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Abstract

Prediction problems on high-dimensional molecular data, e.g. the classification of microar-
ray samples into normal and cancer tissues, are complex and ill-posed since the number
of variables usually exceeds the number of observations by orders of magnitude. Recent
research in the area has propagated a variety of new statistical models in order to handle
these new biological datasets. In practice, however, these models are always applied in
combination with preprocessing and variable selection methods as well as model selection
which is mostly performed by cross-validation. Varma and Simon (2006) have used the
term ‘wrapper-algorithm’ for this integration of preprocessing and model selection into the
construction of statistical models. Additionally, they have proposed the method of nested
cross-validation (NCV) as a way of estimating their prediction error which has evolved to
the gold-standard by now.

In the first part, this thesis provides further theoretical and empirical justification for
the usage of NCV in the context of wrapper-algorithms. Moreover, a computationally less
intensive alternative to NCV is proposed which can be motivated in a decision theoretic
framework. The new method can be interpreted as a smoothed variant of NCV and, in
contrast to NCV, guarantees intuitive bounds for the estimation of the prediction error.
The second part focuses on the ranking of wrapper algorithms. Cross-study-validation is
proposed as an alternative concept to the repetition of separated within-study-validations
if several similar prediction problems are available. The concept is demonstrated using
six different wrapper algorithms for survival prediction on censored data on a selection of
eight breast cancer datasets. Additionally, a parametric bootstrap approach for simulating
realistic data from such related prediction problems is described and subsequently applied
to illustrate the concept of cross-study-validation for the ranking of wrapper algorithms.

Eventually, the last part approaches computational aspects of the analyses and simula-
tions performed in the thesis. The preprocessing before the analysis as well as the evaluation
of the prediction models requires the usage of large computing resources. Parallel comput-
ing approaches are illustrated on cluster, cloud and high performance computing resources
using the R programming language. Usage of heterogeneous hardware and processing of
large datasets are covered as well as the implementation of the R-package survHD for
the analysis and evaluation of high-dimensional wrapper algorithms for survival prediction
from censored data.
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Zusammenfassung

Prädiktionsprobleme für hochdimensionale genetische Daten, z.B. die Klassifikation von
Proben in normales und Krebsgewebe, sind komplex und unterbestimmt, da die Anzahl
der Variablen die Anzahl der Beobachtungen um ein Vielfaches übersteigt. Die Forschung
hat auf diesem Gebiet in den letzten Jahren eine Vielzahl an neuen statistischen Meth-
oden hervorgebracht. In der Praxis werden diese Algorithmen jedoch stets in Kombina-
tion mit Vorbearbeitung und Variablenselektion sowie Modellwahlverfahren angewandt,
wobei letztere vorwiegend mit Hilfe von Kreuzvalidierung durchgeführt werden. Varma
und Simon (2006) haben den Begriff ’Wrapper-Algorithmus’ für eine derartige Einbet-
tung von Vorbearbeitung und Modellwahl in die Konstruktion einer statistischen Methode
verwendet. Zudem haben sie die genestete Kreuzvalidierung (NCV) als eine Methode
zur Schätzung ihrer Fehlerrate eingeführt, welche sich mittlerweile zum Goldstandard en-
twickelt hat. Im ersten Teil dieser Doktorarbeit, wird eine tiefergreifende theoretische
Grundlage sowie eine empirische Rechtfertigung für die Anwendung von NCV bei solchen
’Wrapper-Algorithmen’ vorgestellt. Außerdem wird eine alternative, weniger computer-
intensive Methode vorgeschlagen, welche im Rahmen der Entscheidungstheorie motiviert
wird. Diese neue Methode kann als eine geglättete Variante von NCV interpretiert wer-
den und hält im Gegensatz zu NCV intuitive Grenzen bei der Fehlerratenschätzung ein.
Der zweite Teil behandelt den Vergleich verschiedener ’Wrapper-Algorithmen’ bzw. das
Schätzen ihrer Reihenfolge gemäß eines bestimmten Gütekriteriums. Als eine Alterna-
tive zur wiederholten Durchführung von Kreuzvalidierung auf einzelnen Datensätzen wird
das Konzept der studienübergreifenden Validierung vorgeschlagen. Das Konzept wird an-
hand von sechs verschiedenen ’Wrapper-Algorithmen’ für die Vorhersage von Überlebens-
zeiten bei acht Brustkrebsstudien dargestellt. Zusätzlich wird ein Bootstrapverfahren
beschrieben, mit dessen Hilfe man mehrere realistische Datensätze aus einer Menge von
solchen verwandten Prädiktionsproblemen generieren kann. Der letzte Teil beleuchtet
schließlich computationale Verfahren, die bei der Umsetzung der Analysen in dieser Dis-
sertation eine tragende Rolle gespielt haben. Die Vorbearbeitungsschritte sowie die Eval-
uation der Prädiktionsmodelle erfordert die extensive Nutzung von Computerressourcen.
Es werden Ansätze zum parallelen Rechnen auf Cluster-, Cloud- und Hochleistungsrechen-
ressourcen unter der Verwendung der Programmiersprache R beschrieben. Die Benutzung
von heterogenen Hardwarearchitekturen, die Verarbeitung von großen Datensätzen sowie
die Entwicklung des R-Pakets survHD für die Analyse und Evaluierung von ’Wrapper-
Algorithmen’ zur Überlebenszeitenanalyse werden thematisiert.
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Introduction

The upcoming of new biological high-dimensional data has introduced great challenges as
far as their processing and analysis are concerned. Microarrays, which will be the main fo-
cus of this thesis, are just the first generation of modern and ever more detailed techniques
for measuring transcriptomes or gene expressions. From a statistical point of view, mi-
croarray data analysis combines many problematic features. The original dataset consists
of approximately 500000 measurements per patient which are usually combined into probe
sets of sizes between 20 and 30. Thus, a common microarray dataset encompasses several
tens of Gigabytes, i.e. it exceeds the main memory of most desktop PCs or workstations
even nowadays. Likewise, the mere copying or data transfer via email, as common practice
with many statistical analysis projects, is not possible in this case. Even normal intranets
or network file systems, which are not dedicated to transfer of large amounts of data, can-
not cope appropriately with raw microarray data. The third chapter of this thesis, will
cover several aspects of software and hardware approaches in the context of microarray
analysis.

During a preprocessing step, consisting of background correction, normalization and
summarization, the number of variables per observation is strongly reduced to several
thousands. This dimension reduction can distinctly alleviate many problems mentioned
above and one can easily stick to normal computer resources for further analysis. As will be
shown in Chapter 3, the high-level analysis, e.g. classification or survival analysis, can also
be efficiently performed on cloud resources or meta clouds consisting of cloud and inhouse-
resources (Bernau et al., 2013). The cited paper has been written in the context of a special
issue for Methods of Information in Medicine in cooperation with Jochen Knaus (Institute
of Medical Biometry and Medical Informatics, Albert-Ludwigs-University Freiburg) and
Anne-Laure Boulesteix (Department for Medical Informatics, Biometry and Epidemiology
[IBE]). A more detailed description of their contribution to the paper and the corresponding
sections, which are presented in this thesis, can be found in Section D.3.

Even after the preprocessing step, however, microarray data are still high-dimensional
from a statistical point of view. The large number of variables in combination with a
small number of observations – many datasets include less than 100 observations – leads
to a plethora of problems. If individual differentially expressed genes have to be identified
via univariate tests, one is faced with a serious multiple testing problem. Various meth-
ods, controlling e.g. the false discovery rate (Benjamini and Hochberg, 1995), have been
developed in this context in order to approach this problem adequately.
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This thesis rather focuses on the development of gene profiles and risk scores using algo-
rithms like penalized regression (Goeman, 2010) or boosting (Binder et al., 2009). Further,
the attention is shifted rather to the design of good predictors for classes (e.g. cancerous or
normal tissue) or survival times. In this context, the detection of the ’true’ gene expressions
causing or indicating a disease are less important as long as the prediction quality remains
on an adequate level. This can also be achieved if gene expressions highly correlated to the
actually relevant gene expressions are identified and weighted appropriately. Nonetheless,
also in the context of this definition of the problem at hand, several serious problems have
to be approached.

First and foremost, algorithms had to be established and optimized which can handle
problems where the number of variables is distinctly outpacing the number of observations.
The traditional linear model has no unique solution in this case which leads to approaches
like penalized regression (Hastie et al., 2001). Other methods have been adopted from
the machine learning community, e.g. the k-nearest-neighbors algorithm. Sometimes these
methods were developed in a more intuitive fashion in the context of concrete problems
like letter recognition. Hence, some of these methods lack a sound statistical foundation
although they have proved useful and effective in practice.

A common aspect of all these new techniques is that they include tuning parameters
(also denoted as hyper parameters) adjusting several features, e.g. complexity or flexibility,
to the respective needs of the problem at hand. In most cases, no analytic solution for the
adjustment of these tuning parameters exists. Thus, one has to resort to rules of thumb,
trial and error or grid searches. The latter approach induces a potential for an optimistic
’tuning’ or ’optimization bias’ (see Boulesteix and Strobl, 2009) especially if no appropri-
ately large dataset can be reserved for independent validation which is a common problem
in many microarray studies (Varma and Simon, 2006). Often, the tuning parameters are
chosen based on their performance in resampling approaches. If one uses this optimally
chosen performance estimate as an estimate for the error rate of the underlying classifier,
this estimate can be distinctly optimistically biased. In the first chapter of this thesis, an
approach for correcting this bias will be introduced and analyzed. Although this problem
has gained in importance in the context of the analysis of modern microarray data, it shares
many parallels with traditional decision theory since one has to choose a parameter value
in order to minimize a loss. In this context, another term, which has been introduced in
Varma and Simon (2006), will play an important role: the wrapper algorithm. This term
describes the combination of an algorithm with a tuning parameter and a procedure for
adjusting this tuning parameter. It eventually epitomizes the main focus of this thesis.
One can also define terms like expected loss or risk for such wrapper algorithms, which can
be paralleled to strategies in decision theory. Furthermore, this concept is not restricted
to the case where a tuning parameter has to be chosen, but can be extended to the case
where one chooses among several different algorithms, i.e. to all types of model selection.
Most parts of the work presented in this chapter are also included in the paper Bernau
et al. (2013) which has been published in Biometrics. Section D.1 provides more details
on the contribution of the coauthors to the paper and the corresponding sections in this
thesis.
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The second chapter is also related to wrapper algorithms. The work presented therein
has evolved from a cooperation with Levi Waldron (Harvard Medical School and Dana-
Faber Cancer Institute) and Lorenzo Trippa (Harvard Medical School and Dana-Faber
Cancer Institute) and will be published in a paper which has been conditionally accepted by
Bioinformatics. The coauthors’ contributions to this paper and the corresponding sections
presented in this thesis are described in more detail in Section D.2. Furthermore, the R-
package survHD has been developed in cooperation with Levi Waldron and Markus Riester
(Dana-Faber Cancer Institute) for this project (see Section C.1 for a more exhaustive
description of their contribution). The chapter mainly covers a recent method for evaluating
and ranking of algorithms (mostly wrapper algorithms), namely cross-study validation
(Waldron et al., 2013). This validation scheme aims to integrate all problems which occur
if a prediction rule is transferred from a training or pilot study to a validation study. In
many cases, published promising results from microarray studies could not be validated or
reproduced in follow-up studies. Apart from the tuning, such a mismatch between training
study and validation study performance can also be caused e.g. by different biological
conditions in the microarray laboratories. The reduction of such effects epitomizes the
goal of a lot of tools for preprocessing of microarrays (e.g. Kostka and Spang, 2008; McCall
et al., 2009). Nonetheless, for the time being, these problems cannot be avoided completely.
Thus, this type of validation tries to account for such problems, by turning the focus
primarily to the performance on independent validation studies. Since merging the studies
is a delicate task, each of a compendium of microarray datasets is once used as training
and tuning dataset, and subsequently validated on all other datasets. This procedure can
help to avoid any bias that could be induced by incomplete cross-validation, since tuning
and performance estimation are strictly separated in this design.

Nonetheless, it also increases the possible discrepancy between two important quantities
of interest, which are by far more similar for traditional statistical approaches. For physi-
cians, the performance of a concrete model is usually the primary interest. Cross-study
validation, however, validates several models and resulting risk scores, which have been
trained on different studies and can be substantially different from each other. Their com-
monality is that they have been trained by the same algorithm, which is usually a wrapper
algorithm in the context of microarray studies. Thus, this validation scheme is probably
more important for machine learners who want to gain insights into the performance of
algorithms and are not primarily interested in concrete models. The conflict, which can
best be described by the terms conditional (on the training data) and unconditional error
rate or performance will also be an important aspect in the first and second chapter.
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Chapter 1

Correcting the optimal
resampling-based error rate by
estimating the error rate of wrapper
algorithms

The first chapter will start with the introduction of wrapper algorithms in the context of
binary classification and the tuning bias that is induced choosing a best-performing clas-
sifier from a number of potential candidate classifiers. The term wrapper algorithm will
be defined in this chapter and it will be shown that the well-known nested cross-validation
(NCV) estimator can provide a good estimate for its unconditional error rate. Further-
more, a computationally less intensive alternative (WMC) is presented, which has the same
estimation target and stays within certain reasonable bounds. Finally, the performance of
both estimators is presented on experimental microarray data as well as simulated data
and a decision theoretic interpretation of the WMC estimator and some of the assumptions
it is based on is provided.

1.1 Introduction

Resampling-based procedures are routinely applied in order to assess the performance of
statistical learning methods by estimating their prediction error. If the available dataset
were large enough, it would be recommended to partition the data into learning and val-
idation data, to fit a model using the learning data, and to estimate its error based on
the validation data. In the common case of small sample high-dimensional data con-
sidered here, however, the available dataset is usually too small for such a partitioning.
Resampling-based procedures are thus particularly useful in the context of “n � p” data
analysis, i.e. when the number of predictors exceeds the number of observations.

In practice, most common classification methods for high-dimensional data involve a
tuning parameter, e.g. the cost parameter in linear Support Vector Machines (SVM) or the
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number of neighbors in k-nearest-neighbors (kNN). If the error of a classification method
is estimated by a resampling method several times with different values of the tuning
parameter successively, each parameter value possibly yields a different estimated error.
The approach consisting in selecting the parameter value yielding the smallest resampling
error estimate and only reporting this resampling estimate is biased (Dupuy and Simon,
2007). That is because the minimal resampling error can be seen as the result of an optimal
selection. As such, it is a biased estimate of the generalization error rate, i.e. of the error
that would be obtained with this parameter value on independent data. This bias, that
is quantitatively assessed by Varma and Simon (2006) in the “n � p” setting, is denoted
here as tuning bias. Note that the term “tuning” may be ambiguous since researchers from
different fields might have different understandings of tuning. In this thesis, a parameter
is considered a tuning parameter if it is not optimized by an analytical method (like the
least squares criterion for the coefficients in linear regression), but rather by trying several
values successively and using the value yielding the best prediction performance on test
data. When choosing the parameter value based on the performance yielded by different
candidate values, one indirectly uses the test data for learning the decision function, leading
to an optimistic bias.

A similar bias, called method selection bias in the sequel, occurs if a researcher tries out
several classification methods successively and reports only the results of the method yield-
ing the minimal error rate. For instance, suppose the resampling error rate of Support Vec-
tor Machines (SVM), Random Forests (RF), k-nearest-neighbors (kNN), and L1-penalized
regression are computed for a particular dataset. Suppose further that kNN yields the
smallest error rate in the resampling approach. This error rate is likely to be smaller than
the error rate of kNN on independent data, because it was optimally selected across four
error estimates that all show some variability. The resulting bias may be considerable, as
illustrated by Boulesteix and Strobl (2009); Jelizarow et al. (2010).

To correct for the tuning bias outlined above in the context of microarray-based classi-
fication, Varma and Simon (2006) recommend to embed an internal cross-validation (ICV)
into the external resampling-based error estimation procedure. If the external resampling
procedure is also CV as considered by Varma and Simon (2006), it is usual to denote the
whole procedure as “nested CV”. In this thesis, however, the more general terminology
“ICV” will be used here. No matter which resampling scheme is used externally for error
estimation, the principle of ICV for parameter tuning is as follows. In each external resam-
pling iteration, an internal CV is performed based on the current learning set for different
tuning parameter values. The parameter value yielding the smallest error is selected and
then evaluated by predicting the test observations. In this way, for each external iteration
the choice of the parameter value is performed without using information from the test
set. Note that, as Varma and Simon (2006) have already stressed in their paper, the ICV
procedure estimates the error rate of a so-called wrapper algorithm including the tuning
process and not the error rate of a specific tuning parameter value. A similar procedure
might also be used to address the method selection bias induced by the optimal choice
of the classification method. However, the ICV technique is computationally expensive,
since it requires an additional CV loop on each learning set. The computational burden
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might rapidly become intractable. Furthermore, ICV tends to yield highly variable results,
sometimes leading to obviously inappropriate “corrected” errors outside the range of the
original errors of the considered methods.

An alternative bias correction approach will be suggested here, which can be applied
to address both the tuning and the method selection bias. The procedure, which can be
interpreted as a smooth, analytical variant of ICV, guarantees intuitive bounds, increases
stability compared to ICV, and reduces the computation time drastically since it does not
rely on an internal CV loop.

Apart from ICV, the literature on the bias of the optimally selected error rate is scarce.
Tibshirani and Tibshirani (2009) introduce an approach addressing several of the mentioned
inconveniences, first and foremost the computational burden. In contrast to ICV, however,
it does not target the unconditional error rate of wrapper algorithms, but the conditional
error rate of the optimal method/tuning parameter. Therefore, this approach will not
be treated as a direct competitor in the following study because the differing estimation
targets impede a fair comparison.

1.2 Internal CV and the unconditional error rate of

wrapper algorithms

1.2.1 Settings and notations

From a statistical point of view, binary supervised classification can be described in the
following way. On the one hand there is a response variable taking values in Y = {0, 1}.
On the other hand there are predictors taking values in X ⊂ Rp that will be used for
constructing a classification rule. Predictors and response follow an unknown joint distri-
bution on X × Y denoted by P (x, y). The observed i.i.d. sample of size n is denoted by
s0 = {(x1, y1)...(xn, yn)}. The classification task consists in building a decision function
f̂S : X 7→ Y , x 7→ f̂S(x), which maps elements x of the predictor space X into the response
space Y . The superscript S indicates that the decision function is built using the sample
S.

From now on, the considered combination of method and tuning parameter values will
be denoted by method k (with k ∈ 1, . . . , K) . As an example, method k = 1 may
stand for SVM with cost= 1, method k = 2 for kNN with 10 nearest neighbors, and so
on. As a special case, 1, . . . , K might represent different parameter values of the same
method. The decision function obtained by fitting the prediction method k to the sample
s0 is denoted as f̂ s0k . Using this notation, each method k can be defined as a function

k : S 7→ FX , S 7→ k(S) = f̂Sk , which maps any possible sample S to the prediction

function f̂Sk . Here, S denotes the space of possible samples S and FX denotes the space of
decision functions on X .
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1.2.2 Conditional and unconditional error rate

For a decision function f̂ s0k , the true prediction error ε[f̂ s0k ] depends on the expectation
EP over the joint distribution P and an adequately chosen loss function L(·, ·), e.g. the
indicator loss considered here. Abbreviating the true error ε[f̂ s0k ] of method k constructed
from sample s0 by the simplified notation ε(k ‖ s0), one obtains

ε(k ‖ s0) = EP

[
L
(
f̂ s0k (x), y

)]
=

∫

X×Y
L
(
f̂ s0k (x), y

)
dP (x, y), (1.1)

ε(k ‖ s0) is commonly referred to as conditional error since it refers to the decision function
constructed from the specific sample s0. The corresponding conditional error rate ε(k ‖ S)
can be seen as a random variable, where S stands for a random sample that follows the
distribution P n.

The expectation εn(k) = EPn [ε(k ‖ S)] of this random variable ε(k ‖ S) is usually re-
ferred to as the unconditional true error rate of method k. It depends only on the method
k, on the size n of the sample S and on the joint distribution P , and can be seen as a
fixed quantity for every method k. Since the joint distribution P (x, y) is unknown, the
conditional errors ε(1 ‖ s0), . . . , ε(K ‖ s0) and the unconditional errors εn(1), . . . , εn(K)
have to be estimated. Standard estimation approaches are based on CV or repeated sub-
sampling. The repeated subsampling method is applied here, because the new correction
method involves the estimation of the unconditional variance of the estimated error. The
estimator proposed by Nadeau and Bengio (2003) – which is used here – is expected to
work for repeated subsampling only, and no convincing alternative estimator applicable to
CV could be found in current literature after extensive research.

In repeated subsampling the whole dataset is randomly split into learning and test sets
several times. Each learning set Lb, b = 1, . . . , B of size nL (with nL < n) is used to
estimate a decision function that is subsequently evaluated on the corresponding test set
S \ Lb. For each iteration b = 1, . . . , B and each method k, k = {1, . . . , K}, one obtains
an estimated error e(k ‖ Lb, S \ Lb), where the notation “Lb, S \ Lb” means that method k
is fitted to the learning set Lb and evaluated on the test set S \Lb. Note that the notation
e is used for estimators and ε for true errors.

In contrast to the conditional true error ε(k ‖ S), the estimated error e(k ‖ Lb, S \Lb) is
conditional on the considered sample not only with regard to the estimation of the decision
function, but in addition with regard to the estimation of the error. For each method k, the
iteration-wise test errors are eventually combined into an error rate estimate by averaging
over the iterations b = 1, . . . , B, yielding

e(k ‖ S) =
1

B

B∑

b=1

e(k ‖ Lb, S \ Lb), (1.2)

which obviously may depend on the random choices of the partitions {Lb, Tb}, b = 1, . . . , B,
a fact that is however omitted in the notation.
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1.2.3 The unconditional error rate of wrapper algorithms

Further, the method yielding the smallest estimated error rate based on S is denoted by
k∗(S), i.e. k∗(S) = arg mink e(k ‖ S). For a sample s0, the error estimate e(k∗(s0) ‖ s0)
obtained by repeated resampling incorporates a source of a downward bias because k∗(s0)
is chosen such that e(k∗(s0) ‖ s0) is minimal. If one simply chooses the method yielding
the minimal error rate e(k∗(s0) ‖ s0), this minimal error rate underestimates the true
conditional error rate ε(k∗(s0) ‖ s0) of the chosen method. This problem is due to the
fact that the same sample s0 is used both for error estimation and for the choice of the
optimal classification method k∗(s0). The corresponding prediction rule f̂ s0k∗(s0) is expected
to perform worse on an independent sample which was not used for choosing the method.
This bias is related to the problem of multiple comparisons. The minimal error rate out of
K methods decreases with increasing K.

In the context of ICV, the current gold standard for avoiding this bias, Varma and
Simon (2006) reformulate the estimation task by defining wrapper algortihms.

A wrapper algorithm consists of two steps. The first step is a tuning process k∗ on S
which chooses a parameter or method. It can be described as a function:

k∗ : S 7→ K, S 7→ k∗(S) = arg min
k
e(k ‖ S),

where K is the space of tuning parameters or candidate methods (here: K = {1, . . . , K}).
Note that k∗(S) is actually a random variable even for a fixed sample S because it depends
on the randomly drawn learning sets Lb, b = 1, . . . , B. For simplicity, however, this
dependence on the specific learning sets is ignored in the notation.

The second step consists in learning a prediction rule by applying the chosen tuning
parameter or candidate method k∗(S) on S. For a sample S, this learning process can be
described using the function ψ : K × S 7→ FX , k 7→ ψS(k, S) = f̂Sk . Using these functions,
one can define the wrapper algorithm φ:

φ : S 7→ FX , S 7→ φ(S) = ψS(k∗(S), S) = f̂Sk∗(S).

Please note that this definition of φ is parallel to the definition of the methods k. However,
φ incorporates an additonal source of randomness – the tuning process – whereas the
methods k are deterministic for a fixed sample S.

Now, the main idea for bias correction in ICV and the new method consists in estimating
the unconditional error rate of such wrapper algorithms φ:

Err = EPnL (ε(k∗(S) ‖ S)) = εnL(φ). (1.3)

The error ε(k∗(s0) ‖ s0) of the s0-best method fitted on s0 is a realization of the random
variable ε(k∗(S) ‖ S) whose mean over P nL is Err. It will be shown in the next section
that the well-known ICV estimator actually targets at Err, which is also the reason why
the simulated counterpart of Err is used for evaluation in the simulation studies later on.

Before turning the focus to ICV, another problem has to be addressed. Note that
e(k ‖ S) is a good estimator for εnL(k) but an upwardly biased estimator of ε(k ‖ S)
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and εn(k), because the decision functions are estimated based on nL observations instead
of n, with nL < n. This bias affects any resampling based approach for estimating the
generalization error. Since the mixture of this bias and the tuning bias would seriously
distort the evaluation of the correction methods, Err (using nL) from Eq. (1.3) as the
estimation target will be defined as estimation target here.

1.2.4 Revisiting internal cross-validation

ICV is often performed within a nested CV procedure, i.e. with test sets Tb := S \ Lb
forming a partition of the sample S. In the following, however, ICV is formulated in a
general way without specifying how the learning and test sets (Lb, Tb) are chosen. Here,
they are chosen by repeated subsampling. In the current notation, the ICV error estimate
can be written as

ÊrrICV =
1

B

B∑

b=1

e(k∗(Lb) ‖ Lb, S \ Lb). (1.4)

This formula, which is substantially different from formula (1.2) due to referring to k∗(Lb)
instead of a fixed method k, can be interpreted as follows. For each iteration b (b =
1, . . . , B), the following procedure is repeated. Firstly, the “Lb-best method” k∗(Lb) is
determined by ICV within Lb. Secondly, the classification rule fitted on Lb using the best
method k∗(Lb) is evaluated on S\Lb, yielding e(k∗(Lb) ‖ Lb, S\Lb). When introducing ICV
Varma and Simon (2006) already explain that their method actually estimates the error
rate of wrapper algorithms. In addition to this explanation, an asymptotic consideration
is presented, which further clarifies that the ICV-estimator is interpreted best as a natural
estimator of Err (Eq. 1.3).

The difference between Eq. (1.4) and Eq. (1.2) is that ICV builds the average error
of the best methods k∗(Lb) (as assessed in ICV), instead of averaging the error rates of
a specific method k. Note that these Lb-best methods again vary with the choice of the
internal learning sets, which means that one may not obtain the same final results when
repeating the same procedure twice – even if the outer learning sets Lb are fixed. Roughly
speaking, in ICV the quantity Err (Eq. (1.3)) is estimated through averaging over B
subsets of s0. Each term e(k∗(Lb) ‖ Lb, S\Lb) can be seen as an estimator of ε(k∗(Lb) ‖ Lb),
which roughly plays the role of a realization of ε(k∗(S) ‖ S). The determination of k∗(Lb)
within each iteration is computationally expensive, which makes ICV very difficult to apply
in practice when the prediction methods are time consuming, especially when they involve
a tuning step that itself has to be performed through ICV. As a consequence, researchers
often run ICV with a small number of folds (e.g. 3-fold-CV), yielding even more variable

results. In extreme cases, this high variability may lead to estimates ÊrrICV larger than
maxk e(k ‖ s0) or lower than mink e(k ‖ s0), which is very unintuitive. Motivated by
these disadvantages, an alternative computationally effective estimator is presented in the
following section.
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1.3 A smooth analytical alternative to ICV

1.3.1 Basic Idea

The rationale behind ICV is that the construction of the decision function and the tuning/
method selection process, which are typically applied to the whole sample S = s0, are
mimicked on each external learning set Lb. In this way the tuning/method selection process
is empirically incorporated into the estimation procedure. In practice, the best method
k∗(Lb) is typically not the same for all iterations b = 1, . . . , B. ICV builds a so-to-say hard-
weighted average of error estimates obtained with different methods or tuning parameters.
The term hard-weighted is used here to emphasize that for each resampling iteration b only
one of the e(k ‖ Lb, S \Lb) (k = 1, . . . , K) is chosen by ICV to be included in the average.
The weight of e(k∗(Lb) ‖ Lb, S \ Lb) is 1, while the weight of all other e(k ‖ Lb, S \ Lb)
(for k 6= k∗(Lb)) is 0. This way, results from different tuning parameters are eventually
combined, which basically imitates the wrapper algorithm φ whose unconditional error rate
is estimated.

The new method is also based on a combination of error estimates of different parameter
values/methods, albeit in a completely different and more direct way. While ICV combines
errors of different parameter values/methods e(k ‖ L(b), S \Lb) computed for different test
sets, the new procedure combines the global error estimates e(k ‖ s0) of the different
parameter values/methods k. Furthermore, the way these average errors are combined
does not depend on an empirical experiment as performed in ICV. The main idea is to
decompose the unconditional error rate EPnL [ε(k∗(S) ‖ S)] with regard to the random
variable k∗(S), i.e. the index of the best method, as follows:

EPnL [ε(k∗(S) ‖ S] =
K∑

k=1

P (k∗(S) = k) · EPnL [ε(k ‖ S)|k∗(S) = k] . (1.5)

As argued below, in most cases, it is reasonable to assume that, for a fixed method k,

ε(k ‖ S) ⊥ k∗(S), (1.6)

i.e. the conditional error rate of method k constructed on S is independent from k∗(S).
It follows from Eq. (1.6) that the conditional expectations in Eq. (1.5), which cannot be
estimated easily, can be replaced by the respective unconditional expectations,

EPnL (ε(k∗(S) ‖ S) ≈
K∑

k=1

P (k∗(S) = k) · EPnL [ε(k ‖ S)] , (1.7)

and thus, to estimate EPnL (ε(k∗(S) ‖ S), the quantities in Eq. (1.7) have to be estimated,
as discussed in Sections 1.3.2 and 1.3.3.

Before that, assumption (1.6) has to be revisited. It means that the true error rate
ε(k ‖ s0) of method k fitted on s0 does not depend on which method performed best
in repeated subsampling based on s0 – the unconditional error rates εnL(1), . . . , εnL(K)
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being fixed. Note that this assumption, of course, should not be misinterpreted in the
sense that parameter tuning with CV is useless. Even if assumption (1.6) holds, tuning
is useful to identify which method may have the smallest unconditional error rate εnL(k).
A counter-example for which assumption (1.6) does not completely hold is support vector
machines – denoted as k = 1 here – in the case of a sample with a mislabeled observation.
The error rate ε(1 ‖ s0) of SVM is likely to be large, because SVM classifiers are strongly
affected by mislabeled observations that often take the role of support vectors. Hence,
k∗(s0) = 1 is not likely. Thus, in this case, one obviously does not have ε(k ‖ S) ⊥ k∗(S).
However, especially in the presence of variable selection, assumption (1.6) holds in most
cases, as illustrated by Hanczar et al. (2007) based on an extensive empirical study. Note
that, if assumption (1.6) does not hold, it is more likely that EPnL [ε(k ‖ S)|k∗(S) = k] <
EPnL [ε(k ‖ S)], i.e. that a classifier performs better if it is chosen by the model selection
procedure. Consequently, this assumption could be a potential source for a pessimistic bias
in the approach. This aspect will be revisited after analyzing the correction method on
simulated data.

1.3.2 A weighted mean approach

The terms EPnL [ε(k ‖ S)] (for k = 1, . . . , K) in Eq. (1.7) can be naively estimated by e(k ‖
s0) (for k = 1, . . . , K), suggesting to estimate the quantity of interest EPnL (ε(k∗(S) ‖ S) by
a weighted mean of the average errors e(k ‖ s0). Thus, the following estimator is proposed,
denoted from now on as “Weighted Mean Correction” (WMC):

ÊrrWMC =
K∑

k=1

P̂ (k∗(S) = k) · e(k ‖ s0), (1.8)

where P̂(k∗(S) = k) stands for an adequate estimator of P(k∗(S) = k). Two such estima-

tion procedures are presented in Section 1.3.3, where a variant of ÊrrWMC is introduced
based on improved estimates of EPnL [ε(k ‖ S)], which is called WMCS.

An illustrative way to explain the WMC estimator is to parallel it to the raw mean and
to ÊrrICV . The raw mean is obtained by giving equal weights to all parameters/methods,
i.e. by replacing P̂(k∗(S) = k) by 1/K in Eq. (1.8). This equal weight approach can be
considered as a sensible upper bound for the corrected error because it corresponds to a
random choice of the parameter/method. By definition, a random choice cannot lead to
a tuning or method selection bias. That is why any corrected error is not expected to be
higher than

ÊrrRawMean =
K∑

k=1

1

K
· e(k ‖ s0). (1.9)

Regardless of the choice of the weights, there is a connection between the new ap-
proach and ICV. The WMC estimator can be paralleled to the ICV estimator through a
reformulation as
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ÊrrWMC =
1

B

K∑

k=1

B∑

b=1

P̂ (k∗(S) = k) · e(k ‖ Lb, S \ Lb). (1.10)

Similarly, the estimator ÊrrICV can also be reformulated as

ÊrrICV =
1

B

K∑

k=1

B∑

b=1

I(k∗(Lb) = k) · e(k ‖ Lb, S \ Lb). (1.11)

Bringing these two estimators to a similar form highlights their crucial difference.
ÊrrWMC smoothly weights the errors e(k ‖ Lb, S \Lb) with the probabilities P̂(k∗(S) = k)
estimated from an analytical parametric model (whose parameters are estimated from the

quantities e(k ‖ Lb, S \ Lb) only). On the contrary, in ÊrrICV the weights are empirical,
discrete and depend on the results of a computationally intensive internal CV. Figure 1
illustrates the similarities and differences of WMC and ICV graphically.

1.3.3 Algorithmic description of WMC

The new WMC estimator is obtained through the following steps:

1 Inputs of the WMC algorithm: estimated fold errors {e(k ‖ Lb, s0 \ Lb)}k=1,...,K
b=1,...,B

2 Estimating the weights P(k∗(S) = k) based on the assumption of a multivariate normal
distribution MVN(µ,Σ) of the vector

(e(1‖S), . . . , e(K ‖ S))>:

a Estimating the parameters µ and Σ of the multivariate normal distribution

� The vector of means is estimated by µ̂ = (e(1‖s0), . . . , e(K ‖ s0))>.

� The covariance matrix is estimated by the nearest positive definite Σ̂ of V̂
1
2 C̃V̂

1
2

as computed by the algorithm in Higham (1988), where V̂ is the diagonal matrix
with diagonal elements v̂1, . . . , v̂K computed using the procedure by Nadeau and
Bengio (2003) as v̂k = v̂ar(e(k ‖ S)) = 1

B−1

∑B
b=1 (e(k ‖ Lb, s0 \ Lb)− e(k ‖ s0))2

and the element ρ̂k1,k2 (for k1 6= k2) of the correlation matrix C̃ = (ρ̂k1,k2)
k2=1,...,K
k1=1,...,K

is obtained as the empirical correlation between the corresponding fold errors:
ρ̂k1,k2 = ĉor(e(k1 ‖ Lb, S \ Lb), e(k2 ‖ Lb, S \ Lb)).

b Estimating the weights P(k∗(S) = k) (for k = 1, . . . , K) based on the assumption of
a multivariate normal distribution of (e(1 ‖ S), . . . , e(K ‖ S))> by plugging µ̂ and Σ̂
into Eq. (1.13) given in Section 1.3.6.

3 Computing the weighted average of the original average resampling errors e(k ‖ s0),

yielding the WMC estimator ÊrrWMC =
∑K

k=1 P̂ (k∗(S) = k) · e(k ‖ s0).
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Figure 1.1: Schematic illustration contrasting the weighted mean correction (WMC) and
internal cross-validation (ICV). The misclassification rate (MCR) obtained by WMC (com-
pare to Eq. (1.10)) can be interpreted as a smoothed variant of the one obtained by internal
cross-validation (compare to Eq. (1.11)).
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1.3.4 Shrinkage approach (WMCS)

As supported by the results in Section 1.4, the WMC procedure yields an optimistic esti-
mate. ÊrrWMC uses e(k ‖ s0) to estimate both EPnL [ε(k||S)] in Eq. (1.5) and the mean
of e(k||S) for the estimation of the weights P̂(k∗(S) = k). Thus, the optimistic bias, which
shall actually be corrected, is – to some extent – incorporated into the correction proce-
dure. This may lead to under-correction in some cases, as supported by some of the results
in the non-informative settings (see Section 4.2). Thus, a shrinkage procedure is suggested
to alleviate this problem.

The idea is to shrink e(k||s0) (for k = 1, . . . , K) towards the average of the K methods

by considering a shrunken estimator eξ(k ‖ s0) = (1− ξ) · e(k ‖ s0) + ξ ·
∑K
h=1 e(h‖s0)

K
instead

of e(k ‖ s0), where ξ is a shrinkage parameter that has to be adequately chosen. The
term eξ(k∗(s0) ‖ s0) − e(k∗(s0) ‖ s0) can be viewed as the bias in the sense considered by
Tibshirani and Tibshirani (2009). At this stage, the parametric model is used which has
been described in Section 3.3 (step (2) of the original WMC algorithm) for the distribution
of e = (e(1 ‖ S), . . . , e(K ‖ S))>. Under this model, the bias ζ for method k∗(s0) can
be estimated as e(k∗(s0) ‖ s0) (the k∗(s0)-th component of the mean vector) minus the
conditional mean of the k∗(s0)-th component of random e vector given that the k∗(s0)-
th component is the smallest component, i.e. conditional on k∗(s0) = k∗(S). The latter
conditional mean can be derived by Monte-Carlo simulation. A sensible shrinkage factor ξ
can then be obtained by equating the bias eξ(k∗(s0) ‖ s0)− e(k∗(s0) ‖ s0) with the value ζ
of the bias derived from the parametric model. Provided that ζ > 0 (otherwise ξ is set to
0), the shrinkage factor is obtained as

ξ =





ζ
[
ÊrrRawMean − e(k∗(s0)|s0)

]−1

if ζ < ÊrrRawMean − e(k∗(s0)|s0)

1 if ζ ≥ ÊrrRawMean − e(k∗(s0)|s0).

If the expected bias ζ is larger than the difference between the minimal error rate and
the raw mean, the shrinkage factor ξ is thus set to 1, leading to eξ(k ‖ s0) = ÊrrRawMean.
In contrast, if e(k∗(s0) ‖ s0) is considerably different from the raw mean, ξ is small and
eξ(k ‖ s0) is similar to e(k ‖ s0). Roughly speaking, the shrinkage factor ξ measures the
plausibility that the classifier k∗(s0) does not perform better than the average classifier,
while taking into account the variability of the resampling approach and the correlations
between the candidate classifiers. Additional details on the empirical properties of this
shrinkage factor are available in Section 1.4.

Finally, the second variant ÊrrWMCS of the estimator is computed by replacing e by
eξ = (eξ(1 ‖ s0), . . . , eξ(K ‖ s0))> in both µ̂ and Eq. (1.5):

ÊrrWMCS =
K∑

k=1

P̂
ξ
(k∗(S) = k) · eξ(k ‖ s0),

where P̂
ξ
(k∗(S) = k) denotes the estimated probability obtained by replacing µ̂ through

µ̂ξ = eξ in the parametric model.
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1.3.5 Algorithmic description of WMCS

Parallel to WMC, the WMCS algorihm can be formulated in the following way:

1 Inputs of the algorithm: estimated fold errors {e(k ‖ Lb, s0 \ Lb)}k=1,...,K
b=1,...,B

2 Estimating the shrinkage factor ξ based on a preliminary multivariate normal distribution
MVNpre(µ,Σ) for (e(1‖S), . . . , e(K ‖ S))>:

a Estimating the parameters µ and Σ of MVNpre in the same way as in step (2a) of the
original WMC algorithm.

b Computing the expected bias ζ̂ as ζ̂ = e(k∗(s0) ‖ s0)−EMVNpre(µ̂,Σ̂)(e(k
∗(s0) ‖ S)|k∗(S) =

k∗(s0)), whereby the latter term is determined by Monte-Carlo simulation.

c Determining the shrinkage factor ξ as

ξ̂ =

{
ζ̂
[
ÊrrRawMean − e(k∗(s0)|s0)

]−1

if ζ̂ < ÊrrRawMean − e(k∗(s0)|s0)

1 otherwise.

3 Shrinking the average resampling errors e(k ‖ s0) with shrinkage factor ξ:

eξ(k ‖ s0) = (1− ξ) · e(k ‖ s0) + ξ̂ · ÊrrRawMean for k in 1, . . . , K.

4 Estimating the weights by P̂
ξ
(k∗(S) = k) similarly to the WMC procedure (step (2b)),

except that µ is now estimated by (eξ(1 ‖ S), . . . , eξ(K ‖ S))> instead of (e(1 ‖
S), . . . , e(K ‖ S))>.

5 Computing the weighted average yields the WMCS estimator

ÊrrWMCS =
K∑

k=1

P̂
ξ
(k∗(S) = k) · eξ(k ‖ s0). (1.12)

1.3.6 More details on estimating P(k∗(S) = k)

Under the assumption that the vector (e(1 ‖ S), . . . , e(K ‖ S))> follows a multivariate
normal distribution with mean vector µ̂ and covariance matrix Σ̂, the probability P̂(k∗(S) =

k) is obtained as P̂(k∗(S) = k) = PMVN(µ̂,Σ̂)(e(k ‖ S) ≤ e(k′ ‖ S),∀k′ : k′ 6= k). This
quantity can be derived analytically by considering the K − 1 differences δk′ = e(k ‖
S) − e(k′ ‖ S) for k′ 6= k, which are simple linear combinations of the original random
vector (e(1 ‖ S), . . . , e(K ‖ S))>. The probability P(k∗(S) = k) = P(e(k ‖ S)−e(k′ ‖ S) ≤
0,∀k′ : k′ 6= k) is then obtained from the density of the multivariate normal distribution of
the random vector δ as

∫ 0

−∞
. . .

∫ 0

−∞

1

(2π)
K−1

2

√
TΣ̂T>

exp

(
(δ −Tµ̂)>

(
TΣ̂T>

)−1

(δ −Tµ̂)

)
Πk′dδk′ , (1.13)
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where the (K−1)×K matrix T contains the linear combinations yielding the corresponding
differences, i.e. such that δ = Te. These integrals can be approximated very precisely by
common statistical software like the function pmvnorm from the R-package mvtnorm (Genz
et al., 2011). Computation times of this function are marginally small in comparison with
computation times of other steps of the analysis. Of course, the normality assumption
cannot hold exactly since the considered errors are averages of binary variables. In order
to assess the deviation from the normal distribution section 1.5.1 as well as in Appendix
A provide a selection of representative normal quantile plots for the distribution of the
average errors in simulation settings. In many cases the assumption seems to hold whereas
in some cases the distributions tend to more extreme values than expected under normality
assumptions.

1.3.7 Implementation

The weighted mean correction method is implemented in the R function weighted.mcr in-
cluded in a new version of the R / Bioconductor package CMA (Slawski et al., 2009) that
can be downloaded from the companion website (http://www.ibe.med.uni-muenchen.de/
organisation/mitarbeiter/090_ehemalige/20130630_bernau/index.html/cvbias/

index.html). The codes implementing the analyses are also provided there. For larger
datasets and computationally intensive methods like SVMs, ICV runtimes can be drasti-
cally higher in comparison to the two WMC variants. Detailed information on the runtimes
of the different methods are provided in section 1.5.2.

1.4 Empirical results and comparison of the three es-

timators

1.4.1 Study design

The new estimator ÊrrWMC (Eq. (1.10)) and its shrunken version ÊrrWMCS (Eq. (1.12))
are evaluated on simulated data (see Sections 1.4.2 and A.2) as well as several experimental

microarray datasets, and compared to the widely established estimator ÊrrICV (Eq. (1.4))

and to the naive raw mean estimator ÊrrRawMean (Eq. (1.9)).

Experimental data study The real data study includes four microarray datasets: a
colon cancer dataset (Alon et al., 1999) included in Bioconductor package colonCA with
n = 62 diseased or healthy tissues and p = 1991 variables, a prostate cancer dataset (Singh
et al., 2002) with n = 102 diseased or healthy patients and p = 12625 variables, a leukemia
dataset (Golub et al., 1999) included in Bioconductor package CMA with n = 38 patients
with two different leukemia subtypes and p = 3051 variables, and an ALL-leukemia dataset
included in Bioconductor package ALL (Chiaretti et al., 2004) with n = 100 patients
with and without relapse and p = 12625 variables. Additionally, modified versions of
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these four datasets are considered which are obtained by replacing the response Y by a
randomly generated Bernoulli distributed variable Y ′ ∼ B(1, 0.5). These modified datasets
are denoted as “non-informative” setup, in contrast to the original version of the datasets
including “informative” predictors.

In the whole study, error rate estimation is performed through repeated subsampling
into learning and test sets with B = 100 subsampling iterations. The proportion of obser-
vations included in the learning sets is set to 80% and 63.2% successively. In contrast to
the two WMC variants, ÊrrICV involves another parameter, the number of folds in internal
CV. There are no commonly accepted guidelines to choose the number of folds in internal
CV, which can be seen as a further inconvenience of ICV. In this study, this number is cho-
sen such that each internal test set contains approximately 5 observations. In each setup,
the whole procedure is repeated T = 50 times in order to analyze the variability of the re-
sults. The term “repeated” indicates that T = 50 different sets of partitions (Lb, Tb)b=1,...,B

are considered successively for the original datasets, and that T = 50 different randomly
generated responses Y ′ are considered successively for the modified datasets. The whole
analysis thus considers a total of 50× 100 = 5000 splittings into learning data Lb and test
data Tb.

As outlined in the introduction and in Section 1.2, the methodology can both be ap-
plied to the correction of the tuning bias or to the correction of the method selection
bias. To illustrate these two features, two setups are considered successively. In the first
setup (illustrating the correction of the tuning bias and denoted as “tuning setup” (labels
in tables and figures according to the methods used: “pls” and “knn”)), methods 1, . . . , K
stand for different parameter values of a unique classification method. Two classifiers are
considered successively. The first classifier is k-nearest-neighbors (kNN), where methods
1, . . . , K correspond to different values (1, . . . , 15) of the parameter “number of neighbors”.
The second classifier is Partial Least Squares dimension reduction followed by Linear Dis-
criminant Analysis (PLS-LDA) where methods 1, . . . , K correspond to different numbers
(1, . . . , 10) of PLS components. In both cases, a preliminary variable selection is performed
by selecting the variables yielding the lowest p-values with the two-sample t-test (50 vari-
ables for kNN, 250 variables for PLS-LDA). Note that, in all resampling iterations, variable
selection is performed using the learning set only. For ICV, this holds for the outer as well
as for the inner loop.

In the second setup (illustrating the correction of method selection bias and denoted
as “selection setup” (label in tables and figures: “sel”)), methods 1, . . . , K correspond to
different combinations of classification methods and parameter values. The parameters
are fixed, because tuning them with internal CV would imply three embedded CVs for
ÊrrICV , which is computationally intractable. The following classification methods are
considered: nearest shrunken centroids with ∆ = 0.5, linear SVM with cost = 50, kNN
with 1 neighbor based on the 20 top-variables, kNN with 18 neighbors based on the 50 top-
variables, Diagonal Linear Discriminant Analysis (DLDA) based on the 20 top-variables,
PLS-LDA with 3 PLS components based on the 100 top-variables and L2-penalized logistic
regression with penalty λ = 0.01. The simulation study is performed for the selection setup
only, since it is generally more challenging due to the larger bias.
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Note that these three different classifier pools in combination with the resampling ap-
proach for tuning/selection define wrapper algorithms φ, whose unconditional error rates
are the actual estimation target of ICV and WMC. A summary of the results on these
experimental datasets can be found in Section 1.4.3 whereas more detailed results are
presented in Appendix A.1.

