Logo Logo
Hilfe
Kontakt
Switch language to English
Dark matter halo properties from galaxy-galaxy lensing
Dark matter halo properties from galaxy-galaxy lensing
Die Forschungsergebnisse der letzten Jahre haben gezeigt, dass das Universum bei weitem nicht nur aus baryonischer Materie besteht. Tatsächlich scheinen 72% aus sogenannter Dunkler Energie zu bestehen, während selbst vom verbleibenden Teil nur etwa ein Fünftel baryonischer Materie zugeordnet werden kann. Der Rest besteht aus Dunkler Materie, deren Beschaffenheit bis heute nicht mit Sicherheit geklärt ist. Ursprünglich in den Rotationskurven von Spiralgalaxien beobachtet, wurde die Notwendigkeit ihrer Existenz inzwischen auch in elliptischen Galaxien und Galaxienhaufen nachgewiesen. Tatsächlich scheint Dunkle Materie eine entscheidende Rolle in der Strukturbildung im Universum gespielt zu haben. In der Frühzeit des Universums, als die Materieverteilung im Weltraum noch äußerst gleichmäßig war und nur sehr geringe Inhomogenitäten aufwies, bildeten sie die Kondensationskeime für den gravitativen Kollaps der Materie. Numerische Simulationen haben gezeigt, dass der heute beobachtbare Entwicklungszustand des Universums erst durch die zusätzliche Masse Dunkler Materie ermöglicht wurde, die den strukturellen Kollaps erheblich beschleunigte und nur dadurch zur heute beobachtbaren Komplexität der Strukturen führen konnte. Da Dunkle Materie nicht elektromagnetisch wechselwirkt, sondern sich nur durch ihre Schwerkraft bemerkbar macht, stellt der Gravitationslinseneffekt eine ausgezeichnete Methode dar, die Existenz und Menge an Dunkler Materie nachzuweisen. Der schwache Gravitationslinseneffekt macht sich zu Nutzen, dass die intrinsischen Orientierungen der Galaxien im Weltraum keine Vorzugsrichtung haben, gleichbedeutend mit ihrer statistischen Gleichverteilung. Die gravitationsbedingte kohärente Verzerrung der Hintergrundobjekte führt zu einer Abweichung von dieser Gleichverteilung, die von den Eigenschaften der Gravitationslinsen abhängt und daher zu deren Analyse genutzt werden kann. Diese Dissertation beschreibt die Galaxy-Galaxy-Lensing-Analyse von insgesamt 89 deg^2 optischer Daten, die im Rahmen des CFHTLS-WIDE-Surveys beobachtet wurden und aus denen im Rahmen dieser Arbeit photometrische Rotverschiebungs- und Elliptizitätskataloge erzeugt wurden. Das Galaxiensample besteht aus insgesamt 5×10^6 Linsen mit Rotverschiebungen von 0.05 < z_phot ≤ 1 und einem zugehörigen Hintergrund von insgesamt 1.7×10^6 Quellen mit erfolgreich gemessenen Elliptizitäten in einem Rotverschiebungsintervall von 0.05 < z_phot ≤ 2. Unter Annahme analytischer Galaxienhaloprofile wurden für die Galaxien die Masse, das Masse-zu-Leuchtkraft-Verhältnis und die entsprechenden Halomodellprofilparameter sowie ihre Skalenrelationen bezüglich der absoluten Leuchtkraft untersucht. Dies geschah sowohl für das gesamte Linsensample als auch für Linsensamples in Abhängigkeit des SED-Typs und der Umgebungsdichte. Die ermittelten Skalenrelationen wurden genutzt, um die durchschnittlichen Werte für die Galaxienhaloparameter und eine mittlere Masse für die Galaxien in Abhängigkeit ihres SED-Typs zu bestimmen. Es ergibt sich eine Gesamtmasse von M_total = 23.2+2.8−2.5×10^11 h^{−1} M_⊙ für eine durchschnittliche Galaxie mit einer Referenzleuchtkraft von L∗ = 1.6×10^10 h^{−2} L_⊙. Die Gesamtmasse roter Galaxien bei gleicher Leuchtkraft überschreitet diejenige des entsprechenden gemischten Samples um ca. 130%, während die mittlere Masse einer blauen Galaxie ca. 65% unterhalb des Durchschnitts liegt. Die Gesamtmasse der Galaxien steigt stark mit der Umgebungsdichte an, betrachtet man die Geschwindigkeitsdispersion ist dies jedoch nicht der Fall. Dies bedeutet, dass die zentrale Galaxienmateriedichte kaum von der Umgebung sondern fast nur von der Leuchtkraft abhängt. Die Belastbarkeit der Ergebnisse wurde von zu diesem Zweck erzeugten Simulationen