Logo Logo
Help
Contact
Switch language to German
Wrapper algorithms and their performance assessment on high-dimensional molecular data
Wrapper algorithms and their performance assessment on high-dimensional molecular data
Prediction problems on high-dimensional molecular data, e.g. the classification of microar- ray samples into normal and cancer tissues, are complex and ill-posed since the number of variables usually exceeds the number of observations by orders of magnitude. Recent research in the area has propagated a variety of new statistical models in order to handle these new biological datasets. In practice, however, these models are always applied in combination with preprocessing and variable selection methods as well as model selection which is mostly performed by cross-validation. Varma and Simon (2006) have used the term ‘wrapper-algorithm’ for this integration of preprocessing and model selection into the construction of statistical models. Additionally, they have proposed the method of nested cross-validation (NCV) as a way of estimating their prediction error which has evolved to the gold-standard by now. In the first part, this thesis provides further theoretical and empirical justification for the usage of NCV in the context of wrapper-algorithms. Moreover, a computationally less intensive alternative to NCV is proposed which can be motivated in a decision theoretic framework. The new method can be interpreted as a smoothed variant of NCV and, in contrast to NCV, guarantees intuitive bounds for the estimation of the prediction error. The second part focuses on the ranking of wrapper algorithms. Cross-study-validation is proposed as an alternative concept to the repetition of separated within-study-validations if several similar prediction problems are available. The concept is demonstrated using six different wrapper algorithms for survival prediction on censored data on a selection of eight breast cancer datasets. Additionally, a parametric bootstrap approach for simulating realistic data from such related prediction problems is described and subsequently applied to illustrate the concept of cross-study-validation for the ranking of wrapper algorithms. Eventually, the last part approaches computational aspects of the analyses and simula- tions performed in the thesis. The preprocessing before the analysis as well as the evaluation of the prediction models requires the usage of large computing resources. Parallel comput- ing approaches are illustrated on cluster, cloud and high performance computing resources using the R programming language. Usage of heterogeneous hardware and processing of large datasets are covered as well as the implementation of the R-package survHD for the analysis and evaluation of high-dimensional wrapper algorithms for survival prediction from censored data., Prädiktionsprobleme für hochdimensionale genetische Daten, z.B. die Klassifikation von Proben in normales und Krebsgewebe, sind komplex und unterbestimmt, da die Anzahl der Variablen die Anzahl der Beobachtungen um ein Vielfaches übersteigt. Die Forschung hat auf diesem Gebiet in den letzten Jahren eine Vielzahl an neuen statistischen Meth- oden hervorgebracht. In der Praxis werden diese Algorithmen jedoch stets in Kombination mit Vorbearbeitung und Variablenselektion sowie Modellwahlverfahren angewandt, wobei letztere vorwiegend mit Hilfe von Kreuzvalidierung durchgeführt werden. Varma und Simon (2006) haben den Begriff ’Wrapper-Algorithmus’ für eine derartige Einbet- tung von Vorbearbeitung und Modellwahl in die Konstruktion einer statistischen Methode verwendet. Zudem haben sie die genestete Kreuzvalidierung (NCV) als eine Methode zur Sch ̈atzung ihrer Fehlerrate eingeführt, welche sich mittlerweile zum Goldstandard entwickelt hat. Im ersten Teil dieser Doktorarbeit, wird eine tiefergreifende theoretische Grundlage sowie eine empirische Rechtfertigung für die Anwendung von NCV bei solchen ’Wrapper-Algorithmen’ vorgestellt. Außerdem wird eine alternative, weniger computerintensive Methode vorgeschlagen, welche im Rahmen der Entscheidungstheorie motiviert wird. Diese neue Methode kann als eine gegl ̈attete Variante von NCV interpretiert wer- den und hält im Gegensatz zu NCV intuitive Grenzen bei der Fehlerratenschätzung ein. Der zweite Teil behandelt den Vergleich verschiedener ’Wrapper-Algorithmen’ bzw. das Sch ̈atzen ihrer Reihenfolge gem ̈aß eines bestimmten Gütekriteriums. Als eine Alterna- tive zur wiederholten Durchführung von Kreuzvalidierung auf einzelnen Datensätzen wird das Konzept der studienübergreifenden Validierung vorgeschlagen. Das Konzept wird anhand von sechs verschiedenen ’Wrapper-Algorithmen’ für die Vorhersage von Uberlebenszeiten bei acht Brustkrebsstudien dargestellt. Zusätzlich wird ein Bootstrapverfahren beschrieben, mit dessen Hilfe man mehrere realistische Datens ̈atze aus einer Menge von solchen verwandten Prädiktionsproblemen generieren kann. Der letzte Teil beleuchtet schließlich computationale Verfahren, die bei der Umsetzung der Analysen in dieser Dissertation eine tragende Rolle gespielt haben. Die Vorbearbeitungsschritte sowie die Evaluation der Prädiktionsmodelle erfordert die extensive Nutzung von Computerressourcen. Es werden Ansätze zum parallelen Rechnen auf Cluster-, Cloud- und Hochleistungsrechen- ressourcen unter der Verwendung der Programmiersprache R beschrieben. Die Benutzung von heterogenen Hardwarearchitekturen, die Verarbeitung von großen Datensätzen sowie die Entwicklung des R-Pakets survHD für die Analyse und Evaluierung von ’Wrapper- Algorithmen’ zur Uberlebenszeitenanalyse werden thematisiert.
Not available
Bernau, Christoph Michael
2014
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Bernau, Christoph Michael (2014): Wrapper algorithms and their performance assessment on high-dimensional molecular data. Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics
[thumbnail of Bernau_Christoph.pdf]
Preview
PDF
Bernau_Christoph.pdf