Simulated data The simulation study treats five different data generating processes
(DGPs), including DGPs with correlated and uncorrelated predictors as well as different
signal strengths and sample sizes. T = 200 datasets are randomly drawn from each setting.
For each dataset the true error rate of the wrapper algorithm is approximated on a large
validation set. Thus, the methods (WMC and WMCS) can be compared to the existing
methods (ICV and raw mean) based on data, where the true value of the parameter of
interest Err = EPnL (ε(k∗(S) ‖ S)) = εnL(φ) –the unconditional error rate of the wrapper
algorithm φ– is known. For simulating the predictors, a block design is used because
drawing data from a 2000-dimensional multivariate normal distribution is computationally
intractable. That is why blocks of 100 or 200 correlated predictors are simulated and
subsequently combined. The correlations between variables from different blocks are thus
zero. Since the analyses on real data have shown that the selection setups produce larger
optimization biases and are generally more challenging the simulations focus on this setup.
See Section 1.4.1 for details on the considered methods. The proportion of observations in
the training data is set to q = 0.8. Note that the true parameter to be estimated primarily
depends on nL = q · n (not n itself), i.e. changing the proportion q also changes the true
parameter. In order to analyze the behavior of the different estimators for different sample
sizes, n is set successively to n = 40, n = 60 or n = 80 observations.

Approximating the true value of Err = εnL(φ) The estimates produced by the
investigated methods (WMC, WMCS, ICV, raw mean) are compared to the true value of
the parameter of interest Err = EPnL (ε(k∗(S) ‖ S)) = εnL(φ). In the simulation, this true
value is approximated based on 1000 independent randomly generated datasets S of size
nL = 0.8n (corresponding to the number of training observations in the outer subsampling
loop). Each dataset S is used both for determining k∗(S) (based on cross-validation with
folds of approximate size 5) and for constructing the prediction rule using method k∗(S),
i.e. the wrapper algorithm is applied on each of these datasets. The 1000 constructed
prediction rules are subsequently evaluated using a large independent test dataset of size
20000 generated from the same data generating process, and εnL(φ) is estimated as the
average error of the 1000 prediction rules on this test dataset.

One of the five simulation setups will be described here in depth. The remaining setups
can be found in Appendix A.2.
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n = 40 n = 60 n = 80
mean absdicv sd mean absdicv sd mean absdicv sd

ICV 0.088 0.000 0.039 0.058 0.000 0.026 0.047 0.000 0.020
WMCS 0.094 0.013 0.043 0.061 0.007 0.029 0.050 0.005 0.021
WMC 0.078 0.012 0.035 0.054 0.006 0.024 0.045 0.004 0.018
Raw 0.159 0.034 0.039 0.134 0.054 0.026 0.117 0.056 0.024
Min 0.064 0.024 0.034 0.044 0.014 0.022 0.038 0.009 0.017
Max 0.255 0.167 0.058 0.224 0.167 0.048 0.206 0.159 0.041

Table 1.1: Mean, average absolute difference to ICV (absdicv) and standard deviation of
the different correction methods for datasets of size n = 40, n = 60 and n = 80 in the
setup with correlated Gaussian data.

1.4.2 Results on correlated gaussian data

This setup analyzes the performance of the different estimators in the case of correlated
predictors. It tries to mimic the structure of microarray data in the following way. The
variables of the Singh dataset (Singh et al., 2002) are ordered according to the absolute
value of their t-statistic (t-test between groups). 200 informative predictors are generated
which have the same differences δ in group means as observed for the top 200 predictors
from the Singh dataset. Moreover, the covariance matrix Σ̂info of these predictors is
estimated and used for simulating the informative predictors according to the multivariate
normal distributionMNV (δ, Σ̂info) (group 1) orMNV (0200, Σ̂info) (group 2), respectively.
The non-informative predictors are simulated from the multivariate normal distribution
with mean zero (regardless of the response group) and a block-diagonal covariance matrix.
The covariance of each block of size 200 is chosen as the empirical covariance matrix of the
corresponding predictors from the Singh dataset, i.e. the covariance of the first block of
non-informative predictors equals the empirical covariance of predictors 201 to 400 from
the Singh dataset (ordered according to their t-statistic), for the second the covariance of
predictors 401 to 600 are used, and so on.

The boxplots in Figure 1.2 display the estimated errors obtained for the 200 simulated
datasets with the five considered methods as well as the minimal and maximal error over
the K investigated methods (top: n = 40, middle: n = 60, bottom: n = 80). The
(approximated) target value εnL(φ) is represented as an horizontal gray line. The exact
values can be found in Table 1.2.The histograms in Figure 1.3 display the values of the
shrinkage factors computed within the WMCS procedure for sample sizes n = 40, n = 60
and n = 80.

In the case of n = 40, WMC is closer to ICV than WMCS as far as the absolute
difference is concerned (see Table 1.1). However, it constantly underestimates the bias and
has a slightly bigger difference to the ICV mean. Due to the strong signal the bias in the
setups with n = 60 and n = 80 is quite small and there is not much difference in the
performance of the different methods. The distribution of the shrinkage factor ξ, which is
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Figure 1.2: Comparison of ICV (Internal Cross-Validation), WMC (Weighted Mean Correc-
tion) and WMCS (Weighted Mean Correction with Shrinkage) for the setup with correlated
Gaussian data. The gray line represents the approximation of the true value of εnL(φ) as
described in A.2.

n=40 n=60 n=80
εnL(φ) 0.091 0.061 0.046

Table 1.2: Approximation of εnL(φ) based on 1000 independent training sets and a large
validation set containing 20000 observations (see A.2) in the setup with correlated Gaussian
data.
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Figure 1.3: Distribution of the shrinkage factor ξ for different numbers of observations for
the setup with correlated Gaussian data. The distribution gets closer to 0 as the size of
the dataset increases.

illustrated in Figure 1.3, reflects this small bias. Most values are close to 0, i.e. the optimal
error rate is just slightly shrunk towards the raw mean. Furthermore, the distribution is
shifted even closer to 0 if the number of observations is increased. This behaviour of the
WMCS estimator is appropriate in this case. Table 1.2 shows well that the tuning bias must
be analyzed separately from the pessimistic bias that is induced by using less observations
on the CV training sets than for the construction of the classifier on the full dataset. One
can see that the true parameter εnL(φ) distinctly decreases between 40 to 80 observations.
In Section A.2 in the appendix the signal is being decreased.

1.4.3 Summary of results and comparison

An overview of the results on real datasets is given in Table 1.3 (informative setup) and
Table 1.4 (non-informative setup) displaying the averages over the T = 50 replications of

the corrected estimates ÊrrWMC , ÊrrWMCs, ÊrrICV and of the raw mean ÊrrRawMean

as well as the minimal and the maximal error rates mink e(k ‖ s0) and max e(k ‖ s0).
Figure 1.4 displays the boxplots of these error estimates for a representative real dataset
in the informative setting (top) and non-informative setting (bottom), while Figure 1.2 in
the previous section has shown the boxplots obtained in a simulation setting with strong
signal. The most important aspects of both experimental and simulated data study are
described in the following paragraphs. More details can be found in Appendix A.

In most simulation and real data settings the ICV and WMCS estimates are similar and
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Table 1.3: Average corrected errors (over 50 replications) for informative pls and selection
(sel) setups with 80% of the observations in the training datasets.

Setup ICV WMCS WMC Raw Min Max
pls-alon 0.176 0.183 0.168 0.186 0.149 0.210
pls-singh 0.087 0.092 0.080 0.091 0.075 0.180
pls-golub 0.048 0.034 0.030 0.035 0.024 0.041
pls-chiaretti 0.431 0.434 0.417 0.441 0.398 0.459
sel-alon 0.164 0.179 0.163 0.190 0.142 0.257
sel-singh 0.097 0.104 0.092 0.133 0.083 0.319
sel-golub 0.026 0.021 0.018 0.061 0.004 0.226
sel-chiaretti 0.398 0.403 0.383 0.420 0.365 0.452

range between the WMC errors and the raw mean errors. In the tuning setups, WMCS
often yields results close to the raw mean indicating that its shrinkage mechanism considers
differences among classifiers only marginally relevant. As pointed out before, the raw mean
error is a sensible upper bound for the corrected error. The new WMCS method yields
the raw mean if ξ equals 1. As mentioned in Section 1.3, the raw mean corresponds to
a random choice of the parameter/method, which obviously cannot lead to a tuning or
method selection bias. A good correction method is not expected to produce estimates
higher than the raw mean approach. Corrected errors estimated by ICV, however, fall
beyond this upper bound in some of the investigated setups, which makes poor sense in
most situations and may be considered as an important disadvantage. Such a failure may
also exceptionally occur with the WMC and WMCS methods, but to a much lesser extent.

Most WMC estimates are slightly more optimistic than ICV in the informative setups
with the real datasets. In simulations, this tendency to under-correction is even more
pronounced.

In contrast, WMCS slightly over-corrects, i.e. tends to over-estimate the error, but this
tendency decreases with increasing sample size in simulations. The analysis of the shrinkage
parameter ξ suggests that this slight over-correction especially occurs in intermediate cases
where ξ takes values around 0.5 or 0.6. In general, however, the shrinkage parameter
behaves as expected: larger values are selected more often for non-informative setups (ξ →
1) than for informative setups (ξ → 0). See Appendix A for more details on the shrinkage
parameter.

On the Golub dataset, which is characterized by very small errors, one rarely observes
ICV-corrected error rates higher than the average maximal error rate, maxk e(k ‖ S).
Corrected error rates exceeding the error rate of the worst classifier can be considered as
obvious failures of the correction method. In contrast to ICV, both variants of the new
estimator are upper-bounded by maxk e(k ‖ S).
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Figure 1.4: Comparison of ICV (Internal Cross-Validation), WMC (Weighted Mean Cor-
rection) and WMCS (Weighted Mean Correction with Shrinkage) for the selection setup on
the prostate cancer dataset by Singh with 80% of the observations in the training datasets
(top: informative setting, bottom: non-informative setting with an horizontal line at 50%).
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Table 1.4: Average corrected errors (over 50 replications) for non-informative pls and
selection (sel) setups with 80% of the observations in the training datasets.

Setup ICV WMCS WMC Raw Min Max
pls-alon 0.502 0.497 0.483 0.504 0.465 0.538
pls-singh 0.494 0.490 0.482 0.492 0.468 0.524
pls-golub 0.500 0.489 0.479 0.495 0.463 0.533
pls-chiaretti 0.495 0.492 0.482 0.498 0.469 0.523
sel-alon 0.492 0.482 0.462 0.488 0.440 0.531
sel-singh 0.504 0.496 0.479 0.503 0.463 0.541
sel-golub 0.498 0.487 0.466 0.493 0.443 0.536
sel-chiaretti 0.505 0.498 0.484 0.501 0.468 0.532

To conclude, WMCS yields more convincing results than WMC in most settings, in the
sense that it leads to estimates i) near 0.5 in non-informative settings, ii) near the true
error rate of the wrapper algorithms Err in simulated informative settings, and iii) near
the ICV estimates in real data informative settings. The strongest deviations from ICV
occur on the 0.63-setups. In the tuning setups, WMCS mostly yields results close to the
raw mean. Further analyses are needed to show whether WMCS is substantially superior
to the raw mean in this case. It is worth mentioning, however, that the shrinkage factor ξ
always provides important evidence for the applicability of the raw mean, and WMCS is
thus more informative.

1.5 Further analysis and theoretic considerations

1.5.1 Normality assumption

WMC and WMCS assume that e(k‖S) follows a normal distribution. The basic idea is that
this term is the average of the fold errors e(k ‖ Lb, S \Lb), which actually suggests a line of
argument closely related to the Central Limit Theorem. However, since the fold errors are
complex correlated terms, the Central Limit Theorem (CLT) is not applicable directly and
no variant of the CLT adapted to this particular situation could be found after extensive lit-
erature research. Thus, this assumption is substantiated by providing normal quantile plots
for e(k‖S) in the context of the simulation study. Since in the simulation study the average
errors e(k‖S) are computed from independently drawn samples, these plots are more mean-
ingful than their counterparts from the analysis on real datasets. A small selection of repre-
sentative qq-plots is presented here and the reader is referred to http://www.ibe.med.uni-

muenchen.de/organisation/mitarbeiter/090_ehemalige/20130630_bernau/cvbias/

index.html for more exhaustive results.

The normal quantile plots displayed below were obtained in the case n = 40 of the
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sFigure 1.5: Normal quantile plots of e(k‖S) for the case n = 40 in simulation setup
A.2. Although the number of observations is quite small the deviations from the normal
distribution are marginal.

simulation setup described in A.2. Although n is small here, one cannot see any evidence
for large deviations from normality for any of the classifiers. Especially in the middle
region, empirical and theoretical quantiles are almost the same. On the tails there are
noticeable deviations. However, even though these plots are based on 200 observations,
the respective points at both ends of it are computed using a very small fraction of the
data. Thus, these deviations are to be expected even in the case of perfect normality as
can be checked in simulations with perfectly normally distributed data (data not shown).

Figure 1.6 illustrates the largest deviations from normality ever observed in the simu-
lation study, corresponding to the case n = 40 of the simulation setup described in A.2.1.
Four of these plots show deviations at the tails (not in the middle region) that are slightly
larger that one might expect under perfect normality. Nonetheless, they do not provide
any evidence for substantial deviations from normality. Moreover one has to keep in mind
that n = 40 is an extremely small sample size considering the high dimension of the data.

1.5.2 Runtimes

Especially for larger datasets and computationally more intensive classifiers like SVMs (see
Table 16) runtimes for ICV can be very high. Computation times are at least 7 times
smaller with the new method – in particular cases even up to 15 to 18 times smaller. Since
both variants of WMC need only the outer resampling approach their runtimes are almost
the same. WMC (≈ 0.044 seconds runtime for B = 100 fold errors of K = 7 classifiers) is
slightly faster than WMCS (≈ 0.54 seconds runtime for the same setup.) because it does
not involve the shrinkage step. However, considering the large (unavoidable) runtimes
of the external resampling approach, even the 0.5 seconds of WMCS are comparatively
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illustrating the largest deviations from normality observable in the simulation study.

Runtimes WMC WMCS ICV
Alon 14.2 14.9 167.3
Singh 29.1 29.2 547.7
Golub 13.3 13.8 99.0
Chiaretti 33.7 32.1 579.6

Table 1.5: Average runtimes (in sec-
onds) WMC (Weighted Mean Correc-
tion), WMCS (Weighted Mean Cor-
rection with Shrinkage) and Internal
Cross-Validation for the kNN -setups
on the different datasets. The differ-
ence between WMC and WMCS is neg-
ligible in comparison to the absolute
runtimes.

Runtimes WMC WMCS ICV
Alon 67.7 68.8 906.9
Singh 610.3 611.3 11158.4
Golub 88.3 89.5 716.1
Chiaretti 664.6 646.7 11705.7

Table 1.6: Average runtimes (in sec-
onds) WMC (Weighted Mean Correc-
tion), WMCS (Weighted Mean Cor-
rection with Shrinkage) and Inter-
nal Cross-Validation for the selection-
setups on the different datasets. The
difference WMC and WMCS is negligi-
ble in comparison to the absolute run-
times.
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negligible. Note that in the selection setups the implementation of SVM from the R-
package e1071 (Meyer et al., 2012, based on libsvm) is used, which is probably not the
most efficient one for larger datasets. Nonetheless, it seems to be R’s standard routine for
SVMs and is commonly used. The following runtimes have been obtained using a Linux
multiprocessor computer with an Intel Xeon 5150 CPU at 2.66GHz and 6GB RAM (the
computation has been performed by a single core).

1.5.3 Decision Theoretic Interpretation

The problem discussed above evidently includes several elements which can be found in
the standard decision theoretic problem. Many aspects of the WMC estimator have also
been conceptualized within this decision theoretic framework in mind. As will be shown
in a later part of this section, the crucial assumptions and quantities all have a decision
theoretic interpretation. Also the important term wrapper algorithm can be paralleled
to strategies which are a central element of decision theory. This section describes the
parallels to decision theory, thereby providing further justification and explanation for the
approach of the WMC estimator by embedding it into this classical framework. At first,
this subsection presents a short treatise of the most fundamental terminology of decision
theory for readers unfamiliar with this discipline. This small introduction is adapted from
the classical work by Berger (1980). The book may also serve the interested reader as an
exhaustive description of the subject.

Short introduction to decision theory

Decision theory is primarily concerned with the problem of finding reasonable decisions
under certain aspects of uncertainty. In the standard problem one can choose among
several actions a ∈ A which produce certain losses W if they are implemented in different
possible states of nature θ ∈ Θ. Actions and states of nature are at first abstract terms.
Their crucial role consists in the fact that the Cartesian product of the set of possible
actions A and the set of possible states of nature Θ builds the domain of the loss function
W :

W : Θ×A 7→ R−

(θ, a) 7→ W (θ, a). (1.14)

The restriction to R− is a convenience without loss of generality in the case of symmetric,
linear losses 1. One could also formulate this function with regard to gains which are just
negative losses. One can assume, it is the differences between losses which matter rather
than their absolute level.

The introduced terms shall now be illustrated in an example which is related to common
hypothesis testing. Suppose one has to judge whether a certain hypothesis H0 is true or

1In psychology and economic sciences, losses are often considered to have stronger effects than gains.
Here, however, such an imbalance is not expected.
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A
Θ reject H0 accept H0

H0 is true Wα 0
H0 is not true 0 Wβ

Table 1.7: Loss matrix W for the classical testing problem. In concordance to common
notation, Wα and Wβ refer to the losses in the case of type 1 error and type 2 error
respectively.

false. As actions one has a1 (accept H0) and a2 (reject H0). If no zone of indifference is
allowed, these two actions build the complete domain of possible actions A . The set of
states of nature Θ is equally small consisting of θ1 (H0 is true) and θ2 (H1 is not true).
Consequently, Table 1.7 already depicts the complete ’loss matrix’, W, where the possible
losses are specified for all combinations of a and θ.

It is intuitive that the difference between the values Wα and Wβ, the loss of the type 1
error and the type 2 error, primarily impacts the way one will design the testing procedure.
In classical testing theory, Wα is considered dominating which leads to the approach of
accepting H0 unless there is substantial evidence against it, in order to avoid Wα. This
approach is mandatory in testing theory. Contrastingly, one could handle these quantities
in a more flexible fashion in decision theory. Related to this issue, a very interesting
discussion can be found in Armitage (1989) where the author treats the question whether
decision theory could be more appropriate than classical testing theory in certain studies in
epidemiology. For example it is questionable how one has to proceed after a study where a
new drug is better than the gold standard, but the difference was not significant. In testing
theory one has to stick to the gold standard H0 in order to avoid any harm caused by a drug
for which superiority has not been shown on a sufficiently high level. In decision theory,
one would have to carefully consider the loss associated to withholding a ’seemingly’ better
drug as well.

Another important aspect, which has to be considered in this discussion, is the distri-
bution π(θ) of the different states of nature. These probabilities specify how probable the
occurrence of a certain loss is. Since this distribution is unknown in practice, π(θ) is usually
introduced as a Bayesian subjective a-priori distribution π0(θ). Here, however, there is no
need to enter the discussion about a-priori distributions and it is simply assumed that a
distribution of the states of nature π(θ) exists. This distribution leads directly to another
crucial quantity, the expected loss of an action:

Wa = EπW (θ, a) =
∑

Θ

W (θ, a)π(θ). (1.15)

If further information on the actual state of nature is missing, a good decision consists in
choosing the action with the smallest expected loss. The crucial task consists in collecting
information about the actual state of nature. Note that the actual state can usually not be
determined directly. In the drug example, one can usually not determine the superiority of
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a drug even though one might have a sound chemical explanation for its effectiveness. This
gathering of information is called experiment in decision theory and in this example one
would probably conduct a randomized trial. In an experiment, a sample G = (G1, . . . , Gn)
is drawn from a random variable G. The distribution of this random variable PG is usually
clearly affected by the actual state of nature, so that one might draw a conclusion from
the sample G to the actual state of nature. The corresponding sample space is denoted by
G . If one has to compare two drugs, this random variable could be the difference in blood
pressure under the new drug and the gold standard, which one could measure for n patients.
Subsequently, one can deduct a decision rule or strategy δ(G) from this experiment, which
can be defined as the following measurable function:

δ : G 7→ A

G 7→ δ(G). (1.16)

The strategy maps each possible outcome of the experiment to a certain action. The
common strategy for the introduction of a new blood pressure drug would be to test G,
the difference in blood pressure described above, for a significant difference from zero in
favor of the new drug (using maybe a one-sided paired t-test) and grant the admission
accordingly. The quality of such a decision rule can subsequently be assessed by its risk R:

R(θ, δ) = EG
θ [W (θ, δ(G))] =

∫

G

W (θ, δ(g)) dPG|θ, (1.17)

where g denotes a realization of G. Although the risk is an expectation, it is rather to
be considered the natural counterpart of the term loss in the context of actions. On the
contrary, the expected loss of an action can be paralleled to the expected risk which is
defined as the following expectation:

r(π, δ) = Eπ[R(θ, δ)] =
∑

Θ

R(θ, δ)π(θ), (1.18)

i.e. here the expectation over the different states of nature is computed just as in the case
of the expected loss of an action. In order to minimize r(π, δ), a strategy must be able
to find the actions with minimal loss with a high probability in all states of nature just
as cross-validation (when used for model selection) has to find the appropriate classifier
with a high probability. Before the WMC estimator is treated, the introduced terms are
illustrated in another example that has already been described in this thesis.

Class prediction from a decision theoretic point of view Another example for a
decision problem as well as the corresponding loss function have already been introduced
in Section 1.2.2, which is also the reason why the classical notation L for the loss could not
be used here. The classifier in this section had two possible actions because it could choose
from two classes. Here one has the special case of Θ = A because the states of nature
are also the two possible classes. The loss was defined symmetrically here because the
misclassification rate was used. Correct classification produced no loss and misclassification
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A
Θ predict class 1 predict class 2

class 1 is true 1 0
class 2 is true 0 1

Table 1.8: Loss matrix for the classification problem. The loss is symmetric because the
loss is the same regardless of the predicted class.

produced the same loss regardless of the true class (see Table 1.8). Consequently, the
expected loss of action a1 can be computed by:

Wa1 = EπW (θ, a1) =
∑

Θ

W (θ, a1)π(θ) = 0× π(θ1) + 1× π(θ2) = π(θ2),

i.e. simply the probability for class 2. The next question is how one might construct a
reasonable experiment. Here one has to further specify the problem. Suppose that the only
measurements one can get from the new patient, which has to be classified, are the gene
expressions x]. His state of nature is denoted by θ] ∈ Θ. Imagine that one already has a
classifier f̂ s0 , constructed on a previous sample s0, which can detect (with an acceptably
high probability) cancer from the gene expressions at a time where no other symptoms can
be observed. Consequently, the experiment does not consist in determining the actual state
of nature by diagnostic techniques like a histological analysis. However, a possible approach
consists in measuring the gene expressions x] of the current patient, i.e. the random vector
x] is the experiment sample G = G which this time comprises only a single vector of gene
expressions. Its sample space is denoted by X (see Section 1.2.2) and its distribution is
denoted by Px] . Now, the strategy is to predict the patient’s class as suggested by the
classifier f̂ s0 using his gene expressions x]. The corresponding risk is:

R(θ, δ(G)) = Ex]

θ [W (θ, f̂ s0(x]))] =

∫

X
W (θ, f̂ s0(x])) dPx]|θ.

The corresponding expected risk is r(π, δ) =
∑

ΘR(θ, δ(G))π(θ) and can be reformulated
as the conditional error rate from Section 1.2.2 in the following way:

r(π, δ) =
∑

Θ

∫

X
W (θ, f̂ s0(x])) dPx|θπ(θ)

1

 
∫

X×Y
W (y, f̂ s0(x])) dP (x], y)

1

 
∫

X×Y
L(f̂ s0(x), y) dP (x, y) = ε(f̂ s0‖s0) = ε(k‖s0).

1
1Here one needs to consider the unavoidable differences to the notation in Section 1.2.2. The classes

y are identical to the states of nature θ and hence Y = Θ. Consequently, P (x], θ) = P (x, y) is the joint
distribution of x and y as already defined in Section1.2.2. L is the Loss function defined in Section 1.2.2
and corresponds to W in the current notation. In Section 1.2.2, ε(f̂‖s0) has been introduced where k was

shorthand for a classifier algorithm f̂k. This classifier is then used to construct a prediction rule on s0
which is indicated by (k‖s0).
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Thus, one can say that the class prediction from Section 1.2.2 can also be formulated
within decision theory. Now, all the relevant terms have been introduced which are needed
to embed the tuning/model selection task, which is addressed with the WMC estimator,
into a decision theoretic framework.

The WMC estimator in a decision theoretic framework

At first, the more obvious elements are described. One has to choose adequately from a
selection of possible actions A (the different algorithms k) which lead to different losses
or errors W if they are applied in various states of nature. The states of nature are the
distributions of X and y which define different classification problems. These distributions
are denoted by Pθ here to clarify that they represent the states of nature which are com-
monly denoted by θ. Further, one conducts an experiment (cross-validation or resampling
in general) in order to obtain information on the actual state of nature and the respective
suitability of the available actions.

Global interpretation

A first difference consists in the fact that cross-validation is an experiment with internal
variation, i.e. for a fixed dataset drawn from the distribution Pθ, it can still lead to different
results depending on the partitioning of the data into the different folds. Thus, pseudo-
deterministic experiments are assumed in which the result of the experiment (here the
resampling) is deterministic on such a fixed dataset because a random seed is set before
the partitioning is sampled by a computer program. Under this assumption, one can
formulate the problem as a classical decision theoretic problem as shown in Figure 1.7.

As actions one has the different classifier algorithms k, k = 1, . . . , K, and as states of
nature one has a set of classification problems which can be represented by the distribution
of regressors and response Pθ(X,y), θ = θ1, . . . , θΞ. The loss W u(k1, Pθ) is the uncondi-
tional error rate (the index u is used to avoid confusion with the conditional loss W c which
will be introduced below) of the respective classifier on the distribution Pθ..

Now, a crucial point is addressed where this interpretation theoretically deviates from
the common procedure for resampling based model selection. Classical decision theory
assumes that one performs a single experiment each time one faces a new state of nature.
Consequently, one has to postulate that there is only a single global or unconditional
decision. This means that once the CV has been performed on a single dataset from the
distribution Pθ the winning algorithm is declared to be used for the current state of nature,
Pθ. The experiment, the resampling, is not reperformed on new datasets from this same
distribution (which are then only used for retraining the algorithm) because one is still
facing the same current state of nature. Evidently, one is not facing a new distribution
Pθ just because one has drawn a new sample from it. This viewpoint directly leads to the
central formula of the WMC estimator:
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Global (Unconditional) Decision

Actions (k)
ሺalgorithmsሻ

States of Nature 
( ᆈܲ)

Loss (ܹ௨): Unconditional Error Rate
(Sሻሿ	ǁ	ᆈሾɛሺkܧ)

ଵܲ

⁞

ᅴܲ

݇ ൌ 1 ∶ ܯܸܵ

⁞

݇ ൌ :ܭ PLR

Strategy (݇∗ሺࡿሻ)

CV

				ܹ௨	ሺ݇ ൌ 1, ଵܲ	ሻ …								ܹ௨ሺ݇ ൌ 1, ᅴܲሻ

⁞ … ⁞

ܹ௨	ሺ݇ ൌ ,ܭ ଵܲ	ሻ … ܹ௨ሺ݇ ൌ ,ܭ ᅴܲሻ

ज௨ሺ݇∗ሺࡿሻ, ᆈܲ
	ሻൌ∑ Pሺ݇∗ሺࡿሻ ൌ ݇ሻܧᆈሾɛሺk	ǁ	Sሻሿሻ

Figure 1.7: Global (unconditional) decision problem. The algorithms k, k = 1, . . . , K, can
be interpreted as actions and the distributions Pθ as states of nature. The corresponding
losses are the unconditional error rates.
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K∑

k=1

P (k∗(CV ) = k) · EP
nL
θ

[ε(k ‖ S)|k∗(CV ) = k] ,

where S denotes a sample of size nL (the number of observations in a training set of
the outer cross-validation loop) drawn from Pθ. By postulating a single decision, the
condition k∗(S) = k can be erased because one only decides once and the chosen algorithm
is used for all possible training datasets to come from the current state of nature, Pθ.
Hence, one can define the loss matrix W depicted in Figure 1.7 using EP

nL
θ

[ε(k ‖ S)],
k = 1 . . . , K, θ = θ1, . . . , θΞ. Parallel to common decision theory, one only needs to obtain
the probabilities P (k∗(S) = k), in order to compute the risk R of a strategy δ = k∗ on a
specific state of nature Pθ.

In this context, one has to discuss the valid objection that this interpretation does
not match the practical procedure because the model selection step is repeated on each
dataset in nested cross-validation. These datasets in the nested cross-validation correspond
to the new datasets from the same current state of nature (Pθ) in the decision theoretic
interpretation. Even during the NCV procedure itself, however, different classifiers might
be chosen on different datasets of the outer loop.

Local interpretation

Now, a second decision theoretic interpretation of the problem is presented which is also
useful to shed further light on this objection. One can formulate the problem as a whole
set of local or conditional decision problems. Figure 1.8 illustrates an example for these
decision problems.

Here, one has a training dataset sTR on which the models or prediction rules of the
different algorithms, f̂ sTR

k , k = 1, . . . , K, have already been trained. These models are
fixed now and even though they have been fitted using different algorithms, e.g. support
vector machines or penalized logistic regression, the origin of the models is irrelevant for
the decision problem itself. The possible actions consist in the different fixed prediction
rules f̂ sTR

k , k = 1, . . . , K, whereas the states of nature remain the same as in the previous
interpretation, i.e. the distributions Pθ. The appropriate losses are the conditional error
rates of the different models f̂ sTR

k .
In this interpretation the shift of the actions from algorithms to fixed prediction rules or

models is crucial. Although one could still formulate that one chooses among the different
algorithms from which the different models originate, this would not be in line with decision
theory. The loss W c of an action in a specific state of nature has to be a fixed quantity which
is true for the conditional error rate of a fixed model. For an algorithm, the conditional
error rate would be different on another training set. One can say that a distribution P TR

for the training dataset and a specific selection of algorithms induce a set of similar (local)
decision problems as depicted in Figure 1.8 by providing a different set of actions for each
sample STR drawn from P TR.

A straightforward way for summarizing these decision problems for the actions consists
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Local (Conditional) Decision

Actions ( መ݂࢙
ೃ

)
ሺfitted modelsሻ

States of
Nature ( ᆈܲ)

Loss (ܹ	): Conditional Error Rate 
(ɛ( መ݂࢙

ೃ
ǁ ்࢙ோ ))

መ݂ଵ࢙
ೃ: መ݂ௌெ࢙

ೃ

⁞

መ݂࢙
ೃ: መ݂ோ࢙

ೃ

Strategy ( መ݂∗ሺ∥	ࡿሻ
ೃ࢙ )

Validation (V)

जሺ መ݂∗ሺ∥	ࡿሻ
ೃ࢙ , ᆈܲ	

ሻൌ

Pሺ݇∗ሺܸ ∥ ሻࡿ	 ൌ ݇ሻ	ɛሺ መ݂࢙
ೃǁ்࢙ோሻ	



ܹሺ መ݂ଵ࢙
ೃ, ଵܲ	ሻ

⁞

ܹሺ መ݂࢙
ೃ, ଵܲ	ሻ

…

…
…

ܹሺ መ݂ଵ࢙
ೃ, ᅴܲ	ሻ

⁞

ܹሺ መ݂࢙
ೃ, ᅴܲ	ሻ

Training Data (்࢙ோ)

ଵܲ

⁞

ᅴܲ

Figure 1.8: Local (conditional) decision problem. The fitted predictions rules, f̂ sTR

k , k =
1, . . . , K can be interpreted as actions and the distributions Pθ as states of nature. The
corresponding losses are the conditional error rates of the fitted prediction rules.
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in integration over all possible samples of STR drawn from P TR whereby always the risk of
the model trained by the same algorithm k is taken1:

∫
ε(f̂STR

k ‖ STR) dP TR =

∫
ε(k ‖ STR) dP TR.

If one additionally assumes P TR = Pθ, one will arrive at the global decision problem
stated above as far as the actions are concerned because one has the same actions k and
the same losses (

∫
ε(k ‖ STR) dPθ = EPθ

[
ε(k ‖ STR)

]
). For strategies, however, this

would not be the case because here one would be allowed to choose models from different
algorithms on the respective training samples STR (also drawn from Pθ) depending on
the experiment performed on S drawn from Pθ. This again reveals the basic problem
of defining the algorithms as actions on the local level because their loss varies over the
different training datasets (For P TR = Pθ, the basic problem consists in the fact that the
state of nature redefines the actions via the drawn training dataset STR. This training
data set is in practice also used for the CV experiment, i.e. training and model selection
are not performed on separate datasets).

The key assumption for bringing these two interpretations on a common basis is the
crucial assumption used in the WMC estimation:

EPθ [ε(k ‖ S)|k∗(S) = k] ≈ EPθ [ε(k ‖ S)] .

In the notation used for the two decision theoretic interpretations, this can be written
as 2:

EPθ

[
ε(k ‖ STR)|k∗(V ‖ STR) = k

]
=

∫
ε(f̂STR

k ‖ STR) dP
STR|k∗(V ‖STR)=k
θ (1.19)

≈
∫
ε(f̂STR

k ‖ STR) dPθS
TR = EPθ

[
ε(k ‖ STR)

]
,

where the notation k∗(V ‖ STR) = k means that the experiment CV performed on the
sample STR by the strategy k∗ has chosen the model f̂STR

k fitted by algorithm k. Likewise,

the ponderous expression P
STR|k∗(V ‖STR)=k
θ simply denotes the distribution of STR under

exactly this condition. If the assumption in Eq. (1.19) holds, one can reformulate the
’aggregated’ (aggregated over the conditional decsision problems) risk for the strategy in
the following way 3:

K∑

k=1

∫
ε(f̂STR

k ‖ STR) dP
STR|k∗(V ‖STR)=k
θ P(k∗(V ‖ STR) = k)

1Note that the expectation ε is taken over Pθ whereas STR is sampled from PTR.
2STR is drawn from Pθ and thus corresponds to S in the previous formula.
3P(k∗(V ‖ STR) = k) is the marginal probability that the experiment V chooses k.
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2

≈
K∑

k=1

P(k∗(V ‖ STR) = k) EPθ

[
ε(k ‖ STR)

]
,

1 which is equal to the risk defined in Figure 1.7 on the bottom line. The assumption in
Eq. (1.19) states that the (conditional) loss W c of the models f̂

(·)
k of a certain algorithm

k on those datasets, where this algorithm is chosen by the experiment (V ), is on average
not smaller than the unconditional error rate of this algorithm. Or put another way:
the experiment cannot find locally good strategies which re-decide on each training what
algorithm is to be used. This matches the common assumption that algorithms are able
to fit into patterns or signals which are present in specific distributions and not just on
specific datasets. In the context of experimental microarray data, Hanczar et al. (2007)
have provided evidence for this assumption, which has already been discussed in Section
1.3.1.

Additionally, one can substantiate this assumption for the case of nested cross-validation
by looking at the experiment which is applied (V = CV ). If possible, one would certainly
use a single large dataset drawn from Pθ in order to choose among the different prediction
rules. This is especially true in cases where one does not know by which algorithm the
decision rules or models f̂ sTR were constructed (i.e. CV cannot be performed because one
cannot retrain the prediction rules with an unknown method) as well as in all cases where
Pθ 6= PTR (as in Chapter 2).

Even in the standard case Pθ = PTR , however, it is very questionable whether CV can
really find locally best models (i.e. datasets for which the model constructed by a certain
algorithm performs very well although the algorithm performs clearly worse when fitted on
another dataset from the same distribution Pθ = P TR). For this, the CV estimate has to be
very specific for different datasets. This actually requires that the model is quite stable, i.e.
that in each resampling step the model is almost the same as the one fitted on the dataset.
Formulated another way, the CV estimate will be very close to the conditional error rate
of the model fitted on the complete dataset. This can be assumed for models that will
not change strongly if several observations are removed or modified. In this case, however,
this model will perform equally well on most datasets. This means that CV cannot find
datasets, for which ε(f̂S

k ‖ S) << EPθ [ε(k ‖ S)] holds, because they actually do not exist.
Usually, this is the case for algorithms where the resubstitution rate could also be used as
an estimation for the conditional error rate. Such algorithms are fairly uncommon in the
context of high-dimensional small sample data. On the contrary, for unstable algorithms,
the CV estimate will be closer to the unconditional error rate. Hence, the CV experiment
will lack the necessary specificity for the good datasets.

An alternative resampling scheme

A resampling approach that would be more in line with the interpretation of a set of local
decision problems would be the following (see Figure 1.9). One first splits the dataset

1Note that P(k∗(V ‖ STR) = k) is just an extended version of the notation P(k∗(STR) = k) explicitly
mentioning the experiment V .
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Resampling for Local Decision Problem

CAll 
observations

Split

Resampling

Independent
Validation

Set for Tuning

Training 1

Training 2

Training 3

Training 4

Test 1

Test 2

Test 3

Test 4

Split ResamplingDataset

Figure 1.9: Resampling scheme for local (conditional) decision problem. An independent
validation set is reserved for the tuning step that is performed on each training set in
the resampling approach. On each training set in the resampling one is faced with a
local decision problem whereby each of these problems includes newly defined actions, the
different predictions rules fitted on the current training set.
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into a ’resampling’ set and a validation set reserved for the validation that is performed
during the model selection experiment (V in Fig. 1.8). Subsequently, one performs a
cross-validation on the ’resampling’ set whereby on each fold the model performing best
on the independent validation set is chosen, i.e. the model selection experiment V now
uses data for its validation step which have not been used to define the actions, i.e. the
constructed models. In this approach, it is really the local models which are evaluated on
the independent evaluation set and even for highly unstable algorithms it is possible to
obtain a specific local performance estimate, if the tuning validation set is large enough.

Concluding, one can say that almost all important assumptions and quantities in the
WMC estimator can be embedded in the decision theoretic standard problem. Also the
discussion about the usefulness of unconditional and conditional error rate, which mainly
characterizes a crucial difference between the interests of statisticians and physicians, can
be explained in this context as well as the term wrapper algorithm. It can be derived from
the term strategy or decision rule in decision theory. From this point of view, wrapper
algorithms have actually already been a subject of statistical research for a long time.

1.5.4 Asymptotic consideration – justification of Err = εnL(φ) as
target of ErrICV

In order to further motivate the new method, the following asymptotic consideration of
ErrICV is presented which justifies the quantity Err = εnL(φ), that has been introduced in
Section 1.2.3, as the actual estimation target of ErrICV . Additionally, a decomposition of
this quantity has been described in Section 1.3.1 (Eq. 1.5) which constitutes the fundament
of the estimators ErrWMC and ErrWMCS.

In the notation used in this thesis, the ICV estimator can be written as:

ErrICV =
1

B

B∑

b=1

K∑

k=1

I(k∗(Lb) = k) · e(k ‖ Lb, S \ Lb),

where b = 1, . . . , B corresponds to the subsampling iterations, k = 1, . . . , K denotes the
different classifiers and k∗(·) indicates the classifier chosen by the internal cross-validation,
i.e. k∗(Lb) = k means that classifier k has been chosen by the internal cross validation
procedure on the training set in the bth subsampling/resampling iteration, and e(k ‖
Lb, S \ Lb) is the misclassification rate of classifier k on the bth test set.

Now, suppose that nested resampling is performed on D independent datasets of the
same data generating process, whereby each dataset Sd has n observations and is drawn
from P n. Then the average is built:

1

D

D∑

d=1

1

B

B∑

b=1

K∑

k=1

I(k∗(Ldb) = k)e(k ‖ Ldb, Sd \ Ldb).
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For D →∞ one obtains:1

lim
D→∞

1

D

D∑

d=1

1

B

B∑

b=1

K∑

k=1

I(k∗(Ldb) = k)e(k ‖ Ldb, Sd \ Ldb)

1

= lim
D→∞

1

B

B∑

b=1

1

D

D∑

d=1

K∑

k=1

I(k∗(Ldb) = k)e(k ‖ Ldb, Sd \ Ldb)

(∗ ∗ ∗)

Consider the expectation of the error e1
new = |ynew − f̂

SnL
k∗(SnL )| of a single (new) ob-

servation from P 1 before SnL has been drawn from P nL . Relying on ynew ⊥ SnL , and
ynew ⊥ k∗(SnL) one obtains:2

E(e1
new) =

∫ K∑

k=1

∫
|ynew − f̂ snLk | dP 1P(k∗(snL) = k|SnL = snL) dP nL

=

∫ K∑

k=1

εk[f̂
snL
k ]P(k∗(snL) = k|SnL = snL) dP nL

=
K∑

k=1

∫
εk[f̂

snL
k ] dP SnL |k∗(SnL )=kP(k∗(SnL) = k)

=
K∑

k=1

E [ε(k ‖ SnL)|k∗(SnL) = k] P(k∗(SnL) = k)

2

= EPnL (ε(k∗(S) ‖ S)) = εnL(φ) = Err

Consequently, one obtains 3:

E

[
K∑

k=1

I(k∗(Ldb) = k)e(k ‖ Ldb, Sd \ Ldb)
]

=
nts × E(e1

new)

nts
= Err = εnL(φ),

where nts denotes the number of test observations. Applying the law of large numbers
at (∗ ∗ ∗) leads to:

lim
D→∞

1

B

B∑

b=1

1

D

D∑

d=1

K∑

k=1

I(k∗(Ldb) = k)e(k ‖ Ldb, Sd \ Ldb) a.s.→ 1

B

B∑

b=1

εnL(φ) = εnL(φ) = Err.

1This reordering is allowed because the series is absolutely convergent.
2compare to Eq.(1.6)
3Note that the observations in a single testfold are independent from each other and the training set.
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The natural interpretation of this asymptotic consideration is that ICV estimates a
combined error rate instead of focusing on a specific classifier or tuning parameter. This
interpretation appropriately reflects the symmetry of the estimator ErrICV . As explained
in Sections 2.3 and 3.1, ErrWMC tries to approximate this quantity, and thus also ICV,
based on a multivariate normal distribution and the assumption in Eq. 1.6

1.6 Discussion and concluding remarks

In the context of error estimation through repeated subsampling, this chapter has intro-
duced two variants of a new weighting-based method for correcting the tuning bias and
the method selection bias by estimating the unconditional error rate of the corresponding
wrapper algorithms as with ICV. Both of the methods avoid the additional computational
costs of ICV while producing comparable results. The shrinkage-based variant, WMCS,
addresses the optimistic tendency of WMC. WMCS yields the most accurate estimates in
simulations and the best approximation to ICV on real data despite a slight tendency to
over-correction. The correction method cannot only be applied in the well-known context
of parameter tuning but also to address the method selection bias. Correction of the latter
bias has seemingly never been addressed explicitly in the literature, neither with ICV nor
with any other approach. It can also be suggested to extend ICV to the method selection
setup, based on the idea that a “method” can – in a broad sense – be considered as a cate-
gorically scaled tuning parameter. There are however some differences between the tuning
setup and the method selection setup. Quite generally, the bias is larger in the method
selection setup than in the tuning setup. That is probably because in the tuning setup the
error is expected to depend smoothly on the parameter value. Large differences between
errors obtained with similar parameter values are unlikely. In contrast, in the selection
setup methods do not have a natural ordering and may yield more contrasted errors.

Besides the lower computational effort, an important advantage of the method over
ICV is that the obtained corrected error remains within reasonable bounds defined by the
minimal and maximal errors. As shown in Section 1.4, ICV may produce estimates outside
this interval. Regardless of whether the ICV-estimates fall above the highest error or below
the lowest error, such a “correction” makes poor sense. The WMC correction method is
clearly superior in such cases. Another extreme situation where the new method yields
more plausible results is when all tuning parameter values/methods lead to very similar
resampling error rates (e(1 ‖ s) ≈ · · · ≈ e(K ‖ s)). In this case WMC and WMCS do not
perform any correction, which is intuitively reasonable. On the contrary, ICV may produce
a different corrected error. Whereas the results of the new weighted mean correction are
deterministic (once the outer learning sets are fixed), ICV depends on the specific choice of
the internal learning sets when selecting the Lb-best method k∗(Lb). This aspect of ICV is
consistent with its main idea of mimicking the selection or tuning process on each learning
set of the resampling approach. However, by this dependence, ICV suffers from another
source of variability which is difficult to correct within a reasonable time.

In contrast to ICV, WMC and WMCS directly use the information on the correlation



42 1. Estimating the error rate of wrapper algorithms

between the errors of different parameter values/methods, which allows an assessment
of the “effective cardinality” of the pool of parameter values/methods. Obviously, the
potential for tuning or method selection bias increases with the number K of parameter
values/methods. However, if they are all very similar the bias is not expected to increase
dramatically. The new method automatically takes into account correlation between errors
including such highly correlated “blocks” of similar parameter values/methods. Another
practical advantage over ICV is that WMC and WMCS can be applied “a posteriori” as
long as one has used the same training sets for all classifiers and saved all fold errors
(e(k||Lb, S \ Lb),∀b, k). With ICV the whole procedure has to be performed again if the
classifier pool or the tuning grid is changed or enlarged.

Next, the small optimistic bias of WMC and the even smaller pessimistic bias of WMCS
has to be discussed. The WMC procedure is based on a number of assumptions and possi-
bly biased estimation steps. On the one hand, if assumption (1.6) is violated the method
can be expected to be conservative i.e. to over-correct the error, because a method chosen
by internal CV based on a specific dataset is expected to perform better rather than worse
when applied to this dataset, yielding EPnL

[ε(k ‖ S)|k∗(S) = k] ≤ EPnL
[ε(k ‖ S)]. On the

other hand there is the optimistic bias which is induced by the biased mean estimate µ̂.
This bias is corrected by the shrinkage approach in WMCS. However, WMCS sometimes
over-corrects the optimistic tendency of WMC especially in setups where ξ is close to 0.5
or 0.6. In these particular cases, WMC often performs better than WMCS. In the present
context of bias correction, however, the optimistic bias of WMC epitomizes a clear disad-
vantage and it is not recommended to apply it in practice. The pessimistic bias of WMCS
is definitely more acceptable, the more so as it is substantially smaller on average. In the
tuning setup, the WMCS method often produces results very similar to the raw mean. In
future work the methods have to be further assessed and refined in this context. Moreover,
the method could also be extended to the case where the tuning parameter is the number
of variables used by a specific method. This setup can be considered an intermediate case
between selection setup and tuning setup.

Finally, one needs to discuss the shift of focus from the conditional error rate of a
classifier to the unconditional error rate of wrapper algorithms, which have been introduced
in Varma and Simon (2006) and used as a basis by the new approach. On the one hand, one
can certainly argue that the ultimate quantity of interest for a physician is the conditional
error rate of the eventually constructed prediction rule. In this context, ICV and the
WMC variants can only provide a “surrogate estimate” based on the assumption that Err
is usually close to this conditional error rate. Especially in the case of method selection
setups, this assumption may be violated because the models constructed in the respective
ICV iterations can be substantially different from the model constructed on the whole
dataset. However, even in this case, Err can be an informative quantity if one is more
interested in the general utility of the data at hand. In pilot studies meant as proof of
concept, Err can provide a more realistic picture of the signal in the data because it
considers the high variability of the model construction procedure of wrapper algorithms.
Considering the conditional error rate of a single model only may lead to highly variable
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conclusions.
On the other hand, from a statistician’s point of view, the unconditional error rate of the

wrapper algorithm, Err, can be an interesting quantity for its own sake. If several wrapper
algorithms have to be compared, it is recommendable to compare them on the basis of Err
and not of the conditional error rate. For this purpose, Err has clear advantages over the
conditional error rate because it indeed reports the performance of the underlying wrapper
algorithm whereas the conditional error rate is the performance of a single prediction rule
only. At least on simulated data (where the corresponding quantities can be obtained via
Monte Carlo simulations), one can also consider as a next step to include the variance of the
conditional error rate of wrapper algorithms (VarPnL [ε(φ(S))] = VarPnL [ε(k∗(S) ‖ S)] =
EPnL [ε(k∗(S) ‖ S)− Err]2) into the comparison in order to provide additional insight into
the characteristics of the competing wrapper algorithms.
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Chapter 2

Ranking High-Dimensional Wrapper
Algorithms using multiple studies

The following chapter covers the ranking of wrapper algorithms as they have been intro-
duced in Chapter 1. This time, however, the main focus is on a new, extended validation
scheme, leave-one-in cross-study validation (CSV, Waldron et al. (2013)), which tries to
account for several problems concerning the transfer of prediction rules from the training
to a validation study. The performance estimates will be compared as well as the resulting
rankings for classical cross-validation and CSV on experimental microarray data as well as
on an extensive simulation study. Moreover, the section tries to find guidelines for the ag-
gregation of the numerous performance estimates that are computed during the procedure
of CSV for each wrapper algorithm. Finally, it is analyzed whether certain algorithms rank
distinctly higher in CV than in CSV and may therefore be considered ’specialist algorithms’
in contrast to ’generalist algorithms’ which rank higher in CSV.

