Schwarzacher, Sebastian (2013): Regularity for degenerate elliptic and parabolic systems. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik |
Vorschau |
PDF
Schwarzacher_Sebastian.pdf 813kB |
Abstract
In this work local behavior for solutions to the inhomogeneous p-Laplace in divergence form and its parabolic version are studied. It is parabolic and non-linear generalization of the Calderon-Zygmund theory for the Laplace operator. I.e. the borderline case BMO is studied. The two main results are local BMO and Hoelder estimates for the inhomogenious p-Laplace and the parabolic p-Laplace system. An adaption of some estimates to fluid mechanics, namely on the p-Stokes equation are also proven. The p-Stokes system is a very important physical model for so-called non Newtonian fluids (e.g. blood). For this system BMO and Hoelder estimates are proven in the stationary 2-dimensional case.
Dokumententyp: | Dissertationen (Dissertation, LMU München) |
---|---|
Keywords: | elliptic systems, parabolic systems, power law fluids, BMO estimates, Campanato estimates, non-linear Calderon-Zygmund theory |
Themengebiete: | 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fakultäten: | Fakultät für Mathematik, Informatik und Statistik |
Sprache der Hochschulschrift: | Englisch |
Datum der mündlichen Prüfung: | 14. Oktober 2013 |
1. Berichterstatter:in: | Diening, Lars |
MD5 Prüfsumme der PDF-Datei: | d4bae25e781baa5f7395f3969bb71fb4 |
Signatur der gedruckten Ausgabe: | 0001/UMC 21605 |
ID Code: | 16209 |
Eingestellt am: | 07. Nov. 2013 14:21 |
Letzte Änderungen: | 24. Oct. 2020 00:22 |