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Abstract

In this thesis, we analyze nonparametric estimation of Lévy-based models using wavelets

methods. As the considered class is restricted to pure-jump Lévy processes, it is suffi-

cient to estimate their Lévy densities. For implementing a wavelet density estimator, it

is necessary to setup a preliminary histogram estimator. Simulation studies show that

there is an improvement of the wavelet estimator by invoking an optimally selected his-

togram. The wavelet estimator is based on block-thresholding of empirical coefficients.

We conclude with two empirical applications which show that there is a very high arrival

rate of small jumps in financial data sets.

Zusammenfassung

Diese Arbeit untersucht nichparametrische Verfahren zur Schätzung von Modellen, welche

auf Lévy-Prozessen basieren. Ausgehend von einer ökonomischen und statistischen Argu-

mentation wird dabei die allgemeine Klasse der Lévy-Prozesse auf reine Lévy-Sprungpro-

zesse beschränkt, welche eindeutig durch die entsprechende Lévy-Dichte charakterisiert

sind. Zur nichtparametrischen Schätzung dieser Dichten wird ein zweistufiges Verfahren

vorgeschlagen: In der ersten Stufe wird, basierenden auf statistischen Optimalitätsbetra-

chtungen, ein Schätzer für ein Histogramm entwickelt. Dieses wird für einen Wavelet-

Schätzer der zweiten Stufe benötigt, welcher auf blockweisem "Thresholding" beruht.

Simulationsstudien für zwei Lévy-basierte Modelle zeigen, dass der optimale gewählte

Schätzer der ersten Stufe zu einer Verbesserung des Wavelet-Schätzers führt. In zwei

empirischen Anwendungen deutet der Wavelet-Schätzer auf eine hohe Aktivität kleiner

Sprünge hin.
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Notations

a := b a is defined as b

a ≈ b a is approximately equal to b

an ≍ bn
For positive sequences {an}n∈N and {bn}n∈N, there exists some constant C such

that C−1 6 an/bn 6 C.

an = O(bn) an/bn is bounded by some constant as n→ ∞
an = OP (bn) an/bn is bounded by some constant in probability as n→ ∞
an = o(bn) an/bn → 0 as n→ ∞
an = oP (bn) an/bn → 0 in probability as n→ ∞
a ∧ b min(a, b)

a ∨ b max(a, b)

R extended real line, i.e., R ∪ {−∞,+∞}
A closure of set A

1A indicator function of set A

f (m) mth derivative of function f

Wm
p Sobolev space with smoothness parameter m and integration parameter p

X
d
= Y X and Y are identically distributed

sgn(x)







−1 if x < 0

0 if x = 0

+1 if x > 0

ν ≪ µ measure ν is absolutely continuous with respect to measure µ

X  Y X converges weakly to Y
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Introduction

Why Lévy Processes?

Continuous-time models based on Brownian motions as background stochastic driving

processes have a long tradition in mathematical finance. Indeed, their roots can be traced

back to the doctoral thesis of Bachelier (1900) on the rational pricing of financial options.

From a theoretical perspective, this long-lasting success is mostly due to an important

result of Itō (1951) in the realm of stochastic calculus which forms the backbone of an

elegant and powerful theory of risk-neural arbitrage pricing for options in continuous

time. For an overview of this theory, see the monographs of Shiryaev (1999, Chapter

VII) or Shreve (2004, Chapters 4 & 5).

Initially, Bachelier (1900) proposed a Brownian motion with drift to model the dynam-

ics of an underlying stock price. Unfortunately, it turned out not to be a reasonable

model for stock prices since it does not warrant non-negative prices. This shortcoming

was eliminated by the model of Samuelson (1965) which is now known as the geometric

Brownian motion. To be more precise, a stock price St is a geometric Brownian motion

if its dynamics obeys the stochastic differential equation

dSt

St
= γ dt+ σ dWt ,

for all t ∈ [0,∞), satisfying the solution

St = S0 exp

{(

γ − σ2

2

)

t+ σWt

}

= S0 exp(Bt) ,

where Bt is a Brownian motion with drift with Wiener process Wt
d
= N( 0, t ) and constant

drift γ ∈ R and diffusion coefficient σ > 0.

This model was used in the seminal works of Black and Scholes (1973) and Merton

(1973) as the driving process of the underlying for deriving the price of an option based

upon the principle of absence of arbitrage opportunities, and has several important im-

1
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plications: Firstly, the Brownian motion (with drift) is obviously a continuous-time gen-

eralization of a random walk (with drift). Thus, a Brownian motion (with drift) is a

Markov process which, in turn, means that the process satisfies the weak form of the effi-

cient market hypothesis (Fama, 1970). Roughly speaking, this hypothesis postulates that

there exists no trading strategy based upon stock market time series which provides an

‘abnormal’ profit in the long run. Secondly, the log-returns calculated over an investment

horizon ∆t > 0 are uncorrelated and normally distributed, i.e.,

rt+∆t := log
St+∆t

St

d
= N

((

γ − σ2

2

)

∆t, σ2∆t

)

.

The persistent success and popularity of the Black-Merton-Scholes model, especially

among practitioners, can be explained by the simple structure of the geometric Brownian

motion. Note that, on the one hand, the normal distribution and the linearity of the

process are easy to understand. On the other hand, it provides option pricing with a great

deal of analytical tractability such that closed-form expressions for pricing formulae can

often be derived. Moreover, continuous sample paths render security markets complete

such that perfect hedging arguments can be applied.

As often in science, a beautiful theory loses much of its appeal when confronted with

reality. The use of the geometric Brownian motion in modeling stock prices and in op-

tion pricing leads to theoretical predictions which are at odds with what is observed in

empirical data. Astonishingly, these contradictions constitute phenomena which are con-

sistently, observed across different financial markets, asset classes, and historical episodes.

Consequently, they are often dubbed “the stylized facts of financial markets.”

We now list the most important stylized facts and refer to, for example, Cont (2001),

Cont and Tankov (2003, Chapter 7), Schoutens (2003, Chapter 4), or Shiryaev (1999,

Chapter IV) for more detailed discussions.

(1) Leptokurtic returns distribution: The empirical distribution of asset returns calcu-

lated over short investment horizons ∆t, like intra-daily or daily, is more peaked

around the origin and has more probability mass in the tails than a fitted normal

distribution. However, there seems to be aggregational Gaussianity as the marginal

distribution of empirical returns calculated over longer investment horizons ∆t, like

quarterly or annual, tends to a normal distribution (Akgiray and Booth, 1988).

(2) Jumps in asset prices: The sample paths of asset prices exhibit substantial discon-

tinuities, even for heavily traded, i.e., liquid, assets.

(3) Volatility clustering: Empirical asset returns exhibit distinct periods of low and high



LIST OF TABLES 3

volatility. Thus, financial markets pass through sustained phases of tranquility and

turbulence.

(4) Smiles & smirks in implied volatility: Contrary to what the Black-Merton-Scholes

model predicts, the implied volatility computed from observed option prices is not

constant (neither across strike prices nor across maturities). Note that this is par-

tially attributed to stylized facts (1)–(3) which contradict the assumption of a ge-

ometric Brownian motion (Hull, 2000, Chapter 17).

(5) Long memory in volatility: Although empirical asset returns do not exhibit signifi-

cant autocorrelation, the autocorrelation function of absolute returns decays slowly.

(6) Leverage effect: The future volatility of empirical stock returns is negatively corre-

lated with past returns.

The failure of geometric Brownian motions with respect to (1) is evidently due to the

normal distribution’s inability to reproduce leptokurtosis. An obvious solution consists

in replacing the normal distribution by some leptokurtic distribution. Following this

line of reasoning, Mandelbrot (1963) suggested the stable distribution to improve the

empirical fit compared to applying the normal distribution. For a general treatment of

stable (Paretian) distributions with many financial applications, see the monograph of

Rachev and Mittnik (2000).

However, they are ‘stable in law’ under time aggregation such that aggregational Gaus-

sianity of returns is ruled out. Moreover, stable distributions fail to have finite second

moments, since they are too heavy-tailed, which is argued to be an undesirable property

by some practitioners. In order to tackle the later problem, the so-called exponential Lévy

process

St = S0 exp(Xt)

was put forward, where the driving Brownian motion with drift is simply substituted by

a Lévy process Xt. Recently, a very flexible (and yet mathematically tractable) sub-class

of Lévy processes, known as generalized hyperbolic distributions, have been successfully

fitted to stock market returns (Eberlein, 2001).

Notice that heavy tails of the marginal law corresponds to the rare occurrences of large

returns, i.e., sudden changes in the price process, but which are much more frequent than

under normality. The simplest way of generating this type of non-normality is to augment

the continuous sample paths of a (geometric) Brownian motion by jumps of random sizes

occurring at random times, as proposed by Merton (1976). Thus, stylized facts (1) and

(2) may indeed be related issues.
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Unfortunately, as Cont and Tankov (2003, pp. 319–351) discuss, option pricing in the

presence of jumps becomes much less tractable as security markets become incomplete.

This is a general problem in non-Gaussian option pricing and its resolution depends on

advances in semimartingale theory which provides ways to ways with jump processes

appropriately. For example, although there does not exist a unique pricing formula for

an option with discontinuous sample paths of the underlying, an optimal pricing formula

has been derived for hyperbolic processes.

On the empirical side, recent nonparametric studies seem to substantiate the relevance

of including jumps in financial models. For example, Aït-Sahalia and Jacod (2009b)

found evidence for the presence of jumps in stock prices, while Lee and Mykland (2006)

showed that jumps play an important role in the S&P 500 index. See also Lee and Hannig

(2010). Mancini and Renò (2011) found evidence for jumps in interest rate time series

using a kernel-based nonparametric estimation method.

Based on nonparametric analysis of high-frequency data Barndorff-Nielsen and Shep-

hard (2007) and Todorov and Tauchen (2011) provided evidence that jumps are present

in both prices and volatility. A corresponding option pricing model in a double-jump

setup was proposed by Duffie, Pan, and Singleton (2000) which is particularly appealing

from a practitioner’s point of view as its affine structure allows for closed-form solutions.

Up to now, jumps and Lévy processes were motivated to explain stylized facts (1)–(3)

about the marginal distribution of asset returns. However, jump Lévy processes can also

be used to model complicated dynamics of asset prices. In particular, Barndorff-Nielsen

and Shephard (2001) introduced a model driven by Lévy processes and which potentially

explains all of the above stylized facts. For more details on this model, see Section 4.2.

In sum, because of the potential impact of jumps on financial models and their empirical

applications, it is of paramount importance for risk managers, traders, portfolio managers,

and policy makers alike to obtain a thorough understanding of their true nature.

Why Nonparametric Estimation?

The price we have to pay for this gain in modeling flexibility of Lévy processes, compared

to models based on Brownian motions, is the increased computational flexibility. To be

more precise, Lévy-based models usually do not admit for an explicit closed-form solution

of their returns densities which renders the corresponding likelihood functions intractable.

Thus, direct application of maximum likelihood becomes infeasible. For implementing

likelihood methods, we must resort to simulation techniques or Fourier inversions of the

corresponding characteristic function in order to obtain a numerical approximation of the
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returns density. Either solution may turn out to be extremely computationally intensive.

In particular, as pointed out by Lo (1988), likelihood methods based on Fourier inversions

require the inversion to be computed for every evaluation step of the likelihood function.

This may become computationally expensive for numerical maximization of the likelihood

function. Even if computable, numerical maximum likelihood may witness convergence

problems and instability with respective to local maxima, in applications.