15MB

Abstract

Prediction problems on high-dimensional molecular data, e.g. the classification of microar- ray samples into normal and cancer tissues, are complex and ill-posed since the number of variables usually exceeds the number of observations by orders of magnitude. Recent research in the area has propagated a variety of new statistical models in order to handle these new biological datasets. In practice, however, these models are always applied in combination with preprocessing and variable selection methods as well as model selection which is mostly performed by cross-validation. Varma and Simon (2006) have used the term ‘wrapper-algorithm’ for this integration of preprocessing and model selection into the construction of statistical models. Additionally, they have proposed the method of nested cross-validation (NCV) as a way of estimating their prediction error which has evolved to the gold-standard by now. In the first part, this thesis provides further theoretical and empirical justification for the usage of NCV in the context of wrapper-algorithms. Moreover, a computationally less intensive alternative to NCV is proposed which can be motivated in a decision theoretic framework. The new method can be interpreted as a smoothed variant of NCV and, in contrast to NCV, guarantees intuitive bounds for the estimation of the prediction error. The second part focuses on the ranking of wrapper algorithms. Cross-study-validation is proposed as an alternative concept to the repetition of separated within-study-validations if several similar prediction problems are available. The concept is demonstrated using six different wrapper algorithms for survival prediction on censored data on a selection of eight breast cancer datasets. Additionally, a parametric bootstrap approach for simulating realistic data from such related prediction problems is described and subsequently applied to illustrate the concept of cross-study-validation for the ranking of wrapper algorithms. Eventually, the last part approaches computational aspects of the analyses and simula- tions performed in the thesis. The preprocessing before the analysis as well as the evaluation of the prediction models requires the usage of large computing resources. Parallel comput- ing approaches are illustrated on cluster, cloud and high performance computing resources using the R programming language. Usage of heterogeneous hardware and processing of large datasets are covered as well as the implementation of the R-package survHD for the analysis and evaluation of high-dimensional wrapper algorithms for survival prediction from censored data.

Abstract

Prädiktionsprobleme für hochdimensionale genetische Daten, z.B. die Klassifikation von Proben in normales und Krebsgewebe, sind komplex und unterbestimmt, da die Anzahl der Variablen die Anzahl der Beobachtungen um ein Vielfaches übersteigt. Die Forschung hat auf diesem Gebiet in den letzten Jahren eine Vielzahl an neuen statistischen Meth- oden hervorgebracht. In der Praxis werden diese Algorithmen jedoch stets in Kombination mit Vorbearbeitung und Variablenselektion sowie Modellwahlverfahren angewandt, wobei letztere vorwiegend mit Hilfe von Kreuzvalidierung durchgeführt werden. Varma und Simon (2006) haben den Begriff ’Wrapper-Algorithmus’ für eine derartige Einbet- tung von Vorbearbeitung und Modellwahl in die Konstruktion einer statistischen Methode verwendet. Zudem haben sie die genestete Kreuzvalidierung (NCV) als eine Methode zur Sch ̈atzung ihrer Fehlerrate eingeführt, welche sich mittlerweile zum Goldstandard entwickelt hat. Im ersten Teil dieser Doktorarbeit, wird eine tiefergreifende theoretische Grundlage sowie eine empirische Rechtfertigung für die Anwendung von NCV bei solchen ’Wrapper-Algorithmen’ vorgestellt. Außerdem wird eine alternative, weniger computerintensive Methode vorgeschlagen, welche im Rahmen der Entscheidungstheorie motiviert wird. Diese neue Methode kann als eine gegl ̈attete Variante von NCV interpretiert wer- den und hält im Gegensatz zu NCV intuitive Grenzen bei der Fehlerratenschätzung ein. Der zweite Teil behandelt den Vergleich verschiedener ’Wrapper-Algorithmen’ bzw. das Sch ̈atzen ihrer Reihenfolge gem ̈aß eines bestimmten Gütekriteriums. Als eine Alterna- tive zur wiederholten Durchführung von Kreuzvalidierung auf einzelnen Datensätzen wird das Konzept der studienübergreifenden Validierung vorgeschlagen. Das Konzept wird anhand von sechs verschiedenen ’Wrapper-Algorithmen’ für die Vorhersage von Uberlebenszeiten bei acht Brustkrebsstudien dargestellt. Zusätzlich wird ein Bootstrapverfahren beschrieben, mit dessen Hilfe man mehrere realistische Datens ̈atze aus einer Menge von solchen verwandten Prädiktionsproblemen generieren kann. Der letzte Teil beleuchtet schließlich computationale Verfahren, die bei der Umsetzung der Analysen in dieser Dissertation eine tragende Rolle gespielt haben. Die Vorbearbeitungsschritte sowie die Evaluation der Prädiktionsmodelle erfordert die extensive Nutzung von Computerressourcen. Es werden Ansätze zum parallelen Rechnen auf Cluster-, Cloud- und Hochleistungsrechen- ressourcen unter der Verwendung der Programmiersprache R beschrieben. Die Benutzung von heterogenen Hardwarearchitekturen, die Verarbeitung von großen Datensätzen sowie die Entwicklung des R-Pakets survHD für die Analyse und Evaluierung von ’Wrapper- Algorithmen’ zur Uberlebenszeitenanalyse werden thematisiert.