bestätigt. Es hat sich dabei gezeigt, dass der Effekt mehrfacher gravitativer Ablenkung an verschiedenen Galaxien angemessen berücksichtigt werden muss, um systematische Abweichungen zu vermeiden., The scientific results over the past years have shown that the Universe is by far not only composed of baryonic matter. In fact the major energy content of 72% of the Universe appears to be represented by so-called dark energy, while even from the remaining components only about one fifth is of baryonic origin, whereas 80% have to be attributed to dark matter. Originally appearing in observations of spiral galaxy rotation curves, the need for dark matter has also been verified investigating elliptical galaxies and galaxy clusters. In fact, it appears that dark matter played a major role during structure formation in the early Universe. Shortly after the Big Bang, when the matter distribution was almost homogeneous, initially very small inhomogeneities in the matter distribution formed the seeds for the gravitational collapse of the matter structures. Numerical n-body simulations, for instance, clearly indicate that the presently observable evolutionary state and complexity of the matter structure in the Universe would not have been possible without dark matter, which significantly accelerated the structure collapse due to its gravitational interaction. As dark matter does not interact electromagnetically and therefore is non-luminous but only interacts gravitationally, the gravitational lens effect provides an excellent opportunity for its detection and estimation of its amount. Weak gravitational lensing is a technique that makes use of the random orientation of the intrinsic galaxy ellipticities and thus their uniform distribution. Gravitational tidal forces introduce a coherent distortion of the background object shapes, leading to a deviation from the uniform distribution which depends on the lens galaxy properties and therefore can be used to study them. This thesis describes the galaxy-galaxy lensing analysis of 89 deg^2 of optical data, observed within the CFHTLS-WIDE survey. In the framework of this thesis the data were used in order to create photometric redshift and galaxy shape catalogs. The complete galaxy sample consists of a total number of 5×10^6 lens galaxies within a redshift range of 0.05 < z_phot ≤ 1 and 1.7×10^6 corresponding source galaxies with redshifts of 0.05 < z_phot ≤ 2 and successfully extracted shapes. Assuming that the galaxy halos can be described by analytic profiles, the scaling relations with absolute luminosity for the galaxy masses, their mass-to-light ratios and the corresponding halo parameters have been extracted. Based on the obtained scaling relations, the average values for the corresponding halo parameters and the mean galaxy masses for a given luminosity were derived as a function of considered halo model, the galaxy SED and the local environment density. We obtain a total mass of M_total = 23.2+2.8−2.5 ×10^11 h{−1} M_⊙ for an average galaxy with chosen reference luminosity of L∗ = 1.6×10^10 h{−2} L_⊙. In contrast, the mean total masses for red galaxies of same luminosity exceed the value of the average galaxy about 130%, while the mass of a blue galaxy is about 65% below the value of an average fiducial galaxy. Investigating the influence of the environmental density on the galaxy properties we observe a significant increase of the total integrated masses with galaxy density, however the velocity dispersions are not affected. This indicates that the central galaxy matter density mostly depends on the galaxy luminosity but not on the environment. Simulations based on the extracted scientific results were built, verifying the robustness of the scientific results. They give a clear hint that multiple deflections on different lens galaxies have to be properly accounted for in order to avoid systematically biased results.