In contrast to parametric maximum likelihood, nonparametric estimators are straight-

forwardly and fast to compute for the Lévy processes we consider which, roughly speaking,

are generalizations of inhomogeneous Poisson processes. Another, and maybe the major,

advantage of nonparametric methods is that we do not have to settle for one particular

model a priori. In the last two decades, research on Lévy processes has been buoyant

leading to a tremendous surge of models for financial applications. This made it even

harder to opt for a particular parametric model. Hence, there is always the danger to

pick a model that is either too simple or too complex. Meaning that the estimation is

misspecified or inefficient, respectively. A reasonable way out of this dilemma is to “let

the data speak for themselves,” which is exactly where nonparametric methods come into

play. Moreover, nonparametric methods are able to detect features of the data which may

remain undetected when applying parametric models, even when one applies the model

with the highest degree of flexibility. This is especially relevant for financial models as

they are often geared with a view towards applicability to mathematical finance.

Ultimately, due its explorative character, a suitable nonparametric estimator may lend

itself to building the basis of goodness-of-fit testing for selecting the best parametric

model. Nonparametric estimators are sometimes criticized for having convergence rates

slower than the parametric one of n−1/2 (or n−1 if measures in terms of the L2-risk) and,

thus, have a unsatisfactory performance in small samples. Fortunately, this shortcoming

of nonparametric methods is less relevant when using high-frequency data samples in

financial markets.

Papers, which dealt with the (parametric or nonparametric) estimation of Lévy pro-

cesses, are Akritas (1982), Akritas and Johnson (1981), Ball and Torous (1983), Basawa

and Brockwell (1982), Gugushvili (2009), Masuda (2009), Neumann and Reiß (2009),

Rubin and Tucker (1959), Shimizu (2006a,b, 2009a,b), and Shimizu and Yoshida (2006),

among others.
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What’s New?

This thesis focusses on the nonparametric estimation of pure-jump Lévy processes via

orthogonal projections based on discretely sampled observations.

The estimator we propose is a block-thresholded wavelet estimator put forward by Hall,

Kerkyacharian, and Picard (1998), Chicken and Cai (2005), and Cai (1999) who derived

is optimality properties such as adaptation in the minimax sense and oracle inequalities.

We transfer their approach to the problem of estimating a Lévy density nonparametrically

and discuss some of their optimality results in this context.

Very recently, Song (2010) considered the nonparametric estimation of a Lévy density

using wavelet bases. However, this wavelet estimator is linear in contrast to our nonlinear

wavelet estimator which allows to adapt to more general forms of the unknown Lévy

densities.

Since we will be dealing with discretely sampled data, it is necessary to show con-

sistency of an estimator which is intended for a discrete-time model. This was already

accomplished by Figueroa-López (2009) and Figueroa-López and Houdré (2006) for non-

parametric estimation of Lévy densities via piecewise polynomials. We discuss their result

and point out another possibility for establishing weak convergence.

Note that the analytical results for wavelet estimators are derived in the context of the

(Gaussian) nonparametric regression model which hampers its applicability to estimating

frequency curves, such as densities or intensities. As a common practice, a preliminary

estimator, i.e., a histogram, is computed on which the wavelet estimator is implemented.

Unfortunately, there is no theoretically founded recipe for computing this preliminary es-

timator in an optimal way. Usually, the number of bins is selected arbitrarily. To this end,

we adopt the approach of Birgé and Rozenholc (2006) to the problem of constructing a

histogram estimator for a Lévy density. The resulting estimator satisfies a nonasymptotic

optimality property such that it is expected to perform well in small samples.

Finally, we use Monte Carlo simulations in order to evaluate how our proposed ap-

proach works in practice. The model, that we consider in simulations, are the variance

gamma process of Madan and Seneta (1990) and the Lévy-driven Ornstein-Uhlenbeck

process of Barndorff-Nielsen and Shephard (2001). Afterwards, we apply our approach

to the nonparametric estimation of the Lévy densities of S&P 500 returns and of the

subordinator driving the daily realized volatility of the S&P 500. To the best of our

knowledge, nonparametric Lévy density estimation via wavelet methods has never been

applied to financial data before.

The structure of the thesis is as follows: In Chapter 1, we introduce Lévy processes
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and explain some fundamental properties. We also motivate why it might be sufficient to

restrict the analysis to pure-jump Lévy processes. In Chapter 2, we introduce a general

way of nonparametric estimation which will be the backbone of our preliminary histogram

estimator. We also discuss optimality criteria which will be used to gauge the quality of

our estimators. In Chapter 3, nonparametric estimation via wavelet block-thresholding

for Lévy densities is introduced. Chapter 4 contains the implementations of our approach.
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Chapter 1

Lévy Processes

9



10 1. Lévy Processes

1.1 Definition, Examples & Basic Properties

This section introduces the very definition of a Lévy process, which explains why they

are often dubbed as ‘processes with stationary and independent increments,’ along with

some basic results providing deeper insight. All of these can be found in monographs like

Applebaum (2004), Bertoin (1996), and Sato (1999).

Definition 1.1 (Lévy Process) The R-valued stochastic process X = {Xt}t>0 defined

on
(
Ω,F , {Ft}t>0, P

)
is a Lévy process, if it satisfies the following conditions:

C1 X0 = 0 (P -a.s.).

C2 Independent increments: For any t, s > 0, the increment Xt+s −Xt is independent

of Ft.

C3 Stationary increments: For any t, s > 0, the law of the increment Xt+s − Xt does

not depend on t, i.e., Xt+s −Xt
d
= Xs.

C4 Càdlàg sample paths: For P -almost all ω ∈ Ω, the sample paths of X belong to the

function space D0[0,∞), i.e., the map t 7→ Xt(ω) is right-continuous with left limits

(P -a.s.).

C5 Stochastic continuity: X is continuous in probability, i.e., for any t > 0 and for

any ǫ > 0,

lim
s→0

P
(∣
∣Xt+s(ω) −Xt(ω)

∣
∣ > ǫ

)

= 0 .

Remark 1.2 Condition C1 is merely a technical normalization which simplifies deriva-

tions and proofs without loss of generality. Condition C2 is often stated in a more opera-

tional form: For any n ∈ N and for any associated collection 0 6 t0 < t1 < · · · < tn−1 <

tn <∞, the increments Xt1 −Xt0 , . . . , Xtn −Xtn−1 are (pairwise and mutually) indepen-

dent. Condition C3 states that the increments of X are time-homogeneous in the sense

that the distribution of Xt+s −Xt is shift-invariant. Taken together, Conditions C2 and

C3 imply the famous iid-increments property of Lévy processes. Recalling the definition

of the space D of càdlàg functions, Condition C4 postulates that the sample paths of X

can have at most a countable number of jumps (Protter, 2004, Theorem 30). Condition

C5 is a bit tricky, as it appears to contradict Condition C4 at first sight. However, it

does not rule out discontinuous sample paths. (In fact, the continuity of sample paths

implies stochastic continuity, but not vice versa.) What stochastic continuity essentially

asserts is that, for any t > 0, jumps of X are not deterministic, but stochastic, i.e.,
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∆Xt := Xt −Xt− = 0 (P -a.s.), where Xt− := limsրtXs exists due to Condition C4.1

Although Definition 1.1 is quite general, it is no convenient devise for modeling purposes

because it does not impose sufficient structure. This sections’s theorems are of funda-

mental importance as they shed some light on ways of characterizing Lévy processes.

The starting point for the first result is the notion of infinite divisibility of a proba-

bility law. A random variable X (and its probability distribution) is infinitely divisible if,

for any n ∈ N, there exists an iid collection of n random variables X1, . . . , Xn such that

X
d
= X1 + · · ·+Xn. Examples for infinitely divisible laws are the Gaussian, Poisson, and

α-stable ones. It can easily be shown that any Lévy process is infinitely divisible: For

any t > 0, let us fix an arbitrary n ∈ N. Next, fix the time interval ∆ := t/n at which

random variables from {Xs : 0 6 s 6 t} are sampled, i.e., {Xi∆ : 0 6 i 6 n}. Using the

latter to define the increments {∆Xi := Xi∆ −X(i−1)∆ : 1 6 i 6 n}, we arrive at

Xt := Xn∆ = Xn∆ −X0

= Xn∆ −X(n−1)∆ +X(n−1)∆ −X(n−2)∆ + · · ·+X∆ −X0

= ∆Xn + ∆Xn−1 + · · ·+ ∆X1 .

Since {Xi∆}n
i=1 are sampled on an equally spaced grid, the corresponding increments

{∆Xi}n
i=1 are iid due to Conditions C2 and C3 of Definition 1.1.

From this result, it is obvious that the law of any Xt is given by the convolution of

the laws of its increments. However, since dealing with convolutions can be a daunting

task, using characteristic functions in this specific instance seems to be more promising.

In particular, if Pt = P ◦X−1
t is the law of Xt, then the Fourier transform of Pt defines

its characteristic function

ΦXt
(u) := E

[
eiuXt

]
=

∫

R

eiuxPt(dx) ,

for all u ∈ R. From the infinite divisibility of Pt, it follows that, for any n ∈ N, there

exists some probability distribution Pt,n with characteristic function Φt,n such that

ΦXt
(u) =

∫

R

eiuxP t
t,n(dx) = ΦXt,n(u)ΦXt,n(u) · · ·ΦXt,n(u)

︸ ︷︷ ︸

n times

=
[
ΦXt,n(u)

]n
, (1.1.1)

for all u ∈ R.

The following result’s merits are twofold. On the one hand, it shows that the class
1It should be noted that this assumption might be questionable in practice since it ignores jumps

originating from announcements of payroll or interest rate policy news.
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of infinitely divisible distributions and the class of Lévy processes are connected via a

one-to-one correspondence. On the other hand, it shows that the characterization of

any Lévy process can be reduced to three parameters. The latter fact is of paramount

importance to the statistical inference of Lévy processes. Theorem 1.3 is a summary of

Theorems 7.10 and 8.1 of Sato (1999).

Theorem 1.3 (Lévy-Khintchine Representation) The stochastic processX = {Xt}t>0

is a Lévy process if and only if its characteristic function has the form ΦXt
(u) = E

[
eiuXt

]
=

etΨ(u) with characteristic exponent

Ψ(u) = iuγ − u2σ2

2
+

∫
(
eiux − 1 − iux1{|x|61}

)
ν(dx) ,

for all u ∈ R, where γ ∈ R, σ2 > 0, and ν : R\{0} → R+ is a Borel measure satisfying

∫

R\{0}
(1 ∧ x2)ν(dx) <∞ .

Remark 1.4 One immediate consequence of Theorem 1.3 is that the so-called charac-

teristic triplet (γ, σ, ν) uniquely determines the probability law of X. As we will see

later on, the components of the characteristic triplet can be interpreted as follows: γ is

the center or drift parameter of X, σ is the diffusion parameter of X, and ν is the Lévy

measure determining the jump behavior of X. For more on ν, see also Definition 1.9.

Remark 1.5 The integrability condition of the Lévy measure in Theorem 1.3 is often

cast in the form of

ν
(
{0}
)

= 0 and
∫

R

(1 ∧ x2)ν(dx) <∞ .

This is the reason why many authors replace R\{0} by R, while implicitly keeping in

mind that the Lévy measure ν vanishes at the origin. Heuristically, ν
(
{0}
)

= 0 can

be interpreted as an identifiability condition disentangling the continuous part of a Lévy

process from its jumps.