2.1 Introduction

Cross-validation and related resampling methods are de facto standard for ranking super-
vised learning algorithms. They allow estimation of prediction accuracy using subsets of
data that have not been used to train the algorithms. This avoids over-optimistic accu-
racy estimates caused by “re-substitution,” a property that has been carefully considered
(Molinaro et al., 2005; Baek et al., 2009; Simon et al., 2011). It is common to evaluate
algorithms and prediction models by estimating accuracy via cross-validation based on sev-
eral datasets, with results summarized across datasets to rank algorithms (Demšar, 2006;
Boulesteix, 2013). This approach recognizes possible variations in the performance of learn-
ing algorithms across studies. However, it is not fully consistent with the ultimate goal
of providing accurate predictions for fully independent samples originating from different
institutions and processed by different laboratories.

It has been observed that accuracy estimates of genomic prediction models based on
independent validation data are often substantially inferior to cross-validation estimates
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(Castaldi et al., 2011). In some cases this has been attributed to incorrect application
of cross-validation; however even strictly performed cross-validation may not avoid over-
optimism resulting from potentially unknown sources of heterogeneity across datasets.
These include differences in design, acquisition, and ascertainment strategies (Simon et al.,
2009), hidden biases, measured variables, technologies used for measurements, and pop-
ulations studied. In addition, many genomics studies are affected by experimental batch
effects (Baggerly et al., 2008; Leek et al., 2010). Quantifying these heterogeneities and pre-
dicting their impact on the performance of prediction algorithms is critical in the practical
implementation of personalized medicine procedures that use genomic information.

There are potentially conflicting, but valid, perspectives on what constitutes a good
learning algorithm. The first perspective is that a good learning algorithm should perform
well when trained and applied to a single population and experimental setting, but it is
not expected to perform well when the resulting model is applied to different populations
and settings. Such an algorithm is called “specialist”, in the sense that it can adapt and
specialize to the population at hand. This is the mainstream perspective for assessing
prediction algorithms and is consistent with validation procedures performed within studies
(Molinaro et al., 2005; Baek et al., 2009; Simon et al., 2011). However, it does not reflect
the reality that“samples of convenience”and uncontrolled specimen collection are the norm
in genomic biomarker studies (Simon et al., 2009).

Another perspective shall be promoted here: a good learning algorithm should be “gen-
eralist”, in the sense that it yields models that may not be optimal for the training pop-
ulation, that is likely not fully representative of the prediction problem at hand, but that
perform reasonably well across populations or laboratories employing comparable but not
identical methods. Generalist algorithms may be preferable in important settings, for in-
stance when a researcher develops a model using samples from a highly controlled environ-
ment, but hopes the model to be applicable to other hospitals, labs, or more heterogeneous
populations. Although concern has been expressed about the lack of independent valida-
tion of genomic prediction models (Subramanian and Simon, 2010; Micheel et al., 2012),
computational scientists have not systematically adopted independent validation in the
comparison of learning algorithms. Thus, the so-called “leave-one-dataset-in” cross-study
validation will be promoted here in order to formalize the use of independent validation
in the evaluation of learning algorithms. Through data-driven simulations and an exam-
ple involving eight publicly available estrogen receptor-positive breast cancer microarray
datasets, several established survival prediction algorithms are assessed using the proposed
approach which will be compared to conventional cross-validation.

2.1.1 Notations and settings

Suppose one considers multiple datasets i = 1, . . . , I with sample sizes N1, . . . , NI . Each
observation s appears only in one dataset i (datasets do not overlap), and the corresponding
record includes a primary outcome Y s

i and a vector of predictor variables Xs
i ; Xs

i will
be gene expression measurements. The goal is to compare the performance of different
learning algorithms k = 1, . . . , K that generate prediction models for Y s

i using Xs
i . Here,
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the primary outcome Y s
i is a possibly censored survival time. One is interested in evaluating

and ranking competing prediction methods k = 1, . . . , K. Since the ranking may depend
on the application field, the first step is to define the prediction task of interest. Here,
the focus is on the prediction of survival time in breast cancer patients based on high-
throughput gene expression measurements. The approach and the concept of cross-study
validation, however, can be applied to any other type of response variable.

2.1.2 Algorithms considered

Six learning algorithms (k = 1, . . . , 6) are assessed which are appropriate for high-dimensional
continuous predictors and possibly censored survival time outcome: LASSO regression
(Goeman, 2010), CoxBoost (Binder and Schumacher, 2008), SuperPC (Blair and Tibshi-
rani, 2004), Unicox (Tibshirani, 2009), and PlusMinus (Zhao et al., 2013). The focus is
not to provide a comprehensive array of algorithms, but simply to use a few popular,
representative algorithms to study the properties of cross-study validation.

2.1.3 Ranking algorithms by cross-study validation: the CSV
matrix

Here, k-fold cross-validation and related resampling methods are collectively denoted by
cross-validation (CV).

The ranking procedure for learning algorithms is based on a squared matrix Zk of scores
(k = 1, . . . , K), with the element in the i-th row and j-th column measuring how well the
model produced by algorithm k trained on dataset i performs when validated on dataset j.
Since K methods are considered here, one ends up with K method-specific squared matrices
Z1, . . . ,ZK . The diagonal entries of the matrices are set equal to the performance estimates
obtained with 4-fold CV in each dataset. Zk is also called the cross-study validation matrix,
or CSV matrix.

Possible definitions for the non-diagonal Zk
i,j scores include the concordance index in

survival analysis (Harrell et al., 1996; Gönen and Heller, 2005), which is used here, the
area under the operating characteristic curve in binary classification problems, or the mean
squared distance between predicted and observed values in regression problems. As an il-
lustration, Figure 2.1a displays the CSV matrix of C-statistics obtained through validation
of ridge regression models for the eight studies of Table 2.1.

2.1.4 Summarization of the CSV matrix

In order to rank learning algorithms k = 1, . . . , K, each matrix Zk must be summarized
by a single score. Two candidate approaches are considered:

1) Simple Average
∑
i

∑
i 6=j Zki,j

I(I−1)
of all non-diagonal elements of the Zk-matrix.

2) Median or more generally q−quantile of the non-diagonal entries of Zk. Quantiles
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offer robustness to outlier values, and the possibility to reduce the influence of uninforma-
tive studies where all algorithms perform poorly by selection of an appropriate quantile.

2.1.5 True global ranking

From a statistical perspective the score Zk
i,j is a random variable. First, studies i and j

can be seen as randomly drawn from a population of studies. Second, observations within
each study can be considered as randomly drawn from the unknown and possibly different
distributions Fi and Fj underlying studies i and j.

With this view of Zk
i,j as random variable, one can consider the theoretical counterparts

of the empirical aggregating scores (simple average and quantiles) described in Section
2.1.4 to summarize Zk. The theoretical counterparts are the expected value or quantiles
of each Zk

i,j score, i 6= j, obtained by integrating the two levels of randomness described
above. The true global ranking of the learning algorithms k = 1, . . . , K is then defined by
these expected values (or quantiles), one for each algorithm. The ranking is called global
because it is not specific to the available studies.

The true global ranking can be considered as the estimation target of evaluation pro-
cedures such as CV or CSV. Section 2.1.7 presents the design of a data-driven simulation
study in which the true ranking is obtained through Monte Carlo integration. Thus, one
can evaluate and compare the ability of CV and CSV to recover the true global ranking.

2.1.6 Description of datasets

A compendium of breast cancer microarray studies is used which has been curated for
the meta-analysis of Haibe-Kains et al. (2012) and is available as a supplement to that
article. All datasets have been selected for which metastasis-free survival (DMFS), the
most commonly available survival endpoint, as well as Estrogen Receptor (ER) status,
were available, and which were generated with Affymetrix HGU GeneChips HG-U133A,
HG-U133B and HG-U133PLUS2. Exclusively, ER-positive tumors have been considered.
Of the remaining 8 datasets (Table 2.1), only one originated from a population-based cohort
(Schmidt et al., 2008). Four studies considered only patients who did not receive hormone
therapy or chemotherapy adjuvant treatment. Only four provided date ranges of patient
recruitment Foekens et al. (2006); Desmedt et al. (2007); Schmidt et al. (2008); Chin et al.
(2006). This variability in design strategies and reporting, and cohort differences in survival
that are not easily explicable (Table 2.1, column 3Q survival) highlight the prevalence of
“samples of convenience” in biomarker studies discussed by Simon et al. (2009).

Samples from dataset ST1 duplicated in dataset VDX were removed. Expression of
each gene was summarized using the probeset with maximum mean (Miller et al., 2011).
The 50% of genes with lowest variance were removed. Subsequently, gene expression values
were scaled by linear scaling of the 2.5% and 97.5% quantiles as described by Haibe-Kains
et al. (2012).
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2.1.7 Simulation design

Heterogeneous datasets from a joint probability model with survival outcomes are simu-
lated. The probability model is defined by a resampling procedure that is applied to the
eight breast cancer datasets in Table 2.1. The resampling scheme is a combination of para-
metric and nonparametric bootstrap (Efron and Tibshirani, 1993; Bender et al., 2005).
The goal of the simulation study is to compare CV and CSV when used for evaluation
and ranking of competing learning algorithms, in synthetic data that realistically simulate
multiple independent datasets, where the true relationship between the independent and
dependent variables is known. CV and CSV are then assessed with respect to their ability
to recover the true global ranking, which is computed through Monte-Carlo integration.
The ability to recover the ranking is assessed by Kendall correlation between the true global
ranking and the CV or CSV estimates.

For b = 1, . . . , B = 1000 iterations, a collection of I = 8 datasets is generated as follows.
First, 8 studies are sampled with replacement from the list of breast cancer studies. In
other words, a collection of studies is simulated in order to mimic the fact that studies
are not considered as fixed but rather drawn from a population. This step only involves
simulations from a multinomial Mult(8, [1/8, . . . , 1/8]) distribution. Second, for each of
the generated studies, N = 150 patients are sampled from the corresponding original
dataset with replacement. Each of the 150 predictor vectors is directly generated from a
study-specific empirical distribution (non-parametric bootstrap). Finally, the correspond-
ing survival times are simulated from a proportional hazards model (parametric bootstrap)
fitted to one of the available studies:

M i
true : λi(t|x) = λi0(t)× exp(xTβi), (2.1)

i = 1, . . . , I, where λi(t|x) is the individual hazard function when the vector of predictors
is equal to x and βi denotes a vector of regression coefficients. The truncated inversion
method in Bender et al. (2005) and the Nelson-Aalen estimator for cumulative hazard
functions are combined to simulate survival times that reflect survival distributions and
follow-up of the real studies. The vector βi is set identical to the coefficients fitted in
study i = 1, . . . , I using the CoxBoost method (Binder and Schumacher, 2008). Note that
a different regression method could have been used at this stage.

The collections of simulated datasets are then used both (i) to compute by Monte Carlo
method the true global ranking defined in Section 2.1.5, and (ii) to compute estimated ranks
by CV and CSV.

Figure 2.1a displays, for each pair of studies (i, j) in Table 2.1, C-index obtained when
training a model by ridge regression on dataset i (rows), and validating that model on
dataset j (columns). Diagonal elements (i = j) are obtained by 4-fold CV. Figure 2.1b
displays mean C-indices for each (i, j) combination across simulations, when the training
and validation studies are generated resampling the i-th and j-th study. The diagonal
elements are computed by averaging C-indices with the training and validation datasets
independently generated by resampling from the same study.
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(b) simulated data
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(c) simulated data
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Figure 2.1: Cross-study validation matrices Zk in simulated and experimental data for
Ridge Regression. Panel (a) displays C-indices for training and validation on each pair of
actual datasets in Table 2.1. The diagonal of this matrix shows estimates obtained through
4-fold CV. The heatmap in panel (b) displays, for each pair of studies (i, j), the average C-
index obtained when ridge regression is fit on simulated datasets generated by resampling
gene expression data from the i-th study in Table 2.1 by non-parametric bootstrap and
simulating censored survival outcome by parametric bootstrap; the resulting model is vali-
dated on a simulated dataset generated by resampling study j. Two independent datasets
from the same study are sampled for the diagonal elements. Both heatmaps strongly re-
semble each other, indicating a realistic simulation scenario. CAL and MSK are outlier
studies: cross-study C-index is approximately 0.5 when they are used either for training
or validation. All values of the Z-matrix corresponding to these two studies build the blue
“bad performance” cluster in panel (c) which compares the C-indices obtained for study
pairs (i, j), i 6= j, on simulated data (y-axis) and experimental data (x-axis). Pearson
correlation is ≈ 0.9. The three plots illustrate high similarity between simulated and real
data in the application.
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The similarity between the two panels is striking, in particular with respect to the clear
separation of the eight studies into two groups. The first group includes the studies MNZ,
ST1, ST2, TRP, UNT and VDX, and seems to produce more accurate prediction models
than the remaining studies. The datasets in this group seem also associated with higher
values of the concordance index when used for validation. This difference between the two
groups is also illustrated in Figure 2.1c. It displays the non-diagonal entries of the matrices
represented in the left and middle panels, i.e. average C-indices from simulated datasets
vs. C-indices from real data. This scatterplot shows a clear two-cluster structure: the
yellow dots display the 30 training and validation combinations within the larger group of
studies, i.e MNZ, ST1, ST2, TRP, UNT and VDX.

2.1.8 Further inspection of the implemented simulation scenario

In order to investigate the appropriateness of the simulated data, it is also necessary to
perform several validity checks on the models that have been fitted on the real data sets and
are used as blueprints for the simulated data. Figure 2.2 shows some of these checks for the
CoxBoost model that has been fitted on the data set ST1. The upper row shows two plots
representing the cumulative hazard of the real and estimated survival and censoring times
respectively. The gray line corresponds to the Nelson-Aalen estimate of the cumulative
base-line hazard on the real data set based on the true (CoxBoost) model that has been
fitted on this data set. On the contrary, the black line corresponds to the Nelson-Aalen
estimate that has been obtained on 10000 observations which have been simulated from the
model. In the case of the survival times, the estimate is based on the ’true’ linear predictor
which is taken from the corresponding model fitted on the real data. The lines almost
coincide which represents a good evidence that the simulated data behave as expected and
that the truncation of censoring and survival times does not have a strong influence on the
simulated observation in the relevant time frame.

In the middle, two plots illustrating the vector of coefficients and the distribution of
the linear predictor are presented. It is important that the vector of coefficients represents
a realistic gene profile consisting of several non-zero coefficients which do not have too
strong an impact. Otherwise, the algorithms cannot be expected to correctly estimate
these coefficients. The distribution of the linear predictor is almost centered around zero
due to the transformation of the gene expression variables. Moreover, values range between
-3 and 4 in this case. Extreme values of the linear predictor are numerically problematic
since they are the argument of an exponential function during the simulation process.
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Figure 2.2: Validity checks for the CoxBoost model fitted on data set ST1. One can see
that the cumulative hazard for survival times as well as for the censoring times can be
recovered from the simulated data very accurately. This means that their Nelson-Aalen-
estimate (under the usage of the true linear predictor) obtained on a large set of simulated
data almost coincides with the ’true’ cumulative hazards (see two top panels), i.e. the
simulated data indeed follow the true model. The plots in the middle panels illustrate
the coefficients as estimated by CoxBoost as well as the resulting distribution of the linear
predictor on the original ST1 data set. The plot in the left bottom panel shows the survival
curves estimated by the model and the empirical Kaplan-Meier estimate. Finally, the right
panel in the bottom row describes the distribution of the C-indices the true coefficients
achieve on data sets of size 1000 on the simulated data. In summary, these plots show
that the simulated data are similar to the original ones and do not feature problematic,
numerical artifacts, e.g. extremely large values for the linear predictor.
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Figure 2.3: Simulated concordance indices on the I = 8 studies for the ’true’ (CoxBoost)
coefficients fitted on the data set ST1. These distributions represent the potential C-
Indices an algorithm can achieve on data sets (n=150) of the respective validation studies
if it exactly recovers the the ’true’ coefficients vector of the true model on data set ST1
correctly.

Values as high as 20 were observed in the case of the Unicox algorithm which usually
result in numerical artifacts in the simulation, even if they are theoretically correct in
combination with an extremely small estimate of the cumulative base line hazard. If they
exist, these numerical problems can be best observed in the plot on the left side in the last
row which depicts the fitted survival curves, i.e.:

S(t|xsi ) = exp

(
− exp(xsiβ

i
T )

∫ t

0

λi0(t) dt

)
, (2.2)

where βiT is the coefficient estimated by the CoxBoost model. The plot shows that the
model estimates relatively variable survival curves for the different patients which is neces-
sary if one wants the evaluated algorithms to be able to achieve good concordance indices
on the simulated data. As another validity check, the Kaplan-Meier estimate of the overall
survival is depicted in black. This estimate is right in the middle of the fitted survival curves
as it is expected for a realistic model. The last plot shows a boxplot of the concordance
indices that can be obtained on an independent simulated data set of size 1000 if an algo-
rithm is able to find the correct true coefficients. In this case, the median is approximately
at 0.68. This value refers to a good but not unrealistic discrimination performance.

This approach can also be repeated for the case where the true coefficients of the model
on ST1 are evaluated by their concordance index on large simulated data sets simulated
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from the models fitted on the other studies. One can see that for several data sets even
the true coefficients do not achieve a C-Index higher than 0.5 (see Figure 2.3), i.e. they
are just as bad as a coefficient vector of zeros. For the MNZ, TRB, UNT and VDX
dataset, however, they clearly provide evidence that cross-study-prediction is possible for
the simulated data. The data sets for which cross-study prediction seems to be possible,
coincide with the data sets for which cross-study prediction worked well on the real data
sets (see Figures 2.5a and 2.5b).

Implementation of the algorithms

All the considered methods are used as wrapper algorithms and are tuned using cross-
validation on the simulated taining sets as implemented in the package survHD. For most
algorithms standard tuning grids are used, whereas the Glmnet implementation for Ridge
and Lasso Cox-regression applies an inbuilt tuning algorithm. Apart from the removal
of the low variance gene expressions, no further variable selection is applied, especially
no supervised variable selection method. In this context, it is worth mentioning that the
focus lies more on the illustration of the concept of ranking algorithms using cross-study-
validation. Since the algorithms have to be fitted several thousands of times during the
simulation, the different algorithms are tuned as well as possible in a reasonable amount
of time. One certainly cannot guarantee that the performance of the algorithms reported
here is the absolutely optimal performance the respective algorithm might achieve. The
performance of each algorithm could probably be further enhanced by investing more time
into a more detailed tuning or combining the algorithm with a supervised variable selection
technique.

Variability over the iterations

The CSV results can be expected to be highly variable as can be seen from the heatmaps on
the real data. An important aspect is the presence of outlier studies for which cross-study-
validation does not seem to work properly. Consequently, even for good algorithms there
will be several C-indices close to 0.5 when their prediction rules are evaluated on the other
studies. Thus, the question of how the values of the Z-matrix should be aggregated gains
in importance. In order to illustrate this aspect, one can have a look at the iteration-wise
averaged C-Indices for the first 50 iterations of the six algorithms (see Figure 2.4).

One can see several spikes in the curves of the different algorithms, at which the perfor-
mance of almost all algorithms is distinctly higher. This is mainly caused by the bootstrap-
ping of the studies. Studies can occur several times in a simulated Z-matrix which means
that in some Z-matrices there are more of the good studies whereas other Z-matrices are
based on more of the outlier studies. This portion of good studies basically dominates the
curves. Due to the high variability between good and outlier studies the average C-index
is not expected to be the best criterion.
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Figure 2.4: Average concordance indices of the Zk-matrices for the first 50 iterations of
the simulation (n = 150). The lines correspond to the K = 6 considered algorithms. The
spikes, where performances are distinctly higher for all algorithms, correspond to iterations
with a higher portion of ’good’ studies.

2.1.9 Evaluation criteria in simulations

The simulation study can assess and rank learning algorithms based on their ability to
recover the true underlying models M i

true. This section introduces a criterion that reflects
the similarity between the true regression coefficients βi, that were used to simulate the
i-th dataset and the coefficients β̂

(k)
j fitted on dataset j. Pairs of studies with i 6= j and

pairs with i = j are considered separately. The standard way to assess similarity between
vectors is to compute the euclidean distance between them. However, since the focus is on
prediction the alternative criterion ĉor(Xiβi,Xiβ̂

(k)
j ) is considered in order to measure the

similarity between the true βi and fitted regression coefficients β̂
(k)
j . Here Xi is the matrix

of predictors of dataset i and ĉor denotes the empirical Pearson’s correlation. The average

Skself = (1/I) ·
∑

i

ĉor
(
Xiβi,Xiβ̂

(k)
i

)
, (2.3)

over the I studies, provides a measure of the ability of learning algorithm k to recover the
model that has generated the training dataset, hence the index self.

Another criterion of interest is the ability of a learning algorithm to recover the vector
of regression coefficients βi when one relaxes the assumption that the unknown models
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underlying training and validation datasets coincide. This can be quantified with

Skacross = (1/(I(I − 1))) ·
∑

i

∑

j 6=i
ĉor
(
Xiβi,Xiβ̂

(k)
j

)
, (2.4)

where the index across emphasizes the focus on cross-study similarity, i.e. on the ability
of algorithm k to recover the coefficients βi when fitted on dataset j, with j 6= i. Instead
of taking simple averages in Eqs. (2.3-2.4), one could also use different summaries, e.g.
median or quantiles, as presented in Section 2.1.4.

Both Skself and Skacross are criteria to assess and compare learning algorithms. The
ranking obtained by ordering the algorithms according to their value of Sself (Sacross) are
denoted by Rself (Racross). Note, however, that Skself and Skacross are by definition specific
to the considered collection of studies and datasets: they involve the vectors βi and the
matrices Xi (i = 1, . . . , I). The corresponding rankings are called local because they are
specific to the collection of datasets at hand.

2.2 Results

2.2.1 Simulated Data

The focus in the simulation study is on differences between the rankings and performance
estimates obtained by CV and CSV. Figure 2.5a shows the distributions of CSV and CV ,
and Figure 2.5b shows the distribution of the rankings, across 1000 simulated 8-dataset
compendia. Table 2.2 shows the median of these rank distributions, along with true global
median ranks. The rank of method k is 1 if it yields the largest score of the K training
algorithms. One can observe large differences in the distributions of CSV and CV across
simulations (Figure 2.1a): the average of the CV scores is around 0.65, while CSV scores
are centered around 0.55. The variability of CV and CSV across simulations, however, is
comparable.

Performance differences across algorithms, whether estimated by CV or CSV, are rela-
tively small compared to the overall difference between CV and CSV performance estimates.
One can also observe differences between the rank distributions produced by CV and CSV.
By both CV and CSV, Glmnetlasso is ranked as one of the worst performing algorithms,
while Glmnetridge and Plusminus are ranked first or second. However the consistent ad-
vantage of Glmnetridge over Plusminus in CV vanishes under CSV . The median rank of
CoxBoost across simulations is two positions better as estimated by CV than by CSV ; in
this case CSV is more consistent with the global true rankings (Table 2.2). Note that the
exchange in top global true ranking between Glmnetridge over Plusminus when one con-
siders average and median summaries (see section 2.1.4 and criterion in Table 2.2) occurs
because the global true performance of these two algorithms is nearly indistinguishable.

The true local rankings of the K = 6 algorithms, defined by Skacross or Skself in Sec-
tion 2.1.9 vary over the 1000 simulated collections of studies. Furthermore, the median
Kendall’s correlation between Rk

across and Rk
self amounts to approximately 0.5, i.e. the
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Figure 2.5: Comparison of cross-study validation (CSV k) and cross-validation (CV k) on
simulated data. Each boxplot represents evaluations of K = 6 algorithms in 1000 simula-
tions of a compendium of I = 8 datasets. For each simulation the diagonal and off-diagonal
elements of the Zk matrix of validation C-statistics are summarized by (a) simple mean
and (b) rank of the simple mean across algorithms. CV estimates of the C-index are much
higher (approximately increased by 0.1) than CSV estimates. Lasso is ranked worst by
both CV and CSV and Ridge / Plusminus are ranked best, however some differences are
apparent. CoxBoost ranks two positions worse in CSV, and the distinct advantage seen in
CV for Ridge over Plusminus vanishes in CSV.

local performance measures Skacross and Skself define distinctly different rankings (see Fig-

ure B.1 in the appendix). A natural question is how well CV k and CSV k can recover
the unknown rankings Rk

across and Rk
self . The boxplots in Figure 2.6 display the Kendall’s

correlation between local rankings Racross (a) or Rself (b) and the ranking found by CV
(gray boxes) or CSV (white boxes) across simulations. Figure 2.6(c) shows the same for
true global ranking. Both local rankings (Racross and Rself ) can be recovered by CSV
with a Kendall correlation around 0.5. CV tends to be less correlated with Racross. This
pattern is reversed for the local ranking Rself . Recall that, similarly to CV , Rself is de-
fined in terms of within-study validation. However, the difference between the medians in
the second panel is less pronounced than in the first one. Finally, CSV features a con-
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siderably higher correlation to the true global ranking. This suggests that CSV is more
suitable for recovering the global ranking. If the two outlier studies (CAL and MSK) are
removed, the advantage of CSV over CV in recovering true global ranking is further in-
creased (median Kendall correlation: 0.8 vs. 0.6, see Figures B.2- B.4 in the appendix),
and also surpasses CV for recovering true local self ranking Rself . Overall, as displayed
by the Figure B.3 in the appendix, it appears that, after outlier studies are removed, CSV
outperforms substantially CV when used for ranking algorithms.

Algorithm
global true CSV CV

ranking (med. ranks) (med. ranks)
Glmnetridge 1 2 2 2 1 2
Plusminus 2 1 2 2 2 2
Superpc 3 3 4 3 4 4
Unicox 4 4 4 4 5 4
CoxBoost 5 5 5 5 3 4
Glmnetlasso 6 6 6 6 5 6
criterion Av. Med. Av. Med. Av. Med.

Table 2.2: True global ranking and median rank estimate of CV and CSV on simulated
data. Ranks shown for CV and CSV are the median across 1000 simulations; individual
columns refer to summarization of Zk

ij by Average or Median value. Third quartile ranks
are the same as the median ranks, these are not shown. All methods rank GLMnetridge
and Plusminus well, and GLMnetlasso poorly; however CSV ranks with Zk

ij summarized
using the median are the closest to the true global ranking. Variability of CV and CSV
rank estimates across simulations is shown in Figure 2.5b.

2.2.2 Application to breast cancer prognostic modelling

This section applies CV and CSV to the I = 8 breast cancer studies described in Section 2.
Generally, the results resemble those obtained on simulated data. The top panel in Figure
2.7 illustrates the distributions of CSV and CV for each of the K = 6 algorithms. Except
for the distinctly larger interquartile ranges of the boxes, the same patterns are observed
as in Figure 2.5. Note that in these boxplots an observation represents a single entry of
the Zk-matrix, whereas in Figure 2.5 each box represents the distribution across iterations
of the average of the Zk-matrix. This explains the higher variance observed in Figure 2.7.
One can observe in Figure 2.7 that:

� CV estimates are approximately 0.06 higher than CSV estimates on the C-index
scale. To illustrate the magnitude of this improvement on the C-index scale consider a
population with two groups of patients, high and low risk patients, covering identical
proportions 0.5 of the population. A perfect discrimination model that correctly
recognizes the subpopulation of each individual, when the hazard ratio between high
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Figure 2.6: Distribution of Kendall’s correlation between true algorithm rankings and
rankings estimated by CSV (cross-study validation, white) and CV (cross-validation, gray)
on simulated data. Panels (a) and (b) compare CV and CSV in terms of their correlation
to the local rankings (true rankings for each simulation iteration); (c) compares these
to the global ranking based on all iterations. Racross and Rself are the ranks calculated
from Sacross and Sself , respectively. Each box represents correlations computed in each of
the 1000 iterations of the simulation study. CSV achieves higher correlations, and lower
variance, to the global ranking and this improvement is more pronounced for Racross. For
Rself (within-study validation), this pattern is reversed as expected, although the difference
between medians is smaller. Thus in simulated independent datasets, CSV recovers true
across-study rankings more accurately and with less variability than CV .

versus low risk patients is 2.7, achieves on average a C-index of 0.62. For the average
C-index of the perfect discrimination model to be increased to 0.68, a doubling of
the true hazard ratio to 5.4 is necessary. Thus it is fair to characterize the validation
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results seen here by CV as much more optimistic than as seen by CSV.

� The presence of outlier studies (CAL and MSK, see Section 2.3 for a brief discussion
on their specific characteristics) has a strong effect on the ranking estimates when one
uses the mean to summarize Zk matrices. Using mean summarization, both CSV
and CV rank Superpc first. This is mainly caused by high variability around the
C = 0.5 of the Zk

i,j validation scores obtained by models trained by outlier studies.
In particular, Superpc and Unicox are the only algorithms that produce models with
good discrimination when trained on the MSK study. With median summarization,
ranking estimates are less influenced by the presence or absence of outlier studies.
Therefore, the use of the median can be recommended in order to summarize Zk

matrices.

� Using median aggregation of the Zk
ij scores, the ranking defined by CSV is identical

to the ranking found in the simulation example (cf. Table B.1 in the appendix and
Table 2.2), reflecting the realistic simulation scenario and the robustness of median
aggregation. For both median and third quartile aggregation the rankings defined
by CV and CSV differ substantially (Kendall’s correlations 0.6 and 0.07). This
is consistent with results of the simulation study, where median correlation of the
rankings defined by CSV and CV was approximately 0.5.

� Figure 2.7b illustrates that CSV performance estimates do not necessarily reflect CV
results. This panel shows CV and CSV estimates for Glmnetridge averaged over
all datasets combinations, with a fixed study used for training (black) or validation
(gray). Cross-validation statistics are only moderately correlated with CSV statistics
for models trained from the same dataset (ρ = 0.2), and negatively correlated with
CSV statistics when that dataset is used for validation (ρ = −0.33).

2.2.3 CV performance is not necessarily indicative of cross-study
performance

A more detailed analysis of the correlation between CSV and CV shows that cross-study
prediction and within-study prediction are indeed less related than one might expect. In
Figure 2.7b, study specific values for CSV are plotted against CV for the learning algorithm
Glmnetridge as an example (outlier studies removed). For each study one has a single value
for CV but two values for CSV depending whether one averages the Z-matrix column-
wise (identical validation study) or row-wise (identical training study). The correlations
vary between algorithms but their values are usually around 0.5 and in the latter case
(identical validation study) mostly negative. This phenomenon could be caused by ’study-
specific’ signals. Such study-specific signals may support within study prediction as tested
in CV but will impede cross-study prediction. From this point of view, cross-study and
within-study prediction can be considered as two different types of problems with different
characteristics.
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Figure 2.7: Comparison of CSV and CV on experimental data with two outlier datasets
(MSK and CAL) removed. Panel (a) describes the distributions of CSV and CV estimates
separately for each of the six considered algorithms. In contrast to Figure 2.5a, each boxplot
represents the distribution of the values of a single matrix Zk as depicted in Figure 2.1b.
The pattern is similar to the one obtained on the simulated data. CV leads to substantially
higher estimates of discrimination performance compared to CSV . Panel (b) illustrates the
relation between CV and CSV estimates by averaging over all datasets combinations with
a fixed study used for training (black) or validation (gray). The illustration shows results
for the learning algorithm Glmnetridge and the numbers refer to the study number given in
Table 2.1 (outliers CAL and MSK have been removed). Cross-validation statistics on the
y-axis are moderately correlated to CSV (row wise means [fixed training study] or column-
wise means [fixed validation study] of the non-diagonal elements in the corresponding Zk-
matrix) on the x-axis. For Glmnetridge the correlation is 0.2 when one plots CV versus the
row wise means and −0.33 when one considers the column wise means. These correlations
vary over the K algorithms, but the same pattern is predominant.
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Finally, it should be mentioned that CV is a less suitable method for the detection
of outlier studies, since it can estimate relatively good prediction performances even on
studies where all algorithms fail in cross-study validation. In the example, this occurred
for the MSK study with the algorithms Superpc and Unicox.

2.2.4 Specialist and generalist algorithms

This leads to the question of whether some algorithms might be considered as specialist
algorithms according to the definition given in the introduction. It is obvious that the
examples here are not exhaustive and additional examples will be required in order to
determine ’specialist’ or ’generalist’ tendencies of these algorithms. However, the fact that
Glmnetridge, Glmnetlasso and CoxBoost rank distinctly better for CV than for CSV in
the simulation example suggests that these two algorithms may adapt more strongly to
the specific properties of an individual data set than other algorithms. This problem can
be analyzed in greater detail using the local performance criteria Sself and Sacross which
directly measure the correlation of the true and fitted linear predictors on the training
study itself as well as across studies.

CoxBoost and Glmnetridge indeed achieve better ranks in Rself than in Racross. Cox-
Boost improves its position by 1 or 2 ranks, which is also the difference which could be
found between CoxBoost’s CSV and CV rankings. Thus, one may conclude that these
two algorithms have the most pronounced tendency to specialize to the dataset at hand.

Nonetheless, it must be mentioned that all the algorithms share this tendency to some
extent since Sself is consistently substantially higher than Sacross (median: 0.6 vs. 0.2). In
this sense, the higher CV values are in part justified by the fact that all algorithms perform
better in within-study prediction than in cross-study prediction. To address this issue more
deeply, one can also compare cross-validation to independent within-study validation for
the simulated data. For the independent validation, two separate datasets are simulated
using the true coefficients and gene expressions of a single study. Subsequently, a model
is trained on the first dataset and evaluated on the second dataset. As can be seen in
Figure B.5 in the appendix, CV values are slightly smaller than for independent validation.
This matches the expectation because models are trained on less data in CV . From this
point of view, CV is not optimistic in the simulation study if it is used for estimating
within-study performance, but it is optimistic for estimating performance in new studies
of different patient cohorts.

2.3 Discussion

In applying genomic approaches to clinical problems, it is rarely safe to assume that the
studies used in a research environment faithfully represent what will be encountered in
clinical application, across a variety of populations and medical environments. From this
standpoint, study heterogeneity can be a strength, as it allows to quantify the degree
of generalizability of results, and to investigate the sources of the heterogeneity. This
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aspect has long been recognized in meta-analysis of clinical trials (Moher and Olkin, 1995).
Therefore, one can expect that an increased focus on quantifying cross-study performance
of prediction algorithms will contribute to the successful implementation of the personalized
medicine paradigm.

A conceptual framework, statistical approaches, and software tools for this quantifica-
tion are provided here. As an illustrating example, cross-study validation is demonstrated
on eight independent microarray studies of ER-positive breast cancer, with overall sur-
vival as the endpoint of interest. Moreover, a simulation procedure has been developed
which involves two levels of non-parametric bootstrap (sampling of studies and sampling
of observations within studies) in combination with parametric bootstrap, to simulate a
compendium of independent datasets with characteristics of predictor variables, censor-
ing, baseline hazards, prediction accuracy, and between-dataset heterogeneity realistically
based on available experimental datasets.

Cross-validation is the dominant paradigm for assessment of future prediction perfor-
mance and comparison of prediction algorithms. The perils of inflated prediction accuracy
estimations by incorrectly or incompletely performed cross-validation are well known (Moli-
naro et al., 2005; Varma and Simon, 2006; Subramanian and Simon, 2010; Simon et al.,
2011). However, it has been shown here that even strictly performed cross-validation can
provide optimistic estimates relative to cross-study validation performance. All algorithms,
in both the simulation and the application on real data, showed distinctly decreased per-
formance in cross-study validation compared to cross-validation. This reflects the reality
of clinical genomic study, and likely other applications, where it is impossible to control
all sources of between-study heterogeneity or to ensure consistent application of new tech-
nologies in diverse laboratory settings.

In simulations, the ranking of algorithms by cross-study validation was closer to true
rankings defined by cross-study prediction both within each sample of studies (Racross) and
by global true ranking determined through Monte Carlo simulation. Surprisingly, cross-
study validation was also competitive to cross-validation for recovering true rankings based
on within-study prediction, even out-performing cross-validation in this application after
the removal of outlier studies. Considering that the ultimate goal of prediction modeling
is to provide predictions for independent observations, it may be claimed that assessing
algorithms by cross-study validation may provide a more useful indicator of the performance
than the current standard of cross-validation.

Systematic cross-study validation also provides a means to prioritize relevant sources of
heterogeneity within the context of the prediction problem of interest. By simple inspection
of the CSV matrix, two outlier studies have been identified that yielded prediction models
no better than random guessing in new studies. This may be related to known differences in
these studies: smaller numbers of observations, higher proportions of node positive patients,
or larger tumors. However, differences in other important clinical variables, which are
related to outcome, such as type of adjuvant therapy, had no obvious impact on cross-study
prediction accuracy. Although one cannot verify indicators of poor cross-study prediction
accuracy within the scope of this study, one can confidently conclude that these two datasets
are outliers within the context of the compendium of datasets studied here.
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It may be supposed that in practice it is neither possible nor even desirable to eliminate
all sources of heterogeneity between study cohorts of complex diseases. The adoption of
’leave-one-in’ cross-study validation, in settings where at least two comparable independent
datasets are available, can provide more realistic expectations of future prediction model
performance, identify outlying studies or clusters of studies, and help to develop “gener-
alist” prediction algorithms with less tendency to fit to dataset-specific biases. Further
work is needed to formalize the identification of clusters of comparable studies, to develop
databases for larger-scale cross-study assessment of prediction algorithms, and to develop
better “generalist” prediction algorithms. With the development of software and data re-
sources, cross-study validation is in practice no more difficult or CPU-consuming than
cross-validation, and should become an equally standard tool for assessment of prediction
models and algorithms.
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Chapter 3

Computational Aspects & Software

The analyses performed in this thesis would not have been possible without the usage
of parallel HPC systems. The following sections describe several aspects of the software
developed and used for the scientific work in this thesis in more detail. Apart from the
R-package survHD which has been extensively used for the simulations in Chapter 2, these
sections will also cover computational topics, which refer to the administration of com-
puter resources as well as implementations of statistical analysis software on heterogeneous
cluster or cloud infrastructures. The chapter also provides a short introduction to parallel
computing in R as well as several approaches for the usage of cloud computing for statisti-
cal projects. It also tries to compare cloud and cluster resources and to show solutions for
combining both types of resources in order to perform statistical analysis projects in less
time and without large investments for in-house resources which might be idle most of the
time. Finally, it presents state-of-the-art approaches to the handling of large datasets which
will probably gain in importance in the near future since biological technology produces
increasingly vast amounts of data.

3.1 Introduction

Nowadays, the structure and size of data are vastly gaining in complexity. One of the
most prominent examples is the upcoming of next generation sequencing data which even
after preprocessing can comprise several Gigabyte. Thus, these datasets are significantly
larger than the micro array data used in this thesis. Additionally, the necessary prepro-
cessing, which encompasses sequence alignment and normalization, requires a huge amount
of computational resources. This demands a close cooperation of statisticians and bioin-
formaticians who usually perform most of the preprocessing steps as well as the database
management involved in modern state-of-the-art biological data. In this context, the Bio-
conductor project can serve as a good interface between these two professional groups.
On the one hand, its package-based system allows users from both domains to contribute
their developed algorithms for data analysis and preprocessing to a research community.
On the other hand, scientists can find assistance and useful tools for those parts of their
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research which do not involve their actual domain of expertise. One of the most important
aspects of Bioconductor is the usage of the statistical programming language R. Although
it is not one of the fastest programming languages it basically serves as a good frame-
work for embedding the different software tools available at Bioconductor. The relatively
strict guidelines for structure and documentation of R-code and R-packages ensure mini-
mal standards for usability and user friendliness. Additionally, the packages are all open
source and thus the source code is accessible and can be checked by the users themselves.
Another advantage of the R language is that it provides many flexible mechanisms for
parallelization.

3.2 survHD: An application programming interface (API)

for survival analysis on high dimensional data

The following section describes an R-package for survival analysis on high-dimensional
data which has been developed during the simulations presented in Chapter 2. It is cur-
rently available at https://bitbucket.org/lwaldron/survhd whereas the separate fea-
ture package survHDExtra is available at https://github.com/bernau/survHDExtra. In
general, survival analysis on high-dimensional data is frequently used in recent studies try-
ing to link survival time to gene expression profiles (van Wieringen et al., 2009). One of
the most important aspects in this context is the evaluation and assesment of the general-
ization errors of fitted prediction rules. In Waldron et al. (2013) the authors point out that
within-study validation, which is usually based on resampling procedures is often opimistic.
As mentioned above, this phenomenon has several causes including batch effects, optimal
selection and incomplete cross-validation. The comparability of studies can be improved
by methods like add-on normalization (Kostka and Spang, 2008) or frozenRMA (McCall
et al., 2009).

3.2.1 General concept

Other reasons for the optimism in within-study validation can be addressed by invest-
ing more effort into the proper approach to within-study validation (e.g. using nested
cross-validation). For the purpose of proper evaluation, the R-package survHD has been
developed in cooperation with Levi Waldron and Markus Riester from the Harvard Medical
School. Currently, this package encompasses the following algorithms for survival analysis
on high-dimensional data:

(1) boosting for survival analysis based on the Cox model (CoxBoost Binder et al., 2009)

(2) supervised principal components analysis (superPC Blair and Tibshirani, 2004)

(3) Unicox: a method which is based on univariate cox models (Tibshirani, 2009)

(4) random survival forests (Ishwaran et al., 2008)

https://bitbucket.org/lwaldron/survhd
https://github.com/bernau/survHDExtra
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(5) PlusMinus (Zhao et al., 2013)

(6) penalized Cox regression (lasso, ridge and elastic net Goeman, 2010; Simon et al.,
2011)

These methods are representative for the commonly used algorithms in recent literature
on survival analysis. They include very established methods as penalized regression as
well as more heuristic methods like the PlusMinus. This method is usually more applied
by bioinformaticians and machine learners and a real theoretic foundation has just been
developed recently (Zhao et al., 2013). One of the problematic aspects in the evaluation of
these algorithms is the lack of an intuitive performance criterion which is established as gold
standard. In binary classification, the misclassification rate or the area under the curve have
already been established as such criteria. In survival analysis, however, a prediction error
cannot be defined equally easily whereby the dependence on time as well as the handling
of censored observations are the most delicate questions concerning this issue. For models
which are subject to the proportional hazards assumption, one can resort to Harrel’s C-
Index (Harrell et al., 1996) which is mostly applied in practice. It is based on a pairwise
comparison of survival observations and their corresponding linear predictor estimated by
the respective model. Since the cumulative hazard of a patient with higher linear predictor
is at all times higher than the cumulative hazard of the patient with lower linear predictor
in a Cox-model, a pair of two uncensored observations is classified as concordant if the
patient with the shorter survival time also has the higher value of the linear predictor. For
details on the handling of censored observations, please see Harrell et al. (1996). Other
criteria are more general and try to transfer common ideas of goodness of fit or likelihood to
the case of survival regression. These criteria are usually more complex since they involve
the estimation of the baseline-hazard as e.g. prediction error curves. Consequently, their
computation is more difficult and the estimation of additional parameters renders them less
reliable in the case of small datasets. However, they are also more gernerally applicable
since they are not based on the proportional hazards assumption. The survHD package
provides functions for a wide spectrum of performance criteria for survival models:

(1) Cross-Validated Partial Log-Likelihood (Verweij and Houweilingen, 1993)

(2) Uno’s C-Index (Uno et al., 2011)

(3) Harrell’s C-Index (Harrell et al., 1996)

(4) Prediction Error Curves (Porzelius et al., 2011)

(5) Net Reclassification Index (Uno and Cai, 2012)

(6) Integrated Discrimination Improvement Index (Uno and Cai, 2012)

Using these criteria, users can assess the perfomance of the different prediction models
and optimize potential tuning parameters. For this purpose, survHD provides an incorpo-
rated tuning function which performs (nested) cross-validation on a grid of parameters in
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Figure 3.1: Most important functions and objects in survHD. A typical workflow consists of
creating learning sets, variable selection, tuning, modelfitting and subsequent evaluation.
Moreover, there are dedicated methods for the comparison of models.
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order to find appropriate hyper parameter values based on an user-specified performance
criterion. A complete workflow in survHD is depicted in Figure 3.1.

In contrast to CMA (Slawski et al., 2009), which provides similar functionality in the
context of classification, survHD also allows for the usage of package-specific tuning mech-
anisms which are often more efficient than a simple grid search. The penalized package for
example, has incorporated an analytic way for finding the optimum of the cross-validated
partial log-likelihood in penalized Cox-regression (Goeman, 2010). Usually such analytic
approaches are more efficient and thus preferable to the common grid search. In practice,
however, the additional embedded grid search in survHD is an important alternative to
the package specific tuning mechanisms since they suffered from convergence problems in
several test setups which were used during the test phase of survHD.

Another important feature is the funcitonality for independent validation. As pointed
out in Chapter 2, within-study validation is suboptimal and independent validation is
always preferable if it can be performed. Apart from the typical split into training and
validation set, survHD also has an implementation for the computation of the Z-matrix as
proposed in Chapter 2. The implementation is based on a list of datasets which are used as
training as well as independent validation set. Thus, users are easily able to check whether
the estimated prediction rules are really generalizable on data that have been obtained in
different studies. This is the basic precondition if a gene profile or gene expression based
prediction model is intended to be applied in practice.

3.2.2 Custom Survival Models

Another decision was also motivated by the intention to improve user-friendliness. For
better extensibility, customizability and maintenance, the API has been split into a stable
core, which is supposed to be incorporated into the Bioconductor project in the future,
and an extendable feature package (survHDExtra). The feature package has been moved to
github and will serve as an opportunity for extending the package without modifying the
core in an essential way. One desirable extension consists in the ammendment of further
survival models for high-dimensional data. For that purpose, an interface for user-defined
algorithms was implemented in survHD. This interface for user-defined survival algorithms
can serve as a good opportunity to illustrate the basic structure of survHD. This interface
will be presented in more detail here whereas a more extensive description of the remaining
part of survHD can be found in Appendix C.1. The interface is based on two features:

(1) model fitting

(2) prediction from previously fitted models

The second feature is necessary to guarantee the correct computation of the diverse per-
formance criteria in the package. The function is stored as a slot in the constructed model
object which ensures that the model object can be embedded into the typical mechanism
for obtaining predictions in survHD.
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Figure 3.2: ’Leave-One-In-Validation matrix’ for the algorithm ’Plusminus’ on eight breast
cancer studies. Each of the experimental microarray datasets is used for training (rows) and
subsequently evaluated on all other datasets (columns). The main diagonal corresponds to
performance estimates obtained by nested cross-validation.
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Both functions are eventually implemented using a single object. In the following
example the method rsf from the package randomSurvivalForest (Ishwaran et al., 2008) is
added to survHD as a custom function customRSF. The user-defined function has to accept
at least three predefined inputs:

(1) Xlearn: A data.frame of gene expressions for the current training data (columns
are genes)

(2) Ylearn: the survival response for the current training data

(3) learnind: the indices of the current training observations inside the complete dataset
X which is usually passed to functions like learnSurvival. Using this argument, one
can e.g. extract the relevant observations from additional clinical covariates which
can be passed using the . . . argument.

1 customRSF <- function(Xlearn, Ylearn, learnind, ...){

2 #load required packages

3 require(randomSurvivalForest)

4 #handle inputs

5 ll <- list(...)

6 datarsf <- data.frame(Xlearn, time=Ylearn[, 1], status=Ylearn[, 2])

7 ll$data <- datarsf

8 ll$formula <- as.formula('Surv(time, status)~.')

