Yener, Serkan (2012): Nonparametric estimation of the jump component in financial time series. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik |
Vorschau |
PDF
Yener_Serkan.pdf 1MB |
Abstract
In this thesis, we analyze nonparametric estimation of Lévy-based models using wavelets methods. As the considered class is restricted to pure-jump Lévy processes, it is sufficient to estimate their Lévy densities. For implementing a wavelet density estimator, it is necessary to setup a preliminary histogram estimator. Simulation studies show that there is an improvement of the wavelet estimator by invoking an optimally selected histogram. The wavelet estimator is based on block-thresholding of empirical coefficients. We conclude with two empirical applications which show that there is a very high arrival rate of small jumps in financial data sets.
Dokumententyp: | Dissertationen (Dissertation, LMU München) |
---|---|
Keywords: | Nonparametric Estimation, Lévy Processes, Volatility |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik
500 Naturwissenschaften und Mathematik |
Fakultäten: | Fakultät für Mathematik, Informatik und Statistik |
Sprache der Hochschulschrift: | Englisch |
Datum der mündlichen Prüfung: | 31. Juli 2012 |
1. Berichterstatter:in: | Mittnik, Stefan |
MD5 Prüfsumme der PDF-Datei: | 6db16c6ac4bfea1e5e7f2e961f1d3e16 |
Signatur der gedruckten Ausgabe: | 0001/UMC 20550 |
ID Code: | 14669 |
Eingestellt am: | 14. Aug. 2012 13:50 |
Letzte Änderungen: | 24. Oct. 2020 02:20 |