Before presenting the second fundamental result on Lévy processes in Theorem 1.6, we

take a closer look at the characteristic exponent Ψ(u) of Theorem 1.3, which also serves

the purpose of partially motivating Theorem 1.6. The form of the characteristic exponent

in Theorem 1.3 suggests that any Lévy process can be decomposed into the sum of four
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independent Lévy processes:

Ψ(u) = iuγ
︸︷︷︸

➀

− u2σ2

2
︸ ︷︷ ︸

➁

+

∫

{|x|>1}

(
eiux − 1

)
ν(dx)

︸ ︷︷ ︸

➂

+

∫

{0<|x|61}

(
eiux − 1 − iux

)
ν(dx)

︸ ︷︷ ︸

➃

(1.1.2)

The first part of the characteristic exponent in Equation 1.1.2 leads to the characteristic

function

Φ➀
Xt

(u) := exp(iuγt)

which is associated to the random variable

X➀
t = γt .

Obviously, this is not a genuine stochastic process but a linear drift function and is,

as it turns out, the only deterministic Lévy process.

The second part of the characteristic exponent in Equation 1.1.2 leads to the charac-

teristic function

Φ➁
Xt

(u) := exp

(

− u2σ2

2
t

)

which is associated to the random variable

X➁
t = σWt ,

where Wt
d
= N( 0, t ) is the well-known Wiener process, and X➁

t is the Brownian

motion with diffusion parameter σ. This result follows immediately by observing that

Ψ➁(u) = exp

(

− u2σ2

2

)

is the characteristic exponent of the random variable N( 0, σ2 ), whose characteristic func-

tion reads as

ΦN(0,σ2)(u) = exp

(

− u2σ2

2

)

.

By combining parts ➀ and ➁, we arrive at a more general stochastic process, whose

characteristic function

ΦBt
(u) = exp

(

iuγt− u2σ2

2
t

)

is associated to the random variable

Bt := γt+ σWt , (1.1.3)
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i.e., the Brownian motion with drift. Again, this follows from the fact that

Ψ(u) = iuγ − u2σ2

2

is the characteristic exponent of the random variable N( γ, σ2 ). The Brownian motion

with drift is used to describe the dynamics of the underlying (log) stochastic price process

in Black and Scholes (1973)’s option pricing model. Figure 1.1 illustrates a simulated

sample path of a Brownian motion with drift (1.1.3).

Figure 1.1: Sample Path of Brownian Motion with Drift
This figure depicts a simulated sample path of the Brownian motion with drift (1.1.3) with
γ = 0.02 and σ = 0.75. The characteristic triplet of Bt reads as (γ, σ, 0). The sampling
interval is scaled down to [0, 1].
This exemplifies the very defining feature of Brownian motion: continuous sample paths.
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The third and forth part of the characteristic exponent in Equation (1.1.2) define

continuous-time stochastic processes which are known as compound Poisson processes.

To be more precise, let {Nt}t>0 be a Poisson process with jump intensity 0 < λ <∞ and

{Xk}k∈N be a sequence of iid copies of a random variable X with probability distribution
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function F . If all of these random variables are mutually independent, then the (random)

partial sum

SNt
:= X1 + · · ·+XNt

=

Nt∑

k=1

Xk , (1.1.4)

where S0 = 0 or X0 = 0 is assumed for Nt = 0, defines a compound Poisson process.

As can be shown (Cont and Tankov, 2003), any continuous-time stochastic process is

a Lévy process with piecewise constant sample paths. However, in contrast to the un-

derlying Poisson process Nt which governs the number of discontinuities of the sample

paths of SNt
, the jump sizes of SNt

are not necessarily equal to one, but follow the jump

distribution F . In Appendix A.1, we derive the characteristic function of the compound

Poisson process SNt
in (1.1.4),

ΦSNt
(u) = E

[
eiuSNt

]
= exp

{

t

∫

R\{0}
(eiux − 1)λF (dx)

}

= exp
{
tΨ(u)

}
,

where Ψ(u) =
∫

R\{0}(e
iux − 1)λF (dx) is the characteristic exponent of SNt

. Figure 1.2

illustrates a simulated sample path of a compound Poisson process (1.1.4).

If we restrict Xk = 1 for all k ∈ N, then the compound Poisson process SNt
collapses o

the special case of a Poisson process Nt with intensity λ,

SNt
=

Nt∑

k=1

Xk =

Nt∑

k=1

δ1(x) =

Nt∑

k=1

1 = Nt , (1.1.5)

with characteristic function

ΦSNt
(u) = exp

{

t

∫

R\{0}
(eiux − 1)λδ1(dx)

}

= exp
{
tλ(eiu − 1)

}
= exp

{
tΨ(u)

}
,

where δ1 is the (Dirac) point mass at 1, and Ψ(u) = λ(eiu − 1) is the characteristic expo-

nent of a Poisson process. The characteristic function of a compensated compound

Poisson process

S̃Nt
:= SNt

− E[SNt
] (1.1.6)

is derived in Appendix A.1:

ΦS̃Nt
(u) = E

[

eiuS̃Nt

]

= exp

{

t

∫

R\{0}
(eiux − 1 − iux)λF (dx)

}

= exp
{
tΨ(u)

}
,

where Ψ(u) =
∫

R\{0}(e
iux−1−iux)λF (dx) is the characteristic exponent of S̃Nt

. Figure 1.3

illustrates a simulated sample path of a compensated compound Poisson process (1.1.6).
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Figure 1.2: Sample Path of Compound Poisson Process
This figure depicts a simulated sample path of the compound Poisson process (1.1.4) with
intensity λ = 0.01 and whose jumps are normally distributed with µX = 1 and σX = 5. The
characteristic triplet of SNt

reads as
(
0, 0, λN

(
µX , σ2

X

) )
. The sampling interval is scaled

down to [0, 1].
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If we proceed by combining a Brownian motion Bt with drift γ and a compound Poisson

process with intensity λ and jump size distribution F , we arrive at the jump-diffusion

Lévy process

Xt = Bt +

Nt∑

k=1

Xk = γt+ σWt +

Nt∑

k=1

Xk , (1.1.7)

whose characteristic exponent follows directly from the above parts:

Ψ(u) = iuγ − u2σ2

2
+

∫

R\{0}
(eiux − 1)λF (dx) .

In the literature on financial economics, the idea of merging compound Poisson and

Brownian components was first introduced by Press (1967). Later on, Merton (1976)

proposed his jump-diffusion Lévy processes by augmenting the Black and Scholes (1973)
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Figure 1.3: Sample Path of Compensated Compound Poisson Process
This figure depicts a simulated sample path of the compensated version (1.1.6) of the com-
pound Poisson process (1.1.4) in Figure 1.2. The characteristic triplet of S̃Nt

reads as
(
γ1, 0, λN

(
µX , σ2

X

) )
where γ1 := −λµX follows from (1.1.9) and κ1 in Section 1.2. The

sampling interval is scaled down to [0, 1].
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model by Gaussian jumps. Kou (2002) introduced a jump-diffusion Lévy process with

double-exponentially distributed jumps. Figure 1.4 illustrates a simulated sample path

of a jump-diffusion Lévy process (1.1.7).

Although the Merton (1976) was a major landmark for mathematical finance, its roots

date back to 1930 when Kolmogorov and de Finetti erroneously suggested the jump-

diffusion Lévy model to be the most general form of a Lévy process (Sato, 1999, p. 37).

In order to move into the direction of the general form of the characteristic exponent of

Theorem 1.3, we first replace the compound Poisson process by its compensated version.

Using the above ingredients, a jump-diffusion Lévy process with compensated



18 1. Lévy Processes

Figure 1.4: Sample Path of Jump-Diffusion Lévy Process
This figure depicts a simulated sample path of the jump-diffusion Lévy process (1.1.7) which
corresponds to the superposition of the processes of Figures 1.1 and 1.2. The characteristic
triplet of Xt reads as

(
γ, σ, λN

(
µX , σ2

X

) )
. The sampling interval is scaled down to [0, 1].
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jumps,

Xt = γt+ σWt +

(
Nt∑

k=1

Xk − λtµX

)

︸ ︷︷ ︸

=S̃Nt

,

has characteristic function

ΦXt
(u) = E

[
eiuXt

]
= E

[

exp

{

iu

(

γt+ σWt +
Nt∑

k=1

Xk − λtµX

)}]

= E
[
exp
{
iu(γt+ σWt)

} ]
E

[

exp

{

iu

(
Nt∑

k=1

Xk − λtµX

)}]

= exp

{

t

(

iuγ − u2σ2

2

)}

exp

{

t

∫

R\{0}
(eiux − 1 − iux)λF (dx)

}
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= exp
{
tΨ(u)

}
,

where the characteristic exponent

Ψ(u) = iuγ − u2σ2

2
+

∫

R\{0}
(eiux − 1 − iux)λF (dx) (1.1.8)

now resembles the characteristic exponent of Theorem 1.3 more closely, although there

are still two crucial differences. Interestingly, both of them originate from the same cause:

the Lévy measure ν. The Lévy measure implied by the characteristic exponent Ψ(u) in

(1.1.8) is a finite measure, i.e.,

ν
(
R\{0}

)
=

∫

R\{0}
ν(dx) <∞ .

Despite of being finite, the Lévy measure of a jump-diffusion Lévy process is generally

not a probability measure since

ν
(
R\{0}

)
=

∫

R\{0}
ν(dx) =

∫

R\{0}
λF (dx) = λ

∫

R\{0}
F (dx) = λ 6= 1 .

Nevertheless, the jump size distribution constitutes a probability measure:

0 6 F (dx) =
ν(dx)

λ
=

ν(dx)

ν
(
R\{0}

) 6 1 .

Put differently, for a finite Lévy measure, there exists a factorization of ν into the expected

number of jumps per unit of time, λ = E[Xt ] /t, and the jump size distribution, F .

Generally, this factorization holds for models, where the jump component corresponds to

a compound Poisson process only which, by definition, has finite jump intensity, i.e., has

a finite number of jumps on any finite time interval.

This observation deepens our understanding of component ➂ in (1.1.8). As already

mentioned,

Ψ➂(u) =

∫

{|x|>1}
(eiux − 1)ν(dx) =

∫

R\{0}
(eiux − 1)1{|x|>1}ν(dx)

is the characteristic exponent of a compound Poisson process, but it is actually a com-

pound Poisson process restricted to have only ‘large’ jumps, i.e., jumps larger than 1.

The corresponding jump size distribution,

F (dx) =
ν(dx)

ν
(
R\[−1, 1]

) 1{|x|>1} ,
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is derived from ν(dx)1{|x|>1} = λF (dx) by plugging in the expression λ = ν
(
R\[−1, 1]

)
>

0. Recall that from the properties of any Lévy measure λ = ν
(
R\[−1, 1]

)
<∞ such that

there is only a finite number of jumps in any finite time interval.

These neat considerations all break down when we expect an infinite number of jumps

in a finite time interval, i.e., λ = ν
(
R\{0}

)
= ∞, which is perfectly possible since

Theorem 1.3 allows for ν
(
[−1, 1]\{0}

)
= ∞. If this happens, the Lévy measure ν is

an infinite (but σ-finite) measure satisfying additional integrability conditions laid out

in Theorem 1.3. The problem resulting from this complication is that the integrand

(eiux − 1) may not be ν-integrable, and there arises the need for adjusting the integrand

by compensating for the ‘small’ jumps of the Lévy process. After compensating, the

integrand of the characteristic exponent Ψ(u) in Theorem 1.3 becomes integrable with

respect to the Lévy measure ν since, on the one hand, ν is bounded outside of some

neighborhood of 0 due to
∫

{|x|>1} ν(dx) <∞ and, on the other hand,

eiux = 1 + iux+
(iux)2

2
+ · · ·

eiux + 1 + iux = O
(
|x|2
)

as |x| → 0,

for all u ∈ R, such that the compensated integrand satisfies
∫

{0<|x|61} x
2ν(dx) <∞.