9 #call actual model function rsf from randomSurvivalForest

10 output.rsf <- do.call("rsf", args = ll)

11 ...}

First, one typically has to load or source a function or package which performs the
actual model fitting. The next step is the processing of the inputs. In this case one does
not use any additional covariates, so one only has to convert Xlearn and Ylearn into the
input format of the function rsf. As can be seen from the code, this function accepts a
formula and a data.frame containing all necessary variables. Moreover, one passes all
the arguments represented by the . . . argument and eventually calls the function rsf using
do.call. After this step, the model fitting is complete.

In order to provide outputs which can be evaluated and processed by survHD, one also
needs a predict function. This function must either provide an object of class LinearPre-
diction or SurvivalProbs. The prediction function has to accept four arguments:

(1) object: an object of class ModelCustom which is created by survHD automatically
and contains the fitted model (here: output.rsf) in its slot mod.

(2) newdata: data.frame of gene expressions for the observations for which predictions
will be performed.

(3) type: indicates whether linear predictors (’lp’ or survival probabilities (’Survival-
Probs’) will be predicted
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(4) timegrid: if type=’SurvivalProbs’ this argument specifies the time points at
which predictions will be performed

12 predfun <- function(object, newdata, type, timegrid=NULL, ...){

13 require(randomSurvivalForest)

14 #either type lp or type SurvivalProbs must be implemented

15 #for typ lp the obligatory return class is LinearPrediction

16 if (type == "lp") {

17 stop("Random Forests don't provide linear predictors, sorry.")

18 }

19 #for typ SurvivalProbs the obligatory return class is Breslow

20 else if (type == "SurvivalProbs") {

21 modelobj <- mod(object)

22 if (is.null(timegrid)) {

23 stop("No timegrid specified.")

24 }

25 #create data for which predictions are to be performed

26 predsrsf <- predict.rsf(object = modelobj, test=data.frame(newdata,

27 time=rexp(n=nrow(newdata)), status=sample(c(0, 1), nrow(newdata), replace=T)))

28 curves <- exp(-t(apply(predsrsf$ensemble, 1, FUN=function(z)

29 approx(x=predsrsf$timeInterest, y=z, xout=timegrid)$y)))

30 #create breslow-object

31 pred <- new("breslow", curves = curves, time = timegrid)

32 #create SurvivalProbs-object embedding the breslow-object

33 pred <- new("SurvivalProbs", SurvivalProbs = pred)

34 }

35 else stop('Invalid "type" argument.')

36 return(pred)

37 }

This function is structured into two sections which correspond to predicting linear predic-
tors and survival probabilities respectively. Since random survival forests are not capable
of providing linear predictors the first section simply returns an error. In the survival prob-
ability section at first the input data have to be preprocessed for the function predict.rsf
which can perform predictions on the basis of objects of class randomSurvivalForest
created by the function rsf. Subsequently, these predictions are estimated and eventually
an object of class SurvivalProbs is created which is the predefined class for survival prob-
abilities in survHD. Its only slot SurvivalProbs is an object of class Breslow which not
only stores the survival probabilities in the slot curves but also the time points in the slot
time. This survprob object is finally returned by the custom prediction function.

The definition of this prediction function was the second part of the user-defined survival
function customRSF. In the end, one still has to create the obligatory output object of class
ModelCustom which primarily consists of the fitted model object output.rsf in slot mod
and the user-defined prediction function in slot predfun. Additional information can be
stored in the slot extraData which must be of class list:
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38 #create customsurvhd-object (which is the obligatory output-object)

39 custommod <-new("ModelCustom", mod=output.rsf, predfun=predfun, extraData=list())

40 return(custommod)

It is practical to make sure that the custom function is known to the global environment
of R such that it is available for all functions of survHD. Of course, another opportunity
consists in including the new survival algorithm into the addon package survHDExtra.

1 #define function in global environment

2 assign(x="customRSF", value=customRSF, envir=.GlobalEnv)

Using the custom function customRSF one can easily implement a complete workflow
of generating learning sets, gene selection, tuning, resampling and a final evaluation.

1 #learningset

2 ls <- generateLearningsets(y=y[, 1], method='CV', fold=5)

3 #gene selection

4 gsel <- geneSelection(X=X, y=y, method='fastCox', LearningSets=ls,

5 criterion='coefficient')

6 #tune

7 tuneres <- tune(X=X, y=y, GeneSel=gsel, nbgene=30, survmethod='customSurv',

8 customSurvModel=customRSF, LearningSets=ls, grids = list(ntree = 20*(1:10)))

9 #use tuneres in learnSurvival

10 svaggr <-learnSurvival(X=X, y=y,GeneSel=gsel,nbgene=30,survmethod='customSurv',

11 customSurvModel=customRSF, LearningSets=ls, tuneres=tuneres, measure="PErrC",

12 timegrid=4:10, gbm=FALSE, addtune=list(GeneSel=gsel, nbgene=30))

The only essential difference to the call to survHD’s built-in algorithms consists in the
argument survmethod which is set to ’customSurv’.

Supporting reproducibility By providing this interface for user-defined functions, the
evaluation framework of survHD can also support reproducibility. By integrating a new
algorithm via the interface, evaluation criteria as well as validation on independent data
can be achieved in a more objective and replicable way. Variable selection, tuning and
evaluation on several datasets can be performed with a few lines of code. Ideally, it would
be recommended that new methods are additonally evaluated by experts who have not
been involved in the process of developing the new algorithm. Using survHD, one could
easily set up a list of benchmark datasets like the selection of breast cancer microarray
studies introduced in one of the previous sections and validate the proposed algorithm.
The only prerequisites are the two interface functions explained in this section.



76 3. Computational Aspects & Software

3.3 Short introduction to parallel programming in R

The statistical analyses performed in survHD and the previous chapters, are based on
resampling methods like bootstrapping or cross-validation. In this sense, they are repre-
sentative for many recently developed statistical methods which require more and more
computational resources. An important aspect of these methods is their large number of
independent subtasks, e.g. a single resampling iteration or one permutation step. This
facilitates a parallel implementation since the different processes do not have to send large
packages to each other.

3.3.1 The package Rmpi

The programming language R provides several mechanisms for processing such independent
tasks without large modifications to the code. Parallelization is mostly performed for
loops which are already efficiently implemented in R using wrapper functions like lapply
or sapply. The package multicore provides the function mcapply which enables the use
for shared memory parallelization on a single node. In the presence of a message passing
interface (MPI) environment, the package Rmpi can be used. This package implements
many parts of the common MPI standard (MPI-Forum, 2012) including point-to-point and
collective communication like MPI Broadcast. After setting up a MPI communicator, all
necessary objects are broadcasted from a master process to all remaining MPI-processes
and the independent subtasks of the analysis can be processed in parrallel. Let us take a
look at the startup procedure in a typical Rmpi program as it could be run on the cluster
at the IBE:

1 ###load Rmpi

2 library('Rmpi')

3 ###check size of parallel environment

4 mpi.universe.size()

5 mpi.comm.size()

6 ###get MPI-rank of the process

7 mpi.comm.rank()

8 ###try broadcast

9 x<-5

10 mpi.bcast.Robj2slave(obj=x)

11 ###create Communicator

12 mpi.spawn.Rslaves()

13 ###check communicator size

14 mpi.comm.size()

After loading the package Rmpi, one first checks the size of the MPI environment using
the function mpi.universe.size(). The different processes of the MPI environment can be
organized in different communicators which can be considered subgroups of the processes
in the environment. These communicators are useful for collective calls, if for example all
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processes of a communicator have to wait for a certain event or have to share data. In
this example, however, only the standard communicator will be used here which includes
all processes of the environment. This communicator must be created by the user at the
beginning. Consequently, the first broadcast (l. 10) will fail, because the communicator is
only created in the call to mpi.spawn.Rslaves (l. 12). This command starts a worker on each
core in the MPI environment (also on the core hosting the master process) and establishes
a communicator including all worker processes and the master process. Consequently,
mpi.comm.size (l. 14) will be equal to mpi.universe.size()+1 whereas it returns 0 in line 5.

In line 4 one has initialized the variable x using the value 5. However, this variable
is still known exclusively to the master process where this initialization was executed.
Thus, mpi.remote.exec (l. 16), which runs an R expression on each worker process in the
communicator returns a list of 4 errors reporting that object x could not be found.

15 #evaluate R-expression on each worker

16 mpi.remote.exec(cmd=x)

17 #Broadcast

18 mpi.bcast.Robj2slave(x)

19 mpi.remote.exec(x)

The R-object x has to be copied from the master process to the worker processes by a
call to mpi.bcast.Robj2slave. The fact that the different worker processes are operating on
separate environments, including different objects, must always be kept in mind in order
to avoid errors. It is also possible that eponymous variables have different values or even
different types in the environments of the different worker processes. After the broadcast
of the object x in line 18, one will be returned a list of fives in line 19 because all worker
processes have been sent the object x by now.

Now, a first simple example can be implemented. A vector of 2 million normally
distributed random numbers is created and its mean is computed on each of the worker
processes. For that purpose, one defines the following function.

20 est.mean<-function(seed){

21 set.seed(seed)

22 mean(rnorm(2000000))

23 }

The example already includes a very simple mechanism to ensure reproducibility. In
parallel programming, it is not enough to set a seed on the master process only, but one has
to ensure that the program is deterministic for all processes. Besides more sophisticated
mechanisms, a potential solution for this problem consists in passing a seed parameter and
setting the seed inside the function that is run in parallel. Consequently, it does not matter
where and when the function body will be executed. To run the function on all worker
processes, one uses the function mpi.apply or its load balanced counterpart mpi.applyLB:

24 set.seed(25)

25 ar.seed<-array(ceiling(runif(100)*200),dim=c(100))

26 result<-unlist(mpi.applyLB(x=ar.seed,fun=est.mean))
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The function mpi.applyLB runs the specified function est.mean on the different processes
whereby the values in ar.seed are passed as the first argument one at a time. At the end,
the results are collected by the master process and combined to a list object. A second
execution of these 3 lines would return exactly the same result. A seed has been set on
the master process in line 24. This seed ensures that the array ar.seed contains the same
values in each execution. Thus, always the same seeds are passed to the respective function
calls on the worker processes leading to equal return values.

For the case where more tasks than MPI processes exist, the load balanced version can
be recommended. The load balancing purely ensures that new tasks are scheduled to a
worker process as soon as one has finished its previous task instead of scheduling the tasks
to the processes always in the same order. More sophisticated load balancing has to be
implemented by the user himself by distributing tasks of approximately equal total length
to all available processes.

3.3.2 The packages snow and doSNOW

The package snow simplifies the programming and also extends the functionality of Rmpi.
It provides even easier functions for sending R-objects to the worker processes and running
independent tasks on them. A small example for gene interaction tests is presented here
which illustrates the typical workflow in snow. Suppose that one wants to compute a model
for each pair of genes in a gene expression matrix X (rows correspond to patients and
columns correspond to genes) in which one wants to test for the corresponding interaction
effect on a binary response y. In order to reduce the number of pairs, one first preselects
nv genes using the function GeneSelection in CMA:

1 #prepare gene expressions and response

2 library(CMA)

3 data(golub)

4 X<-as.matrix(golub[,-1])

5 y<-golub[,1]

6 #number of genes to be preselected

7 nv<-40

8 #preselection of variables (using CMA,X=matrix of gene expressions, y=response)

9 gs<-GeneSelection(X=X,y=y,method='t.test')

10 Ximp<-X[,gs@rankings[[1]][1:nv]]

In a second step, one defines a grid consisting of all pairwise indices of the preselected
variables:

11 #define grid

12 todo<-c()

13 for(ii in 2:ncol(Ximp))

14 for(cc in 1:(ii-1))

15 todo<-rbind(todo,c(ii,cc))
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The function, that has to be repeated for each pair, is the following. It first extracts
the current pair of gene expressions from the matrix of the preselected variables Ximp.
Subsequently, it computes a logistic model including the main and interaction effects of
the two genes. Eventually, the coefficients are returned for further analysis.

16 #function to be run in parallel

17 varselpara<-function(k){

18 datc<-data.frame(y=y,reg1=Ximp[,todo[k,1]],reg2=Ximp[,todo[k,2]])

19 mod<-glm(y~reg1*reg2,family='binomial',data=datc)

20 return(coef(summary(mod)))

21 }

Now, this function is run on all processors in the MPI environment. One first loads
the package snow and creates an MPI cluster (lines 20–22). Afterwards, one has to send
the required objects for the computation to the workers. In this case these objects are
specified in the parameter list of the function clusterExport. It includes the grid todo as
well as the matrix of preselected genes Ximp and the response y. Note that the function
varselpara is actually also an unknown object for the worker processes. The broadcasting of
the function, however, will be performed by the function clusterApplyLB which also starts
the execution. Apart from the cluster and the function varselpara, clusterApplyLB requires
the parameter x which is usually a vector whose elements will be passed to varselpara as
first argument one at a time.

22 library(snow)

23 #create cluster

24 cl<-makeMPIcluster(4)

25 #send necessary objects to worker processes

26 clusterExport(cl=cl,list=c('Ximp','todo','y'))

27 #parallel execution

28 results<-clusterApplyLB(cl=cl,x=1:nrow(todo),fun=varselpara)

The speedup curve for running this small example on different clusters can be seen in
Figure 3.3

doSNOW: In the special case of loop parallelization, several helper functions have been
developed which ease computation, e.g. by automatically sending necessary objects to
all cores (Revolution-Analytics, 2013). The latter reference also provides an interesting
mechanism for generalized ’parallelization’. It overwrites the operators do and dopar in
order to process the loops. The parallelization type is specified by a previous call to register*
where the asterisk is a placeholder for MPI, multicore or other parallelization mechanisms.
This way, the same code can lead to different implementations of parallelization, i.e. it is
easily adopted to the resources that are currently available. The previous example could
be continued from line 14 with doSNOW using the following lines.
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Figure 3.3: Speedup for pairwise logistic models on different computing clusters. The bad
performance was probably caused by a problem in the R installation. Benchmarks with a
newer installation did not suffer from such decreases in performance.
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15 #create cluster and register it

16 library(doSNOW)

17 cl<-makeCluster(4)

18 registerDoSNOW(cl)

19 #parallel execution

20 results<-foreach(j=1:nrow(todo)) %dopar% varselpara(j)

After the startup of the package consisting of the creation of the cluster and the regis-
tering (lines 15–18), one can basically run common R code. The foreach-statement, which
does not differ substantially from a classical loop statement, could also be run in serial
by replacing dopar by do. One also does not have to consider the different environments
of the processes because the package automatically broadcasts relevant objects wherever
necessary. Moreover, one could use different types of parallelization, e.g. shared memory
parallelization (R package multicore) or the Redis approach which will be introduced in
3.4.4. Thus, one can switch between different modes of execution without having to modify
the code substantially.

3.3.3 pbdMPI: Overcoming the master-worker concept

Recently, a new R package – pbdMPI – has been developed and published by Chen et al.
(2013). It overcomes the master-worker concept the other packages are based on. Its
programming style resembles more the common MPI programs where each MPI process
runs the same lines of code and process specific code parts are handled using if-statements.
The key elements of the package are introduced here by implementing the previous example
of pairwise tests. At first, one has to load the package and run a start-up mechainism using
the pbdMPI function init. Basically, all programs using pbdMPI commonly start with these
two lines:

1 library(pbdMPI)

2 init(set.seed=FALSE)

The argument set.seed=FALSE prevents that pbdMPI sets its own random seeds. If this ar-
gument is set to TRUE, deviations from R’s usual behaviour in random number generation
can be observed which shall be avoided here. Afterwards, one has to prepare the data. The
alert reader will recognize that these are exactly the same lines as in the previous section.
Their meaning, however, is different and illustrates the ’philosophy’ of the package quite
well.

3 #prepare gene expressions and response

4 library(CMA)

5 data(golub)

6 X<-as.matrix(golub[,-1])

7 y<-golub[,1]

8 #number of genes to be preselected
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9 nv<-40

10 #preselection of variables (using CMA,X=matrix of gene expressions, y=response)

11 gs<-GeneSelection(X=X,y=y,method='t.test')

12 Ximp<-X[,gs@rankings[[1]][1:nv]]

13 #function to be run in parallel

14 varselpara<-function(k){

15 datc<-data.frame(y=y,reg1=Ximp[,todo[k,1]],reg2=Ximp[,todo[k,2]])

16 mod<-glm(y~reg1*reg2,family='binomial',data=datc)

17 return(coef(summary(mod)))

18 }

19 #define grid

20 todo<-c()

21 for(ii in 2:ncol(Ximp))

22 for(cc in 1:(ii-1))

23 todo<-rbind(todo,c(ii,cc))

In contrast to the previous section, this code is run on all processes at the same time,
i.e. all processes load the data and run the preselection of the genes separately. This might
look like a waste of resources. But the runtime of the computation is smaller than a second,
so having the results broadcasted by a master process might even take longer. The loading
of the dataset by each process might be more questionable. Depending on the network
file-system and the number of different MPI processes, the fact that all processes have to
access a single file at the same time might cause a bottleneck. Here, however, one does not
need to treat this issue in detail. The most important aspect is that all processes have the
necessary objects (todo, y, Ximp) and also the funtion varselpara in their corresponding
environment at the end of this code section. Hence, one does not need to broadcast them
or wait for a master to give further instructions. The comparison of these workflows in
snow and pbdMPI is illustrated in Figure 3.4.

After this preparation, one has to ensure that each task computes some of the pairwise
logistic models. Again, each task determines separately what it has to do. In this case,
it requests its own rank, the total number of MPI processes and (lines 24–26) before it
computes its specific indices in the grid todo (lines 28–30).

24 #determine process specific tasks

25 rank<-comm.rank()+1

26 nranks<-comm.size()

27 ntodo<-floor(nrow(todo)/nranks)

28 remainder<-floor(nrow(todo)%%nranks)

29 tasks<-c(0,rep(ntodo,nranks)+c(rep(1,remainder),rep(0,nranks-remainder)))

30 myindices<-(sum(tasks[1:rank])+1):sum(tasks[1:(rank+1)])

The actual computation is performed in a code section which is absolutely identical to
a serial implementation. It is a simple loop-statement calling the function varselpara iter-
atively in order to compute the corresponding logistic models. The coefficients are stored
in a local matrix myresults. The matrix myresults is a good example for an eponymous
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snow pbdMPI

Figure 3.4: Comparison of parallelization in snow and pbdMPI. With snow, one has a
master process which sends commands and objects to the worker processes and collects
results at the end. During the actual computation parts, the master is idle (see dashed lines
in the left diagram). The package pbdMPI follows a philosophy of independent workers.
At certain time points, the workers have to communicate their results in order to benefit
from the work performed by the others (see dashed lines in the diagram on the right-hand
side).

object which is present in the environments of all processes but containts different values
in each of these environments.

31 myresults<-c()

32 for(ind in myindices)

33 myresults<-rbind(myresults,varselpara(ind))

In order to obtain the results, one now has to collect these different myresults matrices
from the processes. This is again done by all processes using the function allgather. This
means that after line 34, which is again executed on all processes, each process will have
an object allresults which is a list of the different myresults matrices that have been
computed by the different MPI processes. In this case, it is not necessary that all the
processes collect the results. However, if one would like to continue the analysis probably
each of the processes would need these results. Moreover, this call to allgather does not
take much longer than having a single process gather the myresults matrices.

34 allresults<-allgather(myresults)

35 if(rank==1){

36 save(allresults,file='testresults.RData')

37 }

38 finalize()

The only code line, that is indeed executed by a single MPI task, can be found in
line 36. It saves the results and is encapsulated by a if-statement checking the MPI rank.
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Afterwards, the computation is terminated by a call to the function finalize.

39 mpiexec -n 7 Rscript pbdtests.r

Another aspect of the package pbdMPI is that it has to be run in batch mode in contrast
to snow which can also be run interactively. Thus, the save operation in the previous code
section is indeed necessary to save the results for subsequent analysis. An exemplary
command line for starting the R-script pbdtests.r can be found in line 38. It uses the
command Rscript instead of R to start the script on n = 7 MPI processes in this case.

3.4 Comparison of Cluster and Cloud Computing

The next section uses some of these parallelization mechanisms in R in order to implement
several statistical projects on different computing clusters and cloud resources and compares
the implementations with regard to runtimes, scalability and efficiency. The following test
of the usability and efficiency of the individually assembled computer clusters consists of
four stages. At first, the basic computation and network capacity of the different instances
is analyzed and compared to other computer clusters used by statistical departments,
namely the computer cluster at the IBE (IBEC) and the mpp1-cluster (mpp) at the Leibniz
Supercomputing Center in Munich. Subsequently, some important parts of two statistical
projects which have already been realized on common computer clusters are implemented
on cloud res-sources. This is a crucial part since it will answer the question, whether the
statistical analysis of high-dimensional biological data can be reasonably realized in the
cloud. The last experiment will even go one step further by combining machines from
several computer clusters at different departments and EC2. This experiment will present
an opportunity to let machines from very heterogeneous sources jointly compute different
sub-tasks of a statistical analysis.

3.4.1 Simple Trend Benchmarks

Synthetically benchmarking computer systems is basically a science on its own, which
shall not be treated here. But for an overview and estimation of runtime behavior of
the real applications on the different EC2 instances, two simplistic synthetic benchmarks
are used. Both are not benchmarking the complete (virtual) machine, but speed and
memory aspects of the destination platform R. Overall system benchmarks like the Spec
suite Evaluation (2011) are far more elaborated and precise, but lack the integration of
the R interpreter in the results. Moreover, the Spec test is rather difficult to configure
and time consuming to run (Spec results for some instance types can be found in Coffrey
et al., 2011). The small benchmarks are using the arithmetic system of R – as desired
for the biostatistical software used in the bigger tests afterwards. The performance of
single cores of the CPU is tested by calculation of a specific subset of the Mandelbrot set
(Mandelbrot, 2003), which is done using a recursive loop calculating whether a complex
polynomial is bound or not. The inner loop is very small, so depending on the specific



3.4 Comparison of Cluster and Cloud Computing 85

Identifier/ Prov- CPU Cores/ RAM Cost/h Benchmark 1 Benchmark 2
API-Name ider [Ghz] Machine per core (*) Mean (sd) [s] Mean (sd) [s]

ibec IBE 2.7 4 1.5 GB - 79.1 (1.03) 71.8 (0.7)
mpp LRZ 2.0 16 2 GB - 98.6 (2.5) 91.9 (3.6)

gvs1/3 LRZ 2.3 16 8 GB - 100.6 (1.8) 97.8 (0.23)
m1.small AWS 2.7 1 1.7 GB 0.085$ 309.1 (6.9) 317.6 (6.6)

c1.medium AWS 2.3** 2 0.88 GB 0.17 $ 132.6 (4.9) 135.1 (5.3)

Table 3.1: Results for the basic benchmarks on the various instance included in the study.*
Prices from the Amazon US east data center in North Virginia (September 2011). Prices
vary between the individual data centers. ** Although running on a 2.7GHz CPU this
instance only features the performance of a 1.7GHz Xeon processor

R environment it can be held and executed inside the processor’s cache. The memory
test is even simpler. It copies memory blocks inside a matrix guaranteed bigger than
the processors cache. Overall runtime of the benchmarks is short, between one and three
minutes depending on the system. Therefore the benchmark can be repeated many times
(at least 20 iterations), giving a measurement of the variance in execution time, which is
only taken inside the R program and therefore no startup time is included. These short
running benchmarks are giving a basic trend of the systems processor’s speed using R
and they provide an opportunity to quickly and therefore cheaply test the basic system
performance, which is important due to the sheer amount of different EC2 instance types.
Table 3.1 provides an overview over the instances and servers used for the analysis. The
focus was on the instance types m1.small, m1.large and c1.medium, which are basically the
cheapest instances. Nonetheless, they provide enough memory for the statistical projects
which will be analyzed in the subsequent sections. The first impression is that all three
instance types are slower than the computer cluster machines which were bought about four
years ago. Especially the m1.small instance, which is EC2’s standard instance, needs about
two to three times more time for the first benchmark. For compatibility issues, this instance
type is representing and running at the speed of a 1 Ghz CPU from 2006 when EC2 was
introduced. Via virtualization, it only gets time shares of about 40% of a single physical
core (Evangelinos and Hill, 2008). The m1.large and c1.medium instances are remarkably
faster whereby both instances provide two virtual cores. Appendix C also provides the
results of these two benchmarks for the larger, faster instances. For computations with low
memory demands c1.medium is basically the instance of choice having almost the same
price per core as the slower m1.small instance. The m1.large instance provides 3.75GB per
core. However, its costs are four-fold. This price structure clearly indicates that writing
memory efficient code can save money. Thus, it is quite probable that a statistical analysis
in the cloud will produce some avoidable costs. For example, usually the computations
had to be run using only one core per c1.medium instance. It is also worth mentioning
that the performance of the AWS instances is subject to higher variability. Depending
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Figure 3.5: Time needed for the broadcast of a 2GB Affybatch. Here, the MPP-cluster
with its Infiniband network is clearly superior to the other clusters.

on the structure of the underlying Xen virtualization (Systems, 2012), cores and memory
are separated quite well on the instances. But network and storage I/O (Input/Output)
cannot be separated this way and therefore all instances on a host can affect each other.
In order to check the network capacity Rmpi’s broadcast command (Yu, 2011) was used
for sending a 2 GB AffyBatch object (Gautier et al., 2004), which is the commonly used
R-object for microarray batches, to a varying number of worker cores.

As shown in Figure 1 3.5, one can observe that this broadcast takes slightly longer on
the EC2 instances and that their runtimes are growing faster if the number of worker cores
is increased. In the case of the mpp-cluster, which is equipped with an Infiniband network
connection, the broadcasting time basically does not increase after 10 cores. However, net-
work performance seems to be sufficient for most statistical methods where larger amounts
of data are only sent once. Further analysis of the network connection and description
of technical details can be found in Appendix C. The result of these first tests are that
computations might take longer on the chosen EC2 instances but the network capacity
seems to be sufficient for the planned projects.
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Figure 3.6: Speedup for Project 1 on cluster and cloud instances. The speedup is almost
linear and only minor differences can be observed between cluster and cloud platforms.

3.4.2 Test Project: Optimization Bias

The first project to be conducted in the cloud deals with nested resampling procedures
in the context of supervised classification with high-dimensional microarray data as pre-
dictors, as described in detail in Chapter 1. One goal of this project was to estimate the
bias induced by simply trying several predefined cost parameter values and reporting the
minimal resampling misclassification rate only. In order to analyze this bias, one had to
reiterate many times the whole resampling approach with SVM (support vector machine
Hastie et al., 2001) as a classification method. Additionally, the whole procedure has to
be repeated for several microarray datasets because the optimization bias, just as the cost
parameter itself, strongly depends on the classification task at hand. For financial reasons,
just parts of the project were implemented on the EC2 instances but the efficiency of the
parallelization for the most important part of this analysis can be illustrated this way,
too. The central routine implements the resampling approach for a specific cost parameter
value. If this part scales sufficiently, one can expect the whole project to be efficiently
scaling as well.

Figure 3.6 shows the speedup for computer cluster and cloud instances, which consists
of the sequential time divided by the parallel time for an increasing amount of workers. The
gray line represents a perfect linear speedup on adding additional workers. Technically, this
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is based on a parallelization in R using MPI. The code used for the analyses is provided
on a publically available Amazon Machine Image (see Appendix C). The consumed time is
only measured inside the R program, so the overhead of instance startup is not included.
Starting up 20 EC2 instances can take several minutes (referring to the year 2011) whereby
this start up time is quite variable. Including this overhead into the analysis would severely
distort the results since only a small part of the project is run at all. Moreover, AWS
charges fees per started hour and instance which also has to be considered appropriately.
Both of these issues are negligible if the whole project is calculated. One can see that
scaling is almost identical for cloud and computer cluster instances. Of course, the absolute
computation times are remarkably higher for the m1.small instance. However, since the
implementation scales well, the higher sequential runtime can be easily reduced by renting
more instances. The main result of this experiment is that the main computation part of
this project can also be efficiently parallelized on EC2 instances.

3.4.3 Cost Aspects: An example

This subsection presents a short cost estimation for the real data simulations performed in
Chapter 1. It will be approximated how much money would have been necessary if these
simulations had been run at AWS EC2.

Estimated Computation Hours

In this project, analyses on 4 real datasets as well as several simulated datasets were per-
formed. For the real datasets, the resampling procedure had to be run for seven different
classifiers. However, these classifiers are not as computationally intensive as SVMs. Ac-
cording to experience it takes approximately 3 times more time to compute the whole
classifier pool than running SVM only. Additionally, the correct actual response as well as
a randomly generated response was used in order to simulate non-informative data. It was
also necessary to assess the impact of the size of the training dataset so the analyses were
run for two different portions of training data. Finally, 50 replications for each of these
setups had to be performed in order to analyze the variability of the method. This adds
up to 1200 computing hours.
Real data study:

� four datasets (smaller than the Wang dataset) 1 2
99 ×

� at least seven classifiers (less computationally intensive than SVM) 3
99 ×

1Since these datasets are smaller than the Wang dataset, it is expected that they require approximately
half the runtime, needed for the Wang dataset. Thus, this runtime estimation uses a factor of 2 instead of
4.
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� 50 replications 50
99 ×

� informative and non-informative data 2
99 ×

� two different portions of training data 2
99 ×

� sequential runtime: 1 hour 1h

� Total: 1200h

In the simulation study, 5 data generating processes were applied for three different
sample sizes. These datasets were smaller than the Wang dataset and the resampling
procedure took approximately only half the time on these datasets. Here, the same classifier
pool was analyzed. However, 200 replications on the simulated data were performed since
the simulation provided the opportunity to use newly simulated data in each replication,
i.e. each run was more informative. Concluding, this leads to an estimate of approximately
4500 computing hours.

Simulation study:

� 15 simulated datasets (smaller than than the Wang dataset) 7.5
99 ×

� 200 replications 200
99 ×

� at least seven classifiers (less computationally intensive than SVM) 3
99 ×

� sequential runtime: 1 hour 1h

� Total: 4500h

Thus, the complete project requires at least 5700 computation hours if one uses the
IBEC sequential runtime as a reference.

Estimated Costs

For approximating the costs, a simple formula can be applied:

f × t
s

n× c = H × n× c, (3.1)
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Cores 1 3 5 7 10 15 20
Runtime [h] 5398 2042 1205 858 607 466 351
Costs [$] 918 1042 1024 1021 1032 1188 1195

Table 3.2: Estimated costs for the complete Project 1 on the EC2 instance c1.medium.
Please note that due to the memory requirements the second c1.medium core was idle, i.e.
its costs per core are 0.17$\h in this case.

Cores 1 3 5 10 15 20
Runtime [h] 13636 4574 3652 1850 1321 949
Costs [$] 1159 1166 1552 1572 1684 1613

Table 3.3: Estimated costs for the complete optimization bias project on the EC2 instance
m1.small.

where s denotes the speedup factor, n the number of worker cores, c the costs per core
and hour for the respective instance, t the sequential runtime at the respective instance
and H the estimated number of hours the computation will take for the chosen number of
instances. Moreover, f corresponds to the estimated factor that has to be used in order
to obtain the project running time from the running time of its core part which has been
analyzed here (compare to the two tables in the previous section), i.e. 4500 + 1200 = 5700
in this case.

For this project the c1.medium instance is far more efficient. It is both faster and
cheaper because the shorter computation time offsets its higher instance cost. In this case
the second core was idle because of the memory requirements of the computation. If both
cores can be used the efficiency of the c1.medium instance is substantially increased. Since
speedups are almost linear one can achieve an substantial reduction of computation times
for low additional costs.

3.4.4 A Hybrid Cloud Solution: Combining Computer Cluster
& Cloud Resources

An advantage of the cloud is its scalability, i.e. the possibility to get more resources if more
resources are needed. If a given infrastructure is fully utilized in peak times, the possibility
to add machines from the cloud to existing computer clusters would be helpful. With some
efforts, EC2 instances can be directly integrated into local computer clusters manually. Far
more convenient is the usage of a system which can handle this automatically. The “data
structure server” Redis (Sanfilippo and Noordhuis, 2012) can be used together with its R
connector doRedis (Lewis, 2011) to combine local computer clusters and cloud instances.
As networking is partly routed over the public Internet, it is clearly a bottleneck. But for
embarrassingly parallel programs like the examples shown above, networking speed is not
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essential. The concept of the Redis approach is that the server manages all the subtasks
(e.g. a single resampling iteration) of a job and sends them to whichever worker node
which connects to it.

3.4.5 Hybridcloud: Case study

For illustration purposes one of the analyses run for evaluation of the correction in Chapter
1 is used where 3000 instead of 100 resampling iteration are performed. The basic infras-
tructure is provided by a Redis-server on which the subtasks and their necessary data are
stored. In the example, this server runs on a local machine at the IBE. The following
code creates a job queue, biascorrection1 3000, on the Redis-server including the 3000
subtasks .

1 library(doRedis)

2 registerDoRedis('biascorrection1_3000')

3 results<-foreach(j=1:3000) %dopar% {cl2(j)}

Subsequently, one can connect local workers to the redis server which perform the
subtasks. The required data are automatically sent to the workers by the redis server
which is another convenient feature of this approach.

1 library(doRedis)

2 registerDoRedis('biascorrection1_3000',host='localpc@ibe.med.uni-muenchen.de')

3 startLocalWorkers(n=1, queue='project1_3000')

Now, the worker will perform the subtasks until the job queue is empty. If one wants
the worker to stop after a certain number of subtasks the parameter iter can be specified
in order to set a limit for the subtasks to be performed by the specific worker.

In an MPI environment several solutions are possible in order to connect multiple
workers at the same time. In the example, the following code was run to connect 30 IBEC
cores to the Redis-server:

1 join_doredis<-function(ind){

2 library(doRedis)

3 redisWorker('project1_3000',host='localpc@ibe.med.uni-muenchen.de')

4 }

5 library(Rmpi)

6 mpi.spawn.Rslaves(nslaves=30)

7 mpi.apply(1:30,join_doredis)

Of course, the same code can be applied on the EC2 nodes which eventually ensures a
cooperation of cluster and cloud resources. An ambiguous feature of the approach is that
each worker only connects to the Redis-server and thus does not know about the other
workers. On the one hand, this alleviates certain problems because one does not need
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Worker processes can run on any R-compatible hardware and can connect at any time 

redis-server

master:
doRedis

sends
jobs +objects

NODE 1
worker 1a

...
worker 1z

NODE 2
worker 2a

...
worker 2z

NODE 3
worker 3a

...
worker 3z

NODE 4
worker 4a

...
worker 4z

distributes
jobs and objects

eventually returns results

• robust
• flexible
• dynamic

Local Cluster Cloud

Figure 3.7: Hybrid-Cloud based on R and the doRedis.package. The jobs are sent from a
master process to the redis server and subsequently performed by heterogeneous instances
which can connect at any time. In the end, the results are sent from the workers to the
redis server which finally returns them to the master process.
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any interconnect between the worker nodes and different architectures can be combined
in a very comfortable way. On the other hand, several hidden problems can occur in this
approach. E.g. the different worker cores might use different versions of R or certain
packages and the computation cannot be reproduced easily afterwards. A possible solution
for this problem is a publically available AMI (Amazon Machine Images) which might be
used to harmonize the different environments. It might be difficult, however, to use these
AMIs at computer centers.

Another important advantage of this separation of job administration and computation
is that one does not encounter any problems if one temporarily does not have any workers
at one’s disposal, i.e. the job can be paused. Results and the description of the individual
subtasks of the job are stored independently from the workers. For example, if one wants to
use the staff’s computers for larger computation tasks at night, one can use a small script
connecting the respective computer to the Redis-server as soon as the staff leaves the office.
In the example, resources from the LRZ (gvs1, gvs3), IBE and EC2 were combined. Since
this example was intended to demonstrate the sheer possibility of this approach the pool
of worker machines primarily consisted of free computing resources. Figure 3.8 shows how
many tasks have been performed by the different machines. Of course, the main part of the
tasks has been processed by the 30 IBEC cores. However, one can see that the c1.medium
instances processed more tasks per core than the IBEC machines although their connection
to the Redis-server is slower. In practice, the actual number of integrated cloud instances
can be chosen depending on the availability of free computing resources and the urgency
of the job.

3.4.6 Parallelization for survHD

Most of the parallel programming approaches, which have been used in this comparison
of cloud and cluster platforms, can also be applied in the context of survHD which has
been introduced in the previous section. A small example will be presented which uses the
doRedis approach. The important feature here is the independence of the different iterations
in the resampling-based evaluation process which is the most computationally intensive
component in the analysis. The following Gantt chart illustrates the parallelization of
a cross-validation with nested hyper-parameter optimization for the CoxBoost algorithm
using a combination of doRedis and shared memory parallelization.

Apparently, most of the time is spent in the green regions representing the actual compu-
tation time. Since the tasks in the tuning procedure are equally long, load balancing is not
an important issue in this case. In comparison to CMA, parallelization is similarly effective.
For the survival algorithms, however, parallelization is even more urgently needed, since
runtimes are significantly longer especially if hyperparameter tuning is involved. Another
important aspect is the robustness of the doRedis approach. As experienced in practice,
the survival algorithms suffer from convergence problems to a much higher extend than
most classification algorithms. Consequently, many tasks have to be rerun and errors have
to be caught without breaking the complete computation.
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Figure 3.8: Distribution of the 1000 subtasks over the involved clusters in the hybrid cloud
at AWS EC2, IBE and LRZ. Although the connection of the AWS instances (c1.m) to
the Redis-server is distinctly slower, they perform approximately as many subtasks as one
would expect from their number and processor speed.
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Figure 3.9: Gantt chart of doRedis / multicore-implementation of a resampling-based hyper-
parameter optimization on SuperMUC using 512 cores on 32 nodes. One can see that after
a small loss of time at the startup, all processes are mainly performing the computations
(green). Additionally, some time is lost at the end of each computation parts when the
threads of the shared memory parallelization have to wait for each other.



96 3. Computational Aspects & Software

3.5 Working with large datasets in R

Modern biological data are growing in size from generation to generation. The current next
generation sequencing datasets often comprise Terabytes of data. The software engineering
community has already devoted much attention to this problem in its discussion about ’Big
Data’. Many distributed approaches to the handling of large datasets have been invented
in this context. In some cases, the raw data can be preprocessed and the statistical analysis
can be performed on distinctly smaller datasets. For microarrays as well as for many other
data types, however, this preprocessing already involves statitistical methods and thus the
handling of large datasets evolves into a problem for statisticians, too. At first, a small
example is described where the need for new approaches to the handling of large datasets
becomes evident. Subsequently, a recent approach to the processing of large datasets is
presented which is already implemented in the programming language R and is thus easily
deployable for statisticians who need to analyse such large datasets. Furthermore, this
implementation is compared to a classical approach which is not available in R.

3.5.1 Motivating Example: Normalization of microarrays

In order to illustrate the increasing importance of handling large datasets in statistics,
this subsection presents a motivating example based on the microarray preprocessing step.
This preprocessing step has already been discussed in previous sections, for example in the
context of cross-study validation in Chapter 2 as well as in the description of the workflows
in survHD. As already mentioned in Chapter 2, the comparability of microarray studies
and the transfer of prediction rules from one study to another is a delicate problem. Mi-
croarray raw data comprise several Gigabyte and have to be preprocessed whereby mainly
statistical approaches are used. This preprocessing step was probably one of the first com-
mon statistical approaches where the raw data did not fit into the typical main memory
of a modern desktop PC. Schmidberger et al. (2011) have even developed a Bioconductor
package using a distributed data approach for the preprocessing step.

Gene expression microarrays usually consist of approximately 500000 measurements
whereby between 30 and 50 measurements belong to a probeset. The gene expression
measurements are influenced by several laboratory conditions. Additionally, biological
phenomena just as non-specific binding can distort the gene expression values obtained
using the arrays. Therefore, the microarrays have to be preprocessed before statistical high-
level analysis. Due to the large number of values, this preprocessing is computationally
intensive and requires large amounts of main memory. With regard to preprocessing, so-
called batch effects play an important role. Microarrays obtained under equal laboratory
conditions are sometimes more similar to each other and share common patterns. McCall
et al. (2009) have shown that this effect can even lead to the problem that 2 microarrays
from exactly the same tissue but processed under different laboratory conditions can be
less similar than two arrays from different tissues but processed under the same laboratory
conditions. Most papers (e.g. Kostka and Spang, 2008) treating this issue claim that multi-
array approaches, which use the information from several arrays at the same time, can even
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exacerbate this problem.

An experiment with ’artificial’ batches

In order to analyze this concern, ’artificial’ batches are created in a small simulation study.
The following procedure was performed in each iteration b, b = 1, . . . , 50, on a microarray
dataset consisting of 47 microarrays collected in a colon cancer study (Ancona et al., 2006):

(1) A random subset Gb of 10 arrays was sampled without replacement. This sample
represents an ’artificial’ batch.

(2) The random subset Gb was preprocessed using each of the following methods m,
m = 1, . . . , 4 leading to four preprocessed random subsets G̃b

m, m = 1, . . . , 4:

1) robust multi-array average (RMA, Irizary et al., 2003)

2) variance stabilizing normalization (Huber et al., 2002)

3) addon RMA as proposed in Kostka and Spang (2008). Here, the preprocess-
ing on G1 was used as reference batch whereas the batches Gb, b = 2, . . . , 50
were treated as addon batches. On these batches, the addon RMA method
was applied which uses the information from the preprocessing on the reference
batch.

4) frozen RMA (multi-array version, McCall et al., 2009)

Thus, one obtains a total of 200 preprocessed artificial batches G̃b
m, m = 1, . . . , 4,

b = 1, . . . , 50. Subsequently, for each method m, the corresponding preprocessed artificial
batches G̃b

m, b = 1, . . . , 50, were merged over the 50 iterations. This resulted in four
multi-batch datasets including 50 preprocessed microarrays.

The actual data all belonged to a single ’biological batch’, i.e. they were all processed
under the same laboratory conditions. The only difference between the preprocessed arrays
of an individual patient in the different G̃b

m, b = 1, . . . , 50, consisted in the set of additional
arrays which were normalized together with the respective microarray by a certain method
m. The next step consisted in a cluster analysis which was performed separately on each
of the 4 multi-batch datasets.

The two illustrations show the results for the cluster analysis on the merged dataset for
m = 2 (RMA, Figure 3.10) and m = 3 (addon RMA, Figure 3.11). They provide evidence
that the batch effect caused by multi-array normalization indeed exists.

The figures illustrate the results for a subset of 15 patients in order to enhance clearance.
The patient number can be found on the left side of the heatmap and a color coded version
is presented on the right side. Raws with the same patient number refer to exactly the
same raw microarrays which have been normalized together with different additional arrays
within a randomly assembled artificial batch Gb. Consequently, microarrays belonging to
the same patient can be expected to be assigned to the same cluster by the corresponding
cluster analysis (these clusters are not of the same size since the different patient arrays were
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not equally often part of the normalized subset). Particularly in the lower part of Figure
3.10, the small colored rectangles indicate that the patient clusters are not clearly separated
but mixed up. This means that the cluster analysis classified preprocessed microarrays
belonging to different patients as more similar than preprocessed microarrays belonging to
the same patient.

This problem usually does not occur in the case of the different addon-normalization
techniques, which have been introduced in Kostka and Spang (2008), or at least to a much
lesser extent. These addon-techniques try to save the parameters of the preprocessing
on a first dataset so that a second dataset can be preprocessed in an analogous manner.
Instead of recomputing the preprocessing parameters on the second dataset, the archived
parameters from the first dataset are used. Likewise, with the established frozenRMA
approach (McCall et al., 2012), which integrates information from large datasets of the same
architecture into the normalization in order to stabilize it, this phenomenon is observed
only rarely. This is exemplified by the second figure where the cluster analysis mainly
assigns microarrays from the same patient to the same cluster.

3.5.2 Implementation

As described in more detail in Appendix C, the microarray preprocessing step can be im-
plemented using two different ways. One can either parallelize the preprocessing function
itself, as implemented in the Bioconductor package affyPara (Schmidberger et al., 2011),
or one can parallelize the large number of resampling iterations. The first strategy scales
significantly poorer regardless of the platform used (see Appendix C). Usually, an efficient
scalability can only be achieved up to 10 cores unless really large datasets (>300 microar-
rays) are normalized together. The most important advantage of this strategy, however,
consists in its clearly lower main memory requirements, which in some cases renders the
computation possible on clusters with less RAM where a normalization of all arrays at the
same time cannot be performed at all. On these clusters, a combination of both strategies,
resulting in a hybrid parallelization using the packages doRedis / doSNOW and multicore,
can be very useful.

3.5.3 Parallel file access in R

The microarray preprocessing step provides the opportunity to analyze an important func-
tionality with respect to the efficient implementation of statistical analyses of large datasets
using a large number of processes, namely the parallel access of many R-processes to a
single large dataset. In this context, the R-package bigmemory (Kane and Emerson, 2012)
plays a crucial role because it implements a parallel access using memory attached files.
The package was originally developed in order to alleviate a general problem concerning
extremely large datasets in R. The problem is related to a limit of row or column indices in
the R programming language which renders impossible to operate on datasets with more
than 231 − 1 ≈ 2.15BN elements. However, it also provides the basic functionalities that
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Figure 3.10: Cluster analysis of separately prepro-
cessed microarrays (using RMA) in artificially cre-
ated batches. Partially, microarrays belonging to the
same patient are assigned to different clusters and of-
ten assigned to clusters containing arrays of the same
artificial batch.
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Figure 3.11: Cluster analysis of addon-preprocessed
microarrays (using addon RMA, Kostka and Spang,
2008) in artificially created batches. Microarrays be-
longing to the same patient are always assigned to
the same cluster.



100 3. Computational Aspects & Software

are commonly implemented by parallel I/O standards like MPI-IO (see MPI-Forum, 2012)
for C or Fortran.

The bigmemory implementation is more flexible in the sense that it does not rely on
collective calls to open or close which enables a dynamic worker pool to access the dataset.
This feature is crucial for the usage in combination with the doRedis approach described
above since the workers are dynamically added or removed during the computation. The
common MPI-IO approach would not be possible in this situation because here a synchro-
nization of the different MPI tasks and collective calls are necessary.

The following illustration shows a comparison of two Gantt charts whereby the first fig-
ure refers to a bigmemory implementation in R, whereas the second one depicts an imple-
mentation using MPI-IO. The runtime is not exactly comparable since the second program
was not run in R which currently lacks a feasible MPI-IO-implementation. Therefore, the
second benchmark has been performed based on a Fortran 90 implementation of MPI-IO.

The results in Figures3.12 and 3.13 have been obtained during tests on the LRZ (Leibniz
Supercomputing Center) SuperMIG HPC (high performance computing) system. They
provide evidence for the good scalability of the approach and the significantly more flexible
access with the bigmemory approach in comparison to the MPI-IO standard.

On the contrary, the same benchmarks look quite different at the IBE cluster (see
Appendix C.2) which also uses a network file system which is, however, not dedicated
to parallel file access. An experiment was run where each process at first had to read a
500x5000 matrix which was then used for constructing a classification model. Subsequently
the error rates of these models on a test dataset had to be written into a common memory
attached file (small write). Moreover the used dataset was written back into another
file (large write). One can observe that the access to the common files is quite poorly
coordinated. The first read operation lasts very long for several processses since the network
file system is not capable of delivering the data to all processes at the same time. As soon
as the first read operation is completed, the remaining ones are performed within seconds
since the datasets are already in the main memory of the respective cluster node. The
obvious pattern of groups of four similar tasks can be traced back to the fact that at the
IBE cluster each computing node consists of four cores. For the writing operation, the
problem is even more pronounced. Although the size of the file written is equal for all
tasks, there is a strong variation between the large write operations.