Not available
Brimioulle, Fabrice
2013
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Brimioulle, Fabrice (2013): Dark matter halo properties from galaxy-galaxy lensing. Dissertation, LMU München: Fakultät für Physik
[thumbnail of Brimioulle_Fabrice.pdf]
Vorschau
PDF
Brimioulle_Fabrice.pdf

20MB

Abstract

Die Forschungsergebnisse der letzten Jahre haben gezeigt, dass das Universum bei weitem nicht nur aus baryonischer Materie besteht. Tatsächlich scheinen 72% aus sogenannter Dunkler Energie zu bestehen, während selbst vom verbleibenden Teil nur etwa ein Fünftel baryonischer Materie zugeordnet werden kann. Der Rest besteht aus Dunkler Materie, deren Beschaffenheit bis heute nicht mit Sicherheit geklärt ist. Ursprünglich in den Rotationskurven von Spiralgalaxien beobachtet, wurde die Notwendigkeit ihrer Existenz inzwischen auch in elliptischen Galaxien und Galaxienhaufen nachgewiesen. Tatsächlich scheint Dunkle Materie eine entscheidende Rolle in der Strukturbildung im Universum gespielt zu haben. In der Frühzeit des Universums, als die Materieverteilung im Weltraum noch äußerst gleichmäßig war und nur sehr geringe Inhomogenitäten aufwies, bildeten sie die Kondensationskeime für den gravitativen Kollaps der Materie. Numerische Simulationen haben gezeigt, dass der heute beobachtbare Entwicklungszustand des Universums erst durch die zusätzliche Masse Dunkler Materie ermöglicht wurde, die den strukturellen Kollaps erheblich beschleunigte und nur dadurch zur heute beobachtbaren Komplexität der Strukturen führen konnte. Da Dunkle Materie nicht elektromagnetisch wechselwirkt, sondern sich nur durch ihre Schwerkraft bemerkbar macht, stellt der Gravitationslinseneffekt eine ausgezeichnete Methode dar, die Existenz und Menge an Dunkler Materie nachzuweisen. Der schwache Gravitationslinseneffekt macht sich zu Nutzen, dass die intrinsischen Orientierungen der Galaxien im Weltraum keine Vorzugsrichtung haben, gleichbedeutend mit ihrer statistischen Gleichverteilung. Die gravitationsbedingte kohärente Verzerrung der Hintergrundobjekte führt zu einer Abweichung von dieser Gleichverteilung, die von den Eigenschaften der Gravitationslinsen abhängt und daher zu deren Analyse genutzt werden kann. Diese Dissertation beschreibt die Galaxy-Galaxy-Lensing-Analyse von insgesamt 89 deg^2 optischer Daten, die im Rahmen des CFHTLS-WIDE-Surveys beobachtet wurden und aus denen im Rahmen dieser Arbeit photometrische Rotverschiebungs- und Elliptizitätskataloge erzeugt wurden. Das Galaxiensample besteht aus insgesamt 5×10^6 Linsen mit Rotverschiebungen von 0.05 < z_phot ≤ 1 und einem zugehörigen Hintergrund von insgesamt 1.7×10^6 Quellen mit erfolgreich gemessenen Elliptizitäten in einem Rotverschiebungsintervall von 0.05 < z_phot ≤ 2. Unter Annahme analytischer Galaxienhaloprofile wurden für die Galaxien die Masse, das Masse-zu-Leuchtkraft-Verhältnis und die entsprechenden Halomodellprofilparameter sowie ihre Skalenrelationen bezüglich der absoluten Leuchtkraft untersucht. Dies geschah sowohl für das gesamte Linsensample als auch für Linsensamples in Abhängigkeit des SED-Typs und der Umgebungsdichte. Die ermittelten Skalenrelationen wurden genutzt, um die durchschnittlichen Werte für die Galaxienhaloparameter und eine mittlere Masse für die Galaxien in Abhängigkeit ihres SED-Typs zu bestimmen. Es ergibt sich eine Gesamtmasse von M_total = 23.2+2.8−2.5×10^11 h^{−1} M_⊙ für eine durchschnittliche Galaxie mit einer Referenzleuchtkraft von L∗ = 1.6×10^10 h^{−2} L_⊙. Die Gesamtmasse roter Galaxien bei gleicher Leuchtkraft überschreitet diejenige des entsprechenden gemischten Samples um ca. 130%, während die mittlere Masse einer blauen Galaxie ca. 65% unterhalb des Durchschnitts liegt. Die Gesamtmasse der Galaxien steigt stark mit der Umgebungsdichte an, betrachtet man die Geschwindigkeitsdispersion ist dies jedoch nicht der Fall. Dies bedeutet, dass die zentrale Galaxienmateriedichte kaum von der Umgebung sondern fast nur von der Leuchtkraft abhängt. Die Belastbarkeit der Ergebnisse wurde von zu diesem Zweck erzeugten Simulationen bestätigt. Es hat sich dabei gezeigt, dass der Effekt mehrfacher gravitativer Ablenkung an verschiedenen Galaxien angemessen berücksichtigt werden muss, um systematische Abweichungen zu vermeiden.