A question, which naturally arises at this point, is whether choosing 1 as the threshold

level in 1{0<|x|61}, for separating the ‘small’ and ‘large’ jumps, is innocuous. Indeed,

this choice is somewhat arbitrary. It is possible to replace the indicator function by

alternative truncation functions h(x) as long as they warrant that the integrand of Ψ(u)

in Theorem 1.3 is integrable with respect to the Lévy measure ν. It is actually sufficient

that h : R → R is a bounded, measurable function such that

h(x) = 1 + o
(
|x|
)

as |x| → 0

h(x) = O
(
1/|x|

)
as |x| → ∞.

Then, the characteristic function in Theorem 1.3 can be rewritten as

ΦXt
(u) = exp

{

iuγh −
u2σ2

2
+

∫

R\{0}

[
eiux − 1 − iuxh(x)

]
ν(dx)

}

,

where

γh = γ +

∫

R\{0}
x
[
h(x) − 1{0<|x|61}

]
ν(dx) .

For example, if
∫

{0<|x|61} |x|ν(dx) < ∞ holds, then it is sufficient for the integrand to
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satisfy

eiux − 1 − iuxh(x) = O
(
|x|
)

as |x| → 0,

which suggests to set h(x) = 0. Thus,

ΦXt
(u) = exp

{

iuγ0 −
u2σ2

2
+

∫

R\{0}
(eiux − 1)ν(dx)

}

,

with γ0 = γ −
∫

{0<|x|61} xν(dx), which corresponds to the characteristic function of a

(compound) Poisson process. Moreover, assuming
∫

R\{0} |x|ν(dx) <∞, we can set h(x) =

1 such that

ΦXt
(u) = exp

{

iuγ1 −
u2σ2

2
+

∫

R\{0}
(eiux − 1 − iux)ν(dx)

}

, (1.1.9)

with γ1 = γ−
∫

{|x|>1} xν(dx), is the characteristic function of a compensated (compound)

Poisson process. Furthermore, it is noteworthy that σ and ν are invariant to the choice

of h(x). For more details, see Sato (1999, pp. 38-39) and Shiryaev (1999, pp. 196-197).

We postpone an in-depth analysis of the jump component to the Section 1.3. For now,

we simply present the second fundamental result on Lévy processes which follows directly

from (1.1.2).

Theorem 1.6 (Lévy-Itō Decomposition) The sample paths of any Lévy process X =

{Xt}t>0 can be decomposed into:

Xt = Bt
︸︷︷︸

continuous

part

+
∑

0<s6t

∆Xs

︸ ︷︷ ︸

jump part

,

where Bt = γt + σWt is a Brownian motion with drift γ and Wiener process Wt, and

∆Xs = Xs −Xs− are continuous-time increments with Xs− = limuրsXu.

The rest of this section is devoted to the connection between Lévy processes and the

theory of semimartingales, and serves as a motivation of next section’s main theme:

Poisson random measures. Note that any compensated Lévy process
{
Xt − E[Xt ]

}

t>0

is a martingale such that it can be decomposed into a process with a linear drift and a

martingale:

Xt = Xt − E[Xt ] + E[Xt ]

= E[X1 ] t+
(
Xt − E[Xt ]

)
,

where E[X1 ] = γ and the second summand comprises the Brownian and jump component,
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in general. This representation is reminiscent of the general theory of semimartingales

which allows for the decomposition

Xt = X0 + Vt +Mt , (1.1.10)

where {Vt}t>0 is process with finite variation on any finite time interval and {Mt}t>0 is

a local martingale. Although this decomposition is generally not unique, this problem

can be resolved by eliminating the ‘big’ jumps of Xt, say, jumps with absolute magnitude

larger than 1:
∑

0<s6t

∆Xs1{|∆Xs|>1} .

The resulting semimartingale is a so-called special semimartingale, with bounded jump

sizes, which is unique. Furthermore, the semimartingale decomposition (1.1.10) can be

casted in the canonical decomposition:

Xt = X0 + Vt +M c
t +Md

t +
∑

0<s6t

∆Xs1{|∆Xs|>1}

Xt −X0 −
∑

0<s6t

∆Xs1{|∆Xs|>1}

︸ ︷︷ ︸

special semimartingale

= Vt +M c
t +Md

t ,

where Vt is now a predictable process with finite variation, and the local martingale Mt in

(1.1.10) has been (uniquely) decomposed into two orthogonal, local martingales: a local

martingale M c
t with continuous paths and a purely discontinuous, local martingale Md

t .

For further details, see Jacod and Shiryaev (2003, pp. 40–44) or Prakasa Rao (1999, pp.

71–73).

1.2 Further Properties & Classification

As already mentioned, all information on the jump behavior of a Lévy process is comprised

in its Lévy measure. In this subsection, we will take a closer look at the decomposition of

jumps and at how it is connected to the so-called distributional and path properties

of a Lévy process.

Let us first focus on the ‘large’ jumps whose frequency is characterized by the tails of

the Lévy measure ν. An interesting result states that the finiteness of moments solely

depends on the 1{|x|>1}–part of ν (Sato, 1999, Theorem 25.3). To be more precise, the

pth moment of a Lévy process X = {Xt}t>0 exists, i.e., E[ |Xt|p ] < ∞, for all p > 1, if
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and only if ∫

{|x|>1}
|x|pν(dx) <∞

holds for some t > 0 (due to infinite divisibility of Xt). At first glance, this appears

to be surprising when recalling the integrability condition on ν in Theorem 1.3. There,

the condition
∫

{0<|x|61} x
2ν(dx) <∞ was put forward as a defining property for all Lévy

measures. On the one hand, this tells us that the ‘small’ jumps around the origin do

not cause any convergence problems for moments of order greater than 1. On the other

hand, this condition does not rule out the possibility of
∫

{0<|x|61} xν(dx) = ∞ which is a

problem for the existence of the first moment. In particular, if this holds, then

∫

R\{0}
xν(dx) =

∫

{|x|>1}
xν(dx) +

∫

{0<|x|61}
xν(dx) = ∞ ,

even when assuming convergence in the tails, i.e.,
∫

{|x|>1} xν(dx) < ∞. However, this

issue can easily be clarified by deriving the cumulants of Xt via plugging the cumulant

generating function lnΦ(u) = tΨ(u) in (A.1.1). From the characteristic exponent in

Theorem 1.3, it is possible to obtain the following cumulants:

κ1 =
t

i
Ψ′(0) =

t

i

{

iγ − uσ2 +

∫

(ixeiux − ix1{0<|x|61})ν(dx)

}∣
∣
∣
∣
u=0

=
t

i

{

iγ +

∫

(ix− ix1{0<|x|61})ν(dx)

}

=
t

i

{

iγ +

∫

{|x|>1}
ixν(dx) +

∫

{0<|x|61}
0ν(dx)

}

= t

{

γ +

∫

{|x|>1}
xν(dx)

}

,

κ2 =
t

i2
Ψ′′(0) = −t

{

−σ2 +

∫

(ix)2eiuxν(dx)

}∣
∣
∣
∣
u=0

= t

{

σ2 +

∫

x2ν(dx)

}

,

κp =
t

ip
Ψ(p)(0) =

t

ip

∫

(ix)peiuxν(dx)

∣
∣
∣
∣
u=0

= t

∫

xpν(dx) ,

for all p > 3. Finally, mean, variance, skewness, and excess kurtosis of Xt follow from

(A.1.2)–(A.1.5). These computations show two things: First, the existence of moments

does indeed only depend upon the tail behavior of ν. Second, all cumulants are linearly

increasing with time t. As usual, cumulants are a very convenient devise for describing

deviations from normality (or from a Brownian motion Bt with drift). It is noteworthy

that all Lévy processes with jump component are leptokurtic, i.e.,

κ4 = t

∫

x4ν(dx) > 0 ,

if κ4 exists at all. Moreover, properties of the marginal distribution of Xt can directly
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be translated into properties of the marginal distribution of its increments. This is a

straightforward consequence of Condition C3 of Definition 1.1, i.e., let s = 1 such that

Xt+1 −Xt
d
= X1. Put differently, the properties of the marginal law of one-period returns

are equal to those of the marginal law of its level series at time 1. Thus, the increments

of all Lévy processes with jump component are leptokurtic (if κ4 exists), which shows

their potential gains for explaining some of the stylized facts of financial time series.

The Lévy measure is not only informative about the moments (or, more broadly, the

distributional properties) of a Lévy process, but it is also responsible for a diverse array

of path properties of Lévy processes. This is sometimes dubbed as the fine structure

of Lévy processes for which the ‘small’ jumps turn out to be crucial.

A very useful starting point is a classification scheme for Lévy processes due to Sato

(1999, Definition 11.9 & Theorem 21.9).

Definition 1.7 (Classification of Lévy Processes) For the Lévy process X = {Xt}t>0

with characteristic triplet (γ, σ, ν), we define the following three classes:

1. If σ = 0 and ν
(
R\{0}

)
< ∞, then X is defined to be of type A: a purely non-

Gaussian Lévy process with finite activity.

2. If σ = 0, ν
(
R\{0}

)
= ∞, and

∫

{0<|x|61} |x|ν(dx) < ∞, then X is defined to be

of type B: a purely non-Gaussian Lévy process with infinite activity and finite

variation.

3. If σ > 0 or
∫

{0<|x|61} |x|ν(dx) = ∞, then X is defined to be of type C: a Lévy

process with infinite variation.

A Lévy process X is said to have finite activity, if P -almost all sample paths ofX have

only a finite number of jumps on any finite time interval (0, t]. Likewise, a Lévy process

X is said to have infinite activity, if P -almost all sample paths have a (countably)

infinite number of jumps on any finite time interval (0, t]. In order to relate these notions

to properties of the Lévy measure ν, note that, due to the integrability condition in

Theorem 1.3, any Lévy measure has finite mass in the tails, i.e.,

∫

{|x|>1}
ν(dx) <∞ ,

such that the number of ‘large’ jumps is bounded (P -a.s.). Put differently, there is only

a finite number of ‘large’ jumps on any finite time interval (0, t]. Consequently,

ν
(
R\{0}

)
=

∫

R\{0}
ν(dx) = ∞
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is only possible, if there is an infinite number of ‘small’ jumps around the origin, i.e.,

∫

{0<|x|61}
ν(dx) = ∞ .

In sum, a Lévy process X has finite activity if ν
(
R\{0}

)
< ∞, while it has infinite

activity if ν
(
R\{0}

)
= ∞. Recall that the variation of a stochastic process X = {Xt}t>0

is defined by

VX [0, t] := sup
∆n

n∑

k=1

|Xtk −Xtk−1
| ,

where the supremum is taken over all possible partitions ∆n = {t0, t1, . . . , tn : 0 = t0 <

t1 < · · · < tn = t} of [0, t]. The first sub-class of Lévy process, which are of type C,

are models containing a continuous Brownian component. It is a well-known result that

Brownian motions have infinite variation (Kallenberg, 2002, Corollary 13.10). What is

even more interesting is that, for another subclass of type-C processes, infinite variation

may be a result of the condition

∫

{0<|x|61}
|x|ν(dx) =

∫

|x|1{0<|x|61}ν(dx) = ∞

implying that the sum of ‘small’ jumps,

∑

0<s6t

∆Xs1{0<|x|61} ,

does not converge for P -almost all sample paths of X. This technically delicate issue is

indeed the reason why (1.1.8) is not the most general form of the characteristic exponent

for Lévy processes, and it will be tackled in much more detail in the next section.