If one compares these benchmarks to the one obtained on SuperMIG, it can be recog-
nized that this behavior is not caused by processes locking the file since on both systems
the same code has been used. The problem consists in the lower coordination capability of
the network file system and the lower network capacity at the IBE cluster. This bottleneck
becomes even more obvious in an experiment using matrices which are ten times larger than
in the current test (see Appendix C.2). In this test the write operation was omitted since
they caused severe disturbances in the operation of the cluster. One can observe, however,
that the real computation tasks (green) hardly overlap in the corresponding Gantt chart.
The first node (each node hosted two processes in this test) has already completed its ten
computations and the corrresponding ten read operations when the second node started
to construct the first model. In this case the actual computation times where quite small
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Figure 3.12: Gantt chart for a bigmemory-experiment
with 500 processes at LRZ SuperMig reading and writing
500× 5000 matrices using a 6GB memory-attached file.
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Figure 3.13: Gantt chart for MPI-IO with 160 processes
at LRZ SuperMig writing and subequently reading 2
million integers in a single shared file.



102 3. Computational Aspects & Software

in comparison to the time needed for reading the memory attached file. Consequently, a
parallelization would not be necessary. Nonetheless, the networking problems, which would
occur in a large parallel computation, become evident in this test.

In another minor test, the combination of the doRedis approach and bigmemory was
tested in the context of a hybrid. Hereby, several instances from AWS EC2 (Amazon
Web Services Elastic Compute Cloud 2) were integrated into the file system using sshfs.
This ’Hybrid-File system’ as well as the common access of cloud and cluster instances to a
memory attached file could be implemented using these two R-packages. The performance,
however, was rather poor as far as latency and connectivity were concerned.

Combining bigmemory and doRedis

In the context of microarray preprocessing, a combined approach of doRedis and bigmemory
was tested. Instead of reading the required microarray data from disk, a large bigmemory
matrix containing all the array data (approximately 4.2GB) was created which could be
accessed by all processes at the same time. Each process normalized other parts of the
matrix in this experiment, whereby these parts were randomly assembled and were not
of equal size. The normalized microarrays were written to another memory attached file
(ca. 6.7 GB) which was accessed in parallel as well. Each process performed this cycle of
reading the raw data, normalizing them and writing the resulting arrays ten times. For the
reading operations between 40MB and 433MB had to be read, whereas the write operations
required between 3MB and 200MB. As illustrated Figure 3.14, the access to the two memory
attached files is clearly less structured than in the previous examples. One notices that
for several calls to the function flush (brown), processes, hosted on the same node, are
synchronized after write operations. Additionally, it becomes evident that only the first
read and write operations require relevant amounts of time whereas the later operations are
processed significantly faster. Especially in the case of the read operations, only the first
operation can be seen in the illustration. Since each process normalizes microarray subsets
of different size, some processes have completed their task after 650 seconds whereas the
last processes on the same node finish after approximately 1080 seconds. In this case, this
finding can not be explained by the fact that certain processes block the data files when
they read or write. It is merely caused by the different runtimes of the computation steps
(green) which simply take less time with the processes that finish first.

3.6 Discussion

The new types of biological data which have emerged in the last two decades require
interdisciplinary approaches and the efficient usage of computational resources. In this
context, it is reasonable to focus more on the cycle time, consisting of preparation, data
preprocessing, runtime and queuing time, as well as cost efficiency. Cloud computing can
help to distinctly decrease two of these quantities. Cloudbursting, i.e. outsourcing simu-
lation runs into the cloud if local resources are temporarily busy, is a good opportunity
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Figure 3.14: Parallel normalization of microarrays using a separate memory attached file
for reading the raw data and writing the normalized arrays. The test was run on LRZ
SuperMIG using the R-package bigmemory for 400 processes.
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to avoid long queuing times. Moreover, it provides the opportunity to reduce the invest-
ments into new in-house resources by curtailing one’s hardware stack to the requirements
of the average workload whereas peak work loads can be handled using cloud resources.
Hereby, the R language, for which implementations even for tablet PCs and iPods exist,
can be considered a great advantage. As shown in the previous sections, it is quite easy to
build a flexible worker pool of heterogeneous cloud resources in order to perform a large
number of independent jobs as they can be found with most modern statistical methods,
e.g. resampling or permutation tests. The combination of a Redis-server and an R Redis-
connector, which has been proposed in section 3.4.5, represents a light-weight, easy-to-use
opportunity to realize a cloudbursting strategy. Moreover, it can also be used on classical
cluster computer resources. On the LRZ Supermuc HPC system, benchmarks running on
up to several thousands of cores have been successfully performed with this approach, for
example in the simulations for Chapter 2. This specific case also featured the good prop-
erty that only small data files had to be read from disk and that these data were quite
small. Thus, this project would have been certainly realizable in the cloud, too. Here,
some experiences concerning the workflow in the cloud and on computer clusters shall be
discussed as well since they might also have an impact on one’s individual preference of
cluster or cloud computing. A very convenient feature of utility computing in the cloud is
its high flexibility. One can build one’s own computer cluster at EC2 whenever necessary
and one can customize it accordingly to the needs of specific analyses. Virtualization and
virtual images also provide the opportunity to use different operating systems for different
jobs which can be very useful if for certain workflows specific codes or software has to
be used which is dependent on certain operating systems or even certain versions of an
operating system. Moreover one has the opportunity to rent single instances for sequential
code, e.g. if the memory requirements of the computations might exceed the capacity of
the in-house machines. Another advantage is that one has full control over the ordered
resources and one does not have to resort to job scheduling systems coordinating the needs
of the different computer cluster users. On the contrary, the workflow on cloud resources is
remarkably changed by the fact that one has to pay for each computation. One always re-
flects twice whether a specific computation is really necessary which limits the opportunity
to test and experiment. Of course, this will induce researchers to plan their computations
more elaborately and avoid unnecessary tests which might also be considered a positive
side-effect. Cloud computing, however, also has some hurdles for starters. Simple mistakes
like forgetting to shut down instances or moving results to the own computer can easily
produce unnecessary costs. Moreover, one must always estimate time and memory needs
in order to decide which instances are adequate for the task at hand. Consequently, AWS
and similar services are currently probably not the best place for the first steps in parallel
computing. Another problem concerns experienced users as well. After finding an error or
recognizing that a certain part of one’s algorithm has to be changed, all the computations
have to be repeated. Also, discovered problems in used packages can force a recalculation.
In an advanced stage of a project this means that the computation costs will effectively
multiply. After all, utility computing in the cloud seems to be a tool which has to be
applied in a considered way.
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In contrast to the computations discussed above, I/O intensive projects, as for example
the microarray normalization project in Section 3.5.1, pose a more difficult challenge for the
cloud approach. The corresponding section has illustrated that such analyses can distinctly
benefit from a strong network file system which is usually not available on cloud resources.
Even the network file system at the IBE-cluster faced clear difficulties and performance
losses in these benchmarks. Some of these problems might be overcome using distributed
data approaches e.g. using Hadoop. However, such approaches are more difficult to im-
plement and only realizable if one invests larger amounts of time into the programming of
such analyses. Hence, for I/O intensive projects, the classical cluster approach still seems
to be the reasonable choice.

Finally, R-packages can support running statistical analyses in cluster or cloud by
embedding mechanisms for parallelization directly into the packages. The API-package
for survival analysis proposed in Section 3.2, constitutes an example in this context. It
includes several functions where parallelization can be easily embedded into the package.
Either more cluster-based solutions, like snow or the flexible doRedis approach can be used
for the parallelization whereby combinations are possible which can also pave the way to
meta-clouds, i.e. to running jobs on cloud resources from several providers as AWS EC2 or
OpenStack. The simulations presented in Chapter 2 could easily be implemented in such
a meta-cloud using the doRedis approach in combination with the package survHD.
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The first chapter has focused on the term wrapper algorithm as a combination of algorithm
and an appropriate procedure for tuning its hyper parameters. This definition can also be
extended to the case where the ’tuning parameters’ represent different algorithms, i.e.
it can be used in all types of model selection. Further, this chapter has tried to shed
light on the underlying conflict of conditional and unconditional error rate which seems to
be caused by a discrepancy of interests between physicians and statisticians or machine
learners. The review process of the corresponding paper (Bernau et al., 2013), in which
it was barely possible to convince one of the reviewers that the unconditional error rate
might be of any interest at all, has shown that this conflict has not been covered in current
research to an appropriate extent. This is all the more understandable because for most
traditional statistical approaches the difference between conditional and unconditional error
can be expected to be small. Especially in the model selection setup, however, ignoring
the effects of retraining and retuning the model is not adequate. The models, chosen on
different training datasets, originate in different algorithms and cannot be assumed to lead
generally to very similar prediction performances. It has been shown that quantities like the
unconditional error rate of a wrapper algorithm can be paralleled to decision theory and the
risk of strategies. Moreover, an asymptotic consideration has affirmed the hypothesis that
the unconditional error rate of such a wrapper algorithm can be considered the estimation
target of the well established nested cross-validation estimator. This hypothesis has already
been formulated in Varma and Simon (2006) but has not been justified in more detail there.

Furthermore, a method for the estimation of this quantity has been proposed, avoiding
the high computational cost of nested cross-validation, which also approaches the cor-
rection of the optimization addressed by NCV. Although one might discuss whether the
unconditional error rate might be of any value for a physician, the two WMC variants as
well as NCV are certainly useful for this professional group, too. Eventually, both methods
try to correct for the tuning bias which has been a source for overoptimism, especially in
the early days of microarray studies (see e.g. Ambroise and McLachlan, 2002; Varma and
Simon, 2006). A proper assessment of the real prediction quality certainly adds some value
for physicians although independent validation on future studies will always be the best
choice for an estimation of the prediction quality of a concrete model.

The second chapter covered a recent validation scheme, cross-study validation, which
is especially useful in the context of wrapper algorithms and microarray studies. Its design
can safeguard against the optimization bias due to its strict separation of training / tuning
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dataset on the one hand and validation datasets on the other hand. The conflict between
evaluating concrete models or wrapper algorithms, i.e. the discrepancy between condi-
tional error of a model or unconditional error of a wrapper algorithm, has again played
a crucial role because the performance scores have included estimates for different tun-
ing parameters also in this case. However, there have also been other remarkable findings.
Even with the application of several tools for the increase of comparability between studies,
within-study validation has lead to distinctly higher performance estimates. Moreover the
resulting ranking of the algorithms has been clearly affected by the definition of the scope
of the prediction. In the simulation study, some algorithms like CoxBoost have performed
better in within-study validation whereas other algorithms like the Plusminus have been
better in cross-study-validation. This has provided evidence for the hypothesis that there
exist specialist and generalist algorithms, as proposed in the introduction to this chapter.
Finally, the analyses have provided results suggesting that in this validation scheme, the
usage of scores like the third quartile, which in a certain sense account for the presence
of ’bad studies’, is recommendable. Additionally, it has also been found that within-study
validation and cross-study validation have been by far less correlated in this case than one
might have assumed. For example, for no algorithm a distinctly lower level for the perfor-
mance estimates has been found on those studies where cross-study validation performance
had suggested that the prediction methods are merely better than random guessing. Of
course, these results still have to be affirmed by future work. Nonetheless, they have helped
to gain insights into this complex problem of cross-study prediction.

Finally, the third chapter has covered several computational aspects which have been
important for the realization of the research projects in this thesis. The chapter has started
with the description of the R-package survHD (survival analysis on high-dimensional data)
which has strongly supported the realization of the simulations performed in the second
chapter. Its main objective is to provide a common interface to various methods for survival
analysis and their evaluation. Right now it encompasses six different algorithms and six
evaluation scores. Its split into a thin, easily maintainable core package and the add-
on package survHDExtra already underlines the intention to extend the package in the
future. For this purpose, an interface for user-defined algorithms has been embedded into
survHD which will hopefully enable the package to continually improve by the inclusion of
algorithms developed by its users.

The second part of the chapter has provided a short introduction to parallel computing
in R using the packages Rmpi, snow and pbdMPI. The latter package has abandoned the
master and worker concept of the previous packages and thus provides new opportunities
for programming which more resemble the one used in typical MPI programs. These
parallel methods have subsequently been tested in a case study which has provided evidence
that the analysis of preprocessed microarray data can be efficiently performed in cloud
environments like AWS EC2. With the combination of a Redis-server and its R-connector
doRedis, it has also introduced a simple way for the implementation of a hybrid cloud in
which computational resources with heterogeneous hardware can be combined even without
the use of virtualization in the context of statistical analysis. Finally, the last part of the
chapter has described several techniques which can be helpful when handling data as large
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as microarray raw data. It has presented a combination of the packages bigmemory and
doRedis, and has compared this approach to a typical MPI-IO implementation.

Although survHD and this entire thesis has primarily emerged in the context of mi-
croarray data analysis, most of the treated subjects can be considered to be useful for
high-dimensional statistical analysis in general. The upcoming of next generation sequenc-
ing will ensure that this topic will probably even gain in importance in the near future.
This will likely affect the computational side with the already well-established discussion
about ’big data’, as well as the analysis part where proper validation and the tuning of
wrapper-algorithms will play an important part in future research. This thesis has hope-
fully contributed to this quickly evolving field of high-dimensional analysis.
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Appendix A

Correcting the optimal
resampling-based error rate by
estimating the error rate of wrapper
algorithms
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A.1 Additional results on real datasets of Chapter 1

Study design

The new estimator ÊrrWMC (Eq. (1.10)) and its shrunken version ÊrrWMCS (Eq. (1.12))
are first evaluated on several experimental microarray datasets and compared to the widely
established estimator ÊrrICV (Eq. (1.4)) and to the naive raw mean estimator ÊrrRawMean

(Eq. (1.9)). The study is based on four microarray datasets: a colon cancer dataset
(Alon et al., 1999) included in Bioconductor package colonCA with n = 62 diseased or
healthy tissues and p = 1991 variables, a prostate cancer dataset (Singh et al., 2002)
with n = 102 diseased or healthy patients and p = 12625 variables, a leukemia dataset
(Golub et al., 1999) included in Bioconductor package CMA with n = 38 patients with two
different leukemia subtypes and p = 3051 variables, and an ALL-leukemia dataset included
in Bioconductor package ALL (Chiaretti et al., 2004) with n = 100 patients with and
without relapse and p = 12625 variables. Moreover, modified versions of these four datasets
are considered which are obtained by replacing the response Y by a randomly generated
Bernoulli distributed variable Y ′ ∼ B(1, 0.5). These modified datasets are denoted as“non-
informative”setup, in contrast to the original version of the datasets including“informative”
predictors. More details on the study design can be found in Section 1.4.1.

A.1.1 Alon data

Results

knn-0.8-info ICV WMCS WMC Raw Min Max
mean 0.170 0.180 0.172 0.180 0.163 0.240
absdicv 0.000 0.010 0.006 0.010 0.008 0.070
sd 0.011 0.008 0.009 0.008 0.009 0.009

knn-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.499 0.495 0.487 0.495 0.473 0.517
absdicv 0.000 0.009 0.013 0.009 0.026 0.018
sd 0.062 0.062 0.060 0.062 0.058 0.058

knn-0.63-info ICV WMCS WMC Raw Min Max
mean 0.184 0.193 0.187 0.193 0.175 0.239
absdicv 0.000 0.009 0.005 0.009 0.009 0.055
sd 0.007 0.007 0.006 0.006 0.007 0.008

knn-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.499 0.495 0.491 0.495 0.478 0.514
absdicv 0.000 0.006 0.009 0.006 0.021 0.016
sd 0.053 0.053 0.053 0.053 0.056 0.046



A.1 Additional results on real datasets of Chapter 1 113

pls-0.8-info ICV WMCS WMC Raw Min Max
mean 0.176 0.183 0.168 0.186 0.149 0.210
absdicv 0.000 0.007 0.009 0.010 0.028 0.034
sd 0.011 0.008 0.009 0.008 0.009 0.008

pls-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.502 0.497 0.483 0.504 0.465 0.538
absdicv 0.000 0.011 0.019 0.014 0.037 0.037
sd 0.052 0.050 0.053 0.050 0.053 0.046

pls-0.63-info ICV WMCS WMC Raw Min Max
mean 0.185 0.197 0.180 0.199 0.158 0.226
absdicv 0.000 0.012 0.006 0.015 0.027 0.041
sd 0.010 0.007 0.007 0.006 0.008 0.007

pls-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.508 0.506 0.498 0.509 0.481 0.533
absdicv 0.000 0.008 0.012 0.010 0.027 0.025
sd 0.044 0.043 0.046 0.042 0.049 0.042

sel-0.8-info ICV WMCS WMC Raw Min Max
mean 0.164 0.179 0.163 0.190 0.142 0.257
absdicv 0.000 0.016 0.005 0.026 0.021 0.093
sd 0.010 0.010 0.009 0.007 0.009 0.014

sel-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.492 0.482 0.462 0.488 0.440 0.531
absdicv 0.000 0.016 0.030 0.018 0.051 0.042
sd 0.049 0.048 0.048 0.047 0.049 0.054

sel-0.63-info ICV WMCS WMC Raw Min Max
mean 0.178 0.204 0.185 0.205 0.159 0.264
absdicv 0.000 0.025 0.007 0.027 0.020 0.085
sd 0.008 0.007 0.007 0.006 0.007 0.011

sel-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.497 0.494 0.480 0.496 0.460 0.531
absdicv 0.000 0.009 0.017 0.011 0.037 0.035
sd 0.051 0.046 0.049 0.044 0.053 0.039

Table A.1: Average corrected errors, mean absolute difference to ICV, and standard de-
viations (over T = 50 replications) for all setups on the Alon dataset. The tables include
the kNN (knn) and PLSLDA (pls) setups as well as the selection setups (sel). For each
setup two informative (info) and two non-informative (noif) setups are considered with two
different proportions of observations in the learning sets (0.63 and 0.8).
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Shrinkage factor

The following histograms display the values of the shrinkage factors computed within the
WMCS procedure for sample sizes n = 40, n = 60 and n = 80.
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Figure A.1: Distribution of the shrinkage factor ξ for all simulation setups on the Alon
dataset. The figure includes the kNN (knn) and PLSLDA (pls) setups as well as the
selection setup (sel). For each setup two informative (info) and two non-informative (noif)
setups are considered with two different proportions of observations in the learning sets
(0.63 and 0.8).

Summary

In the informative setups, one can observe several cases in which WMC yields corrected
errors higher than those obtained by ICV which is not in accordance with its general op-
timistic tendency. Consequently, WMCS, which is in practice lower-bounded by WMC
(exceptions are theoretically possible), performs even worse. If one takes a look at the
distribution of the shrinkage ξ in this case one can observe a clear difference to its charac-
teristic distribution in non-informative setups. Nonetheless, the estimates are quite close
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to the raw mean. This is the main problem of WMCS: in intermediate cases the measure ξ
has not enough power to push the WMCS results closer to those of WMC which performs
well in these cases. This problem seems to be caused by an overestimation of the expected
bias ζ which is itself caused by a less accurate variance estimation especially in the 0.63-
setups. Also in the tuning setups, the shrinkage factor is overestimated, which shrinks the
WMCS estimates close to the raw mean. Again the differences among the different tuning
parameters seem to be too small in comparison to the estimated variance. WMCS is clearly
better than WMC in non-informative setups where WMC is too optimistic.

A.1.2 Singh data

Results

knn-0.8-info ICV WMCS WMC Raw Min Max
mean 0.090 0.092 0.086 0.095 0.079 0.111
absdicv 0.000 0.004 0.006 0.006 0.011 0.020
sd 0.007 0.006 0.005 0.005 0.005 0.006

knn-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.498 0.496 0.492 0.496 0.482 0.510
absdicv 0.000 0.005 0.007 0.005 0.016 0.013
sd 0.042 0.042 0.041 0.042 0.041 0.042

knn-0.63-info ICV WMCS WMC Raw Min Max
mean 0.102 0.104 0.097 0.106 0.090 0.121
absdicv 0.000 0.005 0.005 0.006 0.012 0.019
sd 0.006 0.005 0.005 0.005 0.005 0.006

knn-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.493 0.493 0.491 0.493 0.482 0.504
absdicv 0.000 0.004 0.004 0.004 0.011 0.011
sd 0.035 0.035 0.034 0.036 0.033 0.035

pls-0.8-info ICV WMCS WMC Raw Min Max
mean 0.087 0.092 0.080 0.091 0.075 0.180
absdicv 0.000 0.005 0.007 0.005 0.012 0.093
sd 0.006 0.005 0.005 0.005 0.005 0.009

pls-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.494 0.490 0.482 0.492 0.468 0.524
absdicv 0.000 0.009 0.013 0.011 0.026 0.032
sd 0.046 0.042 0.042 0.043 0.042 0.047



116 A. Estimating the error rate of wrapper algorithms

pls-0.63-info ICV WMCS WMC Raw Min Max
mean 0.092 0.099 0.089 0.098 0.081 0.181
absdicv 0.000 0.007 0.004 0.007 0.010 0.089
sd 0.005 0.004 0.004 0.004 0.004 0.009

pls-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.497 0.494 0.488 0.497 0.475 0.517
absdicv 0.000 0.007 0.009 0.010 0.023 0.020
sd 0.031 0.028 0.031 0.026 0.033 0.027

sel-0.8-info ICV WMCS WMC Raw Min Max
mean 0.097 0.104 0.092 0.133 0.083 0.319
absdicv 0.000 0.008 0.005 0.037 0.014 0.223
sd 0.006 0.006 0.005 0.005 0.005 0.011

sel-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.504 0.496 0.479 0.503 0.463 0.541
absdicv 0.000 0.012 0.025 0.015 0.041 0.037
sd 0.044 0.039 0.040 0.037 0.041 0.037

sel-0.63-info ICV WMCS WMC Raw Min Max
mean 0.107 0.123 0.106 0.141 0.095 0.312
absdicv 0.000 0.016 0.003 0.035 0.012 0.205
sd 0.004 0.005 0.004 0.004 0.004 0.012

sel-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.498 0.496 0.484 0.503 0.466 0.528
absdicv 0.000 0.008 0.014 0.011 0.032 0.030
sd 0.045 0.044 0.047 0.038 0.050 0.034

Table A.2: Average corrected errors, mean absolute difference to ICV, and standard devi-
ations (over T = 50 replications) for all setups on the Singh dataset. The tables include
the kNN (knn) and PLSLDA (pls) setups as well as the selection setups (sel). For each
setup two informative (info) and two non-informative (noif) setups are considered with two
different proportions of observations in the learning sets (0.63 and 0.8).

Shrinkage factor

The following histograms display the values of the shrinkage factors computed within the
WMCS procedure for sample sizes n = 40, n = 60 and n = 80.
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Figure A.2: Distribution of the shrinkage factor ξ for all simulation setups on the Singh
dataset. The figures includes the kNN (knn) and PLSLDA (pls) setups as well as the
selection setup (sel). For each setup two informative (info) and two non-informative (noif)
setups are considered with two different proportions of observations in the learning sets
(0.63 and 0.8).

Summary

WMC consistently produces smaller estimates than ICV whereas the WMCS method usu-
ally slightly overestimates the optimization bias. In the non-informative setups one can
observe an overoptimistic tendency for WMC which is almost completely corrected by the
shrinkage approach. The distribution of the shrinkage factor ξ is remarkably different for
informative and non-informative setups which is probably the main reason for the good
results of the WMCS method. In the pls setups this difference between shrinkage factors of
informative and non-informative setups cannot be observed and indeed the raw mean is a
good approximation of ICV results in these cases. In the kNN-setups, WMCS estimates are
close to the raw mean although one can see that the distribution of the shrinkage factor ξ is
different from the non-informative case. This indicates that a nonlinear transformation of
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ξ, probably a sigmoidal transformation, might be useful to direct the WMCS more towards
the WMC estimates which seems to be sensible in almost all cases where the mean of its
distribution is approximately 0.5 or 0.6.

A.1.3 Golub data

Results

knn-0.8-info ICV WMCS WMC Raw Min Max
mean 0.071 0.071 0.064 0.074 0.048 0.115
absdicv 0.000 0.006 0.008 0.006 0.023 0.044
sd 0.010 0.009 0.009 0.009 0.009 0.014

knn-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.488 0.479 0.472 0.479 0.456 0.503
absdicv 0.000 0.014 0.018 0.014 0.032 0.021
sd 0.095 0.099 0.097 0.099 0.096 0.096

knn-0.63-info ICV WMCS WMC Raw Min Max
mean 0.072 0.095 0.083 0.107 0.057 0.222
absdicv 0.000 0.023 0.011 0.035 0.015 0.151
sd 0.009 0.009 0.007 0.010 0.008 0.018

knn-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.499 0.491 0.487 0.491 0.474 0.508
absdicv 0.000 0.011 0.013 0.011 0.025 0.014
sd 0.067 0.071 0.071 0.071 0.072 0.069

pls-0.8-info ICV WMCS WMC Raw Min Max
mean 0.048 0.034 0.030 0.035 0.024 0.041
absdicv 0.000 0.014 0.018 0.014 0.024 0.008
sd 0.009 0.006 0.005 0.006 0.005 0.007

pls-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.500 0.489 0.479 0.495 0.463 0.533
absdicv 0.000 0.016 0.022 0.016 0.037 0.037
sd 0.083 0.083 0.084 0.083 0.084 0.082

pls-0.63-info ICV WMCS WMC Raw Min Max
mean 0.047 0.040 0.036 0.040 0.030 0.043
absdicv 0.000 0.008 0.011 0.007 0.017 0.004
sd 0.006 0.005 0.004 0.005 0.005 0.005
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pls-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.524 0.520 0.516 0.522 0.503 0.544
absdicv 0.000 0.011 0.012 0.012 0.022 0.023
sd 0.075 0.075 0.077 0.075 0.078 0.075

sel-0.8-info ICV WMCS WMC Raw Min Max
mean 0.026 0.021 0.018 0.061 0.004 0.226
absdicv 0.000 0.006 0.008 0.035 0.022 0.200
sd 0.006 0.005 0.003 0.005 0.002 0.021

sel-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.498 0.487 0.466 0.493 0.443 0.536
absdicv 0.000 0.014 0.031 0.015 0.055 0.040
sd 0.071 0.072 0.090 0.067 0.072 0.070

sel-0.63-info ICV WMCS WMC Raw Min Max
mean 0.036 0.041 0.028 0.075 0.015 0.279
absdicv 0.000 0.008 0.008 0.039 0.020 0.244
sd 0.005 0.009 0.004 0.005 0.004 0.013

sel-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.504 0.501 0.488 0.502 0.464 0.538
absdicv 0.000 0.011 0.017 0.012 0.040 0.034
sd 0.063 0.064 0.067 0.063 0.071 0.058

Table A.3: Average corrected errors, mean absolute difference to ICV, and standard devi-
ations (over T = 50 replications) for all setups on the Golub dataset. The tables include
the kNN (knn) and PLSLDA (pls) setups as well as the selection setups (sel). For each
setup two informative (info) and two non-informative (noif) setups are considered with two
different proportions of observations in the learning sets (0.63 and 0.8).

Shrinkage factor

The following histograms display the values of the shrinkage factors computed within the
WMCS procedure for sample sizes n = 40, n = 60 and n = 80.
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Figure A.3: Distribution of the shrinkage factor ξ for all simulation setups on the Golub
dataset. The figures include the kNN (knn) and PLSLDA (pls) setups as well as the
selection setup (sel). For each setup two informative (info) and two non-informative (noif)
setups are considered with two different proportions of observations in the learning sets
(0.63 and 0.8).

Summary

The results on the Golub dataset are quite heterogeneous and difficult to interpret. The
largest difference between WMCS and ICV can be observed in the knn-0.63-info setup
where WMCS is clearly too pessimistic. Interestingly, WMCS yields very good results in
the corresponding 0.8-setup. In the informative pls setups ICV estimates are higher than
the maximum error rate which is a theoretically questionable estimate. In the informative
selection setups both WMCS variants have a mean absolute difference to ICV smaller than
0.01. With the exception of the pls setups the distributions of the shrinkage factor ξ have
clearly different characteristics for informative and non-informative setups. Nonetheless,
WMCS estimates are quite close to the raw mean in the tuning setups, whereby the knn-0.8
setup epitomizes an exception.
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A.1.4 Chiaretti data

Results

knn-0.8-info ICV WMCS WMC Raw Min Max
mean 0.398 0.394 0.393 0.394 0.383 0.414
absdicv 0.000 0.006 0.007 0.006 0.015 0.017
sd 0.010 0.008 0.008 0.008 0.008 0.011

knn-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.498 0.497 0.492 0.497 0.481 0.511
absdicv 0.000 0.006 0.008 0.007 0.017 0.014
sd 0.044 0.044 0.043 0.044 0.043 0.043

knn-0.63-info ICV WMCS WMC Raw Min Max
mean 0.399 0.399 0.399 0.399 0.388 0.417
absdicv 0.000 0.004 0.032 0.004 0.011 0.018
sd 0.008 0.006 0.009 0.006 0.007 0.007

knn-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.504 0.504 0.500 0.504 0.487 0.519
absdicv 0.000 0.007 0.006 0.007 0.017 0.016
sd 0.051 0.051 0.050 0.051 0.050 0.046

pls-0.8-info ICV WMCS WMC Raw Min Max
mean 0.431 0.434 0.417 0.441 0.398 0.459
absdicv 0.000 0.007 0.014 0.010 0.033 0.028
sd 0.009 0.008 0.008 0.009 0.008 0.009

pls-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.495 0.492 0.482 0.498 0.469 0.523
absdicv 0.000 0.006 0.014 0.011 0.026 0.028
sd 0.042 0.041 0.042 0.042 0.043 0.043

pls-0.63-info ICV WMCS WMC Raw Min Max
mean 0.438 0.443 0.431 0.444 0.414 0.456
absdicv 0.000 0.006 0.007 0.007 0.025 0.018
sd 0.007 0.004 0.005 0.004 0.006 0.006

pls-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.501 0.499 0.495 0.500 0.483 0.518
absdicv 0.000 0.007 0.007 0.008 0.018 0.018
sd 0.043 0.040 0.042 0.040 0.044 0.043
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sel-0.8-info ICV WMCS WMC Raw Min Max
mean 0.398 0.403 0.383 0.420 0.365 0.452
absdicv 0.000 0.008 0.015 0.022 0.033 0.054
sd 0.010 0.010 0.009 0.007 0.009 0.010

sel-0.8-noif ICV WMCS WMC Raw Min Max
mean 0.505 0.498 0.484 0.501 0.468 0.532
absdicv 0.000 0.011 0.021 0.012 0.037 0.028
sd 0.055 0.052 0.053 0.049 0.055 0.051

sel-0.63-info ICV WMCS WMC Raw Min Max
mean 0.399 0.407 0.387 0.419 0.365 0.455
absdicv 0.000 0.009 0.012 0.020 0.033 0.056
sd 0.007 0.006 0.006 0.004 0.005 0.007

sel-0.63-noif ICV WMCS WMC Raw Min Max
mean 0.498 0.497 0.487 0.498 0.470 0.521
absdicv 0.000 0.005 0.011 0.006 0.028 0.024
sd 0.041 0.038 0.040 0.038 0.042 0.038

Table A.4: Average corrected errors, mean absolute difference to ICV, and standard devia-
tions (over T = 50 replications) for all setups on the Chiaretti dataset. The tables include
the kNN (knn) and PLSLDA (pls) setups as well as the selection setups (sel). For each
setup two informative (info) and two non-informative (noif) setups are considered with two
different proportions of observations in the learning sets (0.63 and 0.8).

Shrinkage factor

The following histograms display the values of the shrinkage factors computed within the
WMCS procedure for sample sizes n = 40, n = 60 and n = 80.
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Figure A.4: Distribution of the shrinkage factor ξ for all simulation setups on the Chiaretti
dataset. The figures include the kNN (knn) and PLSLDA (pls) setups as well as the
selection setup (sel). For each setup two informative (info) and two non-informative (noif)
setups are considered with two different proportions of observations in the learning sets
(0.63 and 0.8).

Summary

On the ALL data WMCS clearly performs best. The only exceptions are both informative
knn setups where the shrinkage factor is overestimated, thus producing results almost iden-
tical to the raw mean. WMC has an optimistic tendency which can be almost completely
corrected on the non-informative setups by applying the shrinkage approach.
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A.2 Additional results of the simulations in Chapter

1

In the simulation study, five different data generating processes (DGPs) have been used,
including DGPs with correlated and uncorrelated predictors as well as different signal
strengths and sample sizes. T = 200 datasets are randomly drawn from each setting. The
first of the five DGPs has already been presented in Section 1.4.2 whereas the remaining
four DGPs will be described here. For each dataset the true error rate of the wrapper algo-
rithm is approximated on a large validation set. Thus, the methods (WMC and WMCS)
can be compared to the existing methods (ICV and raw mean) based on data, where the
true value of the parameter of interest Err = EPnL (ε(k∗(S) ‖ S)) = εnL(φ) –the uncon-
ditional error rate of the wrapper algorithm φ– is known. For simulating the predictors,
a block design is used because drawing data from a 2000-dimensional multivariate normal
distribution is computationally intractable. That is why blocks of 100 or 200 correlated
predictors are simulated and subsequently combined. The correlations between variables
from different blocks are thus zero. Since the selection setups have been found to produce
larger optimization biases and are generally more challenging, the simulation focuses on
this setup. See Section 1.4.1 for details on the considered methods. The proportion of
observations in the training data is set to q = 0.8. Note that the true parameter to be
estimated primarily depends on nL = q ·n (not n itself), i.e. changing the proportion q also
changes the true parameter. In order to analyze the behavior of the different estimators
for different sample sizes, n is set successively to n = 40, n = 60 or n = 80 observations.

Approximating the true value of Err = εnL(φ)

The estimates produced by the investigated methods (WMC, WMCS, ICV, raw mean)
are compared to the true value of the parameter of interest Err = EPnL (ε(k∗(S) ‖ S)) =
εnL(φ). In the simulation, this true value is approximated based on 1000 independent
randomly generated datasets S of size nL = 0.8n (corresponding to the number of training
observations in the outer subsampling loop). Each dataset S is used both for determining
k∗(S) (based on cross-validation with folds of approximate size 5) and for constructing
the prediction rule using method k∗(S), i.e. the wrapper algorithm is applied on each of
these datasets. The 1000 constructed prediction rules are subsequently evaluated using
a large independent test dataset of size 20000 generated from the same data generating
process, and εnL(φ) is estimated as the average error of the 1000 prediction rules on this
test dataset.

Correlated Gaussian data with moderate signal

Study design

In the following setup, the strength of the signal is decreased in comparison to the setup in
Section 1.4.2 by multiplying the vector of mean differences δ used in the last section by 0.7
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and by considering only 100 informative predictors instead of 200. The block size is also
decreased for the non-informative predictors to 100, i.e. for the first block the covariance
is estimated from the predictors ranked 101 to 200 in the Singh dataset (according to their
between group t-statistic), and so on.

Results

The boxplots in Figure A.5 display the estimated errors obtained for the 200 simulated
datasets with the five considered methods as well as the minimal and maximal error over
the K investigated methods (top: n = 40, middle: n = 60, bottom: n = 80). The
(approximated) target value εnL(φ) is represented as an horizontal gray line. The exact
values of εnL(φ) can be found in A.6. The histograms in Figure A.6 display the values
of the shrinkage factors computed within the WMCS procedure for sample sizes n = 40,
n = 60 and n = 80.
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Figure A.5: Comparison of ICV (Internal Cross-Validation), WMC (Weighted Mean Cor-
rection) and WMCS (Weighted Mean Correction with Shrinkage) for the setup with corre-
lated Gaussian data and weaker signal. The gray line represents the approximation of the
true value of εnL(φ) as described in A.2.
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The mean, standard deviation and average absolute difference to the reference method ICV
are displayed in the following table for all methods with the three considered sample sizes.

n = 40 n = 60 n = 80
mean absdicv sd mean absdicv sd mean absdicv sd

ICV 0.234 0.000 0.069 0.177 0.000 0.049 0.151 0.000 0.037
WMCS 0.239 0.014 0.069 0.188 0.013 0.050 0.162 0.012 0.039
WMC 0.213 0.022 0.066 0.168 0.011 0.046 0.144 0.008 0.035
Raw 0.283 0.066 0.060 0.248 0.066 0.045 0.222 0.036 0.036
Min 0.192 0.042 0.064 0.153 0.024 0.045 0.133 0.018 0.034
Max 0.365 0.131 0.070 0.340 0.163 0.061 0.313 0.162 0.050

Table A.5: Mean, average absolute difference to ICV (absdicv) and standard deviation
of the different correction methods for datasets of size n = 40, n = 60 and n = 80 in the
setup with correlated Gaussian data and weaker signal.

The true parameter Err = εnL(φ)

n=40 n=60 n=80
εnL(φ) 0.231 0.172 0.148

Table A.6: Estimation of εnL(φ) based on 1000 independent training sets and a large
validation set containing 20000 observations (see A.2) in the setup with correlated Gaussian
data and weaker signal.
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Figure A.6: Distribution of the shrinkage factor ξ for different numbers of observations
for the setup with correlated Gaussian data and weaker signal. The distribution is shifted
closer to 0 as the size of the dataset is increased. This shift is less distinct than the one
observed in the last setup in which the signal is stronger.

Summary

The WMC method underestimates the bias whereby this optimistic bias decreases with
increasing sample size. WMCS yields slightly pessimistic estimates. For small datasets
WMCS performs better than WMC whereas this tendency is reversed for larger datasets
where WMC performs best. The shrinkage factor becomes smaller with increasing sample
size, which explains why WMC and WMCS become more similar.
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A.2.1 Correlated non-informative data

Study design

In this setup, all 2000 predictors are simulated as non-informative. The predictors are
simulated exactly in the same way as the non-informative predictors in 1.4.2.

Results

The following boxplots display the estimated errors obtained for the 200 simulated datasets
with the five considered methods as well as the minimal and maximal error over the K
investigated methods (top: n = 40, middle: n = 60, bottom: n = 80). The (approximated)
target value εnL(φ) is represented as an horizontal gray line.
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Figure A.7: Comparison of ICV (Internal Cross-Validation), WMC (Weighted Mean Cor-
rection) and WMCS (Weighted Mean Correction with Shrinkage) for the setup with cor-
related non-informative Gaussian data. The gray line represents the approximation of the
true value of εnL(φ) as described in A.2.
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n = 40 n = 60 n = 80
mean absdicv sd mean absdicv sd mean absdicv sd

ICV 0.496 0.000 0.071 0.504 0.000 0.063 0.510 0.000 0.046
WMCS 0.491 0.013 0.073 0.500 0.012 0.060 0.506 0.011 0.046
WMC 0.467 0.029 0.074 0.480 0.024 0.062 0.489 0.021 0.047
Raw 0.498 0.059 0.067 0.507 0.052 0.056 0.510 0.053 0.045
Min 0.444 0.052 0.075 0.461 0.043 0.062 0.472 0.038 0.048
Max 0.549 0.053 0.066 0.552 0.049 0.056 0.546 0.036 0.044

Table A.7: Mean, average absolute difference to ICV (absdicv) and standard deviation
of the different correction methods for datasets of size n = 40, n = 60 and n = 80 in the
setup with correlated non-informative Gaussian data.

The true parameter Err = εnL(φ)

The (approximated) true value of the parameter EPnL (ε(k∗(S) ‖ S)) = εnL(φ) is given in
the following table for the three considered sample sizes n = 40, n = 60 and n = 80 (values
are rounded to three digits and not exactly 50.0%).

n=40 n=60 n=80
εnL(φ) 0.500 0.500 0.500

Table A.8: Estimation of εnL(φ) based on 1000 independent training sets and a large
validation set containing 20000 observations (see A.2) in the setup with correlated non-
informative Gaussian data.

Shrinkage factor

The following histograms display the values of the shrinkage factors computed within the
WMCS procedure for sample sizes n = 40, n = 60 and n = 80.
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Figure A.8: Distribution of the shrinkage factor ξ for different numbers of observations for
the setup with correlated non-informative Gaussian data. The distribution of ξ concen-
trates around 1 and is not affected by the sample size.

Summary

WMCS yields the average estimate closest to ICV, whereby the mean absolute difference
between both methods is only 1.3%. WMCS usually relies on the raw mean estimate
since ζ > ÊrrRawMean − e(k∗(s0) ‖ s0) most often holds. Again, the WMC procedures
underestimates the bias. This underestimation becomes less severe with increasing sample
size (which coincides with a smaller bias).

A.2.2 Uncorrelated Gaussian data

Simulation Design

In this setup, p = 2000 uncorrelated predictors are used. 2% of these predictors are
informative, i.e. associated with the binary response. In the second response group all
informative predictors follow the distribution N (0, 1), while in the first response group,
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the d-th informative variable is simulated according to N (δd, 1), where δd is itself drawn
from the distribution N (0.2, 0.5). Consequently, the difference between the group means
is random. The non-informative variables are simulated according to N (0, 1) regardless of
the group they belong to.

Results

The following boxplots display the estimated errors obtained for the 200 simulated datasets
with the five considered methods as well as the minimal and maximal error over the K
investigated methods (top: n = 40, middle: n = 60, bottom: n = 80). The (approximated)
target value Err = εnL(φ) is represented as an horizontal gray line.
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Figure A.9: Comparison of ICV (Internal Cross-Validation), WMC (Weighted Mean Cor-
rection) and WMCS (Weighted Mean Correction with Shrinkage) for the setup with un-
correlated Gaussian data. The gray line represents the approximation of the true value of
εnL(φ) as described in A.2.
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The mean, standard deviation and average absolute difference to the reference method ICV
are displayed in the following table for all methods with the three considered sample sizes.

n = 40 n = 60 n = 80
mean absdicv sd mean absdicv sd mean absdicv sd

ICV 0.331 0.000 0.075 0.245 0.000 0.056 0.195 0.000 0.051
WMCS 0.329 0.017 0.069 0.252 0.013 0.056 0.201 0.011 0.052
WMC 0.300 0.031 0.072 0.226 0.019 0.052 0.184 0.012 0.047
Raw 0.349 0.079 0.061 0.299 0.053 0.045 0.268 0.070 0.042
Min 0.277 0.054 0.071 0.208 0.037 0.050 0.169 0.027 0.045
Max 0.419 0.090 0.068 0.379 0.134 0.056 0.347 0.152 0.056

Table A.9: Mean, average absolute difference to ICV (absdicv) and standard deviation
of the different correction methods for datasets of size n = 40, n = 60 and n = 80 in the
setup with uncorrelated Gaussian data.

The true parameter Err = εnL(φ)

The (approximated) true value of the parameter EPnL (ε(k∗(S) ‖ S)) = εnL(φ) is given in
the following table for the three considered sample sizes n = 40, n = 60 and n = 80.

n=40 n=60 n=80
εnL(φ) 0.329 0.259 0.200

Table A.10: Approximated value of εnL(φ) computed from 1000 independent training sets
and a large validation set containing 20000 observations (see A.2) in the setup with uncor-
related Gaussian data.

Shrinkage factor

The following histograms display the values of the shrinkage factors computed within the
WMCS procedure for sample sizes n = 40, n = 60 and n = 80.
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Figure A.10: Distribution of the shrinkage factor ξ for different numbers of observations
for the setup with uncorrelated Gaussian data. The distribution is shifted to 0 as the size
of the dataset is increased.

Summary

ICV and WMCS yield almost identical results as far is their average is concerned. WMC,
however, underestimates the bias. The WMCS method often uses a shrinkage factor close
to 1 in the case of smaller datasets, which means that the error rates are strongly shrunken
towards the raw mean. For n = 80 shrinkage factors close to 1 are rare.

A.2.3 Differences in covariances between groups

Again, p = 2000 predictors and a block size of 200 are used. However, this time the vector of
mean differences between groups is set to δ = 0 for all p predictors (both informative or non-
informative). The only difference between informative and non-informative predictors is
the covariance matrix. The 200 informative predictors are simulated from the multivariate
normal distribution with mean zero and a covariance matrix chosen as the corresponding
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within-group empirical covariance matrix of the 200 first variables from the Singh dataset.
The non-informative predictors are simulated in exactly the same way as described in 1.4.2.

Results

The following boxplots display the estimated errors obtained for the 200 simulated datasets
with the five considered methods as well as the minimal and maximal error over the K
investigated methods (top: n = 40, middle: n = 60, bottom: n = 80). The (approximated)
target value εnL(φ) is represented as an horizontal gray line.
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Figure A.11: Comparison of ICV (Internal Cross-Validation), WMC (Weighted Mean Cor-
rection) and WMCS (Weighted Mean Correction with Shrinkage) for the setup with differ-
ences in covariances between response groups. The gray line represents the approximation
of the true value of Err = εnL(φ) as described in A.2.

The mean, standard deviation and average absolute difference to the reference method ICV
are displayed in the following table for all methods with the three considered sample sizes.



A.2 Additional results of the simulations in Chapter 1 135

n = 40 n = 60 n = 80
mean absdicv sd mean absdicv sd mean absdicv sd

ICV 0.489 0.000 0.077 0.501 0.000 0.053 0.504 0.000 0.043
WMCS 0.485 0.013 0.079 0.498 0.011 0.054 0.501 0.010 0.044
WMC 0.462 0.028 0.080 0.479 0.023 0.055 0.483 0.021 0.043
Raw 0.493 0.069 0.073 0.502 0.058 0.052 0.505 0.041 0.042
Min 0.438 0.051 0.081 0.459 0.042 0.056 0.466 0.038 0.044
Max 0.545 0.056 0.072 0.543 0.042 0.053 0.544 0.040 0.046

Table A.11: Mean, average absolute difference to ICV (absdicv) and standard deviation
of the different correction methods for datasets of size n = 40, n = 60 and n = 80 in the
setup with differences in covariances between response groups.

The true parameter Err = εnL(φ)

The (approximated) true value of the parameter EPnL (ε(k∗(S) ‖ S)) = εnL(φ) is given in
the following table for the three considered sample sizes n = 40, n = 60 and n = 80.

n=40 n=60 n=80
εnL(φ) 0.498 0.496 0.495

Table A.12: Estimation of εnL(φ) based on 1000 independent training sets and a large
validation set containing 20000 observations (see A.2) in the setup with differences in
covariances between response groups.
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Figure A.12: Distribution of the shrinkage factor ξ for different numbers of observations
for the setup with differences in covariances between response groups. The distribution of
ξ is concentrated around 1 and does not change if the number observations is increased.

Summary

On average, WMCS yields results closest to the ICV results. The mean absolute difference
between both methods is only 1.3%. Again, WMCS uses the raw mean as an estimate in
most cases. WMC underestimates the bias. This underestimation becomes less severe with
increasing sample size (which coincides with a smaller bias).

A.3 Normality assumption

This section supplements the discussion on the normality assumption of the WMC estima-
tor in Section 1.5.1.
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With n = 80 the deviation from normality is much lower, as illustrated in the following
plots showing the largest deviations observed in the case n = 80. They are obtained from
the simulation setup described in 1.4.2.
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Figure A.13: Normal quantile plots of e(k‖S) for the case n = 80 in simulation setup 1.4.2
illustrating the largest deviations from normality observable in the simulation study for
datasets of size n = 80.

Only the LDA-plot shows deviations which are larger than the deviations observed in most
of the 500 plots simulated under perfect normality (data not shown). This matches the
expectation that the normal assumption (as with the Central Limit Theorem) is more
adequate for larger datasets.

A.4 Further information on runtimes

This table is a supplement to Section 1.5.2 and presents the runtimes in the case of the
PLSLDA setup.

PLSLDA setup
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Runtimes WMC WMCS ICV
Alon 3.3 3.8 35.4
Singh 16.7 16.9 310.7
Golub 2.9 3.4 21.8
Chiaretti 21.1 19.6 340.0

Table A.13: Average runtimes (in seconds) WMC (Weighted Mean Correction), WMCS
(Weighted Mean Correction with Shrinkage) and Internal Cross-Validation for the
PLSLDA-setups on the different datasets. The difference between WMC and WMCS
is negligible in comparison to the absolute runtimes.



