprimieren. Des Weiteren SCP1, die Lifeact-mRFPruby exprimieren, welches F-Aktin fluoreszenzmarkiert. Schließlich doppeltransduzierte hMSCs, welche sowohl HAS-eGFP als auch Lifeact-mRFPruby exprimieren. Als Gentransfersystem wurden Lentiviren eingesetzt. Zuerst wurden die Zellen hinsichtlich der stabilen und funktionellen Expression ihres Transgens anhand verschiedener Methoden untersucht. Mittels Immunfluoreszenzmikroskopie wurde eine Kolokalisation von Aktin und HAS dargestellt. In fluoreszenzmikroskopischen Timelapse-Aufnahmen wurden die Bewegungsmuster der HAS beobachtet. Ergebnisse: Mittels RT-PCR, Western Blot und Fluoreszenzmikroskopie wurde nachgewiesen, dass die Zelllinien SCP1-HAS1-eGFP D6, SCP1-HAS2-eGFP und SCP1-HAS3-eGFP E6 alle ihr jeweiliges HAS-eGFP-Gen stabil exprimieren. Die Funktionalität der HAS-eGFP wurde mit einem HA-spezifischen ELISA und mit einem selbst etablierten Aktivitätsassay untersucht, welcher das HA durch den biotinylierten HA-Bindekomplex (bHABC) färbt. Im ELISA zeigten alle Zelllinien eine statistisch signifikant höhere Hyaluronanproduktion als die Negativkontrolle. Die HAS3-überexprimierende Zelllinie erzielte von allen die höchste HA-Konzentration. In der Färbung mit bHABC war deutlich zu erkennen, dass diejenigen Zelllinien, in denen eine der HAS-eGFP-Isoformen überexprimiert wurde, eine stärkere Braunfärbung zeigten als Zellen der Negativkontrolle. Für den Nachweis, dass die HAS-eGFP in der Membran lokalisiert sind, wurden Immunfluoreszenzfärbungen gegen den Oberflächenmarker CD44 durchgeführt. Die fluoreszenzmikroskopischen Aufnahmen zeigten an Stellen, die durch die CD44-Färbung eindeutig als Membran zu erkennen sind, ebenfalls ein Signal für die HAS-eGFP. Dies bedeutet, dass die drei Isoformen der HAS-eGFP dort in der Zellmembran integriert vorlagen. Um eine Kolokalisation der HAS-eGFP mit dem Aktinzytoskelett darstellen zu können, erfolgte außerdem eine Färbung des Aktins mit Phalloidin. Bei allen Zelllinien konnte an ausgewählten Stellen eine solche Kolokalisation gesehen werden. Die hMSC-Lifeact-mRFPruby-Zellen wurden lebendig und fixiert im Fluoreszenzmikroskop betrachtet. Sie lieferten eine gute Darstellung des Zytoskeletts mit Stressfasern im Zellkörper und Aktinfilamenten im Zellcortex. Auffallend war, dass in den lebenden Zellen kurze Aktinfilamente zu sehen waren, die sich bei den fixierten Zellen nicht beobachten ließen. Um eine Interaktion zwischen den HAS-eGFP und dem Aktinzytoskelett in lebenden Zellen untersuchen zu können, wurden von den doppeltransduzierten hMSCs Timelapse-Aufnahmen angefertigt. Darin stellten sich die grün fluoreszierenden HAS-eGFP als globuläre Strukturen dar, die entlang der Aktinfilamente angeordnet waren und sich auch entlang dieser bewegten. Schlussfolgerung: Mit diesen Zellen wurde ein Modellsystem geschaffen, mit welchem eine Regulation der HAS über die Interaktion mit dem Zytoskelett untersucht werden kann. Genaueres Wissen über diesen Mechanismus kann für zukünftige Therapieansätze bei Frakturen und bei Knochenerkrankungen, wie z.B. der Osteoporose, richtungsweisend werden.
Not available
Hofbauer, Eva
2015
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Hofbauer, Eva (2015): Untersuchung der putativen Interaktion der Hyaluronansynthase mit dem Aktinzytoskelett in humanen mesenchymalen Stammzellen. Dissertation, LMU München: Medizinische Fakultät
[thumbnail of Hofbauer_Eva.pdf]
Vorschau
PDF
Hofbauer_Eva.pdf