1.3 Poisson Random Measure & Lévy Density

In this section, we present a substantial refinement of the assertion of Theorem 1.6 and

introduce the object of our statistical interest.

Recall that, according to Theorem 1.6, the sample paths of any Lévy process can be

decomposed as

Xt = Bt +
∑

0<s6t

∆Xs ,

where Bt = γt + σWt is a continuous Brownian motion with drift, while the second

summand represents the discontinuous jump part of Xt. Without loss of generality, let
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Bt ≡ 0 for all t > 0 such that we obtain a pure-jump Lévy process:

Xt =
∑

0<s6t

∆Xs .

From Theorem 1.3, we also known that

ν
(
R\{0}

)
=

∫

R\{0}
ν(dx) = ∞

may be possible, i.e., jumps may arrive at an infinitely high rate. When this happens, the

jump part
∑

0<s6t ∆Xs has infinitely many summands which may diverge, in general. As

we have already seen from the discussion of a Lévy process’ variation in Subsection 1.2,

it might be helpful to distinguish between the effects of ‘large’ and ‘small’ jumps in order

to find a remedy to this divergence problem. Thus, we go on by separating ‘large’ and

‘small’ jumps which are defined in accordance with the general truncation scheme of

Theorem 1.3:

Xt =
∑

0<s6t

∆Xs1{|∆Xs|>1} +
∑

0<s6t

∆Xs1{0<|∆Xs|61} .

Here, the sum of ‘large’ jumps poses no problem because ν
(
R\[−1, 1]

)
<∞ has already

been derived such that there are only finitely many ‘large’ jumps. Another way to see this

is by recalling the discussion of the characteristic exponent Ψ➂(u) in Section 1.1, where

the jump component involving ‘large’ jumps was associated with a compound Poisson

process which has finite intensity 0 < λ <∞.

In contrast to the sum of ‘large’ jumps, we have already concluded from the integrability

condition of the Lévy measure ν in Theorem 1.3 that it is the frequency of jumps located

near the origin which may be infinite, i.e.,
∫

{0<|x|61} ν(dx) = ∞. Consequently, the sum

of ‘small’ jumps is infinite and can diverge when there are too many ‘small’ jumps.2

The proposed solution for getting a handle on this problem begins with truncating all

jumps smaller than some ǫ > 0 and consider its limit as ǫց 0:

Xt =
∑

0<s6t

∆Xs1{|∆Xs|>1}

︸ ︷︷ ︸

=:XL
t

+ lim
ǫց0

∑

0<s6t

∆Xs1{ǫ6|∆Xs|61}

︸ ︷︷ ︸

=:Xǫ
t

. (1.3.1)

Unfortunately, there is still no guarantee that the limit exists, and we have to resort to

a downweighting scheme by subtracting the average change of Xt along (0, t] due to the

2Actually, due to the càdlàg property of sample paths, there can only be countably infinite number of
‘small’ jumps and a finite number of ‘large’ jumps on any finite time interval (compare Appendix A.1).
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jumps Xǫ
t in the limit expression. Obviously, this is nothing else than compensation,

where the corresponding average is deduced from the intensity with which these jumps

arrive. Finally, it can be shown that the limit exists in probability as ǫ ց 0:

Xt =
∑

0<s6t

∆Xs1{|∆Xs|>1} + lim
ǫց0

[
∑

0<s6t

∆Xs1{ǫ6|∆Xs|61} − t

∫

x1{ǫ6|x|61}ν(dx)

]

.

It is important to note that this limit expression cannot, in general, be simplified by

splitting it up into the difference of two separate limits because these individual limits

may not exist.

Beyond these heuristic considerations, a more thorough derivation calls for the intro-

duction of a devise allowing us to characterize the stochastic behavior of the jumps (or

increments) of a Lévy process in a sensible way, and which is based on a point-process

perspective. There arise two complications when trying to characterize the jumps of a

Lévy process.

First, as we already know from the discussion of Condition C5 in Remark 1.2, the jump

times of Xt are random. Thus, the occurrence of jumps {∆Xs : 0 < s 6 t} is random and

requires the introduction of a sequence of random times representing the jump times of a

Poisson process Nt(ω) with intensity λ. From the basic properties of a Poisson process,

we know that the inter-arrival times of its jumps are iid following an exponential law with

parameter λ (see Appendix A.1). Moreover, the Poisson process has only jumps of unit

size, by definition. An alternative approach to characterizing a Poisson process is via its

(Poisson) random measure,

J
(
ω; (0, t]

)
:= ♯

{
n ∈ N : 0 < τn(ω) 6 t

}
,

which counts the number of jumps of the Poisson process (for a given sample path ω)

occurring up to time t such that

Nt(ω) =
∑

0<s6t

∆Ns(ω)=1

∆Ns(ω) = ♯
{
n ∈ N : 0 < τn(ω) 6 t

}
=
∑

n∈N
1{τn(ω)6t} =

∫ t

0

J(ω; ds) .

Put differently, any Poisson process can be associated to and be completely characterized

by its corresponding random measure.

This approach can easily be extended to tackle the second complication, i.e., the ran-

domness of jump sizes. The idea is to define different Poisson processes with increments

falling into different Borel subsets of R\{0} and with corresponding intensities depending

on these individual subsets. Then, the superposition of these Poisson processes is asso-
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ciated to the extended random measure. The random jump times of a Poisson process

with jump size B are given by

τB
1 (ω) := inf

{

t > 0 : ∆Xt(ω) ⊆ B,B ∈ B
(
R\{0}

)}

τB
2 (ω) := inf

{

t > τB
1 (ω) : ∆Xt(ω) ⊆ B,B ∈ B

(
R\{0}

)}

...

τB
n (ω) := inf

{

t > τB
n−1(ω) : ∆Xt(ω) ⊆ B,B ∈ B

(
R\{0}

)}

...

while the corresponding counting measure on B
(
(0, t] × B

)
is defined as

J
(
ω; (0, t] ×B

)
:= ♯

{(
s,∆Xs(ω)

)
⊆ A : s ∈ (0, t],∆Xs(ω) ⊆ B,A = (0, t] ×B

}

=
∑

0<s6t

1{∆Xs(ω)⊆B} =
∑

n∈N
1{τB

n (ω)6t} ,

where we consider Borel subsets A of the product space R+ × R\{0}. The last equal-

ity shows that it is indeed possible to observe a countably infinite number of jumps of

magnitude falling into B during any finite time interval [0, t].

For illuminating the roles played by ω, t, and B, we isolate their influences by a ceteris

paribus analysis. On the one hand, the dependence on the sample path ω ∈ Ω stresses the

fact that J
(
ω; (0, t]×B

)
is a random quantity. Hence, if we fix ω and t, the randomness

and ‘dynamics’ of J
(
ω; (0, t]×B

)
vanish, and J

(
.; (0, .]×B

)
becomes a σ-finite measure

on the Borel sets B of R\{0}. On the other hand, if we fix B, the random process

J
(
ω; (0, t] × .

)
counts its jumps occurring with fixed jump sizes falling into B.

For these extended random measures, Theorem 19.4 of Sato (1999) establishes their

existence, while the following definition provides a complete characterization.

Definition 1.8 (Random Measure) Let
(

R\{0},B
(
R\{0}

)
, ν
)

be a σ-finite measure

space.The counting process J
(
ω; (0, t]×B

)
is a (Poisson) random measure, if it satisfies

the following conditions:

C1 For any ω ∈ Ω, J
(
. ; (0, t]×B

)
is a σ-finite measure on the product space B

(
R+ ×

R\{0}
)
.

C2 For any B ∈ B
(
R\{0}

)
, J
(
ω; (0, t]× .

)
follows a Poisson distribution with inten-

sity ν(B).

C3 If B1, . . . , Bn ∈ B
(
R\{0}

)
are disjoint, then J

(
ω; (0, t]×B1

)
, . . . , J

(
ω; (0, t]×Bn

)
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are independent.

It is not hard to see that the random measure associated with the increments is indeed

a Poisson random measure. First, note that the increments of J :=
{

J
(
ω; (0, t]×B

)}

t>0
are directly related to the increments of Xt(ω), i.e., the former counts the jumps occurring

in the latter, or more formally,

J
(
ω; (0, t] × B

)
− J

(
ω; (0, s] ×B

)
∈ B

({
Xu(ω) −Xv(ω) : s 6 v < u 6 t

})

.

Consequently, the stochastic properties of the increments of the Lévy process X, laid

out in Definition 1.1, feed into those of the increments of J . In particular, J
(
ω; (0, t +

s] × B
)
− J

(
ω; (0, t] × B

)
is independent of Ft, for all t, s > 0, due to Condition C2

of Definition 1.1, while J
(
ω; (0, t+ s] × B

)
− J

(
ω; (0, t] × B

) d
= J

(
ω; (0, s] × B

)
, for all

t, s > 0, due to Condition C3 of Definition 1.1. Since the counting process J has iid

increments, it is a Poisson process (Cont and Tankov, 2003), with intensity parameter

depending on B, i.e., the expected number of jumps with size falling into B per unit of

time.

Definition 1.9 (Lévy Measure) Let X =
{
Xt(ω)

}

t>0
be a Lévy process. The σ-finite

measure ν on R\{0} satisfying
∫

R\{0}(1 ∧ x2)ν(dx) <∞ and defined by

ν(B) :=
1

t
E
[

♯
{

s ∈ (0, t] : ∆Xs(ω) ⊆ B,B ∈ B
(
R\{0}

)} ]

is called the Lévy measure of X.

Remark 1.10 From Definition 1.9, it follows immediately that the compensated random

measure is obtained by subtracting its intensity measure, i.e.,

J̃
(
ω; (0, t] ×B

)
:= J

(
ω; (0, t] × B

)
− E
[
J
(
ω; (0, t] × B

) ]

= J
(
ω; (0, t] × B

)
− tν(B) .

It is noteworthy that although J
(
ω; (0, t]×B

)
is a random measure on Ω×R+ ×R\{0},

tν(B) is a product measure on R+ × R\{0}. Moreover, ν(B) is the average number of

jumps with sizes contained in B, per unit of time, such that

ν(B) = E
[

♯
{

s ∈ (0, 1] : ∆Xs(ω) ⊆ B,B ∈ B
(
R\{0}

)} ]

.

Let us now return to the jump decomposition (1.3.1) of a pure-jump Lévy process and

suppress the dependence of J
(
ω; (0, t]×B

)
upon ω for the sake of notational convenience.
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From earlier discussions and Remark 1.10, we know that the component of ‘large’ jumps,

XL
t =

∑

0<s6t

∆Xs1{|∆Xs|>1} =

∫ t

0

∫

{|x|>1}
xJ(ds× dx) ,

is a compound Poisson process. Similarly, the component of ‘small’ jumps now reads

Xǫ
t =

∑

0<s6t

∆Xs1{ǫ6|∆Xs|61} =

∫ t

0

∫

{ǫ6|x|61}
xJ(ds× dx) ,

which may not be convergent as ǫց 0. But, as stated earlier, compensating Xǫ
t guaran-

tees that the integral expression converges as ǫց 0:

X̃ǫ
t =

∫ t

0

∫

{ǫ6|x|61}
xJ̃(ds× dx) =

∫ t

0

∫

{ǫ6|x|61}
x
[
J(ds× dx) − dsν(dx)

]
,

which is a square-integrable martingale converging (in mean-square) to the pure-jump

martingale3

lim
ǫց0

X̃ǫ
t =

∫ t

0

∫

{0<|x|61}
xJ̃(ds× dx) .