Appendix B

Ranking High-Dimensional Wrapper
Algorithms using multiple studies



140 B. Ranking High-Dimensional Wrapper Algorithms

B.1 Correlation of the rankings defined by CV and

CSV in the simulation example
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Figure B.1: The left panel illustrates the distribution of the Kendall correlations between
the rankings as defined by Sself and Sacross. The boxplot in the right panel corresponds to
the distribution of the Kendall correlations of the rankings as defined by CV and CSV .
Whereas Sself and CV are more dedicated to measuring the within-study performance
Sacross and CSV assess cross-study performance. The medians below 0.5 in both boxplots
suggest that rankings in cross-study prediction and within-study prediction differ distinctly.
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B.2 Simulation example with removal of outlier stud-

ies
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Figure B.2: This illustration corresponds to Figure 2 in the main paper after the removal of
the outlier studies CAL and MSK. Discrimination performance increases distinctly in the
case of CSV as can be seen from the top panel. The values of CV are almost unaltered.
Nonetheless, CV still estimates higher discrimination performance although the difference
to CSV is smaller now. The bottom panel illustrates the distribution of the ranks of the
competing algorithms. There are still differences between the rankings defined by CSV
and CSV . As can be seen from Figure B.4, the median Kendall correlation between both
rankings amounts to approximately 0.5.
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CSV CV
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Figure B.3: This illustration corresponds to Figure 3 in the main paper after removal of
the outlier studies. Also after this removal, the ranking defined by CSV features higher
correlations to the global ranking and the ranking defined by Sacross. Here it even achieves
a higher correlation than CV in the case of the ranking according to Sself . This is not
expected because both CV and Sself measure within-study performance in contrast to
CSV . However, one also has to keep in mind that CS is less closely related to the model
which has actually been fit on the respective dataset because it represents an average of
four models which have been fitted on subsets of the actual dataset. Generally, Kendall
correlations to the respective true rankings are distinctly higher than before the removal
of the outlier studies.



B.2 Simulation example with removal of outlier studies 143

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation of rankings

C
or

re
la

tio
n 

(K
en

da
ll)

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation of rankings

C
or

re
la

tio
n 

(K
en

da
ll)

Figure B.4: This illustration corresponds to Figure B.1 after the removal of the outlier
studies. Whereas Sself and CV are more dedicated to measuring the within-study perfor-
mance Sacross and CSV assess cross-study performance. The medians around 0.5 in both
boxplots suggest that rankings in cross-study prediction and within-study prediction still
differ distinctly also if the outlier studies are removed.
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B.3 CV as an estimator of independent within-study

discrimination performance
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Figure B.5: In this Figure, the average discrimination performance as estimated by CV
are depicted against the corresponding average in independent within-study validation for
Glmnetridge (left panel) and CoxBoost (right panel). The averages are taken over values
from the same study as indicated by the different study numbers. In the simulation example
(including outlier studies), CV estimates are slightly smaller which matches the expectation
since one fold of observations is left out CV when training the models.
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B.4 Rankings on experimental microarray data (out-

lier studies included)

Algorithm CSV CV
Glmnetridge 4 1 3 5 1 1
Plusminus 3 2 1 4 2 3
Superpc 1 3 4 1 3 4
Unicox 2 4 2 2 4 5
CoxBoost 5 5 5 6 5 6
Glmnetlasso 6 6 6 3 6 2
criterion Av. Med. 3 Q. Av. Med. 3 Q.

Table B.1: Rankings as estimated by CV and CSV on the experimental microarray data
with outlier studies CAL and MSK included. Here, rankings are based on a single matrix
Zk for each of the K = 6 algorithms. For both validation concepts rankings are presented
for the aggregation methods simple average (Av.), median (Med.) and third quartile (3
Q.). CSV ranking is more consistent over the different aggregation methods assigning the
last ranks always to CoxBoost and Glmnetlasso. For the top and middle ranks the ranking
is less consistent. CV features large inconsistencies over the aggregation methods. For
example, Glmnetridge and Glmnetlasso are both assigned top and bottom ranks depending
on the aggregation method. The Kendall’s correlations between CSV and CV rankings
are also strongly varying amounting to 0.6 (Av.), 1 (Med.) and 0.07 (3Q.) suggesting
distinct differences between the estimated rankings. In summary, rankings are less similar
to the simulated data than the rankings obtained after the removal of outlier studies (see
Table B.2).
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B.5 Rankings on experimental microarray data (out-

lier studies removed)

Algorithm CSV CV
Glmnetridge 2 1 3 3 1 2
Plusminus 1 2 1 1 2 3
Superpc 3 4 2 2 3 4
Unicox 4 3 4 6 5 5
CoxBoost 5 5 5 4 6 6
Glmnetlasso 6 6 6 5 4 1
criterion Av. Med. 3 Q. Av. Med. 3 Q.

Table B.2: Rankings as estimated by CV and CSV on the experimental microarray data
after the removal of outlier studies CAL and MSK. Here, rankings are based on a single
matrix Zk for each of the K = 6 algorithms. For both validation concepts rankings are
presented for the aggregation methods simple average (Av.), median (Med.) and third
quartile (3 Q.). CSV ranking is more consistent over the different aggregation methods
assigning top ranks to Glmnetridge and Plusminus, and the last ranks to CoxBoost and
Glmnetlasso. This ranking is also close to the true global ranking on simulated data. CV
is clearly less consistent assigning e.g. the ranks 5,4, and 1 to Glmnetlasso. The Kendall’s
correlations between CSV and CV rankings are also strongly varying. They amount to 0.6
(Av.), 0.47 (Med.) and 0.07 (3Q.) suggesting distinct differences between the estimated
rankings.
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C.1 Package Vignette: SurvHD - Survival Analysis

for High-Dimensional Data

The packages survHD and survHDExtra have been developed in cooperation with Levi
Waldron (Harvard Medical School and Dana-Faber Cancer Institute) and Markus Riester
(Dana-Faber Cancer Institute). Levi Waldron had the initial idea of developing an R-
package parallel to CMA which can be used for survival analysis on high-dimensional data.
He has implemented the algorithm functions penalizedSurv and penalizedSurv and also some
of the functions implementing certain performance criteria. Moreover he provided many
comments and suggestions for changes on the basic workflow and concept of the package.
Finally, Markus Riester contributed the functions for gene set analysis and customSuperPc
as well as several graphical tools. Additionally, he supported the developement of the
package by providing feedback and helpful suggestions concerning the class structure and
the general workflow. The pages 20–24 of this vignette have also been created by him.



survHD
package vignette

Christoph Bernau ∗

Levi Waldron †

Markus Riester‡

2012

1 SurvHD - Survival Analysis for High-Dimensional
Data (Gene Expression Data)

Survival analysis on high-dimensional data is a complex and computationally inten-
sive task. Many standard algorithms for survival data are not applicable in the
”p >> n”-case, e.g. with several thousands of variables and only hundreds of sam-
ples. Many adaptions of the Cox-Model and other standard approaches for high-
dimensional data have been developed in the last years. Furthermore, methods for
tuning and evaluation of models are distinct from classification problems. Our R-
package survHD provides a framework for the application, optimization, and evalua-
tion of high-dimensional survival models. In this vignette, we will introduce the basic
work flow of the package using a well-known cancer microarray data set. Additionally,
we will explain the built-in interface for including user-defined custom survival model
functions into the survHD framework.

1.1 Input Data

The package accepts three different formats for predictor data X: data-frame, matrix,
or the Bioconductor-defined ExpressionSet class. The corresponding survival out-
come can be either a Surv object from the package survival, or in the case of the
ExpressionSet-format, a character vector specifying the name of the surv object
in the phenoData-slot of the ExpressionSet object. In our example, we use the
matrix format for analyzing the gene expressions of 86 lung adenocarcinoma patients
published by Beer et al. (2002), which can be found in the data folder of the package
(here we just use the first 500 probe sets for illustration purposes):

set.seed(321)

data(beer.exprs)

data(beer.survival)

X <- t(as.matrix(beer.exprs))

y <- Surv(beer.survival$os, beer.survival$status)

∗bernau@ibe.med.uni-muenchen.de
†lwaldron.research@gmail.com
‡markus@jimmy.harvard.edu
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1.2 Fitting Models

The most important function in survHD is called learnSurvival. It is used to
fit the survival model and store its essential information for later evaluation on test
data. Apart from the input data mentioned in the last section, the only additional
required argument is the name of the survival method that shall be performed: in
this example we will use coxBoostSurv, a wrapper to the CoxBoost package. As
a first example of training on a full dataset followed by independent evaluation on
a pre-defined dataset, we exclusively use the first 60 observations for model fitting
because we want to evaluate our model on the last 26 observations of our data. The
parameter stepno is a method specific tuning parameter (the number of Boosting
steps) which is simply passed to the CoxBoost function.

ytrain <- y[1:60,]

Xtrain <- X[1:60,]

coxboostmodel <- learnSurvival(y=ytrain,

X=Xtrain,

survmethod='coxBoostSurv',
stepno=20)

printl('str(coxboostmodel, max.level=2)')

Formal class 'LearnOut' [package "survHD"] with 7

slots

..@ ModelLearnedlist:List of 1

..@ X :'data.frame': 60 obs. of 7129 variables:

.. .. [list output truncated]

..@ y : Surv [1:60, 1:2] 84.1 91.8+ 93.7+ 108.2+ 34.6

68.1+ 34.2+ 47.0+ 39.1+ 45.8 ...

.. ..- attr(*, "dimnames")=List of 2

.. ..- attr(*, "type")= chr "right"

..@ GeneSel :Formal class 'GeneSel' [package

"survHD"] with 4 slots

..@ nbgene : int 7129

..@ LearningSets :Formal class 'LearningSets'
[package "survHD"] with 4 slots

..@ threshold : num -1

The call to str() shows the slot of the output object which stores all the information
necessary to perform predictions for new data and evaluate the model.

1.3 Evaluation on independent Data

Evaluation of survival models is a complicated task for which no gold standard exists.
One of the biggest problems is the time-dependency of the model fit which is difficult
to include or weight appropriately. Many reasonable measures for evaluating survival
models have been proposed in the literature. Currently, three of these measures
are implemented in the function evaluate: Harrell’s C-Index, Uno’s C-Index, and
Prediction Error Curves. Prediction error curves compare the model-based estimated
survival curves with the actual survival indicator function of the test observations.
For evaluating our model with regard to this measure (“PErrC”) we have to pass the
output of learnSurvival (coxboostmodel) and the validation data to the function
evaluate. Additionally, we must define a grid of time points for which the comparison
of estimated and observed survival shall be performed:

2



ytest <- y[61:86, ]

Xtest <- X[61:86, ]

timegrid <- 3:80

ev1 <- evaluate(coxboostmodel, measure = "PErrC", newy = ytest,

newdata = Xtest, timegrid = timegrid, addtrain = F)

plot(timegrid, result(ev1)[[1]], type = "l", lwd = 2,

col = "black", xlim = c(0, 82), ylim = c(0, 0.3),

xlab = "time", ylab = "mean difference between estimated

and observed survival", main = "Mean Prediction Error Curve")
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We can see that the prediction performance for the validation set is worse in the time
interval between 20 and 55 months. For a more detailed evaluation of the model fit we
can compare the observed and estimated survival for each patient separately. For that
purpose we can use the predict function on the LearnOut object in order to obtain
observationwise predictions and compare them to the survival indicator function.

probs <- predict(coxboostmodel, newdata = Xtest,

type = "SurvivalProbs", timegrid = 3:80)

par(mfrow = c(4, 2))

for (i in 6:13) {

followup <- xlim2 <- 80

col1 <- "red"

col2 <- "red"

if (ytest[i, 2] == 0) {

followup <- min(80, ytest[i, 1])

col1 <- "green"

col2 <- "white"

}

plot(timegrid, as.matrix(SurvivalProbs(probs[[1]]))[i,
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], col = "black", lwd = 2, main = paste("Patient L",

i + 70, sep = " "), xlab = "time", ylab = "survival",

type = "l", ylim = c(0, 1), xlim = c(3, xlim2))

segments(c(3, ytest[i, 1]), c(1, 0), c(min(followup,

ytest[i, 1]), followup), c(1, 0), col = c(col1,

col2))

if (ytest[i, 2] == 0)

abline(v = followup, lty = 3)

}
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This plot illustrates a moderate prediction accuracy on this patient selection. For the
two patients with events, the survival curves are indeed lower than e.g. in the first
graph representing the survival curve of a patient who was still alive after 80 months
when he was censored.

Using predict (type =’lp’), we can also see that the linear predictors are indeed higher
for the two patients with events. Please note the (maybe unexpected) structure of
the output object. Since survHD is actually designed to fit several models at a time
– e.g. in a cross-validation – the output object is a list containing a single object of
class LinearPrediction whose slot lp contains the linear predictor which we wanted
to obtain:

List of 1

$ :Formal class 'LinearPrediction' [package "survHD"]

with 1 slots

.. ..@ lp: Named num [1:26] 1.952 -0.1976 -0.0529

-0.1154 -0.5334 ...

.. .. ..- attr(*, "names")= chr [1:26] "L59" "L61"

"L62" "L64" ...
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L76 L78 L79 L80 L81

-1.0816411 -0.6246998 -0.3415224 -0.4665002 -0.7211664

L82 L83 L84

-0.7733700 0.2401477 -0.7437558

Based on the linear predictor one can compute other evaluation metrics like Harrell’s
C-Statistic. In survHD, it can be computed by specifying measure=”HarrellC”
in the call to evaluate:

ev2 <- evaluate(coxboostmodel, measure='HarrellC', newy=ytest,

newdata=Xtest)

printl('result(ev2)')

[[1]]

C Index

0.6612903

ev3 <- evaluate(coxboostmodel, measure='HarrellC', newy=ytrain,

newdata=Xtrain)

printl('result(ev3)')

[[1]]

C Index

0.918429

Similarly to the prediction error curves this measure suggests a moderate prediction
performance on the independent validation set. As we can see from the second call to
evaluate, the performance on the independent test data is clearly worse than on the
training data, indicating overfitting on the training data. Consequently, evaluation
should always be performed using independent test observations.

Two other standard evaluation measures are available in survHD - Uno’s C-Statistic
(measure=’UnoC’), which models the censoring distribution in the validation set.
Cross-validated partial log likelihood (measure=’CvPLogL’) is also available, and
normally used during cross-validation rather than independent validation. Cross-
validation will be covered in the next section on “resampling based evaluation.”

ev4 <- evaluate(coxboostmodel, measure='UnoC', newy=ytest,

newdata=Xtest, tau=9)

printl('result(ev4)')

[[1]]

[1] 0.6761186

ev5 <- evaluate(coxboostmodel, measure='CvPLogL', newy=ytrain,

newdata=Xtrain)

printl('result(ev5)')

[[1]]

[1] -66.91228
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1.4 Resampling based evaluation

Often, there are not enough data to set aside an independent validation set, and in
examples such as above, evaluation estimates using a single validation set are sensitive
to the selection of that validation set. Cross-validation or the bootstrap are better
alternatives where data for all samples are available.

The work flow for resampling is almost the same as for evaluation on independent data.
However, one first has to create an object of class LearningSets using the function
generateLearningsets, which defines the validation scheme. In our example we will
use 10 fold cross-validation:

ls <- generateLearningsets(y=y, method='CV', fold=10, strat=TRUE)

printl('str(ls, max.level=2)')

Formal class 'LearningSets' [package "survHD"] with 4

slots

..@ learnmatrix: num [1:10, 1:78] 2 2 2 0 3 2 2 2 2 0

...

..@ method : chr "stratified CV"

..@ ntrain : int 78

..@ iter : int 10

By setting the argument strat to TRUE, we cause survHD to create folds with
similar proportions of censored to uncensored observations. The most important slot
of the returned object (ls) is called learnmatrix which contains the indices of the
training folds in its rows.

The actual model fitting is again performed by the function learnSurvival by passing
the return-object of generateLearningsets (ls) as argument LearningSets:

outcv <- learnSurvival(y=y, X=X, survmethod='coxBoostSurv',
LearningSets=ls, stepno=20)

This call automatically fits a CoxBoost model on each training fold. Its return object
is of class LearnOut. The fitted models can be found in the slot ModelLearnedlist
and will be used by survHD for model evaluation later-on.

printl('str(outcv, max.level=2)')

Formal class 'LearnOut' [package "survHD"] with 7

slots

..@ ModelLearnedlist:List of 10

..@ X :'data.frame': 86 obs. of 7129 variables:

.. .. [list output truncated]

..@ y : Surv [1:86, 1:2] 84.1 91.8+ 93.7+ 108.2+ 34.6

68.1+ 34.2+ 47.0+ 39.1+ 45.8 ...

.. ..- attr(*, "dimnames")=List of 2

.. ..- attr(*, "type")= chr "right"

..@ GeneSel :Formal class 'GeneSel' [package

"survHD"] with 4 slots

..@ nbgene : int 7129

..@ LearningSets :Formal class 'LearningSets'
[package "survHD"] with 4 slots

..@ threshold : num -1
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The call to evaluate is exactly the same as for independent evaluation. The only
difference is that the slot result of the output object is now a list of the foldwise
evaluation statistics as here for measure HarrellC:

evcv <- evaluate(outcv, measure='HarrellC')
printl('unlist(result(evcv))')

C Index C Index C Index C Index C Index C Index

0.8235294 0.2307692 0.8000000 0.0000000 0.2222222

0.9090909

C Index C Index C Index C Index

0.6363636 0.3125000 0.5555556 0.6000000

printl('mean(unlist(result(evcv)))')

[1] 0.5090031

As can be seen from the vector of fold statistics the variance of the C-Index is large,
i.e. the performance was quite different on the ten folds.

evcv2 <- evaluate(outcv, measure='PErrC', timegrid=3:80)

plot(0, 0, col='white', xlim=c(0, 82), ylim=c(0, 0.4), xlab='time',
ylab='mean difference between estimated and observed survival',
main='Mean Prediction Error Curves')

for(i in 1:10){

lines(3:80, result(evcv2)[[i]], col=i+1)

}
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Also here, one can observe that the prediction performance of the models on the
different training folds decreases after 20 months.
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1.5 Univariate feature selection

survHD allows the incorporation of a univariate pre-filter with any of the learning
algorithms. This can help interpretability of models generated from algorithms which
otherwise do not perform feature selection, as well as dramatically reducing computa-
tion times. survHD also provides a fast version of coxph rowCoxTests, for fitting
the univariate Cox models to many features.

In survHD, variable selection is implemented in the function geneSelection. Paral-
lel to learnSurvival, this function performs a variable selection for each resampling
step if the argument LearningSets is passed. In our example, we use the method
fastCox, i.e. univariate Cox models for each gene expression in X:

gsel <- geneSelection(X=X, y=y, LearningSets=ls, method='fastCox',
crit='coefficient')

If the argument crit is set to pvalue survHD will store the p-values instead of the
coefficients in the return-object. This might be useful if one wants to set a certain
threshold for the p-value of the variables included in a model later-on.

printl('str(gsel, max.level=2)')

Formal class 'GeneSel' [package "survHD"] with 4

slots

..@ rankings :List of 1

..@ importance:List of 1

..@ method : chr "fastCox"

..@ criterion : chr "coefficient"

As can be seen from the previous code, geneSelection returns an object of class
GeneSel which contains the rankings of the different gene expressions as well as
their importance. Using the slot rankings we can easily see that there is only a
single gene which belongs to the Top 10 in each fold.

ranks <- c()

for(i in 1:10)

ranks <- c(ranks, rankings(gsel)[[1]][i, 1:10])

genetab <- sort(table(ranks), decreasing=T)

bp <- barplot(genetab[genetab>=3], col='blue', xlab='gene',
ylab='frequency', cex.names=0.8)

printl('abs(importance(gsel)[[1]][1, 1:10])')

gene4729 gene4012 gene472 gene2044 gene7037 gene4885

6.491064 5.976582 5.692645 5.363823 5.344502 5.200338

gene3841 gene1476 gene3041 gene3267

5.183888 5.180810 5.098753 5.091743
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The last line of code illustrates the absolute coefficients for the top 10 genes in the
first cross-validation fold.

1.6 Hyperparameter Tuning

Survival models for high-dimensional data usually incorporate a hyperparameter in
order to adjust model complexity to the requirements of the data at hand. For
most of these hyperparameters no good rule of thumb exists, and one has to resort to
resampling approaches to optimize or tune the hyperparameter(s). As well as variable
selection, the hyperparameter optimization has to be performed on each training set,
resulting in a nested cross-validation or comparable resampling schemes (an inner or
nested layer for tuning, and an outer layer for evaluation).

The function tune performs hyperparameter optimization for each training set of an
(outer) resampling procedure by conducting an internal cross-validation loop. The
hyperparameter grid is passed as a list of vectors containing the candidate values.
Since we solely tune the number of boosting steps here the argument grids is a one-
element list with the vector of candidate numbers for the boosting steps. Please note,
that the name of the vector has to exactly match the argument name of the tuned
hyperparameter (here stepno as in the corresponding CoxBoost-function).

tunecoxboost <- tune(y=y, X=X, survmethod='coxBoostSurv',
LearningSets=ls, GeneSel=gsel, nbgene=30,

grids=list(stepno=(1:5)*20))

By additionally specifying the GeneSel argument and nbgene=100, survHD will
tune the models based on the top 100 genes in each fold.

The best parameter of each fold (res.ind) as well as its index in the tuning grid can be
obtained using the function getBestParameters. Parallel to the function evaluate,
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one can choose between several measures according to which the best parameter shall
be determined. Here we use the cross-validated partial log likelihood.

gb <- getBestParameters(tunecoxboost, res.ind=1, measure='CvPLogL')
printl('param(gb)')

$stepno

[1] 20

printl('bestind(gb)')

[1] 1

printl('str(gb, max.level=2)')

Formal class 'BestParameters' [package "survHD"] with

4 slots

..@ param :List of 1

..@ bestind: int 1

..@ perf : num [1:5] -61.8 -82 -98.3 -111.9 -132.3

..@ measure:Formal class 'CvPLogL' [package "survHD"]

with 2 slots

We can also check how stable and distinct the tuning process has been, since getBest-
Parameters returns the performance of all hyperparameter values:

par(mfrow = c(2, 3))

for (i in 1:6) {

gbi <- getBestParameters(tunecoxboost, res.ind = i,

measure = "CvPLogL")

plot((1:5) * 20, perf(gbi), type = "l", col = "black",

ylim = range(perf(gbi)) * c(1.1, 0.9), main = paste("Fold ",

i, sep = " "))

points((1:5) * 20,perf(gbi), col = "red", pch = 15)

points(((1:5) * 20)[bestind(gbi)], perf(gbi)[bestind(gbi)],

col = "blue", pch = 17, cex = 2)

}
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In our case, the lowest number of boost-steps achieves the best result in all of the first
6 folds.

1.7 Complete Workflow

So, let us summarize the steps needed for a complete work flow. After loading the data,
we have to choose the resampling scheme and create the corresponding LearningSets:

ls <- generateLearningsets(y=y, method='CV', fold=10, strat=TRUE)

If necessary, the next step is variable selection using a filter method like fastCox.
The generated resampling folds are passed via the argument LearningSets:

gsel <- geneSelection(X=X, y=y, LearningSets=ls, method='fastCox',
crit='coefficient')

Subsequently, for each training set a suitable hyperparameter has to be determined. If
a filter method has been applied, the corresponding GeneSel object must be passed
as well as the LearningSets:

tunecoxboost <- tune(y=y, X=X, survmethod='coxBoostSurv',
LearningSets=ls, GeneSel=gsel, nbgene=100,

grids=list(stepno=(1:5)*20))

Finally, all three previously obtained outputs can be combined in a call to learn-
Survival, which will fit the requested survival model on each learningset using the
variables selected in GeneSel and tune the hyperparameters according to their per-
formance in tuneres. Regarding the incorporation of a tuneres argument, one must
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additionally specify by which measure to evaluate the tuning results. This measure
is specified in the argument addtune which is a list of arguments which is internally
passed to function evaluate. Cross-validated partial log-likelihood is standard, but
any available evaluation metrics may be used.

cv10 <- learnSurvival(y=y, X=X, tuneres=tunecoxboost,

survmethod='coxBoostSurv', LearningSets=ls, GeneSel=gsel,

nbgene=30, addtune=list(measure='CvPLogL'))

The function evaluate can be used to assess the performance of the survival method.
The performance is returned separately for each fold, and here we combine these using
a simple average:

printl("mean(unlist(result(evaluate(cv10,

measure='CvPLogL'))))")

[1] -12.75058

printl("mean(unlist(result(evaluate(cv10,

measure='HarrellC'))))")

[1] 0.3828795

We also illustrate the performance of the models computed in the learnSurvival-step.
Using the predict function on an object of class LearnOut (with type=’cp’)
causes survHD to use the linear predictors –obtained for all test observations– to
categorize samples into two risk classes.

preds <- predict(cv10, type='cp', voting_scheme='first')
printl('table(preds)')

preds

High Risk Low Risk

31 55

Subsequently, one can plot the corresponding Kaplan Meier curves. In survHD this
can be achieved by simply using the function plot on the previous LearnOut-object.

plot(cv10)
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1.8 Comparison of two models

In survHD two models can also be compared in a more direct way than only eval-
uating them according to a certain measure. The function IDI.INF from the pack-
age survIDINRI –among other measures– computes the median improvement in
riskscore of a model in comparison with a null model. This feature is implemented in
the function compare. We first have to fit two models using learnSurvival. The
first one is the CoxBoost model described above whereas the second one is constructed
using the plusMinus-algorithm:

Xtrain <- Xtrain[1:60, ]

ytrain <- y[1:60, ]

coxboostmodel1 <- learnSurvival(y = ytrain, X = Xtrain,

survmethod = "coxBoostSurv", stepno = 20)

coxboostmodel2 <- learnSurvival(y = ytrain, X = Xtrain,

survmethod = "coxBoostSurv", stepno = 40)

After fitting the models, they can be compared with regard to certain test data. Here
we use the Integrated Discrimination Improvement Index (IDI):

ytest <- y[61:86, ]

Xtest <- X[61:86, ]

comp1 <- compare(coxboostmodel1, coxboostmodel2, measure = "IDI",

newdata = Xtest, newy = ytest, t0 = 50)

printl('estimate(comp1[[1]])')

0.003753648
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comp2 <- compare(coxboostmodel2, coxboostmodel1, measure = "IDI",

newdata = Xtest, newy = ytest, t0 = 50)

estimate(comp2[[1]])

-0.003753648

printl('str(comp2[[1]], max.level = 2)')

Formal class 'IDI' [package "survHD"] with 2 slots

..@ estimate: Named num -0.00375

.. ..- attr(*, "names")= chr ""

..@ conf.int: Named num [1:2] -0.0179 0.0258

.. ..- attr(*, "names")= chr [1:2] "2.5%" "97.5%"

The class bf MeasureOut also contains a confidence interval for the computed measure
as can be seen from the output. Other measures for comparison of two survival models
in survHD are:

• NRI Category-less Net Reclassification Index

• MIRS Median Improvement in Risk Score

• CDelta Difference in C-Statstic

2 Cross-Study Evaluation

The package also provides a simple function for leave-one-in cross-study validation.
This procedure is based on a list of experimental data sets. Each of the data sets is
once used for training. Each fitted model is subsequently evaluated on all other data
sets. In the following, we first create the main input parameters of the correspond-
ing function computeZ, a list of gene expression matrices Xlist and a list of the
corresponding survival observations ylist.

set.seed(2)

nsamples <- 100

X <- matrix(rnorm(nsamples*200),nrow=nsamples)

colnames(X) <- make.names(1:ncol(X))

rownames(X) <- make.names(1:nrow(X))

time <- rexp(nsamples)

cens <- sample(0:1,size=nsamples,replace=TRUE)

y <- Surv(time,cens)

Xlist<-list()

ylist<-list()

for(i in 1:8){

Xlist[[i]]<-X

ylist[[i]]<-y

}

Once these lists of gene expressions and survival observations are available, the proce-
dure can be performed using a single line. We just have to specify the measure to be
used and the algorithm (survmethod) which shall be applied. In our case, we also
specify that we do not want the method CoxBoost to standardize its inputs which
we can achieve via the argument add.surv which is a list of arguments passed to the
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actual survival algorithm. Moreover, we use survHD’s tuning mechanism instead
of a CoxBoost specific tuning mechanism by setting packagetune=FALSE and
passing an empty hyper parameter grid via the argument add.tune, i.e. we also use
survHD’s default hyper parameter grid for CoxBoost. The argument plot=TRUE
tells survHD that a heatmap of the resulting Z-matrix shall be produced.

add.tune<-list(grids=list())

add.surv<-list(standardize=FALSE)

Zmat<-computeZ(Xlist=Xlist,ylist=ylist,survmethod='coxBoostSurv',
measure='HarrellC',add.surv=add.surv,
add.tune=add.tune,packagetune=FALSE,plot=TRUE,seed=222)
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printl('Zmat[1,]')

1 2 3 4 5 6

NA 0.8818582 0.8818582 0.8818582 0.8818582 0.8818582

7 8

0.8818582 0.8818582

In this example, we have just reproduced the same data set eight times and we have
performed the leave-one-in cross-study validation on this list of data sets. Since all
the data sets are the same, all values in a row (rows correspond to the training data
set) are equal because one and the same model is evaluated on identical data sets.
However, the values in a column are not equal because the training process is subject
to randomness in our example. The tuning process is based on cross-validation with
ranomized partitioning which can lead to different results even for identical training
data sets. Since training and validation sets are equal in our example, we observe
very high C-Indices since we are actually computing resubstitution concordances.
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3 Custom Survival Models

The survHD package provides an interface for incorporating user defined survival
methods into its framework. For that purpose, two functionalities are needed:

• model fitting

• prediction from previously fitted models

Both features are implemented by defining a single function. In our example we
will add the method rsf from the package randomSurvivalForest to survHD as a
custom function customRSF. The user-defined function has to accept at least three
predefined inputs:

• Xlearn: A data.frame of gene expressions for the current training data(columns
are genes)

• Ylearn: the survival response for the current training data

• learnind: the indices of the current training observations inside the complete
data set X which is usually passed to functions like learnSurvival. Using this
argument, one can e.g. extract the relevant observations from additional clinical
covariates which can be passed using the . . . argument.

customRSF <- function(Xlearn, Ylearn, learnind, ...) {

### load required packages

require(randomSurvivalForest)

### handle inputs

ll <- list(...)

datarsf <- data.frame(Xlearn, time = Ylearn[, 1],

status = Ylearn[, 2])

ll$data <- datarsf

ll$formula <- as.formula("Surv(time, status)~.")

## call actual model function rsf from

## randomSurvivalForest

output.rsf <- do.call("rsf", args = ll)

...

}

First, one typically has to load or source a function or package which performs the
actual model fitting. The next step is the processing of the inputs. In our case we
do not use any additional covariates, so we only have to convert Xlearn and Ylearn
into the input format of the function rsf. As can be seen from the code, this function
accepts a formula and a data.frame containing all necessary variables. Moreover,
we pass all the arguments represented by the . . . argument and eventually call the
function rsf using do.call. After this the model fitting is complete.

In order to provide outputs which can be evaluated and processed by survHD we
also need a predict function. This function should either provide an object of class
LinearPrediction or SurvivalProbs whose slots can be found below:

LinearPrediction <- predict(coxboostmodel, newdata=Xtest,

type='lp')[[1]]
str(LinearPrediction, max.level=2)
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Formal class 'LinearPrediction' [package "survHD"] with 1 slots

..@ lp: Named num [1:26] 1.952 -0.1976 -0.0529 -0.1154 -0.5334 ...

.. ..- attr(*, "names")= chr [1:26] "L59" "L61" "L62" "L64" ...

SurvivalProbs <- predict(coxboostmodel, newdata=Xtest, type=

'SurvivalProbs', timegrid=3:80)[[1]]

str(SurvivalProbs, max.level=2)

The prediction function has to accept four arguments:

• object: an object of class ModelCustom which is created by survHD auto-
matically and contains the fitted model (here: output.rsf) in its slot mod.

• newdata: data.frame of gene expressions for the observations for which pre-
dictions shall be performed.

• type: indicates whether linear predictors (’lp’ or survival probabilities (’Sur-
vivalProbs’) shall be predicted

• timegrid: if type=’SurvivalProbs’ this argument specifies the time points
at which predictions shall be performed

## define prediction function which will be

## stored in slot predfun and called by

## predictsurvhd (signature(ModelCustom))

predfun <- function(object, newdata, type, timegrid = NULL,

...) {

require(randomSurvivalForest)

# either type lp or type SurvivalProbs must be

# implemented for typ lp the obligatory return

# class is LinearPrediction

if (type == "lp") {

stop("Random Forests don't provide linear predictors, sorry.")

} else if (type == "SurvivalProbs") {

# for typ SurvivalProbs the obligatory return

# class is Breslow

modelobj <- mod(object)

if (is.null(timegrid)) {

stop("No timegrid specified.")

}

### create data for which predictions are to be

### performed function checks for response but

### does not use it (fake response)

predsrsf <- predict.rsf(object = modelobj,

test = data.frame(newdata, time = rexp(n = nrow(newdata)),

status = sample(c(0, 1), nrow(newdata),

replace = T)))

### predict-function provides predictions for

### training times only ->interpolate for

### timepoints in timegrid

curves <- exp(-t(apply(predsrsf$ensemble, 1,

FUN = function(z) approx(x = predsrsf$timeInterest,

y = z, xout = timegrid)$y)))

### create breslow-object

17



pred <- new("breslow", curves = curves, time = timegrid)

### create SurvivalProbs-object embedding the

### breslow-object

pred <- new("SurvivalProbs", SurvivalProbs = pred)

} else stop("Invalid \"type\" argument.")

return(pred)

}

This function is structured into two sections which correspond to predicting linear
predictors and survival probabilities respectively. Since random survival forests are
not capable of providing linear predictors the first section simply returns an error. In
the survival probability section at first the input data have to be preprocessed for the
function predict.rsf which can perform predictions on the basis of objects of class
randomSurvivalForest created by the function rsf. Subsequently, these predictions
are estimated and eventually an object of class SurvivalProbs is created which is the
predefined class for survival probabilities in survHD. Its only slot SurvivalProbs
is an object of class Breslow which not only stores the survival probabilities in the
slot curves but also the time points in slot time. This survprob object is finally
returned by the custom prediction function.

The definition of this prediction function was the second part of the user-defined sur-
vival function customRSF. In the end, we still have to create the obligatory output
object of class ModelCustom which primarily consists of the fitted model object
output.rsf in slot mod and the user-defined prediction function in slot predfun.
Additional information can be stored in the slot extraData which must be of class
list:

###now create customsurvhd-object (which is the obligatory output-object)

custommod <- new("ModelCustom", mod=output.rsf, predfun=predfun,

extraData=list())

return(custommod)

Just for the sake of completeness, the complete user defined survival method looks
like follows. It basically consists of three parts: model fitting, prediction function,
creating of the customsurvhd object:

### random survival forest as a custom survival

### model function Xlearn and Ylearn are

### obligatory inputs

customRSF <- function(Xlearn, Ylearn, learnind, ...) {

### load required packages

require(randomSurvivalForest)

### handle inputs

ll <- list(...)

datarsf <- data.frame(Xlearn, time = Ylearn[, 1],

status = Ylearn[, 2])

ll$data <- datarsf

ll$formula <- as.formula("Surv(time, status)~.")

## call actual model function rsf from

## randomSurvivalForest

output.rsf <- do.call("rsf", args = ll)

## define prediction function which will be
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## stored in slot predfun and called by

## predictsurvhd (signature(ModelCustom))

predfun <- function(object, newdata, type, timegrid = NULL,

...) {

require(randomSurvivalForest)

# either type lp or type SurvivalProbs must be

# implemented for typ lp the obligatory return

# class is LinearPrediction

if (type == "lp") {

stop("Random Forests don't provide linear predictors, sorry.")

} else if (type == "SurvivalProbs") {

# for typ SurvivalProbs the obligatory return

# class is Breslow

modelobj <- object@mod

if (is.null(timegrid)) {

stop("No timegrid specified.")

}

### create data for which predictions are to be

### performed function checks for response but

### does not use it (fake response)

predsrsf <- predict.rsf(object = modelobj,

test = data.frame(newdata, time = rexp(n = nrow(newdata)),

status = sample(c(0, 1), nrow(newdata),

replace = T)))

### predict-function provides predictions for

### training times only ->interpolate for

### timepoints in timegrid

curves <- exp(-t(apply(predsrsf$ensemble,

1, FUN = function(z) approx(x = predsrsf$timeInterest,

y = z, xout = timegrid)$y)))

### create breslow-object

pred <- new("breslow", curves = curves,

time = timegrid)

### create SurvivalProbs-object embedding the

### breslow-object

pred <- new("SurvivalProbs", SurvivalProbs = pred)

} else stop("Invalid \"type\" argument.")

return(pred)

}

### now create customsurvhd-object (obligatory

### output-object)

custommod <- new("ModelCustom", mod = output.rsf,

predfun = predfun, extraData = list())

return(custommod)

}

It is practical to make sure that the custom function is in the global environment of
R such that it is available for all functions of survHD.

###define function in global envir

assign(x="customRSF", value=customRSF, envir=.GlobalEnv)
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Using the custom function customRSF we can easily implement a complete work flow
of generating LearningSets, gene selection, tuning, resampling and a final evaluation.

## learningset

ls <- generateLearningsets(y = y[, 1], method = "CV",

fold = 5)

# gene selection

gsel <- geneSelection(X = X, y = y, method = "fastCox",

LearningSets = ls, criterion = "coefficient")

### tune

tuneres <- tune(X = X, y = y, GeneSel = gsel, nbgene = 30,

survmethod = "customSurv", customSurvModel = customRSF,

LearningSets = ls, grids = list(ntree = 20 * (1:10)))

### use tuneres in learnSurvival

svaggr <- learnSurvival(X = X, y = y, GeneSel = gsel,

nbgene = 30, survmethod = "customSurv", customSurvModel =

customRSF, LearningSets = ls, tuneres = tuneres, measure =

"PErrC", timegrid = 4:10, gbm = FALSE, addtune = list(GeneSel =

gsel, nbgene = 30))

The only essential difference is the argument survmethod which is set to ’custom-
Surv’.

Note that even tuning does not need any additional code apart from defining a rea-
sonable tuning grid (argument grids) for the rsf-specific argument ntree. The last
step is the evaluation where we have to resort to measure=’PErrC’ since it is the
only one which can be computed without a linear predictor:

###error expected because rsf does not provide lp

try(evaluate(svaggr, measure='CvPLogL'))
###error expected because rsf does not provide lp

try(evaluate(svaggr, measure='PErrC', timegrid=3:80, gbm=T))

###works without lp

evcust <- evaluate(svaggr, measure='PErrC', timegrid=3:80, gbm=F)

perrcs <- c()

for (i in 1:5) {

perrcs <- cbind(perrcs, result(evcust)[[i]])

}

plot(3:80, rowMeans(perrcs, na.rm = TRUE), , col = "blue",

lwd = 2, main = "RSF Mean Prediction Error Curve on Test Folds",

xlab = "time", ylab = "Mean Prediction Error",

type = "l", ylim = c(0, 0.4), xlim = c(3, xlim2))
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The lower mean prediction error curve suggests a better performance on the data
compared to the previous results for CoxBoostSurv.

4 Gene Set Analysis

It is often of interest to test whether the expression of a particular group of genes is
associated with some phenotype. This is commonly a phenotype that differs between
two groups, for example between a test and a control group. This test is easily
generalized to different phenotype classes like survival outcome by first ranking all
genes in a univariate fashion and then testing for a non-random ranking of gene sets.
We first create a random data set:

set.seed(100)

x <- matrix(rnorm(1000*20), ncol=20)

dd <- sample(1:1000, size=100)

u <- matrix(2*rnorm(100), ncol=10, nrow=100)

x[dd, 11:20] <- x[dd, 11:20]+u

y <- Surv(c(rnorm(10)+1, rnorm(10)+2), rep(TRUE, 20))

genenames <- paste("g", 1:1000, sep="")

rownames(x) <- genenames

Now we need some sets of genes which we will test for association with the outcome.
Here we just create some random ones:

genesets <- vector("list", 50)

for(i in 1:50){

genesets[[i]] <- paste("g", sample(1:1000, size=30), sep="")

}

geneset.names <- paste("set", as.character(1:50), sep="")
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Figure 1: GSA overlap plot. This plot visualizes the similarity of gene sets that are
associated with the phenotype of interest. Note that the p-values are not adjusted for
multiple testing.

A well curated resource of gene sets is the MSigDB. It provides gene sets in tab
separated files with the suffix gmt. These files can be imported with the gsaReadGmt

function. For now, we just create such a gmt data structure from the list of random
sets:

gmt <- new("gsagenesets", genesets=genesets,

geneset.names=geneset.names)

The focus of this package is survival outcome, so testing gene sets for association with
survival is simple:

gsa.res <- gsaWilcoxSurv(gmt, X=x, y=y, cluster=FALSE, p.value=0.3)

The cluster command can be used to cluster similar gene sets in the ranking. The
similarity of gene sets can also be explored with the plot function and the results are
shown in Figure 1:

plot(gsa.res)

Another useful plot is a barplot, which visualizes the ranking of genes in up to two
gene sets (Figure 2):

plot(gsa.res, type="barcode", geneset.id1="set22",

geneset.id2="set33")
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Figure 2: GSA barplot. The horizontal lines on the bottom visualize the positions of
up to two different gene sets in a univariate ranking, colored here in red and blue. The
plot on the top visualizes the local enrichment. It makes sense to compare two sets in
one plot if the gene sets are devided in up- and down-regulated genes. This has the
advantage that not only non-randomness is shown, but also that the gene expression
direction is consistent. Red are typically the up-regulated genes, blue down-regulated
genes. Genes with high statistic have a high hazard ratio and vice versa.
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For phenotypes other than survival, gsaWilcoxSurv accepts a ranking of genes. In
our example, we split the data in two groups and test gene sets for association with
this splitting:

library(genefilter)

genes.ttest <- rowttests(x, as.factor(c(rep(1, 10), rep(2, 10))))

gsa.res.tt <- gsaWilcoxSurv(gmt, genenames=rownames(x),

statistics=genes.ttest[, 1])

All the examples above assume that the rownames of X correspond to the names of the
genes in the gene sets. Here an example in which the rownames of X are Affymetrix
probe ids and the genes in the gene set official gene symbols:

data(beer.exprs)

data(beer.survival)

library(hu6800.db)

library(annotate)

gmt <- gsaReadGmt(system.file("extdata/ovarian_gene_signatures.gmt",

package = "survHD"))

We convert the symbols to Affymetrix ids with the gsaTranslateGmt function and
Bioconductor’s annotate package:

genes <- getSYMBOL(rownames(beer.exprs), "hu6800")

gmt.affy <- gsaTranslateGmt(gmt, beer.exprs, genes)

gsa.res <- gsaWilcoxSurv(gmt.affy, beer.exprs,

Surv(beer.survival[, 2], beer.survival[, 1]))

Note that if a gene is represented by more than one probe set, this code will use
the first match in the GSA. It is recommended to use for example the collapseRows

function of the WGNCA package to pick reasonable probe sets.
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Figure C.1: Ganttchart for bigmemory-
experiment with 50 processes at the IBE-
cluster writing and reading 50x5000 matrices
using a memory attached file.
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Figure C.2: Ganttchart for bigmemory-
experiment with 50 processes at the IBE-
cluster reading 500x5000 matrices from a
memory attached file.
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Papers containing parts of the work
presented in this thesis

D.1 Correcting the Optimal Resampling-Based Error

Rate by Estimating the Error Rate of Wrapper

Algorithms (Bernau et al., 2013)

This paper has been written in cooperation with Thomas Augustin (Department of Statis-
tics, Ludwig-Maximilians-Universität Munchen) and Anne-Laure Boulesteix (Department
for Medical Informatics, Biometry and Epidemiology) in the context of the work presented
in Chapter 1. Thomas Augustin has primarily supported the creation of the section re-
lated to decision theory (Section 1.5.3 in Chaper 1) as well as the abstract. He also helped
revising the paper and its notation, and provided substantial feedback and comments as
well as support in the context of the submission process. Anne-Laure Boulesteix proposed
the idea to use an approximation based on the normal distribution for estimating the prob-
abilities P (k∗(S) = k), k = 1, . . . , K, in Eq. 1.5 as well as the general idea for developing
a method for the correction of the optimal error rate. Furthermore, she has substantially
contributed to Sections 1, 2.2, 2.4, 3.1, 3.2 and 4.1 of the paper and the corresponding sec-
tions in Chaper 1. Additionally, she provided helpful comments, remarks and suggestions
for improvement.
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Correcting the Optimal Resampling-Based Error Rate by Estimating
the Error Rate of Wrapper Algorithms
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Summary. High-dimensional binary classification tasks, for example, the classification of microarray samples into normal
and cancer tissues, usually involve a tuning parameter. By reporting the performance of the best tuning parameter value only,
over-optimistic prediction errors are obtained. For correcting this tuning bias, we develop a new method which is based on a
decomposition of the unconditional error rate involving the tuning procedure, that is, we estimate the error rate of wrapper
algorithms as introduced in the context of internal cross-validation (ICV) by Varma and Simon (2006, BMC Bioinformatics
7, 91). Our subsampling-based estimator can be written as a weighted mean of the errors obtained using the different tuning
parameter values, and thus can be interpreted as a smooth version of ICV, which is the standard approach for avoiding tuning
bias. In contrast to ICV, our method guarantees intuitive bounds for the corrected error. Additionally, we suggest to use bias
correction methods also to address the conceptually similar method selection bias that results from the optimal choice of the
classification method itself when evaluating several methods successively. We demonstrate the performance of our method on
microarray and simulated data and compare it to ICV. This study suggests that our approach yields competitive estimates
at a much lower computational price.

Key words: Classification; High-dimensional data; Method selection bias; Repeated subsampling; Tuning bias.

1. Introduction

Resampling-based procedures are routinely applied in order
to assess the performance of statistical learning methods by
estimating their prediction error. If the available data set
were large enough, it would be recommended to partition
the data into learning and validation data, to fit a model us-
ing the learning data, and to estimate its error based on the
validation data. In the common case of small sample high-
dimensional data considered in the present article, however,
the available data set is usually too small for such a parti-
tioning. Resampling-based procedures are thus particularly
useful in the context of “n � p” data analysis, that is, when
the number of predictors exceeds the number of observations.

In practice, most common classification methods for high-
dimensional data involve a tuning parameter, for example,
the cost parameter in linear support vector machines (SVM)
or the number of neighbors in k-nearest-neighbors (kNN). If
the error of a classification method is estimated by a resam-
pling method several times with different values of the tuning
parameter successively, each parameter value possibly yields
a different estimated error. The approach consisting in se-
lecting the parameter value yielding the smallest resampling
error estimate and only reporting this resampling estimate is
biased (Dupuy and Simon, 2007). That is because the mini-
mal resampling error can be seen as the result of an optimal
selection. As such, it is a biased estimate of the generaliza-
tion error rate, that is, of the error that would be obtained
with this parameter value on independent data. This bias,

that is quantitatively assessed by Varma and Simon (2006) in
the “n � p” setting, is denoted here as tuning bias. Note that
the term “tuning” may be ambiguous since researchers from
different fields might have different understandings of tuning.
In this article, we consider a parameter as a tuning param-
eter if it is not optimized by an analytical method (like the
least squares criterion for the coefficients in linear regression)
but rather by trying several values successively and using the
value yielding the best prediction performance on test data.
When choosing the parameter value based on the performance
yielded by different candidate values, one indirectly uses the
test data for learning the decision function, leading to an op-
timistic bias.

A similar bias, called method selection bias in the sequel,
occurs if a researcher tries out several classification methods
successively and reports only the results of the method yield-
ing the minimal error rate. For instance, suppose we compute
the resampling error rate of SVM, Random Forests (RF),
kNN, and L1-penalized regression for a particular data set.
Suppose further that kNN yields the smallest error rate in the
resampling approach. This error rate is likely to be smaller
than the error rate of kNN on independent data, because
it was optimally selected across four error estimates that all
show some variability. The resulting bias may be considerable,
as illustrated by Boulesteix and Strobl (2009) and Jelizarow
et al. (2010).