Abstract

The scientific results over the past years have shown that the Universe is by far not only composed of baryonic matter. In fact the major energy content of 72% of the Universe appears to be represented by so-called dark energy, while even from the remaining components only about one fifth is of baryonic origin, whereas 80% have to be attributed to dark matter. Originally appearing in observations of spiral galaxy rotation curves, the need for dark matter has also been verified investigating elliptical galaxies and galaxy clusters. In fact, it appears that dark matter played a major role during structure formation in the early Universe. Shortly after the Big Bang, when the matter distribution was almost homogeneous, initially very small inhomogeneities in the matter distribution formed the seeds for the gravitational collapse of the matter structures. Numerical n-body simulations, for instance, clearly indicate that the presently observable evolutionary state and complexity of the matter structure in the Universe would not have been possible without dark matter, which significantly accelerated the structure collapse due to its gravitational interaction. As dark matter does not interact electromagnetically and therefore is non-luminous but only interacts gravitationally, the gravitational lens effect provides an excellent opportunity for its detection and estimation of its amount. Weak gravitational lensing is a technique that makes use of the random orientation of the intrinsic galaxy ellipticities and thus their uniform distribution. Gravitational tidal forces introduce a coherent distortion of the background object shapes, leading to a deviation from the uniform distribution which depends on the lens galaxy properties and therefore can be used to study them. This thesis describes the galaxy-galaxy lensing analysis of 89 deg^2 of optical data, observed within the CFHTLS-WIDE survey. In the framework of this thesis the data were used in order to create photometric redshift and galaxy shape catalogs. The complete galaxy sample consists of a total number of 5×10^6 lens galaxies within a redshift range of 0.05 < z_phot ≤ 1 and 1.7×10^6 corresponding source galaxies with redshifts of 0.05 < z_phot ≤ 2 and successfully extracted shapes. Assuming that the galaxy halos can be described by analytic profiles, the scaling relations with absolute luminosity for the galaxy masses, their mass-to-light ratios and the corresponding halo parameters have been extracted. Based on the obtained scaling relations, the average values for the corresponding halo parameters and the mean galaxy masses for a given luminosity were derived as a function of considered halo model, the galaxy SED and the local environment density. We obtain a total mass of M_total = 23.2+2.8−2.5 ×10^11 h{−1} M_⊙ for an average galaxy with chosen reference luminosity of L∗ = 1.6×10^10 h{−2} L_⊙. In contrast, the mean total masses for red galaxies of same luminosity exceed the value of the average galaxy about 130%, while the mass of a blue galaxy is about 65% below the value of an average fiducial galaxy. Investigating the influence of the environmental density on the galaxy properties we observe a significant increase of the total integrated masses with galaxy density, however the velocity dispersions are not affected. This indicates that the central galaxy matter density mostly depends on the galaxy luminosity but not on the environment. Simulations based on the extracted scientific results were built, verifying the robustness of the scientific results. They give a clear hint that multiple deflections on different lens galaxies have to be properly accounted for in order to avoid systematically biased results.