One can also show that this convergence is uniform on (0, t]. Finally, this brings about

the detailed version of Theorem 1.6,

Xt = γt+ σWt +XL
t + lim

ǫց0
X̃ǫ

t ,

which should also be compared with the semimartingale decomposition in (1.1.10). For

an analytically rigorous proof, see Theorem 19.2 of Sato (1999).

As it turns out in Section 2.5 integrals of bounded continuous functions (vanishing at

the origin) with respect to the Poisson random measure of Definition 1.8, i.e.,

∫ t

0

∫

B

f(x)J(ω; ds× dx) =
∑

0<s6t

f(∆Xs)1{∆Xs⊆B} , (1.3.2)

3There are two instances where additional assumptions allow for some change of notation. First, when
X has finite expectation, i.e.,

∫

{|x|>1}
|x|ν(dx) < ∞, the integral expression

∫ t

0

∫

{|x|>1}
|x| dsν(dx) < ∞

exists such that the two jump components can be rewritten as one compensated jump component:

∫ t

0

∫

{|x|>1}

x
[
J(ds×dx)−dsν(dx)

]
+

∫ t

0

∫

{0<|x|61}

x
[
J(ds×dx)−dsν(dx)

]
=

∫ t

0

∫

R\{0}

x
[
J(ds×dx)−dsν(dx)

]
.

Second, if
∫

{0<|x|61} |x|ν(dx) < ∞ holds, then there is obviously no divergence of the sum of ‘small’

jumps which renders compensation with passing to the limit redundant. For example, this holds for
Lévy processes of type B.
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will play a central role for constructing particular nonparametric estimators. Therefore,

we summarize some results of Theorem 2.3.8 in Applebaum (2004), which will be relevant

later on.

Theorem 1.11 (Applebaum (2004)) Let J(ω; t, B) be a Poisson random measure

and f : R → R be a Borel measurable function that is finite on B ∈ B
(
R\{0}

)
.

P1 For any t > 0, the integral
∫ t

0

∫

B
f(x)J(ω; ds× dx) is a compound Poisson process

with characteristic function

E

[

exp

{

iu

∫ t

0

∫

B

f(x)J(ω; ds× dx)

}]

= exp

{

t

∫

B

(eiuf(x) − 1)ν(dx)

}

,

for all u ∈ R.

P2 If f is Lebesgue integrable on B, i.e., f ∈ L1(B), then

E

[ ∫ t

0

∫

B

f(x)J(ω; ds× dx)

]

= t

∫

B

f(x)ν(dx) .

As is well-known from statistical analysis, a probability distribution function might be

graphically less informative than its probability density function. Thus, we close this

section by introducing the main object of our statistical interest: the density of a Lévy

measure ν.

Definition 1.12 (Lévy Density) If the Lévy measure ν is absolutely continuous with

respect to (or dominated by) the Lebesgue measure dx, i.e., dν ≪ dx, then the Radon-

Nikodým derivative

p :=
dν

dx

exists and is called the Lévy density of ν.

Remark 1.13 Alternatively, any Lévy density p : R\{0} → [0,∞) can be implicitly

defined by

ν(B) =

∫

B

p(x)dx ,

for any B ∈ B
(
R\{0}

)
. From the integrability condition of a Lévy measure ν in Theo-

rem 1.3 and Definition 1.9, necessary and sufficient conditions,

∫

{|x|>1}
ν(dx) =

∫

{|x|>1}
p(x) dx <∞ and

∫

{|x|<1}
x2ν(dx) =

∫

{|x|<1}
x2 p(x)dx <∞ ,

for p to be a Lévy density can be deduced. Quantities like p(x0) provide information on

the arrival rates or relative frequency of jumps with size ‘close to’ x0.
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Although p is a non-negative function, by definition, it does not necessarily integrate

to one, i.e., ∫

R\{0}
p(x) dx 6= 1 .

Despite p not being defined at the origin, i.e., p has zero mass at the origin, we will

sometimes replace R\{0} by R for the sake of simplifying notations.

1.4 Why Pure-Jump Lévy Processes?

1.4.1 An Economic Point of View

In the next chapters, we will deal with estimating pure-jump Lévy processes only. At

first sight, this might look as an unduly restrictive assumption prone to misspecification

errors but as we will argue in the sequel, it might be quite reasonable to replace the

diffusion component by an appropriately chosen Lévy measure.

Recall that the sample paths of purely Brownian driven models are continuous but

nowhere differentiable (P -a.s.). In non-technical terms, such a process moves in very

small steps and has an extremely vibrant activity. Financial economists developed a

reasoning on the evolution of prices in security markets, which is indeed analogous to the

heuristics of Robert Brown in the 1820s for describing the movement of grains of pollen

in a fluid.

The dynamics of security prices are driven by trades which are the outcomes of decision

making processes of traders (Detemple and Murthy, 1994). Assuming that traders make

decisions when new information come in and that this information flow is continuous

in time, i.e., behaves like a Brownian motion, then security prices should behave like

Brownian motions, provided that continuous trading is possible (Duffie and Huang, 1985).

One problem with this reasoning is that there may be other motives than new (superior)

information on a security that might trigger trades. These motives may be completely

unrelated to the security, like the personal preference for liquidity (Glosten and Milgrom,

1985). Because of this, and since the continuity of the information flow (with respect

to time), is questionable from a practitioner’s point of view, it appears that models for

security prices should not be build on the postulate of an continuous information flow,

but on (the arrival process of) trades per se.

As already mentioned, the marginal distribution of empirical returns is leptokurtic, i.e.,

the empirical distribution has more probability mass in a neighborhood of the origin and

in the tails than a fitted normal distribution. Furthermore, a pure Brownian motion
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(with drift), like the one depicted in Figure 1.1, is unable to reproduce this stylized

fact. Although ‘fat tails’ can be generated by a jump-diffusion Lévy process, like the one

depicted in Figure 1.4, this process may still have a hard time modeling the peakedness

of the marginal distribution adequately (Geman, Madan, and Yor, 2001). Thus, for

the sake of modeling peakedness, there does not seem to be much prospect in simply

adding a compound Poisson process to a Brownian motion because, in jump-diffusion

Lévy processes, the diffusion component captures frequent but small moves of asset prices,

while the jump component captures rare but large changes. In sum, a more sophisticated

device is needed.

If we dispense the diffusion component completely, then the returns correspond to

(sums of) jumps of the postulated process. In this setup, peakedness can be interpreted

as a high arrival rate of very small jumps. Indeed, one can argue that a pure-jump Lévy

process with a ‘high’ rate of activity may render the diffusion component unnecessary.

Roughly speaking, diffusions and jump processes with infinite activity from Section 1.2

can be considered as substitutes from a modeling perspective. To see this, recall that the

Lévy measure of the compound Poisson process of Figure 1.2 is ν = λF , where F is a

normal distribution, such that

ν
(
R\{0}

)
= λF

(
R\{0}

)
= λ .

Then, ν
(
R\{0}

)
→ ∞ as λ → ∞. Figure 1.5 illustrates the effect of increasing the

jump intensity of a compound Poisson process (1.1.4). Obviously, the sample paths are

approaching those of a continuous Brownian motion. On the contrary, both peakedness

and fat tails can easily be generated by choosing a general Lévy measure ν, which has a

certain amount of flexibility.

Returning to the above practitioner’s point of view, focussing of trades instead of infor-

mation provides another reason which might speak in favor of pure-jump processes (with

‘high’ activity) and against a continuous component. An important assumption for de-

riving the Black-Merton-Scholes formula is the requirement of continuous trading in the

underlying (Hull, 2000, p. 245). Even in age of high-frequency trading, this assumption

might be questionable. Indeed, real securities are not only traded in discrete time points,

but the inter-trade durations are stochastic which led to the development of a new branch

in empirical market microstructure research (Engle and Russell, 1998).

Finally, Geman (2002) reckoned that processes with finite variation should be better

models for real-world financial time series than processes with infinite variation. This

looks reasonable when visually inspecting the observed trajectories of financial securities.

If one is to accept this supposition, then we know from Definition 1.7 that the class of
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Figure 1.5: Effects of Increasing Intensity of Compound Poisson Process
This figure depicts the effects of increasing the intensity λ of the compound Poisson process
(1.1.4) in Figure 1.2. The sampling interval is scaled down to [0, 1].
The first effect is that the activity increases, converging towards infinity activity. The
second effect, due to µX 6= 0, is that the drifting behavior of the sample path becomes more
pronounced, converging towards the sample path of a Brownian motion with drift (1.1.3),
although the sample path for high λ appears to be less irregular than in Figure 1.1. Hence,
infinite variation may also be approached as λ → ∞. In sum, this illustrates the potential of
the Lévy measure ν to generate the infinite activity and infinite variation of Definition 1.7.
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candidate models has to satisfy σ = 0 and
∫

{0<|x|61} |x|ν(dx) < ∞. Thus, a diffusion

component is ruled out, and we are considering pure-jump Lévy models of type B.

1.4.2 A Statistical Point of View

Besides reasons originating from economic theory and practice stated in Subsection 1.4.1,

there is another very fundamental cause why it might be advantageous to refrain from

including a continuous Brownian component. This is due to the problem of estimating

continuous-time models based on discrete-time observations.
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Let us first look at a classical case, and assume that we have a discrete-time stochastic

process, say a pth-order autoregressive model, and a sample {Xt : t = 1, 2, . . . , T} of

discrete-time observations which we want to use for estimating model parameters. In

the next step, a parametric estimation method is selected based on statistical optimality

properties. Usually, these properties can only be established by resorting to asymptotic

theory. To be more precise, in order to derive consistency, central limit theorems, and

asymptotic efficiency, we need so-called long-span asymptotics, i.e., T → ∞. In

other words, if the true data-generating process is a discrete-time process, then long-span

asymptotics eventually renders the true process perfectly observable.

This situation changes dramatically when the true data-generating process is continuous-

time. Let us assume that the true data-generating process is a jump-diffusion Lévy process

with sample paths similar to the one depicted in Figure 1.4. Moreover, assume that it is

only possible to sample the observations of X on a discrete skeleton

0 = t0 < t1 < · · · < tn = T

of [0, T ] where all n grid points are equally spaced, i.e.,

∆n := ti − ti−1 = T/n ,

for all i = 1, . . . , n. In contrast to the classical situation, long-span asymptotics is not

sufficient for completely uncovering all the characteristics of the whole sample path.

For example, it is impossible to statistically identify the jumps, which correspond to

continuous-time increments ∆Xt of X, even as T → ∞. Instead, we are merely able to

observe the so-called discrete-time increments, i.e.,

∆Xi := Xti −Xti−1
,

for all i = 1, . . . , n. For a jump-diffusion Lévy process, discrete-time sampling yields

increments which are a mixture of changes due to both continuous and the jump com-

ponent. For instance, Neumann and Reiß (2009) estimated the characteristic triplet of

Definition 1.3 nonparametrically based on discrete-time observations by invoking the in-

verse Fourier transform of the empirical characteristic function, but they were not able to

uniquely identify σ and ν. Of course, if there are good reasons to dispense σ, we can get

rid of this identification problem between σ and ν. This is another reason for focussing

the pure-jump Lévy processes. Figure 1.5 illustrates how identification of jump locations

and sizes might fail for ∆n > 0.