To correct for the tuning bias outlined above in the context
of microarray-based classification, Varma and Simon (2006)
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recommend to embed an internal cross-validation (ICV) into
the external resampling-based error estimation procedure. If
the external resampling procedure is also CV as considered
by Varma and Simon (2006), it is usual to denote the whole
procedure as “nested CV.” In this article, however, we stick
to the more general terminology “ICV.” No matter which re-
sampling scheme is used externally for error estimation, the
principle of ICV for parameter tuning is as follows. In each
external resampling iteration, an internal CV is performed
based on the current learning set for different tuning parame-
ter values. The parameter value yielding the smallest error is
selected and then evaluated by predicting test observations. In
this way, for each external iteration the choice of the param-
eter value is performed without using information from the
test set. Note that, as Varma and Simon (2006) have already
stressed in their article, the ICV procedure estimates the er-
ror rate of a so-called wrapper algorithm including the tuning
process and not the error rate of a specific tuning parameter
value. A similar procedure might also be used to address the
method selection bias induced by the optimal choice of the
classification method. However, the ICV technique is compu-
tationally expensive, since it requires an additional CV loop
on each learning set. The computational burden might rapidly
become intractable. Furthermore, ICV tends to yield highly
variable results, sometimes leading to obviously inappropriate
“corrected” errors outside the range of the original errors of
the considered methods.

In this article, we suggest an alternative bias correction
approach, which can be applied to address both the tuning
and the method selection bias. Our procedure, which can be
interpreted as a smooth, analytical variant of ICV, guarantees
intuitive bounds, increases stability compared to ICV, and
reduces the computation time drastically since it does not
rely on an internal CV loop.

Apart from ICV, the literature on the bias of the opti-
mally selected error rate is scarce. Tibshirani and Tibshirani
(2009) introduce an approach addressing several of the men-
tioned inconveniences, first and foremost the computational
burden. In contrast to ICV, however, it does not target the
unconditional error rate of wrapper algorithms but the con-
ditional error rate of the optimal method/tuning parameter.
Therefore, we do not include this approach in our following
study because the differing estimation targets impede a fair
comparison.

The rest of the article is structured as follows. Section 2
introduces the settings and notations and recalls the differ-
ent types of error rates in this framework. This section also
revisits ICV. Section 3 presents our new correction method.
In Section 4, this method is illustrated and compared to ICV
based on a simulation study. Finally, Section 5 summarizes
and discusses some characteristics of our method.

2. Internal CV and the Unconditional Error
Rate of Wrapper Algorithms

2.1. Settings and Notations

From a statistical point of view, binary supervised classifica-
tion can be described in the following way. On the one hand
we have a response variable taking values in Y = {0, 1}. On the
other hand we have predictors taking values in X ⊂ Rp that

will be used for constructing a classification rule. Predictors
and response follow an unknown joint distribution on X × Y
denoted by P(x, y). The observed i.i.d. sample of size n is de-
noted by s0 = {(x1, y1) · · · (xn, yn)}. The classification task con-

sists in building a decision function f̂
S

: X �→ Y, x �→ f̂
S
(x),

which maps elements x of the predictor space X into the re-
sponse space Y. The superscript S indicates that the decision
function is built using the sample S.

From now on, we denote by method k (with k ∈ 1, . . . , K,)
the considered combination of method and tuning parame-
ter values. As an example, method k = 1 may stand for SVM
with cost= 1, method k = 2 for kNN with 10 nearest neigh-
bors, and so on. As a special case, 1, . . . , K might represent
different parameter values of the same method. The decision
function obtained by fitting the prediction method k to the
sample s0 is denoted as f̂

s0

k . Using this notation, each method

k can be defined as a function k : S �→ FX , S �→ k(S) = f̂
S

k ,

which maps any possible sample S to the prediction function

f̂
S

k . Here, S denotes the space of possible samples S and FX
denotes the space of decision functions on X .

2.2. Conditional and Unconditional Error Rate

For a decision function f̂
s0

k , the true prediction error ε[f̂
s0

k ]
depends on the expectation EP over the joint distribution P

and an adequately chosen loss function L(·, ·), for example,
the indicator loss considered in our article. Abbreviating the
true error ε[f̂

s0

k ] of method k constructed from sample s0 by
the simplified notation ε(k ‖ s0), one obtains

ε(k ‖ s0) = EP

[
L

(
f̂

s0

k (x), y
)] =

∫

X×Y

L
(
f̂

s0

k (x), y
)

dP(x, y),

(1)
ε(k ‖ s0) is commonly referred to as conditional error since it
refers to the decision function constructed from the specific
sample s0. The corresponding conditional error rate ε(k ‖ S)
should be seen as a random variable, where S stands for a
random sample that follows the distribution Pn.

The expectation εn(k) = EPn [ε(k ‖ S)] of this random vari-
able ε(k ‖ S) is usually referred to as the unconditional true
error rate of method k. It depends only on the method k,
on the size n of the sample S and on the joint distribution
P , and can be seen as a fixed quantity for every method k.
Since the joint distribution P(x, y) is unknown, the condi-
tional errors ε(1 ‖ s0), . . . , ε(K ‖ s0) and the unconditional er-
rors εn(1), . . . , εn(K) have to be estimated. Standard estima-
tion approaches are based on CV or repeated subsampling.
We focus on the repeated subsampling method in this arti-
cle because our new correction method involves the estima-
tion of the unconditional variance of the estimated error. To
our knowledge the estimator proposed by Nadeau and Bengio
(2003)—which is used here—works for repeated subsampling
only, and we are not aware of any convincing alternative es-
timator applicable to CV.

In repeated subsampling the whole data set is randomly
split into learning and test sets several times. Each learning
set Lb, b = 1, . . . , B of size nL (with nL < n) is used to esti-
mate a decision function that is subsequently evaluated on the
corresponding test set S \ Lb. For each iteration b = 1, . . . , B
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and each method k, k = {1, . . . , K}, one obtains an estimated
error e(k ‖ Lb, S \ Lb), where the notation “Lb, S \ Lb” means
that method k is fitted to the learning set Lb and evaluated
on the test set S \ Lb. Note that we use the notation e for
estimators and ε for true errors.

In contrast to the conditional true error ε(k ‖ S), the esti-
mated error e(k ‖ Lb, S \ Lb) is conditional on the considered
sample not only with regard to the estimation of the decision
function but in addition with regard to the estimation of the
error. For each method k, the iteration-wise test errors are
eventually combined into an error rate estimate by averaging
over the iterations b = 1, . . . , B, yielding

e(k ‖ S) = 1

B

B∑

b=1

e(k ‖ Lb, S \ Lb), (2)

which obviously may depend on the random choices of the
partitions {Lb, Tb}, b = 1, . . . , B, a fact that is however omit-
ted in the notation.

2.3. The Unconditional Error Rate of Wrapper
Algorithms

Let us further denote the method yielding the small-
est estimated error rate based on S as k∗(S), that is,
k∗(S) = arg mink e(k ‖ S). For a sample s0, the error estimate
e(k∗(s0) ‖ s0) obtained by repeated resampling incorporates a
source of a downward bias because k∗(s0) is chosen such that
e(k∗(s0) ‖ s0) is minimal. If one simply chooses the method
yielding the minimal error rate e(k∗(s0) ‖ s0), this minimal
error rate underestimates the true conditional error rate
ε(k∗(s0) ‖ s0) of the chosen method. This problem is due
to the fact that the same sample s0 is used both for error
estimation and for the choice of the optimal classification
method k∗(s0). The corresponding prediction rule f̂

s0

k∗(s0) is
expected to perform worse on an independent sample which
was not used for choosing the method. This bias is related
to the problem of multiple comparisons. The minimal error
rate out of K methods decreases with increasing K.

In the context of ICV, the current gold standard for avoid-
ing this bias, Varma and Simon (2006) reformulate the esti-
mation task by defining wrapper algortihms.

A wrapper algorithm consists of two steps. The first step
is a tuning process k∗ on S which chooses a parameter or
method. It can be described as a function:

k∗ : S �→ K, S �→ k∗(S) = arg min
k

e(k ‖ S),

where K is the space of tuning parameters or candidate meth-
ods (here: K = {1, . . . , K}). Note that k∗(S) is actually a ran-
dom variable even for a fixed sample S because it depends
on the randomly drawn learning sets Lb, b = 1, . . . , B. For
simplicity, however, we ignore this dependence on the specific
learning sets in our notation.

The second step consists in learning a prediction rule
by applying the chosen tuning parameter or candidate
method k∗(S) on S. For a sample S, this learning process
can be described using the function ψ : K × S �→ FX , k �→
ψ(k, S) = f̂

S

k . Using these functions, we can define the wrapper

algorithm φ:

φ : S �→ FX , S �→ φ(S) = ψ(k∗(S), S) = f̂
S

k∗(S).

Please note that this definition of φ is parallel to the definition
of the methods k. However, φ incorporates an additonal source
of randomness—the tuning process—whereas the methods k

are deterministic for a fixed sample S.
Now, the main idea for bias correction in ICV and our new

method consists in estimating the unconditional error rate of
such wrapper algorithms φ:

Err = EPnL (ε(k∗(S) ‖ S)) = εnL(φ). (3)

The error ε(k∗(s0) ‖ s0) of the s0-best method fitted on s0 is
a realization of the random variable ε(k∗(S) ‖ S) whose mean
over PnL is Err. We show in the next section and in Web
Appendix G that the well-known ICV estimator actually tar-
gets at Err, which is also the reason why we use the simulated
counterpart of Err for evaluation in our simulation studies
later on.

Before turning our focus to ICV, we still have to treat
another problem. Note that e(k ‖ S) is a good estimator for
εnL(k) but an upwardly biased estimator of ε(k ‖ S) and εn(k),
because the decision functions are estimated based on nL ob-
servations instead of n, with nL < n. This bias affects any
resampling based approach for estimating the generalization
error. Since the mixture of this bias and the tuning bias would
seriously distort the evaluation of the correction methods
we stick to Err from Equation (3) as our estimation target
throughout the article.

2.4. Revisiting Internal Cross-Validation

ICV is often performed within a nested CV procedure, that
is, with test sets Tb forming a partition of the sample S. In
the following, however, we formulate ICV in a general way
without specifying how the learning and test sets (Lb, Tb) are
chosen. In this article they are chosen by repeated subsam-
pling.

In our notation, the ICV error estimate can be written as

ÊrrICV = 1

B

B∑

b=1

e(k∗(Lb) ‖ Lb, S \ Lb). (4)

This formula, which is substantially different from formula (2)
due to referring to k∗(Lb) instead of a fixed method k, can be
interpreted as follows. For each iteration b (b = 1, . . . , B), the
following procedure is repeated. Firstly, the “Lb-best method”
k∗(Lb) is determined by ICV within Lb. Secondly, the clas-
sification rule fitted on Lb using the best method k∗(Lb) is
evaluated on S \ Lb, yielding e(k∗(Lb) ‖ Lb, S \ Lb). When in-
troducing ICV Varma and Simon (2006) already explain that
their method actually estimates the error rate of wrapper
algorithms. In addition to this explanation, we present an
asymptotic consideration in Web Appendix G, which further
clarifies that the ICV-estimator is interpreted best as a natu-
ral estimator of Err (Equation 3).

The difference between Equations (4) and (2) is that
ICV builds the average error of the best methods k∗(Lb)
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(as assessed in ICV) instead of averaging the error rates of
a specific method k. Note that these Lb-best methods again
vary with the choice of the internal learning sets, which means
that one may not obtain the same final results when repeating
the same procedure twice—even if the outer learning sets Lb

are fixed. Roughly speaking, in ICV the quantity Err (Eq. 3)
is estimated through averaging over B subsets of s0. Each
term e(k∗(Lb) ‖ Lb, S \ Lb) can be seen as an estimator of
ε(k∗(Lb) ‖ Lb), which roughly plays the role of a realization
of ε(k∗(S) ‖ S). The determination of k∗(Lb) within each it-
eration is computationally expensive, which makes ICV very
difficult to apply in practice when the prediction methods
are time consuming, especially when they involve a tuning
step that itself has to be performed through ICV. As a con-
sequence, researchers often run ICV with a small number of
folds (e.g., threefold-CV), yielding even more variable results.
In extreme cases, this high variability may lead to estimates
ÊrrICV larger than maxk e(k ‖ s0) or lower than mink e(k ‖ s0),
which is very unintuitive. Motivated by these disadvantages,
we suggest an alternative computationally effective estimator
in the following section.

3. A Smooth Analytical Alternative to ICV

3.1. Basic Idea

The rationale behind ICV is that the construction of the
decision function and the tuning/method selection process,
which are normally applied to the whole sample S = s0, are
mimicked on each external learning set Lb. In this way the
tuning/method selection process is empirically incorporated
into the estimation procedure. In practice, the best method
k∗(Lb) is typically not the same for all iterations b = 1, . . . , B.
ICV builds a so-to-say hard-weighted average of error esti-
mates obtained with different methods or tuning parameters.
The term hard-weighted is used here to emphasize that for
each resampling iteration b only one of the e(k ‖ Lb, S \ Lb)
(k = 1, . . . , K) is chosen by ICV to be included in the average.
The weight of e(k∗(Lb) ‖ Lb, S \ Lb) is 1, while the weight of all
other e(k ‖ Lb, S \ Lb) (for k 	= k∗(Lb)) is 0. This way, results
from different tuning parameters are eventually combined,
which basically imitates the wrapper algorithm φ whose un-
conditional error rate is estimated.

Our new method is also based on a combination of er-
ror estimates of different parameter values/methods, albeit
in a completely different and more direct way. While ICV
combines errors of different parameter values/methods e(k ‖
L(b), S \ Lb) computed for different test sets, the new pro-
cedure combines the global error estimates e(k ‖ s0) of the
different parameter values/methods k. Furthermore, the way
these average errors are combined does not depend on an em-
pirical experiment as performed in ICV. Our main idea is
to decompose the unconditional error rate EPnL [ε(k∗(S) ‖ S)]
with regard to the random variable k∗(S), that is, the index
of the best method, as follows:

EPnL [ε(k∗(S) ‖ S]

=
K∑

k=1

P(k∗(S) = k)EPnL [ε(k ‖ S)|k∗(S) = k] . (5)

As argued below, in most cases, it is reasonable to assume
that, for a fixed method k,

ε(k ‖ S) ⊥ k∗(S), (6)

that is, the conditional error rate of method k constructed on
S is independent from k∗(S). It follows from Equation (6) that
the conditional expectations in Equation (5), which cannot be
estimated easily, can be replaced by the respective uncondi-
tional expectations,

EPnL (ε(k∗(S) ‖ S) ≈
K∑

k=1

P (k∗(S) = k)EPnL [ε(k ‖ S)] (7)

and thus, to estimate EPnL (ε(k∗(S) ‖ S), we have to estimate
the quantities in Equation (7), as discussed in Sections 3.2
and 3.3.

Before that, let us come back to assumption (6). It means
that the true error rate ε(k ‖ s0) of method k fitted on
s0 does not depend on which method performed best in
repeated subsampling based on s0—the unconditional error
rates εnL(1), . . . , εnL(K) being fixed. Note that this assump-
tion, of course, should not be misinterpreted in the sense
that parameter tuning with CV is useless. Even if assump-
tion (6) holds, tuning is useful to identify which method may
have the smallest unconditional error rate εnL(k). A counter-
example for which assumption (6) does not completely hold
is SVM—denoted as k = 1 here—in the case of a sample with
a mislabeled observation. The error rate ε(1 ‖ s0) of SVM is
likely to be large, because SVM classifiers are strongly af-
fected by mislabeled observations that often take the role
of support vectors. Hence, k∗(s0) = 1 is not likely. Thus, in
this case, we obviously do not have ε(k ‖ S) ⊥ k∗(S). How-
ever, especially in the presence of variable selection, assump-
tion (6) holds in most cases, as illustrated by Hanczar, Hua,
and Dougherty (2007) based on an extensive empirical study.
Note that, if assumption (6) does not hold, it is more likely
that EPnL [ε(k ‖ S)|k∗(S) = k] < EPnL [ε(k ‖ S)], that is, that a
classifier performs better if it is chosen by the model selection
procedure. Consequently, this assumption could be a poten-
tial source for a pessimistic bias in our approach. We will
revisit this aspect after analyzing our correction method on
simulated data.

3.2. A Weighted Mean Approach

The terms EPnL [ε(k ‖ S)] (for k = 1, . . . , K) in Equation (7)
can be naively estimated by e(k ‖ s0) (for k = 1, . . . , K), sug-
gesting to estimate the quantity of interest EPnL (ε(k∗(S) ‖ S)
by a weighted mean of the average errors e(k ‖ s0). We thus
suggest the following estimator, denoted from now on as
“weighted mean correction” (WMC):

ÊrrWMC =
K∑

k=1

P̂ (k∗(S) = k) e(k ‖ s0), (8)

where P̂(k∗(S) = k) stands for an adequate estimator of
P(k∗(S) = k). Two such estimation procedures are presented

in Section 3.3, where we also introduce a variant of ÊrrWMC
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based on improved estimates of EPnL [ε(k ‖ S)], which is called
WMCS.

An illustrative way to explain the WMC estimator is to
parallel it to the raw mean and to ÊrrICV . The raw mean is
obtained by giving equal weights to all parameters/methods,
that is, by replacing P̂(k∗(S) = k) by 1/K in Equation (8).
This equal weight approach can be considered as a sensible
upper bound for the corrected error because it corresponds
to a random choice of the parameter/method. By definition,
a random choice cannot lead to a tuning or method selection
bias. That is why we do not expect any corrected error to be
higher than

ÊrrRawMean =
K∑

k=1

1

K
e(k ‖ s0). (9)

Regardless of the choice of the weights, there is a connection
between our approach and ICV. The WMC estimator can be
paralleled to the ICV estimator through a reformulation as

ÊrrWMC = 1

B

K∑

k=1

B∑

b=1

P̂ (k∗(S) = k) e(k ‖ Lb, S \ Lb). (10)

Similarly, the estimator ÊrrICV can also be reformulated as

ÊrrICV = 1

B

K∑

k=1

B∑

b=1

I(k∗(Lb) = k)e(k ‖ Lb, S \ Lb). (11)

Bringing these two estimators to a similar form highlights
their crucial difference. ÊrrWMC smoothly weights the errors
e(k ‖ Lb, S \ Lb) with the probabilities P̂(k∗(S) = k) estimated
from an analytical parametric model (whose parameters are
estimated from the quantities e(k ‖ Lb, S \ Lb) only). On the

contrary, in ÊrrICV the weights are empirical, discrete and
depend on the results of a computationally intensive inter-
nal CV. Figure 1 illustrates the similarities and differences of
WMC and ICV graphically.

3.3. Algorithmic Description of WMC and WMCS

Our new WMC estimator is obtained through the following
steps:

(1) Inputs of the WMC algorithm: estimated fold errors
{e(k ‖ Lb, s0 \ Lb)}k=1,...,K

b=1,...,B .
(2) Estimating the weights P(k∗(S) = k) based on the

assumption of a multivariate normal distribution
MVN(μ, �) of the vector (e(1‖S), . . . , e(K ‖ S))�:
(a) Estimating the parameters μ and � of the multi-

variate normal distribution
• The vector of means is estimated by μ̂ =

(e(1‖s0), . . . , e(K ‖ s0))
�.

• The covariance matrix is estimated by the near-

est positive definite �̂ of V̂
1
2
C̃V̂

1
2 as computed

by the algorithm in Higham (1988), where V̂

is the diagonal matrix with diagonal elements

v̂1, . . . , v̂K computed using the procedure by
Nadeau and Bengio (2003) as v̂k = v̂ar(e(k ‖ S)) =

1
B−1

∑B

b=1
(e(k ‖ Lb, s0 \ Lb) − e(k ‖ s0))

2 and the
element ρ̂k1,k2 (for k1 	= k2) of the correlation
matrix C̃ = (ρ̂k1,k2)

k2=1,...,K

k1=1,...,K is obtained as the
empirical correlation between the corresponding
fold errors: ρ̂k1,k2 = ĉor(e(k1 ‖ Lb, S \ Lb), e(k2 ‖
Lb, S \ Lb)).

(b) Estimating the weights P(k∗(S) = k) (for k =
1, . . . , K) based on the assumption of a multivariate
normal distribution of (e(1 ‖ S), . . . , e(K ‖ S))� by
plugging μ̂ and �̂ into Equation (13) given in
Section 3.4.

(3) Computing the weighted average of the original average
resampling errors e(k ‖ s0), yielding the WMC estimator

ÊrrWMC = ∑K

k=1
P̂ (k∗(S) = k) e(k ‖ s0).

As supported by our results in Section 4, the WMC proce-
dure yields an optimistic estimate. To address this problem,
we suggest a second algorithm using a data-driven shrinkage
procedure. The idea of the resulting WMCS procedure (stand-
ing for WMC-Shrinkage) is to replace e(k ‖ s0) by a shrunken
estimate both in the weighted average and in the estimation
of the weights P(k∗(S) = k) (further details can be found in
Web Appendix A):

(1) Inputs of the algorithm: estimated fold errors {e(k ‖
Lb, s0 \ Lb)}k=1,...,K

b=1,...,B .
(2)Estimating the shrinkage factor ξ based on a prelimi-

nary multivariate normal distribution MVNpre(μ, �) for
(e(1‖S), . . . , e(K ‖ S))�:
(a) Estimating the parameters μ and � of MVNpre in

the same way as in step (2)(a) of the original WMC
algorithm.

(b) Computing the expected bias ζ̂ as ζ̂ = e(k∗(s0) ‖
s0) − EMVNpre(μ̂,�̂)(e(k

∗(s0) ‖ S)|k∗(S) = k∗(s0)),
whereby the latter term is determined by Monte-
Carlo simulation.

(c) Determining the shrinkage factor ξ as

ξ̂ =

⎧
⎪⎨
⎪⎩

ζ̂[ÊrrRawMean − e(k∗(s0)|s0)]−1 if ζ̂ < ÊrrRawMean

−e(k∗(s0)|s0)
1 otherwise.

(3) Shrinking the average resampling errors e(k ‖ s0)
with shrinkage factor ξ:

eξ(k‖s0) = (1 − ξ)e(k‖s0) + ξ̂ÊrrRawMean for k in 1, . . . , K.

(4) Estimating the weights by P̂
ξ
(k∗(S) = k) similarly to the

WMC procedure (step (2)(b)), except that μ is now es-
timated by (eξ(1 ‖ S), . . . , eξ(K ‖ S))� instead of (e(1 ‖
S), . . . , e(K ‖ S))�.

(5) Computing the weighted average yields the WMCS esti-
mator

ÊrrWMCS =
K∑

k=1

P̂
ξ
(k∗(S) = k)eξ(k ‖ s0). (12)
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Figure 1. Schematic illustration contrasting the weighted mean correction (WMC) and internal cross-validation (ICV). The
misclassification rate (MCR) obtained by WMC (compare to Eq. 10) can be interpreted as a smoothed variant of the one
obtained by internal cross-validation (compare to Eq. 11).

3.4. More Details on Estimating P(k∗(S) = k)

Under the assumption that the vector (e(1 ‖ S), . . . ,
e(K ‖ S))� follows a multivariate normal distribution with
mean vector μ̂ and covariance matrix �̂, the probability
P̂(k∗(S) = k) is obtained as P̂(k∗(S) = k) = PMVN(μ̂,�̂)(e(k ‖
S) � e(k′ ‖ S), ∀k′ : k′ 	= k). This quantity can be derived ana-
lytically by considering the K − 1 differences δk′ = e(k ‖ S) −
e(k′ ‖ S) for k′ 	= k, which are simple linear combinations of the
original random vector (e(1 ‖ S), . . . , e(K ‖ S))�. The proba-
bility P(k∗(S) = k) = P(e(k ‖ S) − e(k′ ‖ S) � 0, ∀k′ : k′ 	= k) is
then obtained from the density of the multivariate normal
distribution of the random vector δ as

0∫

−∞

· · ·
0∫

−∞

1

(2π)
K−1
2

√
T�T �

× exp
(
(δ − T μ̂)� (

T �̂T �)−1
(δ − T μ̂)

)

k′ dδk′ , (13)

where the (K − 1) × K matrix T contains the linear combina-
tions yielding the corresponding differences, that is, such that
δ = Te. These integrals can be approximated very precisely
by common statistical software like the function pmvnorm
from the R package mvtnorm (Genz et al., 2011). Compu-
tation times of this function are marginally small in compari-
son with computation times of other steps of the analysis. Of
course, the normality assumption can not hold exactly since
the considered errors are averages of binary variables. In order

to assess the deviation from the normal distribution we pro-
vide a selection of representative normal quantile plots for
the distribution of the average errors in simulation settings
in Web Appendix C. In many cases the assumption seems to
hold whereas in some cases the distributions tend to more
extreme values than expected under normality assumptions.

3.5. Implementation

The weighted mean correction method is implemented in
the R function weighted.mcr included in a new version
of the R/Bioconductor package CMA (Slawski et al.,
2009) that can be downloaded from the companion website
(URL:http://www.ibe.med.uni-muenchen.de/organisation/
mitarbeiter/070 drittmittel/bernau/cvbias/index.html).
The codes implementing our analyses are also provided there.
For larger data sets and computationally intensive methods
like SVMs, ICV runtimes can be drastically higher in compar-
ison to the two WMC variants. Detailed information on the
runtimes of the different methods are provided in Web
Appendix E.

4. Empirical Results and Comparison of the
Three Estimators

4.1. Study Design

We evaluate our new estimator ÊrrWMC (Eq. 10) and its

shrunken version ÊrrWMCS (Eq. 12) on both real and simu-
lated data sets and compare them to the widely established
estimator ÊrrICV (Eq. 4) and to the naive raw mean estima-

tor ÊrrRawMean (Eq. 9). The real data study is based on four
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microarray data sets that are described in more details in Web
Appendix D. We also consider modified versions of these four
data sets obtained by replacing the response Y by a randomly
generated Bernoulli distributed variable Y ′∼B(1, 0.5). These
modified data sets are denoted as “non-informative” setup,
in contrast to the original version of the data sets including
“informative” predictors. In the simulation study we use five
different data generating processes (DGPs), including DGPs
with correlated and uncorrelated predictors as well as differ-
ent signal strengths and sample sizes. T = 200 data sets are
randomly drawn from each setting. For each data set the true
error rate of the wrapper algorithm is approximated on a large
validation set. A more detailed description of the simulation
study can be found in Web Appendix B.

In the whole study, error rate estimation is performed
through repeated subsampling into learning and test sets with
B = 100 subsampling iterations. The proportion of observa-
tions included in the learning sets is set to 80% and 63.2%
successively. In contrast to the two WMC variants, ÊrrICV

involves another parameter, the number of folds in internal
CV. There are no commonly accepted guidelines to choose
the number of folds in internal CV, which can be seen as
a further inconvenience of ICV. In this study, this number
is chosen such that each internal test set contains approxi-
mately five observations. In each setup, the whole procedure
is repeated T = 50 times in order to analyze the variability of
the results. By “repeated,” we mean that T = 50 different sets
of partitions (Lb, Tb)b=1,...,B are considered successively for the
original data sets, and that T = 50 different randomly gener-
ated responses Y ′ are considered successively for the modified
data sets. In the whole analysis, we thus consider a total of
50 × 100 = 5000 splittings into learning data Lb and test data
Tb.

As outlined in the introduction and in Section 2, our
methodology can both be applied to the correction of the
tuning bias or to the correction of the method selection bias.
To illustrate these two features, we successively consider two
setups. In the first setup (illustrating the correction of the
tuning bias and denoted as “tuning setup” (labels in ta-
bles and figures according to the methods used: “pls” and
“knn”)), methods 1, . . . , K stand for different parameter val-
ues of a unique classification method. Two classifiers are con-
sidered successively. The first classifier is kNN, where methods
1, . . . , K correspond to different values (1, . . . , 15) of the pa-
rameter “number of neighbors”. The second classifier is Par-
tial Least Squares dimension reduction followed by Linear
Discriminant Analysis (PLS-LDA) where methods 1, . . . , K

correspond to different numbers (1, . . . , 10) of PLS compo-
nents. In both cases, a preliminary variable selection is per-
formed by selecting the variables yielding the lowest p values
with the two-sample t-test (50 variables for kNN, 250 vari-
ables for PLS-LDA). Note that, in all resampling iterations,
variable selection is performed using the learning set only. For
ICV, this holds for the outer as well as for the inner loop.

In the second setup (illustrating the correction of method
selection bias and denoted as “selection setup” (label in ta-
bles and figures: “sel”)), methods 1, . . . , K correspond to dif-
ferent combinations of classification methods and parameter
values. The parameters are fixed, because tuning them with
internal CV would imply three embedded CVs for ÊrrICV ,

Table 1
Average corrected errors (over 50 replications) for

informative pls and selection (sel) setups with 80% of the
observations in the training data sets

Setup ICV WMCS WMC Raw Min Max

pls-alon 0.176 0.183 0.168 0.186 0.149 0.210
pls-singh 0.087 0.092 0.080 0.091 0.075 0.180
pls-golub 0.048 0.034 0.030 0.035 0.024 0.041
pls-chiaretti 0.431 0.434 0.417 0.441 0.398 0.459
sel-alon 0.164 0.179 0.163 0.190 0.142 0.257
sel-singh 0.097 0.104 0.092 0.133 0.083 0.319
sel-golub 0.026 0.021 0.018 0.061 0.004 0.226
sel-chiaretti 0.398 0.403 0.383 0.420 0.365 0.452

which is computationally intractable. The following classifica-
tion methods are considered: nearest shrunken centroids with
� = 0.5, linear SVM with cost = 50, kNN with 1 neighbor
based on the 20 top-variables, kNN with 18 neighbors based
on the 50 top-variables, diagonal linear discriminant analy-
sis (DLDA) based on the 20 top-variables, PLS-LDA with
3 PLS components based on the 100 top-variables and L2-
penalized logistic regression with penalty λ = 0.01. The sim-
ulation study is performed for the selection setup only, since
it is generally more challenging due to the larger bias.

Note that these three different classifier pools in combina-
tion with the resampling approach for tuning/selection define
wrapper algorithms φ, whose unconditional error rates are the
actual estimation target of ICV and WMC.

4.2. Study Results

An overview of the results on real data sets is given in
Table 1 (informative setup) and Table 2 (non-informative
setup) displaying the averages over the T = 50 replications

of the corrected estimates ÊrrWMC, ÊrrWMCs, ÊrrICV and of the
raw mean ÊrrRawMean as well as the minimal and the max-
imal error rates mink e(k ‖ s0) and max e(k ‖ s0). Figure 2
displays the boxplots of these error estimates for a repre-
sentative real data set in the informative setting (top) and
non-informative setting (bottom), while Figure 3 shows the
boxplots obtained in a representative simulation setting for
different signal strengths (top: strong, middle: weak, bottom:

Table 2
Average corrected errors (over 50 replications) for

non-informative pls and selection (sel) setups with 80% of
the observations in the training data sets

Setup ICV WMCS WMC Raw Min Max

pls-alon 0.502 0.497 0.483 0.504 0.465 0.538
pls-singh 0.494 0.490 0.482 0.492 0.468 0.524
pls-golub 0.500 0.489 0.479 0.495 0.463 0.533
pls-chiaretti 0.495 0.492 0.482 0.498 0.469 0.523
sel-alon 0.492 0.482 0.462 0.488 0.440 0.531
sel-singh 0.504 0.496 0.479 0.503 0.463 0.541
sel-golub 0.498 0.487 0.466 0.493 0.443 0.536
sel-chiaretti 0.505 0.498 0.484 0.501 0.468 0.532



700 Biometrics, September 2013

Figure 2. Comparison of internal cross-validation (ICV),
weighted mean correction (WMC), and weighted mean cor-
rection with shrinkage (WMCS) for the selection setup on
the prostate cancer data set by Singh with 80% of the ob-
servations in the training data sets (top: informative setting,
bottom: non-informative setting with an horizontal line at
50%).

no signal). We refer to Web Appendices B (simulated data)
and D (real data) for a more exact and exhaustive analysis
of the results, whereas we summarize the most important as-
pects in the following paragraphs.

In most simulation and real data settings the ICV and
WMCS estimates are similar and range between the WMC
errors and the raw mean errors. In the tuning setups, WMCS
often yields results close to the raw mean indicating that its
shrinkage mechanism considers differences among classifiers
only marginally relevant. As pointed out before, the raw mean
error is a sensible upper bound for the corrected error. Our
new WMCS method yields the raw mean if ξ equals 1. As
mentioned in Section 3, the raw mean corresponds to a ran-
dom choice of the parameter/method, which obviously cannot
lead to a tuning or method selection bias. We do not expect
a good correction method to produce estimates higher than
the raw mean approach. Corrected errors estimated by ICV,
however, fall beyond this upper bound in some of the investi-
gated setups, which makes poor sense in most situations and
may be considered as an important disadvantage. Such a fail-
ure may also exceptionally occur with the WMC and WMCS
methods, but to a much lesser extent.

Most WMC estimates are slightly more optimistic than
ICV in the informative setups with the real data sets. In
simulations, this tendency to under-correction is even more
pronounced.

In contrast, WMCS slightly over-corrects, that is, tends
to over-estimate the error, but this tendency decreases with
increasing sample size in simulations. The analysis of the
shrinkage parameter ξ suggests that this slight over-correction
especially occurs in intermediate cases where ξ takes values

Figure 3. Comparison of internal cross-validation (ICV),
weighted mean correction (WMC), and weighted mean cor-
rection with shrinkage (WMCS) for the selection setup on
simulated data with correlated predictors and different signal
strengths (top: strong signal, middle: weak signal, bottom: no
signal) with 80% of the observations in the training data sets
and n = 60. The true error rate of the wrapper algorithm Err

is represented as an horizontal line in each setting.

around 0.5 or 0.6. In general, however, the shrinkage parame-
ter behaves as expected: larger values are selected more often
for non-informative setups (ξ → 1) than for informative se-
tups (ξ → 0). See Web Appendices B and D for more details
on the shrinkage parameter.

On the Golub data set, which is characterized by very small
errors, we rarely observe ICV-corrected error rates higher
than the average maximal error rate, maxk e(k ‖ S). Corrected
error rates exceeding the error rate of the worst classifier can
be considered as obvious failures of the correction method.
In contrast to ICV, both variants of the new estimator are
upper-bounded by maxk e(k ‖ S).

To conclude, WMCS yields more convincing results than
WMC in most settings, in the sense that it leads to
estimates i) near 0.5 in non-informative settings, ii) near the
true error rate of the wrapper algorithms Err in simulated in-
formative settings, and iii) near the ICV estimates in real data
informative settings. The strongest deviations from ICV occur
on the 0.63-setups. In the tuning setups, WMCS mostly yields
results close to the raw mean. Further analyses are needed
to show whether WMCS is substantially superior to the raw
mean in this case. It is worth mentioning, however, that the
shrinkage factor ξ always provides important evidence for the
applicability of the raw mean, and WMCS is thus more infor-
mative.

5. Discussion and Concluding Remarks

In the context of error estimation through repeated sub-
sampling, we suggest two variants of a new weighting-
based method for correcting the tuning bias and the method
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selection bias by estimating the unconditional error rate of
the corresponding wrapper algorithms as with ICV. Both
of our methods avoid the additional computational costs of
ICV while producing comparable results. The shrinkage-based
variant, WMCS, addresses the optimistic tendency of WMC.
WMCS yields the most accurate estimates in simulations and
the best approximation to ICV on real data despite a slight
tendency to over-correction. Our correction method cannot
only be applied in the well-known context of parameter tuning
but also to address the method selection bias. To our knowl-
edge, correction of the latter bias has never been addressed
explicitly in the literature, neither with ICV nor with any
other approach. We also suggest to extend ICV to the method
selection setup, based on the idea that a “method” can in a
broad sense be considered as a categorically scaled tuning
parameter. There are however some differences between the
tuning setup and the method selection setup. Quite generally,
the bias is larger in the method selection setup than in the
tuning setup. That is probably because in the tuning setup
the error is expected to depend smoothly on the parameter
value. Large differences between errors obtained with simi-
lar parameter values are unlikely. In contrast, in the selection
setup methods do not have a natural ordering and may yield
more contrasted errors.

Besides the lower computational effort, an important ad-
vantage of our method over ICV is that the obtained corrected
error remains within reasonable bounds defined by the mini-
mal and maximal errors. As shown in Section 4, ICV may pro-
duce estimates outside this interval. Regardless of whether the
ICV-estimates fall above the highest error or below the lowest
error, such a “correction” makes poor sense. Our correction
method is clearly superior in such cases. Another extreme sit-
uation where our method yields more plausible results is when
all tuning parameter values/methods lead to very similar re-
sampling error rates (e(1 ‖ s) ≈ · · · ≈ e(K ‖ s)). In this case
our correction methods do not perform any correction, which
is intuitively reasonable. On the contrary, ICV may produce
a different corrected error. Whereas the results of the new
weighted mean correction are deterministic (once the outer
learning sets are fixed), ICV depends on the specific choice of
the internal learning sets when selecting the Lb-best method
k∗(Lb). This aspect of ICV is consistent with its main idea
of mimicking the selection or tuning process on each learning
set of the resampling approach. However, by this dependence,
ICV suffers from another source of variability which is difficult
to correct within a reasonable time.

In contrast to ICV, WMC, and WMCS directly use the
information on the correlation between the errors of differ-
ent parameter values/methods, which allows an assessment
of the “effective cardinality” of the pool of parameter val-
ues/methods. Obviously, the potential for tuning or method
selection bias increases with the number K of parameter
values/methods. However, if they are all very similar the
bias is not expected to increase dramatically. Our method
automatically takes into account correlation between errors
including such highly correlated “blocks” of similar parame-
ter values/methods. Another practical advantage over ICV is
that our approach can be applied “a posteriori” as long as one
has used the same training sets for all classifiers and saved
all fold errors (e(k||Lb, S \ Lb), ∀b, k). With ICV the whole

procedure has to be performed again if the classifier pool or
the tuning grid is changed or enlarged.

Next, we have to discuss the small optimistic bias of WMC
and the even smaller pessimistic bias of WMCS. The WMC
procedure is based on a number of assumptions and possibly
biased estimation steps. On the one hand, if assumption (6) is
violated we expect our method to be conservative, that is, to
over-correct the error, because a method chosen by internal
CV based on a specific data set is expected to perform bet-
ter rather than worse when applied to this data set, yielding
EPnL

[ε(k ‖ S)|k∗(S) = k] � EPnL
[ε(k ‖ S)]. On the other hand

we have the optimistic bias which is induced by the biased
mean estimate μ̂. This bias is corrected by the shrinkage ap-
proach in WMCS. However, WMCS sometimes over-corrects
the optimistic tendency of WMC especially in setups where
ξ is close to 0.5 or 0.6. In these particular cases, WMC often
performs better than WMCS. In the present context of bias
correction, however, the optimistic bias of WMC epitomizes
a clear disadvantage and we do not advice to apply it in prac-
tice. The pessimistic bias of WMCS is definitely more accept-
able, the more so as it is substantially smaller on average. In
the tuning setup, the WMCS method often produces results
very similar to the raw mean. In future work our methods
should be further assessed and refined in this context. More-
over, the method could also be extended to the case where the
tuning parameter is the number of variables used by a specific
method. This setup can be considered an intermediate case
between selection setup and tuning setup.

Finally, let us recapitulate the shift of focus from the con-
ditional error rate of a classifier to the unconditional error
rate of wrapper algorithms, which have been introduced in
Varma and Simon (2006) and used as a basis by our ap-
proach. On the one hand, one can certainly argue that the
ultimate quantity of interest for a physician is the conditional
error rate of the eventually constructed prediction rule. In
this context, ICV and the WMC variants can only provide
a “surrogate estimate” based on the assumption that Err is
usually close to this conditional error rate. Especially in the
case of method selection setups, this assumption may be vi-
olated because the models constructed in the respective ICV
iterations can be substantially different from the model con-
structed on the whole data set. However, even in this case, Err

can be an informative quantity if one is more interested in the
general utility of the data at hand. In pilot studies meant as
proof of concept, Err can provide a more realistic picture of
the signal in the data because it considers the high variability
of the model construction procedure of wrapper algorithms.
Considering the conditional error rate of a single model only
may lead to highly variable conclusions.

On the other hand, from a statistician’s point of view, the
unconditional error rate of the wrapper algorithm, Err, can
be an interesting quantity for its own sake. If several wrap-
per algorithms have to be compared, it is recommendable to
compare them on the basis of Err and not of the conditional
error rate. For this purpose, Err has clear advantages over
the conditional error rate because it indeed reports the per-
formance of the underlying wrapper algorithm whereas the
conditional error rate is the performance of a single pre-
diction rule only. At least on simulated data (where the
corresponding quantities can be obtained via Monte Carlo
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simulations), we would also consider as a next step to in-
clude the variance of the conditional error rate of wrap-
per algorithms (VarPnL [ε(φ(S))] = VarPnL [ε(k∗(S) ‖ S)] =
EPnL [ε(k∗(S) ‖ S) − Err]2) into the comparison in order to
provide additional insight into the characteristics of the com-
peting wrapper algorithms.

6. Supplementary Materials

Web Figures and Tables referenced in Sections 3 and 4 are
available with this paper at the Biometrics website on Wiley
Online Library.
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ABSTRACT
Motivation: Numerous competing algorithms for prediction modeling
in high-dimensional settings have been developed in the statistical
and machine learning literature. Learning algorithms and the
prediction models they generate are typically evaluated on the basis
of cross-validation error estimates in a few examplary datasets.
However, in most applications, the ultimate goal of prediction
modeling is to provide accurate predictions for independent samples
processed in different laboratories, and cross-validation within
examplary datasets may not adequately reflect performance in this
context.
Methods: Systematic cross-study validation is performed in
simulations and in a collection of eight estrogen-receptor positive
breast cancer microarray gene expression datasets, with the objective
of predicting distant metastasis-free survival (DMFS). An evaluation
statistic, in this paper the C-index, is computed for all pairwise
combinations of training and validation datasets. We evaluate several
alternatives for summarizing the pairwise validation statistics, and
compare these to conventional cross-validation.
Results: We develop a systematic approach to “cross-study
validation” to replace or supplement conventional cross-validation for
evaluation of high-dimensional prediction models when independent
datasets are available. In data-driven simulations and in our
application to survival prediction with eight breast cancer microarray
datasets, standard cross-validation suggests inflated discrimination
accuracy for all competing algorithms when compared to cross-study
validation. Furthermore, the ranking of learning algorithms differs,
suggesting that algorithms performing best in cross-validation may
be suboptimal when evaluated through independent validation.
Availability: The survHD: Survival in High Dimensions package
(http://www.bitbucket.org/lwaldron/survhd) will be made available
through Bioconductor.
Contact: levi.waldron@hunter.cuny.edu

∗to whom correspondence should be addressed

1 INTRODUCTION
Cross-validation and related resampling methods are de facto
standard for ranking supervised learning algorithms. They allow
estimation of prediction accuracy using subsets of data that have
not been used to train the algorithms. This avoids over-optimistic
accuracy estimates caused by “re-substitution,” a property that
has been carefully considered (Molinaro et al., 2005; Baek et al.,
2009; Simon et al., 2011). It is common to evaluate algorithms
and prediction models by estimating accuracy via cross-validation
based on several datasets, with results summarized across datasets
to rank algorithms (Demšar, 2006; Boulesteix, 2013). This approach
recognizes possible variations in the performance of learning
algorithms across studies. However, it is not fully consistent with the
ultimate goal of providing accurate predictions for fully independent
samples originating from different institutions and processed by
different laboratories.

It has been observed that accuracy estimates of genomic
prediction models based on independent validation data are often
substantially inferior to cross-validation estimates (Castaldi et al.,
2011). In some cases this has been attributed to incorrect
application of cross-validation; however even strictly performed
cross-validation may not avoid over-optimism resulting from
potentially unknown sources of heterogeneity across datasets.
These include differences in design, acquisition, and ascertainment
strategies (Simon et al., 2009), hidden biases, measured variables,
technologies used for measurements, and populations studied. In
addition, many genomics studies are affected by experimental batch
effects (Baggerly et al., 2008; Leek et al., 2010). Quantifying these
heterogeneities and predicting their impact on the performance of
prediction algorithms is critical in the practical implementation of
personalized medicine procedures that use genomic information.

There are potentially conflicting, but valid, perspectives on what
constitutes a good learning algorithm. The first perspective is that
a good learning algorithm should perform well when trained and
applied to a single population and experimental setting, but it is
not expected to perform well when the resulting model is applied
to different populations and settings. We call such an algorithm

c© Oxford University Press 2014. 1
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“specialist”, in the sense that it can adapt and specialize to the
population at hand. This is the mainstream perspective for assessing
prediction algorithms and is consistent with validation procedures
performed within studies (Molinaro et al., 2005; Baek et al., 2009;
Simon et al., 2011). However, we feel it does not reflect the reality
that “samples of convenience” and uncontrolled specimen collection
are the norm in genomic biomarker studies (Simon et al., 2009).

We promote another perspective: a good learning algorithm
should be “generalist”, in the sense that it yields models that may
not be optimal for the training population, that are likely not fully
representative of the dataset at hand, but that perform reasonably
well across populations or laboratories employing comparable but
not identical methods. Generalist algorithms may be preferable
in important settings, for instance when a researcher develops
a model using samples from a highly controlled environment,
but hopes the model to be applicable to other hospitals, labs,
or more heterogeneous populations. Although concern has been
expressed about the lack of independent validation of genomic
prediction models (Subramanian and Simon, 2010; Micheel et al.,
2012), computational scientists have not systematically adopted
independent validation in the comparison of learning algorithms.
We thus propose what we term “leave-one-dataset-in” cross-
study validation to formalize the use of independent validation
in the evaluation of learning algorithms. Through data-driven
simulations and an example involving eight publicly available
estrogen receptor-positive breast cancer microarray datasets, we
assess several established survival prediction algorithms using the
proposed approach and compare it to conventional cross-validation.

2 METHODS
2.1 Notations and settings
We consider multiple datasets i = 1, . . . , I with sample sizes
N1, . . . , NI . Each observation s appears only in one dataset i
(datasets do not overlap), and the corresponding record includes
a primary outcome Y s

i and a vector of predictor variables Xs
i ;

throughout this paper Xs
i will be gene expression measurements.

Our goal is to compare the performance of different learning
algorithms k = 1, . . . ,K that generate prediction models for Y s

i

using Xs
i . Throughout this paper, the primary outcome Y s

i is a
possibly censored survival time. We are interested in evaluating
and ranking competing prediction methods k = 1, . . . ,K. Since
the ranking may depend on the application field, the first step is to
define the prediction task of interest. We focus on the prediction
of survival time in breast cancer patients based on high-throughput
gene expression measurements. Our approach and the concept of
cross-study validation, however, can be applied to any other type of
response variable.

2.2 Algorithms considered
We assess six learning algorithms (k = 1, . . . , 6) appropriate
for high-dimensional continuous predictors and possibly censored
survival time outcome: LASSO regression (Goeman, 2010),
CoxBoost (Binder and Schumacher, 2008), SuperPC (Blair and
Tibshirani, 2004), Unicox (Tibshirani, 2009), and PlusMinus (Zhao
et al., 2013). Our focus is not to provide a comprehensive array

of algorithms, but simply to use a few popular, representative
algorithms to study the properties of cross-study validation.

2.3 Ranking algorithms by cross-study validation: the
CSV matrix

We refer in this paper to k-fold cross-validation and related
resampling methods collectively as cross-validation (CV).

Our ranking procedure for learning algorithms is based on a
squared matrix Zk of scores (k = 1, . . . ,K), with the element in the
i-th row and j-th column measuring how well the model produced
by algorithm k trained on dataset i performs when validated on
dataset j. Since we considerK methods we end up withK method-
specific squared matrices Z1, . . . ,ZK . The diagonal entries of the
matrices are set equal to the performance estimates obtained with
4-fold CV in each dataset. We also refer to Zk as the cross-study
validation matrix, or CSV matrix.

Possible definitions for the non-diagonal Zk
i,j scores include the

concordance index in survival analysis (Harrell et al., 1996; Gnen
and Heller, 2005), which we use in this paper, the area under the
operating characteristic curve in binary classification problems, or
the mean squared distance between predicted and observed values in
regression problems. As an illustration, Figure 1a displays the CSV
matrix of C-statistics obtained through validation of ridge regression
models for the eight studies of Table 1.

2.4 Summarization of the CSV matrix
In order to rank learning algorithms k = 1, . . . ,K, each matrix Zk

must be summarized by a single score. We consider two candidate
approaches:

1) Simple Average
∑

i

∑
i6=j Zk

i,j

I(I−1)
of all non-diagonal elements of

the Zk-matrix.
2) Median or more generally q−quantile of the non-diagonal

entries of Zk. Quantiles offer robustness to outlier values, and the
possibility to reduce the influence of uninformative studies where all
algorithms perform poorly by selection of an appropriate quantile.