2MB

Abstract

Hintergrund: Hyaluronan (HA) ist ein wichtiger Bestandteil von vielen Geweben und Flüssigkeiten des Körpers. HA beeinflusst die Makro- und Mikroumgebung und kann direkt über Rezeptoren wie CD44 (cluster of differentiation 44) und RHAMM (receptor for HA mediated motility) mit den Zellen wechselwirken. Dadurch hat HA Einfluss auf die Aktivierung, Migration und Proliferation von Zellen sowie auf den Umbau der extrazellulären Matrix. HA kann das Verhalten der Osteoblasten, Osteozyten und Osteoklasten beeinflussen und ist somit ein wichtiger Faktor sowohl für die gesunde Knochenhomöostase als auch für die Frakturheilung. Hyaluronansynthasen (HAS) sind komplexe Membranproteine, die für die Synthese von HA verantwortlich sind. Bei Säugetieren sind drei Isoformen bekannt: HAS1, HAS2 und HAS3. Sie zeigen eine hohe Homologie in ihrer Sequenz und Struktur, unterscheiden sich aber in Stabilität, Syntheserate und Länge des HA. Der genaue Regulierungsmechanismus der HAS ist noch nicht bekannt. Bisher wurde über eine Regulation durch externe Signalmoleküle, Ubiquitinierung oder Phosphorylierung berichtet. In der vorliegenden Arbeit wurde ein Modellsystem zur Untersuchung der Regulation der Aktivität der HAS aufgebaut. Mit diesem sollte die Interaktion der HAS mit dem Aktinzytoskelett als möglicher Regulationsmechanismus untersucht werden. Methoden: Zu diesem Zweck wurden drei Zelllinien hergestellt. Zum einen hTERT immortalisierte hMSCs (human mesenchymal stem cells), die sogenannten SCP1, welche jeweils eine der HAS-Isoformen, fusioniert mit einem eGFP-Tag, stabil exprimieren. Des Weiteren SCP1, die Lifeact-mRFPruby exprimieren, welches F-Aktin fluoreszenzmarkiert. Schließlich doppeltransduzierte hMSCs, welche sowohl HAS-eGFP als auch Lifeact-mRFPruby exprimieren. Als Gentransfersystem wurden Lentiviren eingesetzt. Zuerst wurden die Zellen hinsichtlich der stabilen und funktionellen Expression ihres Transgens anhand verschiedener Methoden untersucht. Mittels Immunfluoreszenzmikroskopie wurde eine Kolokalisation von Aktin und HAS dargestellt. In fluoreszenzmikroskopischen Timelapse-Aufnahmen wurden die Bewegungsmuster der HAS beobachtet. Ergebnisse: Mittels RT-PCR, Western Blot und Fluoreszenzmikroskopie wurde nachgewiesen, dass die Zelllinien SCP1-HAS1-eGFP D6, SCP1-HAS2-eGFP und SCP1-HAS3-eGFP E6 alle ihr jeweiliges HAS-eGFP-Gen stabil exprimieren. Die Funktionalität der HAS-eGFP wurde mit einem HA-spezifischen ELISA und mit einem selbst etablierten Aktivitätsassay untersucht, welcher das HA durch den biotinylierten HA-Bindekomplex (bHABC) färbt. Im ELISA zeigten alle Zelllinien eine statistisch signifikant höhere Hyaluronanproduktion als die Negativkontrolle. Die HAS3-überexprimierende Zelllinie erzielte von allen die höchste HA-Konzentration. In der Färbung mit bHABC war deutlich zu erkennen, dass diejenigen Zelllinien, in denen eine der HAS-eGFP-Isoformen überexprimiert wurde, eine stärkere Braunfärbung zeigten als Zellen der Negativkontrolle. Für den Nachweis, dass die HAS-eGFP in der Membran lokalisiert sind, wurden Immunfluoreszenzfärbungen gegen den Oberflächenmarker CD44 durchgeführt. Die fluoreszenzmikroskopischen Aufnahmen zeigten an Stellen, die durch die CD44-Färbung eindeutig als Membran zu erkennen sind, ebenfalls ein Signal für die HAS-eGFP. Dies bedeutet, dass die drei Isoformen der HAS-eGFP dort in der Zellmembran integriert vorlagen. Um eine Kolokalisation der HAS-eGFP mit dem Aktinzytoskelett darstellen zu können, erfolgte außerdem eine Färbung des Aktins mit Phalloidin. Bei allen Zelllinien konnte an ausgewählten Stellen eine solche Kolokalisation gesehen werden. Die hMSC-Lifeact-mRFPruby-Zellen wurden lebendig und fixiert im Fluoreszenzmikroskop betrachtet. Sie lieferten eine gute Darstellung des Zytoskeletts mit Stressfasern im Zellkörper und Aktinfilamenten im Zellcortex. Auffallend war, dass in den lebenden Zellen kurze Aktinfilamente zu sehen waren, die sich bei den fixierten Zellen nicht beobachten ließen. Um eine Interaktion zwischen den HAS-eGFP und dem Aktinzytoskelett in lebenden Zellen untersuchen zu können, wurden von den doppeltransduzierten hMSCs Timelapse-Aufnahmen angefertigt. Darin stellten sich die grün fluoreszierenden HAS-eGFP als globuläre Strukturen dar, die entlang der Aktinfilamente angeordnet waren und sich auch entlang dieser bewegten. Schlussfolgerung: Mit diesen Zellen wurde ein Modellsystem geschaffen, mit welchem eine Regulation der HAS über die Interaktion mit dem Zytoskelett untersucht werden kann. Genaueres Wissen über diesen Mechanismus kann für zukünftige Therapieansätze bei Frakturen und bei Knochenerkrankungen, wie z.B. der Osteoporose, richtungsweisend werden.