More generally, disentangling the continuous component from the jump component is
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Figure 1.6: Effect of Increasing Sampling Frequency for Jump-Diffusion Process
This figure depicts the effect of increased sampling of a discretely observed continuous-time
process. To this end, the sample path of the jump-diffusion Lévy process of Figure 1.4 is
zoomed in on the interval [0.35, 0.45] which contains exactly one jump. The time and size
of the jump can only be reliably identified when the sampling frequency 1/∆n is sufficiently
high.
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only possible, if ∆n → 0. This type of asymptotics is called in-fill asymptotics as it

forces the sampling process to produce a skeleton which is dense on [0, T ], in the limit.

If, at the same time, T → ∞, then we are back in the classical asymptotic setting. Thus,

if ∆n → 0 and T → ∞ holds simultaneously, then n → ∞ at a faster rate than T = tn,

i.e., tn = o(n). Roughly speaking, while long-span asymptotics helps us to infer long-run

behavior, like a trend, of an unknown continuous-time process, in-fill asymptotics helps us

to infer its local dynamics, like diffusion and/or jump behavior (Florens-Zmirou, 1993).

Since in-fill asymptotics requires the sampling frequency n to approach infinity, it might

appear to be an obscure, statistical notion to a practitioner. However, it is just as obscure

as requiring an infinite sample of observations when T → ∞. Hence, accepting the

asymptopia of T → ∞ is just as disturbing as accepting the asymptopia of n→ ∞.
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Traditionally, analysis of estimators for continuous-time models were based on continuous-

time sampling. See the monograph of Kutoyants (2004) for a historical review. Recently,

econometricians became aware of the problem when sampling is in discrete time (Melino,

1994). For example, Lo (1988) showed that parametric maximum likelihood might not

yield consistent estimators for a diffusion model when there is no in-fill asymptotics.

One might then ask whether the results obtained for continuous-time sampling do have

any meaning nowadays? The answer is on the affirmative because the results obtained

from continuous-time sampling are used as a benchmark to which the results obtained

from discrete-time sampling should converge as n → ∞. To be more specific, what is

usually done is to derive, say, optimality results of a proposed estimation method for

continuous-sampling. In a second step, it is shown that the discrete-time version of the

proposed estimation method converges to its continuous-time counterpart. This two-step

procedure is usually easier to handle than to establish long-span and in-fill asymptotics

simultaneously.

Finally, it is noteworthy that we can relax the assumption of equally spaced obser-

vations. It poses no problem to consider irregularly spaced observations as long as we

define

∆n := max
16i6n

(ti − ti−1) .

Parametric estimation of continuous-time processes based on irregularly spaced obser-

vations was analyzed by Duffie and Glynn (2004) and Aït-Sahalia and Mykland (2004,

2008), for example.

1.4.3 Subordination & Random Time Change

As already mentioned in Subsection 1.4.1, the information flow is an incomplete proxy for

explaining the driving force of asset prices. This led Clark (1973) to propose cumulated

trading volume as a more adequate driving force, and which was shown by Ané and

Geman (2000) to be an empirically reasonable choice. Moreover, we made the point in

Subsection 1.4.1 that trading happens in discrete time rather than in continuous time.

This implies that a mathematical representation of trading activity Yt boils down to a

(càdlàg) piecewise constant function with jumps located at times of incoming trades. For

continuous trading, the corresponding mathematical representation is simply the identity

mapping Yt = t defined on R+. Applying this idea to modeling some asset price Xt, we

say that

Xt := ZYt
(1.4.1)
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is a time-changed process, where Zt and Yt are stochastic processes. Evidently, the

driving process Yt has to satisfy some extra condition in order to lend itself as a substitute

for time t. A first minimal requirement is that Yt should be positive and non-decreasing.

Additionally, we require that Yt increases with random step sizes in order to model varying

trading intensity. Consequently, this allows us to get a handle on the fact that the

trading process is not homogeneous in time by discriminating between calender time t

and business time Yt.

These considerations can be put into a concise notion called a subordinator. The

following definition is due to Sato (1999, Definition 21.4), but the notion was first intro-

duced by Bochner (1955). A rigorous exposition of subordination can be found in Bertoin

(1996, Chapter III).

Definition 1.14 (Subordinator) A Lévy process Y = {Yt}t>0 is a subordinator, if the

sample paths are non-decreasing (P -a.s.).

Remark 1.15 Definition 1.14 rules out subordinators with a diffusion component. For

example, the Brownian motion with drift (1.1.3) of Figure 1.1 can only be non-decreasing

for σ = 0. In this case, it would be a purely deterministic process not being able to model

random market activity. Hence, the subordinators we consider as sensible are pure-jump

Lévy processes.

Sato (1999, Theorem 21.5) showed that Definition 1.14 implies the following restrictions

on the characteristic triplet of a Lévy process:

σ = 0
∫

{−∞<x<0}
ν(dx) = 0

∫

{0<x61}
xν(dx) <∞

γ > 0 .

For R+-valued Lévy processes, it is more convenient to use the Laplace transform

rather than the Fourier transform in order to derive its characteristic function (see Ap-

pendix A.1). In particular, if Y is a subordinator with characteristic triplet (γ, 0, ν), then

the Laplace exponent Ψ+(z) of the Laplace transform E
[
e−zYt

]
= e−tΨ+

Y
(z), for all z > 0,

has the general form

Ψ+
Y (z) = zγ +

∫ ∞

0

(1 − e−zx)ν(dx) ,

see, for example, Kallenberg (2002, Corollary 15.8). Then, assuming analytical contin-
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uation and using the relationship ΨY (u) = −Ψ+
Y (−iu) derived from (A.1.6), we end up

with the characteristic exponent

ΨY (u) = iuγ +

∫ ∞

0

(eiux − 1)ν(dx) ,

where γ > 0, ν
(
(−∞, 0)

)
= 0, and

∫

(0,∞)
xν(dx) <∞.

The next theorem summarizes some important results of Section 1.3.2 of Applebaum

(2004) and Theorem 30.1 of Sato (1999).

Theorem 1.16 (Properties of Random Time-Changed Processes) Let Xt = ZYt

be a random time-change process, where Zt is a Lévy process and Yt is a subordinator with

characteristic triplet (γ, 0, ν) satisfying γ > 0, ν
(
(−∞, 0)

)
= 0, and

∫

(0,∞)
xν(dx) < ∞.

Then, Xt is a Lévy process with characteristic exponent

ΨX = −Ψ+
Y ◦ (−ΨZ) ,

where Ψ+
Y (z) = −ΨY (iz) is the Laplace exponent of Y and ΨZ(u) is the characteristic

exponent of Z.

In Section 4.1, a simple random time-changed process, called the variance gamma

process, is presented which is of type B in Definition 1.7. Another popular random

time-changed process is the normal inverse Gaussian process (Barndorff-Nielsen, 1997,

1998) which is of type C in Definition 1.7. The class of models, nesting—among others—

the variance gamma and normal inverse Gaussian process, is the generalized hyper-

bolic motion (Eberlein, 2001) which is an extension of the hyperbolic motion (Barndorff-

Nielsen, 1978). See also Eberlein and Keller (1995) and Eberlein, Keller, and Prause

(1998). Finally, note that any semimartingale can be cast in the form (1.4.1), see Monroe

(1978), which emphasizes the importance of subordination for arbitrage theory.
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2.1 Minimax Optimality & Adaptation

This section presents a very general introduction to nonparametric estimation theory

which applies to both the current and the next chapter. Much of this content is covered

in the monographs of Tsybakov (2009) and Győrfi, Kohler, Krzyżak, and Walk (2002),

and in particular, the seminal paper of Barron, Birgé, and Massart (1999).

The goal of this theory is not to construct nonparametric estimators in the first place,

but to evaluate their performance. Put differently, the subject revolves around the ques-

tion of optimality. In the nonparametric context, optimality of an estimator is related to

minimax results that have been established for certain estimation problems. This pro-

gram essentially consists of three basic ingredients which will sequentially be motivated

and introduced.

Let us first assume that we have constructed an estimator f̂n for a nonparametric

estimation problem at hand. The next step is to analyze how well f̂n performs relative

to some other estimator (which, for example, is known to be the best one). Given a loss

function ℓ( . , . ), the risk of f̂n at f is given by

Rn(f̂ , f) := Ef

[

ℓ(f̂n, f)
]

. (2.1.1)

This is the first ingredient. Unfortunately, it is not admissible to consider any arbitrary

f , since Farrell (1967) showed that, for any estimator f̂ , there exists some function f

such that

sup
f∈F

Rn(f̂ , f) 6→ 0 as n→ ∞,

where the supremum is taken over the class F of all functions. Consequently, we have

to restrict the function class F to satisfy a certain smoothness condition. Usually, for

kernel estimators, F is a subset (or ball) of a Hölder class, while for orthogonal projection

estimators, F is a subset (or ball) of a Sobolev class. This is the second ingredient. Hence,

the maximal risk of f̂n over a function class F s, with smoothness parameter s, is given

by

Rn(f̂ ,F s) := sup
f∈Fs

Rn(f̂ , f) = sup
f∈Fs

Ef

[

ℓ(f̂n, f)
]

.

Finally, the minimax risk over F s is given by

Rn(F s) := inf
f̃
Rn(f̃ ,F s) = inf

f̃
sup
f∈Fs

Rn(f̃ , f) = inf
f̃

sup
f∈Fs

Ef

[

ℓ(f̃n, f)
]

,

where the infimum is taken over the set of all estimators f̃ .
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What remains to be shown is whether the maximal risk of our estimator f̂ corresponds

to the minimax risk, i.e.,

Rn(f̂ ,F s) = Rn(F s) ,

or is bounded by the minimax risk, i.e.,

Rn(f̂ ,F s) 6 C(s)Rn(F s) ⇐⇒ Rn(f̂ ,F s)

Rn(F s)
6 C(s) , (2.1.2)

where the absolute constant should satisfy C(s) ց 0. If this holds, then f̂ is said to be

minimax. Sometimes minimax properties are hard or impossible to establish. Then, we

have to resort to an asymptotic point of view and to show that f̂ is asymptotically

minimax, i.e.,

Rn(f̂ ,F s) −Rn(F s) = oP (1) ,

or that f̂ attains the optimal rate of convergence, i.e.,

Rn(f̂ ,F s)

Rn(F s)
= OP (1) .

This is the third ingredient.

Nowadays, many minimax results for various choices of loss functions and function

classes can be found in the literature on nonparametric estimation theory. For example,

Stone (1982) showed that, for the risk function based on the L2-loss,

Rn(f̂ , f) := Ef

[

ℓ(f̂n, f)
]

= Ef

[

||f̂n − f ||2
]

= Ef

[ ∫
(
f̂n(x) − f(x)

)2
dx

]

,

and f ∈ Cm, i.e., the space of all m-times continuously differentiable functions, with

m ∈ N, the best rate r attainable, such that

Rn(f̂ , Cm) = sup
f∈Cm

Rn(f̂ , f) 6 C(m)n−r

holds, is

r =
2m

2m+ 1
(2.1.3)

when considering the problem of nonparametric regression. For nonparametric regres-

sions, the same rate for different settings were proved by Ibragimov and Hasminskii

(1982), Nussbaum (1985), Speckman (1985), van de Geer (1990).

In this respect, we will shortly turn to the estimation problem of van de Geer (1990),

which will be discussed in more detail in Section 2.2, in order to point out a shortcoming of
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the minimax approach. Assume that we known the unknown target function f : [0, 1] →
R belongs to some ball

Fm(M) :=

{

f ∈ L2[0, 1] :

∫
∣
∣f (m)(x)

∣
∣2 dx 6M2, m ∈ N,M > 0

}

of the Sobolev space Wm
2 [0, 1]. As will be explained later, the estimation method—like

any another nonparametric procedure—depends on the choice of a tuning parameter, say

λ. In order to attain the minimax rate in (2.1.3), it is necessary to optimally chose λ.