2.5 True global ranking
From a statistical perspective the score Zk

i,j is a random variable.
First, studies i and j can be seen as randomly drawn from a
population of studies. Second, observations within each study can
be considered as randomly drawn from the unknown and possibly
different distributions Fi and Fj underlying studies i and j.

With this view of Zk
i,j as random variable, we consider the

theoretical counterparts of the empirical aggregating scores (simple
average and quantiles) described in Section 2.4 to summarize Zk.
The theoretical counterparts are the expected value or quantiles of
each Zk

i,j score, i 6= j, obtained by integrating the two levels
of randomness that we described. The true global ranking of the
learning algorithms k = 1, . . . ,K is then defined by these expected
values (or quantiles), one for each algorithm. We will call the
ranking global because it is not specific to the available studies.

The true global ranking can be considered as the estimation target
of evaluation procedures such as CV or CSV. In section 2.7 we
present the design of a data-driven simulation study in which the true
ranking is obtained through Monte Carlo integration. This allows us
to evaluate and compare the ability of CV and CSV to recover the
true global ranking.

2
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2.6 Description of datasets
We used a compendium of breast cancer microarray studies curated
for the meta-analysis of Haibe-Kains et al. (2012) and available
as a supplement to that article. We selected all datasets for which
metastasis-free survival (DMFS), the most commonly available
survival endpoint, as well as Estrogen Receptor (ER) status,
were available, and which were generated with Affymetrix HGU
GeneChips HG-U133A, HG-U133B and HG-U133PLUS2. We
considered exclusively ER-positive tumors. Of the remaining 8
datasets (Table 1), only one originated from a population-based
cohort (Schmidt et al., 2008). Four studies considered only patients
who did not receive hormone therapy or chemotherapy adjuvant
treatment. Only four provided date ranges of patient recruitment
Foekens et al. (2006); Desmedt et al. (2007); Schmidt et al. (2008);
Chin et al. (2006). This variability in design strategies and reporting,
and cohort differences in survival that are not easily explicable
(Table 1, column 3Q survival) highlight the prevalence of “samples
of convenience” in biomarker studies discussed by Simon et al.
(2009).

Samples from dataset SP1 duplicated in dataset VDX were
removed. Expression of each gene was summarized using the
probeset with maximum mean (Miller et al., 2011). The 50% of
genes with lowest variance were removed. Subsequently, gene
expression values were scaled by linear scaling of the 2.5% and
97.5% quantiles as described by Haibe-Kains et al. (2012).

2.7 Simulation design
We simulate heterogeneous datasets from a joint probability model
with survival outcomes. The probability model is defined by a
resampling procedure that we apply to the eight breast cancer
datasets in Table 1. The resampling scheme is a combination
of parametric and nonparametric bootstrap (Efron and Tibshirani,
1993; Bender et al., 2005). The goal of our simulation study is to
compare CV and CSV when used for evaluation and ranking of
competing learning algorithms, in synthetic data that realistically
simulate multiple independent datasets, where the true relationship
between the independent and dependent variables is known. CV
and CSV are then assessed with respect to their ability to recover
the true global ranking, which we compute through Monte-Carlo
integration. We assess the ability to recover the ranking by Kendall
correlation between the true global ranking and the CV or CSV
estimates.

For b = 1, . . . , B = 1000 iterations, a collection of
I = 8 datasets is generated as follows. First, 8 studies are
sampled with replacement from the list of breast cancer studies.
In other words, we resample the collection of studies to mimic
the fact that studies are not considered as fixed but rather drawn
from a population. This step only involves simulations from
a multinomial Mult(8, [1/8, . . . , 1/8]) distribution. Second, for
each of the generated studies, N = 150 patients are sampled
from the corresponding original dataset with replacement. Each
of the 150 predictor vectors is directly generated from a study-
specific empirical distribution (non-parametric bootstrap). Finally,
the corresponding survival times are simulated from a proportional
hazards model (parametric bootstrap) fitted to one of the available
studies:

M i
true : λi(t|x) = λi

0(t)× exp(xTβi), (1)

i = 1, . . . , I , where λi(t|x) is the individual hazard function
when the vector of predictors is equal to x and βi denotes a vector
of regression coefficients. We combine the truncated inversion
method in Bender et al. (2005) and the Nelson-Aalen estimator for
cumulative hazard functions to simulate survival times that reflect
survival distributions and follow-up of the real studies. The vector
βi is set identical to the coefficients fitted in study i = 1, . . . , I
using the CoxBoost method (Binder and Schumacher, 2008). Note
that a different regression method could have been used at this stage.

The collections of simulated datasets are then used both (i) to
compute by Monte Carlo method the true global ranking defined in
Section 2.5, and (ii) to compute estimated ranks by CV and CSV.

Figure 1a displays, for each pair of studies (i, j) in Table 1, C-
index obtained when training a model by ridge regression on dataset
i (rows), and validating that model on dataset j (columns). Diagonal
elements (i = j) are obtained by 4-fold CV. Figure 1b displays
mean C-indices for each (i, j) combination across simulations,
when the training and validation studies are generated resampling
the i-th and j-th study. The diagonal elements are computed
by averaging C-indices with the training and validation datasets
independently generated by resampling from the same study.

The similarity between the two panels is striking, in particular
with respect to the clear separation of the eight studies into two
groups. The first group includes the studies MNZ, ST1, ST2, TRP,
UNT and VDX, and seems to produce more accurate prediction
models than the remaining studies. The datasets in this group seem
also associated with higher values of the concordance index when
used for validation. This difference between the two groups is also
illustrated in Figure 1c. It displays the non-diagonal entries of the
matrices represented in the left and middle panels, i.e. average
C-indices from simulated datasets vs. C-indices from real data.
This scatterplot shows a clear two-cluster structure: the yellow dots
display the 30 training and validation combinations within the larger
group of studies, i.e MNZ, ST1, ST2, TRP, UNT and VDX.

2.8 Evaluation criteria in simulations
In simulation studies, we can assess and rank learning algorithms
based on their ability to recover the true underlying models M i

true.
In this section, we introduce a criterion that reflects the similarity
between the true regression coefficients βi that were used to
simulate the i-th dataset and the coefficients β̂(k)

j fitted on dataset
j. We consider separately pairs of studies with i 6= j and pairs with
i = j. The standard way to assess similarity between vectors is
to compute the euclidean distance between them. However, since
our focus is on prediction we consider the alternative criterion
ĉor(Xiβi,Xiβ̂

(k)
j ) to measure the similarity between the true βi

and fitted regression coefficients β̂(k)
j . Here Xi is the matrix of

predictors of dataset i and ĉor denotes the empirical Pearson’s
correlation. The average

Sk
self = (1/I) ·

∑

i

ĉor
(
Xiβi,Xiβ̂

(k)
i

)
, (2)

over the I studies, provides a measure of the ability of learning
algorithm k to recover the model that has generated the training
dataset, hence the index self.

Another criterion of interest is the ability of a learning algorithm
to recover the vector of regression coefficients βi when we relax

3
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No. Name Adjuvant # patients # ER+ 3Q survival Median follow-up Original Reference
therapy [mo.] [mo.] identifiers ‡

1 CAL chemo, hormonal 118 75 42 82 CAL Chin et al. (2006)
2 MNZ none 200 162 120 94 MAINZ Schmidt et al. (2008)
3 MSK combination 99 57 76 82 MSK Minn et al. (2005)
4 ST1 hormonal 512∗ 507∗ 114 106 MDA5, TAM, VDX3 Foekens et al. (2006)
5 ST2 hormonal 517 325 126 121 EXPO, TAM Symmans et al. (2010)
6 TRB none 198 134 143 171 TRANSBIG Desmedt et al. (2007)
7 UNT none 133 86 151 105 UNT Sotiriou et al. (2006)
8 VDX none 344 209 44 107 VDX Minn et al. (2007)

Table 1. Public microarray datasets of breast cancer patients as curated and summarized by Haibe-Kains et al. (2012). Datasets are referred to using the
following acronyms: CAL = University of California, San Francisco and the California Pacific Medical Center (United States), MNZ = Mainz hospital
(Germany). MSK = Memorial Sloan-Kettering (United States), ST1, ST2 are meta-datasets as provided by Haibe-Kains et al. (2012), therein named
SUPERTAM1 and SUPERTAM2. TRB = dataset collected by the TransBIG consortium (Europe), UNT = cohort of untreated patients from the Oxford
Radcliffe (United Kingdom), VDX = Veridex (the Netherlands). # ER+ refers to the number of patients with the Estrogen Receptor positive subtype. 3Q
survival provides the Kaplan-Meier estimate of 75% survival probability for each cohort. Median follow-up is calculated from the reverse Kaplan-Meier
estimate. ∗Numbers shown are after removal of samples duplicated in the dataset VDX. ‡ Dataset identifier(s) as specified in Haibe-Kains et al. (2012).
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(b) simulated data
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(c) simulated data
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Fig. 1: Cross-study validation matrices Zk in simulated and experimental data for Ridge Regression. Panel (a) displays C-indices for training
and validation on each pair of actual datasets in Table 1. The diagonal of this matrix shows estimates obtained through 4-fold CV. The
heatmap in panel (b) displays, for each pair of studies (i, j), the average C-index obtained when ridge regression is fit on simulated datasets
generated by resampling gene expression data from the i-th study in Table 1 by non-parametric bootstrap and simulating censored survival
outcome by parametric bootstrap; the resulting model is validated on a simulated dataset generated by resampling study j. Two independent
datasets from the same study are sampled for the diagonal elements. Both heatmaps strongly resemble each other, indicating a realistic
simulation scenario. CAL and MSK are outlier studies: cross-study C-index is approximately 0.5 when they are used either for training
or validation. All values of the Z-matrix corresponding to these two studies build the blue “bad performance” cluster in panel (c) which
compares the C-indices obtained for study pairs (i, j), i 6= j, on simulated data (y-axis) and experimental data (x-axis). Pearson correlation
is ≈ 0.9. The three plots illustrate high similarity between simulated and real data in our application.

the assumption that the unknown models underlying training an
validation datasets coincide. This can be quantified with

Sk
across = (1/(I(I − 1))) ·

∑

i

∑

j 6=i

ĉor
(
Xiβi,Xiβ̂

(k)
j

)
, (3)

where the index across emphasizes the focus on cross-study
similarity, i.e. on the ability of algorithm k to recover the coefficients
βi when fitted on dataset j, with j 6= i. Instead of taking simple

averages in Eqs. (2-3), one could also use different summaries, e.g.
median or quantiles, as presented in Section 2.4.

Both Sk
self and Sk

across are criteria to assess and compare learning
algorithms. The ranking obtained by ordering the algorithms
according to their value of Sself (Sacross) are denoted by Rself

(Racross). Note, however, that Sk
self and Sk

across are by definition
specific to the considered collection of studies and datasets: they
involve the vectors βi and the matrices Xi (i = 1, . . . , I). We will
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call the corresponding rankings local because they are specific to
the collection of datasets at hand.

3 RESULTS
3.1 Simulated Data
Our focus in the simulation study is on differences between the
rankings and performance estimates obtained by CV and CSV.
Figure 2a shows the distributions of CSV and CV , and Figure
2b shows the distribution of the rankings, across 1000 simulated
8-dataset compendia. Table 2 shows the median of these rank
distributions, along with true global median ranks. The rank of
method k is 1 if it yields the largest score of the K training
algorithms. We observe large differences in the distributions of
CSV and CV across simulations (Figure 1a): the average of the
CV scores is around 0.65, while CSV scores are centered around
0.55. The variability of CV and CSV across simulations, however,
is comparable.

Performance differences across algorithms, whether estimated by
CV or CSV, are relatively small compared to the overall difference
between CV and CSV performance estimates. We also observe
differences between the rank distributions produced by CV and
CSV. By both CV and CSV, Glmnetlasso is ranked as one of the
worst performing algorithms, while Glmnetridge and Plusminus
are ranked first or second. However the consistent advantage of
Glmnetridge over Plusminus in CV vanishes under CSV . The
median rank of CoxBoost across simulations is two positions better
as estimated by CV than by CSV ; in this case CSV is more
consistent with the global true rankings (Table 2). Note that the
exchange in top global true ranking between Glmnetridge over
Plusminus when we consider average and median summaries (see
section 2.4 and criterion in Table 2) occurs because the global true
performance of these two algorithms is nearly indistinguishable.

The true local rankings of the K = 6 algorithms, defined
by Sk

across or Sk
self in Section 2.8 vary over the 1000

simulated collections of studies. Furthermore, the median Kendall’s
correlation between Rk

across and Rk
self amounts to approximately

0.5, i.e. the local performance measures Sk
across and Sk

self defines
distinctly different rankings (see Supplementary Figure 1). A natural
question is how well CV k and CSV k can recover the unknown
rankings Rk

across and Rk
self . The boxplots in Figure 3 display the

Kendall’s correlation between local rankings Racross (a) or Rself

(b) and the ranking found by CV (gray boxes) or CSV (white
boxes) across simulations. Figure 3(c) shows the same for true
global ranking. Both local rankings (Racross and Rself ) can be
recovered by CSV with a Kendall correlation around 0.5. CV
tends to be less correlated with Racross. This pattern is reversed for
the local ranking Rself . We recall that, similarly to CV , Rself is
defined in terms of within-study validation. However, the difference
between the medians in the second panel is less pronounced than
in the first one. Finally, CSV features a considerably higher
correlation to the true global ranking. This suggests that CSV is
more suitable for recovering the global ranking. If the two outlier
studies (CAL and MSK) are removed, the advantage of CSV over
CV in recovering true global ranking is further increased (median
Kendall correlation: 0.8 vs. 0.6, see Supplementary Figures S2-
4, and also surpasses CV for recovering true local self ranking
Rself . Overall, as displayed by the Supplementary Figure S3, it
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Fig. 2: Comparison of cross-study validation (CSV k) and cross-
validation (CV k) on simulated data. Each boxplot represents
evaluations of K = 6 algorithms in 1000 simulations of a
compendium of I = 8 datasets. For each simulation the diagonal
or off-diagonal elements of the Zk matrix of validation C-statistics
is summarized by (a) simple mean and (b) rank of the simple mean
across algorithms. CV estimates of the C-index are much higher
(approximately increased by 0.1) than CSV estimates. Lasso is
ranked worst by both CV and CSV and Ridge / Plusminus are ranked
best, however some differences are apparent. CoxBoost ranks two
positions worse in CSV, and the distinct advantage seen in CV for
Ridge over Plusminus vanishes in CSV.

appears that, after outlier studies are removed, CSV outperforms
substantially CV when used for ranking algorithms.

Algorithm
global true CSV CV

ranking (med. ranks) (med. ranks)
Glmnetridge 1 2 2 2 1 2
Plusminus 2 1 2 2 2 2
Superpc 3 3 4 3 4 4
Unicox 4 4 4 4 5 4
CoxBoost 5 5 5 5 3 4
Glmnetlasso 6 6 6 6 5 6

criterion Av. Med. Av. Med. Av. Med.

Table 2. True global ranking and median rank estimate of CV and CSV on
simulated data. Ranks shown for CV and CSV are the median across 1000
simulations; individual columns refer to summarization of Zk

ij by Average
or Median value. Third quartile ranks are the same as the median ranks,
these are not shown. All methods rank GLMnetridge and Plusminus well,
and GLMnetlasso poorly; however CSV ranks with Zk

ij summarized using
the median are the closest to the true global ranking. Variability of CV and
CSV rank estimates across simulations is shown in Figure 2b.
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Fig. 3: Distribution of Kendall’s correlation between true algorithm
rankings and rankings estimated by CSV (cross-study validation,
white) and CV (cross-validation, gray) on simulated data. Panels
(a) and (b) compare CV and CSV in terms of their correlation
to the local rankings (true rankings for each simulation iteration);
(c) compares these to the global ranking based on all iterations.
Racross and Rself are the ranks calculated from Sacross and Sself ,
respectively. Each box represents correlations computed in each of
the 1000 iterations of the simulation study. CSV achieves higher
correlations, and lower variance, to the global ranking and this
improvement is more pronounced for Racross. For Rself (within-
study validation), this pattern is reversed as expected, although
the difference between medians is smaller. Thus in simulated
independent datasets, CSV recovers true across-study rankings
more accurately and with less variability than CV .

3.2 Application to breast cancer prognostic modelling
In this section we apply CV and CSV to the I = 8 breast cancer
studies described in Section 2. Generally, the results resemble those
obtained on simulated data. The top panel in Figure 4 illustrates the
distributions of CSV and CV for each of the K = 6 algorithms.
Except for the distinctly larger interquartile ranges of the boxes,
the same patterns are observed as in Figure 2. Note that in these
boxplots an observation represents a single entry of the Zk-matrix,
whereas in Figure 2 each box represents the distribution across
iterations of the Zk-matrix mean. This explains the higher variance
observed in Figure 4. We observe in Figure 4 that:

• CV estimates are approximately 0.06 higher than CSV
estimates on the C-index scale. To illustrate the magnitude of
this improvement on the C-index scale consider a population
with two groups of patients, high and low risk patients,
covering identical proportions 0.5 of the population. A
perfect discrimination model that correctly recognizes the

subpopulation of each individual, when the hazard ratio
between high versus low risk patients is 2.7, achieves on
average a C-index of 0.62. For the average C-index of
the perfect discrimination model to be increased to 0.68, a
doubling of the true hazard ratio to 5.4 is necessary. Thus it
is fair to characterize the validation results seen here by CV as
much more optimistic than as seen by CSV.

• The presence of outlier studies (CAL and MSK, see Section 4
for a brief discussion on their specific characteristics) has a
strong effect on the ranking estimates when we use the mean
to summarize Zk matrices. Using mean summarization, both
CSV and CV rank Superpc first. This is mainly caused by
high variability around the C = 0.5 of the Zk

i,j validation
scores obtained by models trained by outlier studies. In
particular, Superpc and Unicox are the only algorithms that
produce models with good discrimination when trained on the
MSK study. With median summarization, ranking estimates are
less influenced by the presence or absence of outlier studies.
We therefore recommend the use of the median to summarize
Zk matrices.

• Using median aggregation of the Zk
ij scores, the ranking

defined by CSV is identical to the ranking found in
our simulation example (cf. Supplementary Table ST1 and
Table 2), reflecting the realistic simulation scenario and the
robustness of median aggregation. For both median and third
quartile aggregation the rankings defined by CV and CSV
differ substantially (Kendall’s correlations 0.6 and 0.07). This
is consistent with results of the simulation study, where median
correlation of the rankings defined by CSV and CV was
approximately 0.5.

• Figure 4b illustrates that CSV performance estimates do not
necessarily reflect CV results. This panel shows CV and
CSV estimates for Glmnetridge averaged over all datasets
combinations, with a fixed study used for training (black)
or validation (gray). Cross-validation statistics are only
moderately correlated with CSV statistics for models trained
from the same dataset (ρ = 0.2), and negatively correlated
with CSV statistics when that dataset is used for validation
(ρ = −0.33).

3.3 CV performance is not necessarily indicative of
cross-study performance

A more detailed analysis of the correlation between CSV and
CV shows that cross-study prediction and within-study prediction
are indeed less related than one might expect. Figure 4b, study
specific values for CSV are plotted against CV for the learning
algorithm Glmnetridge as an example (outlier studies removed).
For each study we have a single value for CV but two values
for CSV depending whether we average the Z-matrix column-
wise (identical validation study) or row-wise (identical training
study). The correlations vary between algorithms but their values
are usually around 0.5 and in the latter case (identical validation
study) mostly negative. This phenomenon could be caused by
’study-specific’ signals. Such study-specific signals may support
within study prediction as tested in CV but will impede cross-study
prediction. From this point of view, cross-study and within-study
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Fig. 4: Comparison of CSV and CV on Panel (a) describes the
distributions of CSV and CV estimates separately for each of the
six considered algorithms. In contrast to Figure 2a, each boxplot
represents the distribution of the values of a single matrix Zk as
depicted in Figure 1b. The pattern is similar to the one obtained on
the simulated data. CV leads to substantially higher estimates of
discrimination performance compared to CSV . Panel (b) illustrates
the relation between CV and CSV estimates by averaging over all
datasets combinations with a fixed study used for training (black)
or validation (gray). The illustration shows results for the learning
algorithm Glmnetridge and the numbers refer to the study number
given in Table 1 (outliers CAL and MSK have been removed).
Cross-validation statistics on the y-axis are moderately correlated
to CSV (row wise means [fixed training study] or column-wise
means [fixed validation study] of the non-diagonal elements in
the corresponding Zk-matrix) on the x-axis. For Glmnetridge the
correlation is 0.2 when we plot CV versus the row wise means
and −0.33 when we consider the column wise means. These
correlations vary over the K algorithms, but the same pattern is
predominant.

prediction can be considered as two different types of problems with
different characteristics.

Finally, we note that CV is a less suitable method for the
detection of outlier studies, since it can estimate relatively good
prediction performances even on studies where all algorithms fail in
cross-study validation. In our example, this occurred for the MSK
study with the algorithms Superpc and Unicox.

3.4 Specialist and generalist algorithms
This leads to the question of whether some algorithms might be
considered as specialist algorithms according to the definition given
in the introduction. It is obvious that our examples here are not

exhaustive and additional examples will be required in order to
determine ’specialist’ or ’generalist’ tendencies of these algorithms.
However in this example, the fact that Glmnetridge, Glmnetlasso
and CoxBoost rank distinctly better for CV than for CSV in
our simulation example suggests that these two algorithms may
adapt more strongly to the specific properties of an individual
data set than other algorithms. This problem can be analyzed in
greater detail using the local performance criteria Sself and Sacross

which directly measure the correlation of the true and fitted linear
predictors on the training study itself as well as across studies.

CoxBoost and Glmnetridge indeed achieve better ranks in Rself

than in Racross. CoxBoost improves its position by 1 or 2
ranks, which is also the difference which could be found between
CoxBoost’s CSV and CV rankings. Thus, one may conclude
that these two algorithms have the most pronounced tendency to
specialize to the dataset at hand.

Nonetheless, it must be mentioned that all the algorithms share
this tendency at some extent since Sself is consistently substantially
higher than Sacross (median: 0.6 vs. 0.2). In this sense, the higher
CV values are in part justified by the fact that all algorithms perform
better in within-study prediction than in cross-study prediction. To
address this issue more deeply, we also compare cross-validation
to independent within-study validation for our simulated data.
For the independent validation, we simulate two separate datasets
using the true coefficients and gene expressions of a single study.
Subsequently, a model is trained on the first dataset and evaluated
on the second dataset. As can be seen in Supplementary Figure S5,
CV values are slightly smaller than for independent validation. This
matches the expectation because models are trained on less data in
CV . From this point of view, CV is not optimistic in our simulation
study if it is used for estimating within-study performance, but it is
optimistic for estimating performance in new studies of different
patient cohorts.

4 DISCUSSION & CONCLUSION
In applying genomic approaches to clinical problems, it is rarely
safe to assume that the studies used in a research environment
faithfully represent what will be encountered in clinical application,
across a variety of populations and medical environments. From
this standpoint, study heterogeneity can be a strength, as it
allows to quantify the degree of generalizability of results, and
to investigate the sources of the heterogeneity. This aspect has
long been recognized in meta-analysis of clinical trials (Moher
and Olkin, 1995). Therefore, we expect that an increased focus
on quantifying cross-study performance of prediction algorithms
will contribute to the successful implementation of the personalized
medicine paradigm.

In this paper we provide a conceptual framework, statistical
approaches, and software tools for this quantification. As an
illustrating example, we demonstrate cross-study validation on
eight independent microarray studies of ER-positive breast cancer,
with overall survival as the endpoint of interest. We also develop
a simulation procedure involving two levels of non-parametric
bootstrap (sampling of studies and sampling of observations
within studies) in combination with parametric bootstrap, to
simulate a compendium of independent datasets with characteristics
of predictor variables, censoring, baseline hazards, prediction
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accuracy, and between-dataset heterogeneity realistically based on
available experimental datasets.

Cross-validation is the dominant paradigm for assessment
of future prediction performance and comparison of prediction
algorithms. The perils of inflated prediction accuracy estimations
by incorrectly or incompletely performed cross-validation are
well known (Molinaro et al., 2005; Varma and Simon, 2006;
Subramanian and Simon, 2010; Simon et al., 2011). However,
we show that even strictly performed cross-validation can
provide optimistic estimates relative to cross-study validation
performance. All algorithms, in both our simulation and example,
showed distinctly decreased performance in cross-study validation
compared to cross-validation. We believe this reflects the reality of
clinical genomic study, and likely other applications, where it is
impossible to control all sources of between-study heterogeneity
or to ensure consistent application of new technologies in diverse
laboratory settings.

In simulations, the ranking of algorithms by cross-study
validation was closer to true rankings defined by cross-study
prediction both within each sample of studies (Racross) and by
global true ranking determined through Monte Carlo simulation.
Surprisingly, cross-study validation was also competitive to
cross-validation for recovering true rankings based on within-
study prediction, even out-performing cross-validation in this
application after the removal of outlier studies. Considering that
the ultimate goal of prediction modeling is to provide predictions
for independent observations, we claim that assessing algorithms by
cross-study validation may provide a more useful indicator of the
performance than the current standard of cross-validation.

Systematic cross-study validation also provides a means to
prioritize relevant sources of heterogeneity within the context of
the prediction problem of interest. By simple inspection of the
CSV matrix we identified two outlier studies that yielded prediction
models no better than random guessing in new studies. This may
be related to known differences in these studies: smaller numbers of
observations, higher proportions of node positive patients, or larger
tumors. However, differences in other important clinical variables
which are related to outcome, such as type of adjuvant therapy, had
no obvious impact on cross-study prediction accuracy. Although
we cannot verify indicators of poor cross-study prediction accuracy
within the scope of this study, we can confidently conclude that
these two datasets are outliers within the context of the compendium
of datasets studied here.

We suppose that in practice it is neither possible nor even
desirable to eliminate all sources of heterogeneity between study
cohorts of complex disease. The adoption of ’leave-one-in’ cross-
study validation, in settings where at least two comparable
independent datasets are available, can provide more realistic
expectations of future prediction model performance, identify
outlying studies or clusters of studies, and help to develop
“generalist” prediction algorithms with less tendency to fit to
dataset-specific biases. Further work is needed to formalize the
identification of clusters of comparable studies, to develop databases
for larger-scale cross-study assessment of prediction algorithms,
and to develop better “generalist” prediction algorithms. With
the development of software and data resources, cross-study
validation is in practice no more difficult or CPU-consuming than
cross-validation, and should become an equally standard tool for
assessment of prediction models and algorithms.
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Summary
Background: Analysis of recent high-dimen-
sional biological data tends to be computa-
tionally intensive as many common ap-
proaches such as resampling or permutation
tests require the basic statistical analysis to be
repeated many times. A crucial advantage of
these methods is that they can be easily paral-
lelized due to the computational indepen-
dence of the resampling or permutation iter-
ations, which has induced many statistics de-
partments to establish their own computer
clusters. An alternative is to rent computing
resources in the cloud, e.g. at Amazon Web
Services.
Objectives: In this article we analyze
whether a selection of statistical projects, re-
cently implemented at our department, can be
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efficiently realized on these cloud resources.
Moreover, we illustrate an opportunity to
combine computer cluster and cloud re-
sources.
Methods: In order to compare the efficiency
of computer cluster and cloud implemen-
tations and their respective parallelizations
we use microarray analysis procedures and
compare their runtimes on the different plat-
forms.
Results: Amazon Web Services provide vari-
ous instance types which meet the particular
needs of the different statistical projects we
analyzed in this paper. Moreover, the network
capacity is sufficient and the parallelization is
comparable in efficiency to standard com-
puter cluster implementations.
Conclusion: Our results suggest that many
statistical projects can be efficiently realized
on cloud resources. It is important to mention,
however, that workflows can change substan-
tially as a result of a shift from computer
cluster to cloud computing.

1. Introduction
With the arrival of new biological methods
like gene expression microarrays and high
throughput technology, statisticians are
faced with huge amounts of data and com-
putationally intensive methods for analyz-
ing them. Moreover, the growing popular-

ity of resampling approaches and per-
mutation tests requires iterating a basic
analysis many times which is demanding
even more computational power. An im-
portant advantage of these statistical tools
is that they can be easily parallelized which
drastically reduces computation times
provided that enough computational re-

sources are available. Therefore, many stat-
istics departments established their own
computer clusters in order to apply these
computationally intensive methods. These
computer clusters are significant invest-
ments and especially for smaller depart-
ments it is questionable whether they are
really necessary. A possible alternative to
buying and maintaining one’s own com-
puter cluster could be renting computa-
tional resources ‘in the cloud’, e. g. at Ama-
zon Web Services [1]. Meanwhile, several
statistical open source projects like Biocon-
ductor, which provides many routines for
the statistical analysis of modern biological
data, have developed Amazon Machine Im-
ages for their respective users [2]. In this
paper we want to assess whether such stat-
istical methods, which are implemented
using the R language and environment [3],
can sensibly be realized at Amazon Web
Sercvices Elastic Compute Cloud (AWS
EC2) and which problems might occur.
Please note that AWS EC2 possibly does not
match one's personal definition of the term
cloud computing. The term “utility com-
puting” [4] may be more adequate since
one actually rents a computer cluster in a
specific datacenter. We do not integrate
machines from all over the world which
might be a different interpretation of cloud
computing.

In this article we will primarily focus on
programming and parallelization aspects
whereas we will mostly disregard financial,
security, privacy and general technical as-
pects which will be subject of other articles
in this special topic. The closely related topic
of costs for cloud computing is treated in
more detail in [5]. In this perspective we ar-
range our paper in the following way: the
first section will be devoted to basic bench-
marks of the different EC2 instance types
and their network capacity. In the following
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2.1 Simple Trend Benchmarks

Synthetically benchmarking computer sys-
tems is basically a science on its own, which
we do not want to treat here. But for an
overview and estimation of runtime beha-
vior of our real applications on the differ-
ent EC2 instances, two simplistic synthetic
benchmarks were used. Both are not
benchmarking the complete (virtual) ma-
chine, but speed and memory aspects of the
destination platform R.

Overall system benchmarks like the
Spec suite [6] are far more elaborated and
precise, but lack the integration of the R in-
terpreter in the results. Moreover, the Spec
test is rather difficult to configure and time
consuming to run (Spec results for some
instance types can be found in [7]). Our
small benchmarks are using the arithmetic
system of R – as desired for the biostatistical
software used in the bigger tests afterward.

The performance of single cores of the
CPU is tested by calculation of a specific
subset of the Mandelbrot set [8], which is
done using a recursive loop calculating
whether a complex polynomial is bound or
not. The inner loop is very small, so de-
pending on the specific R environment it
can be held and executed inside the proces-
sor’s cache.

Our memory test is even simpler. It
copies memory blocks inside a matrix
guaranteed bigger than the processors
cache. Overall runtime of the benchmarks
is short, between one and three minutes de-
pending on the system. Therefore the
benchmark can be repeated many times (at
least 20 iterations), giving a measurement

of the variance in execution time, which is
only taken inside the R program and there-
fore no startup time is included.

These short running benchmarks are
giving a basic trend of the systems proces-
sor's speed using R and they provide an op-
portunity to quickly and therefore cheaply
test the basic system performance, which is
important due to the sheer amount of dif-
ferent EC2 instance types.

�Table 1 provides an overview over the
instances and servers we used for our analy-
sis. We focused on the instance types
m1.small, m1.large and c1.medium, which
are basically the cheapest instances. No-
netheless, they provide enough memory
for the statistical projects which we will
analyze in the subsequent sections. The
first impression is that all three instance
types are slower than our computer cluster
machines which were bought about four
years ago. Especially the m1.small instance,
which is EC2’s standard instance, needs
about two to three times more time for our
first benchmark. For compatibility issues,
this instance type is representing and run-
ning at the speed of a 1 Ghz CPU from 2006
when EC2 was introduced. Via virtualiz-
ation, it only gets time shares of about 40%
of a single physical core [9]. The m1.large
and c1.medium instances are remarkably
faster whereby both instances provide two
virtual cores. In our appendix, we also pro-
vide the results of these two benchmarks
for the larger, faster instances.

For computations with low memory de-
mands c1.medium is basically the instance
of choice having almost the same price per
core as the slower m1.small instance. The
m1.large instance provides 3.75GB per
core. However, its costs are four-fold. This
price structure clearly indicates that writ-
ing memory efficient code can save money.
Thus, it is quite probable that a statistical
analysis in the cloud will produce some
avoidable costs. For example, we usually
had to perform our computations using
only one core per c1.medium instance. It is
also worth mentioning that the perform-
ance of the AWS instances is subject to
higher variability.

Depending on the structure of the
underlying Xen virtualization [10], cores
and memory are separated quite well on the
instances. But network and storage I/O

section, we will present two statistical pro-
jects whose realization in the cloud will be
compared to the common computer cluster
implementation. Subsequently, we will in-
troduce an alternative approach which tries
to combine machines from both sources. At
the end, we will discuss the results and ex-
periences we obtained while implementing
our projects in the cloud.

2. Methods and Results

Our test of the usability and efficiency of
the individually assembled computer
clusters at AWS EC2 consists of four stages.
At first we analyze the basic computation
and network capacity of the different in-
stances and compare them to other com-
puter clusters used by our statistical depart-
ment, namely the computer cluster at the
IBE (ibec) and the mpp1-cluster (mpp) at
the Leibniz Computing Center in Munich.
Subsequently, we will implement in the
cloud some important parts of two statisti-
cal projects which have already been real-
ized on common computer clusters. This is
principally the crucial part of our article
since it will answer our main question,
namely whether the statistical analysis of
high-dimensional biological data can be
reasonably realized in the cloud. In our last
experiment we will go one step further by
combining machines from several com-
puter clusters at different departments and
EC2. This experiment will present an op-
portunity to let machines from very hetero-
geneous sources jointly compute different
sub-tasks of a statistical analysis.

Table 1 Technical information and simple trend benchmark results for computer cluster and cloud in-
stances. * Prices from the Amazon US east data center in North Virginia (September 2011). Prices vary
between the individual data centers. ** Although running on a 2.7GHz CPU this instance only features
the performance of a 1.7GHz Xeon processor [9].

Identifier/
API-Name

Pro-
vider

CPU
[Ghz]

Cores/
machine

RAM
per core

Costs/
h*

Benchmark 1
Mean (sd) [s]

ibec IBE 2.7 4 1.5 GB – 79.1 (1.03)

mpp LRZ 2.0 16 2 GB – 98.6 (2.5)

gvs1/3 LRZ 2.3 16 8 GB – 100.6 (1.8)

m1.small AWS 2.7 1 1.7 GB 0.085$ 309.1 (6.9)

c1.medium AWS 2.3** 2 0.88 GB 0.17$ 132.6 (4.9)

Benchmark 2
Mean (sd) [s]

71.8 (0.7)

91.9 (3.6)

97.8 (0.23)

317.6 (6.6)

135.1 (5.3)
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cannot be separated this way and therefore
all instances on a host can affect each other.
In order to check the network capacity we
used Rmpi’s broadcast command [11] for
sending a 2 gigabytes AffyBatch object [12],
which is the commonly used R-object for
microarray batches, to a varying number of
worker cores.

As shown in �Figure 1, we can observe
that this broadcast takes slightly longer on
the EC2 instances and that their runtimes
are growing faster if the number of worker
cores is increased. In the case of the mpp-
cluster, which is equipped with an infini-
band network connection, the broadcast-
ing time basically does not increase after 10
cores. However, network performance
seems to be sufficient for most statistical
methods where larger amounts of data are
only sent once. Further analysis of the net-
work connection and description of tech-
nical details can be found in the appendix.
The result of these first tests are that com-
putations might take longer on the chosen
EC2 instances but the network capacity
seems to be sufficient for the planned pro-
jects

2.2 Project 1: Optimization Bias

The first project to be conducted in the
cloud deals with nested resampling pro-
cedures in the context of supervised clas-
sification with high-dimensional micro-
array data as predictors. Supervised classifi-
cation algorithms, like Support Vector Ma-
chines (SVM) [13], are commonly assessed
through a resampling procedure such as
cross-validation. Such a resampling pro-
cedure whose aim is to estimate the mis-
classification rate is here denoted as exter-
nal. Many supervised classification algo-
rithms for high-dimensional data involve a
tuning parameter, for instance the cost par-
ameter for SVM that has to be adequately
chosen. Simply trying several values of the
tuning parameter and reporting the best
performance only yields an optimistic bias
[14]. A possible approach to avoid this op-
timization bias consists in performing
nested resampling which means that, in
each external resampling iteration, the op-
timal value of the tuning parameter is
chosen by performing an additional

internal resampling loop within the cor-
responding external training set.

The goal of this project is to estimate the
bias induced by simply trying several
predefined cost parameter values and
reporting the minimal resampling misclas-
sification rate only. In order to analyze this

bias, one has to reiterate many times the
whole resampling approach with SVM as a
classification method. Additionally, the
whole procedure has to be repeated for sev-
eral microarray data sets because the opti-
mization bias, just as the cost parameter
itself, strongly depends on the classification

Fig. 1
Time needed to
broadcast an Affy-
Batch object of size
2GB to an increasing
number of worker
cores.

Fig. 2
Speedup and se-
quential runtimes in
seconds for the 100
resampling iterations
in Project 1 on the
various platforms.
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task at hand [15]. For financial reasons, we
do not implement the whole project on the
EC2 instances but demonstrate the effi-
ciency of the parallelization for the most
important part of this analysis. This central
routine consists in the resampling ap-
proach for a specific cost parameter value.
If this part scales sufficiently we can expect
the whole project to be efficiently scaling as
well. �Figure 2 shows the speedup for
computer cluster and cloud instances,
which consists of the sequential time di-
vided by the parallel time for an increasing
amount of workers. The gray line repre-
sents a perfect linear speedup on adding
additional workers. Technically, this is
based on a parallelization in R using MPI.
We provide the code used for our analyses
on a publically available Amazon Machine
Image (see appendix). The consumed time
is only measured inside the R program, so
the overhead of instance startup is not in-
cluded. Starting up 20 EC2 instances can
take several minutes whereby this start up
time is quite variable. Including this over-
head into our analysis would severely dis-
tort our results since we analyze a small part
of our project. Moreover, AWS charges fees
per started hour and instance which also
has to be considered appropriately. Both of

these issues are negligible if the whole pro-
ject is calculated. We can see that scaling is
almost identical for cloud and computer
cluster instances. Of course, the absolute
computation times are remarkably higher
for the m1.small instance. However, since
the implementation scales well, the higher
sequential runtime can be easily reduced by
renting more instances. The main result of
this experiment is that the main com-
putation part can also be efficiently paral-
lelized on EC2 instances.

2.3 Project 2: Normalization of
Microarray Data

The characteristics of the second project
are quite different since it combines a res-
ampling approach with a computationally
intensive task which can be parallelized
itself. Gene expression microarray data
have to be normalized before they can be
used for high-level statistical analysis. Since
in resampling procedures training and test
data sets have to be strictly separated and
classifiers should be trained without
“seeing” the test data, microarrays should
in principle be normalized either individu-
ally or, for multi-array approaches, in each

resampling iteration anew. In the latter
case, which is considered here, two variants
are conceivable: the data can be normalized
either separately for training and test set or
an add-on normalization procedure can be
used to normalize the test set subsequently
using normalization parameters estimated
from the training set [16]. In practice, how-
ever, researchers often normalize the whole
data set only once before splitting it into
training and test sets for computational
reasons. Doing so, they indirectly violate
the separation between training and test
sets. The goal of project 2 is to analyze the
effect of this imperfect separation on the
classification results by comparing this ap-
proach to the more computationally inten-
sive variants mentioned above performing
normalization in each iteration anew and
requiring a strong computational effort.
The core part to be analyzed consists in 6
repetitions of 5-fold cross validation pro-
cedure for a relatively small microarray
data set of size n = 47 [17]. In this case we
have two possible options for paralleliz-
ation. The first option consists in paralleliz-
ing the normalization step itself based on a
distributed data approach. This approach
will also decrease the amount of memory
necessary to perform the task which there-
fore also might decrease EC2 costs. The
corresponding implementation can be
found in the package affyPara [18]. This
package was actually designed with larger
data sets in mind (�Appendix). Nonethe-
less we can compare the efficiency of the
parallelization in the cloud to its efficiency
on computer cluster machines. As can be
seen from �Figure 3, the parallelization is
scalable up to about five cores and saturates
afterwards, whereby the speedup curves are
comparable for computer cluster and cloud
instances.

The actual implementation of the pro-
ject is based on the parallelization of the
resampling iterations. On our local com-
puter cluster, the serial implementation
requires about two hours even for this
small core part which clearly demonstrates
the need of parallelization. The second ver-
sion scales well up to at least 20 cores which
is the upper limit for EC2 instances in our
analysis. We know from an analysis on dif-
ferent computer clusters that this imple-
mentation can scale up to approximately

Fig. 3
Speedup and se-
quential runtime in
seconds for an Affy-
Para-Preprocessing
routine on the differ-
ent platforms.
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125 cores depending on the size of the data
set at hand. Again there is not much differ-
ence between the efficiency of the parallel-
ization on computer cluster and cloud in-
stances. Speedups are almost perfectly lin-
ear on all architectures. For the m1.small
instances computation times are more than
doubled in comparison to our computer
cluster machines and to the other EC2 in-
stances. However, this can be alleviated by
simply taking more instances or the more
expensive, faster instances. Of course, one
advantage of slower instances is that paral-
lelization yields even more profit as far as
the reduction of the absolute computation
time is concerned. Please note that the
required memory of our computation
forces the second c1.medium core to re-
main idle in this implementation.

2.4 A Hybrid Cloud Solution:
Combining Computer Cluster &
Cloud Resources

An advantage of the cloud is its scalability,
i.e. the possibility to get more resources if
more resources are needed. If a given infra-
structure is fully utilized in peak times, the
possibility to add machines from the cloud
to existing computer clusters would be
helpful. With some efforts, EC2 instances
can be directly integrated into local com-
puter clusters manually. Far more conveni-
ent is the usage of a system which can
handle this automatically. In the following,
we show how to use the “data structure
server” Redis [19] together with its R con-
nector doRedis [20] to combine local com-
puter clusters and cloud instances. As net-
working is partly routed over the public In-
ternet, it is clearly a bottleneck. But for em-
barrassingly parallel [21] programs like the
examples shown above, networking speed
is not essential.

The concept of the Redis approach is
that the server manages all the subtasks (e.
g. a single resampling iteration) of a job and
sends them to whatever worker node we
connect to it. To illustrate this approach we
use an enlarged version of the core part of
Project 1. We compute 3000 subsampling
steps instead of one hundred. Once we have
a function for a single subsampling iter-
ation (here: clrun) the whole approach can

be implemented in less than ten lines (see
appendix). An important optional feature
is the opportunity to specify the number of
tasks a certain connected worker machine
shall perform. If we do not want some
worker machines to participate until the
very end of the whole computation we can
set this parameter to a small number and
the corresponding worker machine will
stop as soon as it has performed the re-
spective number of tasks. A really big ad-
vantage of this separation of job adminis-
tration and computation is that we do not
encounter any problems if we temporarily
do not have any workers at our disposal, i.e.
our job can be paused. Results and the de-
scription of the individual subtasks of the
job are stored independently from the
workers. For example, if one wants to use
the staff ’s computers for larger com-
putation tasks at night, one can use a small
script connecting the respective computer
to the Redis server as soon as the staff leaves
the office. In our example we combined re-
sources from the LRZ (gvs1, gvs3), IBE and
EC2.

Since this example was intended to
demonstrate the sheer possibility of this
approach our pool of worker machines pri-

marily consisted of free computing re-
sources. �Figure 5 shows how many tasks
have been performed by the different ma-
chines. Of course, the main part of the tasks
has been processed by the 30 IBEC cores.
However, we can see that the c1.medium
instances processed more tasks per core
than the IBEC machines although their
connection to the Redis server is slower. In
practice, the actual number of integrated
cloud instances can be chosen depending
on the availability of free computing re-
sources and the urgency of the job.

In this context, one has to consider some
of the problematic aspects of cloud com-
puting. For example, some of the machines
in the previous illustration used R 2.12
whereas other ones used R 2.13. The indi-
vidual worker cores actually do not know
about each other. These consistency prob-
lems might be overcome by the solutions
already available at AWS, namely virtual
machines and images.

3. Discussion

As illustrated in this paper, computation-
ally intensive statistical projects can be real-

Fig. 4
Speedup and se-
quential runtime in
seconds for Project 2
on computer cluster
and cloud instances.
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ized in the cloud. Basically, EC2 provides
different instance types for almost all com-
putational requirements a statistical analy-
sis of high-dimensional biological data
may need. The default instance, m1.small,
is quite slow. However, the c1.medium in-
stance, which costs only slightly more per
CPU, can keep up with usual computer
cluster machiness as far as speed is con-
cerned. Since our projects scaled suffi-
ciently well on the EC2 instances it is also
possible to reduce computation time by
simply increasing the number of instances.
Especially if one needs more than 850MB
RAM which means that the second
c1.medium core remains idle, one can rent
a larger number of m1.small instances in-
stead. If projects are even more memory-
intensive they can be realized on the
m1.large instance with 7.5GB RAM and
sufficiently fast processors. For financial
reasons we run our projects on smaller data
sets. As shown in �Table 1, EC2 provides
several instance types which offer enough
memory for performing the same analysis
on remarkably larger data sets for remark-
ably higher prices. From our experience we
do not expect the implementations of our
projects to scale worse if applied to larger
data sets.

We would also like to emphasize here
that we performed our analysis on the small
EC2 instances in order to reduce costs. Of
course, it is possible to rent faster, more ex-
pensive instances at EC2 which will further
reduce the computation time in the cloud
such that runtimes might be even smaller
than on the computer clusters we used.

Overall, we can state that the efficiency
of the parallelization in the cloud is com-
parable to computer cluster implemen-
tations for the presented applications and
therefore most likely also for a wide range
of other biostatistical applications.

Finally, we would like to discuss some
experiences concerning the workflow in the
cloud and on computer clusters which
might also have an impact on one's individ-
ual choice. A very convenient feature of
utility computing is its high flexibility. You
can build your computer cluster at EC2 al-
most whenever you want and you can cus-
tomize it accordingly to your individual
needs. You also have the opportunity to
rent single instances for sequential code,
e.g. if the memory requirements of your
computations might exceed the capacity of
your local machines. Another advantage is
that you have full control over your re-
sources and you do not have to resort to job

scheduling systems coordinating the needs
of the different computer cluster users. On
the contrary, the workflow on cloud re-
sources is remarkably changed by the fact
that one has to pay for each computation.
One always reflects twice whether a spe-
cific computation is really necessary which
limits the opportunity to test and experi-
ment. Of course, this will induce researches
to plan their computations more elabor-
ately and avoid unnecessary tests which
might also be considered a positive side-ef-
fect. Cloud computing, however, also has
some hurdles for inexperienced users.
Simple mistakes like forgetting to shut
down instances or moving results to the
own computer can easily produce un-
necessary costs. Moreover, one must always
estimate time and memory needs in order
to decide which instances should be pre-
ferred for the task at hand. Consequently,
currently AWS and similar services are
probably not the best place for the first
steps in parallel computing. Another prob-
lem concerns experienced users as well.
After finding an error or recognizing that a
certain part of one’s algorithm has to be
changed, all the computations have to be
repeated.Also, discovered problems in used
packages can force a recalculation. In an ad-
vanced stage of a project this means that the
computation costs will effectively multiply.

After all, utility computing seems to be a
tool which has to be applied in a considered
way. Instead of switching entirely to cloud
computing, a possible way to get started
consists of supporting one's own computer
cluster resources by renting cloud instances
in times of workload peaks. An option to
flexibly combine computer cluster and
cloud resources even within the scope of a
single computation task consists in the
redis-server based implementation we ap-
plied in this article. After using both re-
sources for a while, one will probably be
able to assess which solution better matches
one’s individual needs.
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