Unfortunately, this optimal choice depends on the a priori knowledge of m and M . But

if we know them a priori, then it can be shown that the risk can be uniformly bounded

over the Sobolev ball Fm(M) by κM2/(2m+1)n−2m/(2m+1), where κ, which corresponds to

the minimax rate (2.1.3). A similar situation arises, for example, in nonparametric kernel

density estimation (Silverman, 1986).

This situation is a bit annoying since the estimator f̂ , though minimax, loses some of

its nonparametric flavor, and brings up the issue known in the nonparametrics literature

as adaptation in the minimax sense. Roughly speaking, adaptation in the minimax

sense can be described as attaining the minimax rate without a priori knowledge of the

particular function class (or ball) where f resides. In the above example, this boils down

to the situation, where f̂ attains the minimax rate without knowing the smoothness m

and radius M of the ball.

The most common form of adaptation in the minimax sense assumes that we know that

f belongs to one of the function spaces contained in the collection (or scale) {F s}s∈S,

and the goal is to find an estimator f̂ which minimizes the ratio

Rn(f̂ ,F s)

Rn(F s)
= Cn(s) > 1 ,

over the whole scale of {F s}s∈S. Efromovich and Pinsker (1984) considered the case of

exact asymptotic adaptation where

limsup
n→∞

Cn(s) = 1 .

Lepskii (1992) considered the case of asymptotic adaptation where

limsup
n→∞

Cn(s) = C(s) .

Donoho and Johnstone (1995) considered the case of asymptotic adaptation up to (a
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slowly varying function of n) Ln where

limsup
n→∞

Cn(s)

Ln
= C(s) .

Finally, Barron (1994) and Birgé and Massart (1997) considered the cases of nonasymp-

totic adaptation where

Cn(s) 6 LnC(s) for Ln ≡ 1,

and nonasymptotic adaptation up to Ln, where Ln is a slowly varying function of

n. They also showed that, in some cases, it is possible to obtain C(s) ≡ C.

Typically, Ln corresponds to a power of ln(n) and is the price we have to pay for

adaptation in the minimax sense when {F s}s∈S is a scale of very flexible function classes.

For instance, this turns out to be the case, when we move from Sobolev spaces to Besov

spaces. However, this is a price one often willing to pay in applications. Moreover, it

is noteworthy that nonasymptotic adaptation offers the tremendous advantage since it

holds for any sample size, not necessarily for n→ ∞ only, such that it could be taken as

an indication for better performance in small samples.

We close this section by mentioning a device which has turned out to be extremely

useful for deriving minimax rates. In fact, much of the theoretical work on wavelets, to

be discussed in Chapter 3, relies on this approach. It comes as a surprise that much

of the minimax theory of nonparametric estimation can be worked out in the so-called

Gaussian white noise model (with drift)

dY (t) = f(t) dt+ ǫ dW (t) ,

where t ∈ [0, 1], f : [0, 1] → R, 0 < ǫ < 1, and W is a Wiener process on [0, 1]. Then,

the statistical task is to estimate the unknown function f , which is known to belong to

a function class F , from the noisy observations Y (t). It can be shown that the Gaus-

sian white noise model is asymptotically equivalent to the Gaussian nonparametric

regression model,

Yi = f(i/n) + ξi ,

and the Gaussian sequence model,

Yi = θi + ǫξi ,

where ξi
iid
= N( 0, 1 ) for all i = 1, . . . , n. Put differently, the estimation problems are
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asymptotically identical. This result, which is closely related to Le Cam (1986)’s notion

of equivalence of experiments, has important implications for nonparametric theory.

The major insight is that the risk functions of these models are asymptotically equiv-

alent which renders it possible to transfer results in optimal convergence rates, minimax

procedures, etc. from one model to another. Thus, we can take the simplest model, de-

rive the desired results, and transfer them to the other models. From the perspective of

nonparametric estimation theory, the simplest model is usually the Gaussian white noise

model, whose first exact risk bound was derived by Pinsker (1980). Later on, Brown and

Low (1996) established the first equivalence result for the Gaussian nonparametric re-

gression model. Nussbaum (1996) showed asymptotic equivalence between the Gaussian

white noise model and the problem of nonparametric density estimation. More recently,

Brown, Carter, Low, and Zhang (2004) showed the asymptotic equivalence of the Gaus-

sian white noise model and the nonparametric estimation of the intensity function of a

compound Poisson process. The latter seems to be of some relevance for the nonpara-

metric estimation of a Lévy density, which should be elaborated in future research.

We have mentioned these results as the Gaussian sequence model plays a central role

in wavelet theory of Chapter 3. In particular, if f ∈ L2[0, 1] in the Gaussian white

noise model, then the estimation of f is equivalent to the estimation of the Fourier

coefficients θi in the Gaussian sequence model. Obviously, this is closely related to the

isomorphism between the Lebesgue space L2 and the sequence space ℓ2. This isomorphism

paves the way for thresholding techniques which are variants of the James and Stein

(1961) shrinking procedure giving wavelet-based estimation an edge over many standard

nonparametric estimation methods. For more on these issues, we refer to the online

manuscript of Johnstone (2011).

2.2 Nonparametric Estimation via Sieves

In applied econometrics, probably the most popular nonparametric estimators are local

estimators based on kernel methods because of their intuitive appeal and ease of im-

plementation. See, for example, the monographs of Härdle (1992), Li and Racine (2006),

or Pagan and Ullah (1999). For the problem of estimating a probability density func-

tion nonparametrically, the corresponding kernel estimator was proposed by Rosenblatt

(1956) and Parzen (1962). For the problem of estimating a regression function nonpara-

metrically, the corresponding kernel estimator was proposed by Nadaraya (1964) and

Watson (1964). As standard kernel estimators incur bias terms at the boundary of the

support and the design points (Wasserman, 2006), a generalization, which nests standard
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kernel estimators in a natural way, was put forward which is called the local polynomial

estimator (Fan and Gijbels, 1996).

Generally speaking, all of these local estimators can be characterized as procedures

which estimate an unknown function f around a fixed point x0 in the support of f by

using data contained in a local neighborhood of x0. The crucial tuning (or smoothing)

parameter in these local procedures, which has to be chosen optimally, determines the

‘width’ of these neighborhoods. A nonparametric estimator f̂ for the whole of f is then

obtained by repeating this procedure or a sufficiently large number of points in the support

of f .

An alternative approach to estimating the whole shape of f is global approximation.

The relationship between local and global approximation is similar to the relationship be-

tween Taylor series expansions and the Stone-Weierstrass Theorem. See the monograph

of Christensen and Christensen (2004) for a comparison of these types of approximation.

In the sequel, we will take on the local approach to nonparametric estimation, which offers

two major advantages: First, since the global approach is based on the idea of f being

an element in certain function spaces, it allows us to use the well-developed machinery

of approximation theory (DeVore and Lorentz, 1993; Lorentz, Golitschek, and Makovoz,

1996) for deriving and characterizing the theoretical properties of the corresponding es-

timator f̂ . Second, the global approach presents a unifying framework which nests many

optimization-based estimation procedures.

Let us now introduce this unifying framework which essentially corresponds to the

classical M-estimator of Huber (1967). Let θ be an element of the parameter space Θ and

X1, . . . , , Xn iid random variables. A function γ : X ×Θ → R is a contrast function if,

for all θ0 ∈ Θ,

inf
θ∈Θ

Eθ0 [ γ(X; θ) ] = Eθ0 [ γ(X; θ0) ] =: Pγ(X; θ0) ,

θ0 is the minimizer of the expectation (under the true model) of γ over Θ. However, as

θ0 is unknown, the expectation of γ cannot be computed and has to be substituted by

its empirical counterpart Pn. The corresponding empirical contrast is defined by

γn(θ) := Pnγ(X; θ) :=
1

n

n∑

i=1

γ(Xi; θ) ,

where the Xi’s are iid copies of X. Finally, the minimum contrast estimator,

θ̂n := argmin
θ∈Θ

γn(θ) , (2.2.1)

is defined as the minimizer of the empirical contrast. Of course, even if we assume that
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θ̂n exists, it is not necessarily unique. If the existence of θ̂n cannot be guaranteed for

some n ∈ N, the so-called ǫn-minimum contrast estimator may be defined to satisfy

γn(θ̂n) 6 inf
θ∈Θ

γn(θ) +OP (ǫn) , (2.2.2)

where ǫn → 0 as n → ∞ (Birgé and Massart, 1993). If ǫn ≡ 0 for all n ∈ N, then θ̂n

corresponds to the exact minimum contrast estimator (2.2.1).

Obviously, by choosing the appropriate (empirical) contrast function, the setup (2.2.1)

collapses to a special parametric estimator such as the maximum likelihood estimator of

Fisher (1912, 1921, 1922), the generalized method of moments estimator of Hansen (1982),

the estimating equations approach of Godambe (1960), the quasi maximum likelihood

estimator of Wedderburn (1974), the minimum distance estimator of Wolfowitz (1957),

or the minimum Hellinger distance estimator of Beran (1977).

Although the analysis of these parametric estimators belongs to the statistical reper-

toire, severe problems may show up when the parameter of interest in (2.2.1) has infinite

dimension, i.e., when θ is a function, which happens to be the case in a nonparametric

context. For example, Neyman and Scott (1948) showed that maximum likelihood may

fail to be consistent in infinite-dimensional parameter spaces. See also Bahadur (1958),

Le Cam (1990), and Kiefer and Wolfowitz (1956). Less but still annoying are the results

of Birgé and Massart (1993) or van de Geer (2000, Chapter 10) which showed that, even

if consistency can be established, the estimators may exhibit slow (or suboptimal) rates

of convergence, i.e., statistical inefficiency.

These pathological cases share a common ground. To further illuminate this issue,

let us turn to the literature on maximum likelihood and least-squares estimation. One

of the most fundamental results in mathematical statistics is due to Wald (1949) who

showed that under suitable regularity conditions, including compactness of Θ and inte-

grability conditions on γn( . ; θ), parametric maximum likelihood is consistent. Bahadur

(1967) analyzed the consistency of maximum likelihood estimators in more general (non-

Euclidean) compact parameter spaces. van de Geer (1990) analyzed the convergence rate

of nonparametric least-squares while Wong and Severini (1991) considered nonparamet-

ric maximum likelihood. Both of these papers share a common reasoning that replaces

explicit compactness of Θ by the notion of metric entropy of Θ. See Definitions 2.15

and 2.16 in the Sub-appendix 2.A for details. This is essentially because compactness in

infinite-dimensional spaces is much harder to determine and characterize than in finite-

dimensional, e.g. Euclidean, ones.

The basic motivation for this approach was not new and is essentially based on a
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stochastic version of the Arzelà-Acoli Theorem (Dudley, 2002, Theorem 2.4.7) which pro-

vides a characterization of compactness in function spaces. A substantial improvement

of this characterization was accomplished by the seminal work of Kolmogorov and Ti-

homirov (1961) who introduced the notion of metric entropy as a device to measure the

complexity of general metric spaces, and computed metric entropies of many classical

function spaces.

In mathematical statistics, the idea to relate the convergence rate of an estimator to the

metric entropy of the underlying parameter was introduced by Le Cam (1973). See also

Le Cam (1997). for example, much of modern statistical learning theory was founded on

the notion of the VC-dimension of abstract sets introduced by Vapnik and Červonenkis

(1971). Likewise, the extensive theory of nonparametric density estimation based on the

L1-loss (Devroye and Lugosi, 2001) is rooted in the entropy considerations of Yatracos

(1985).

Progress in these and many other fields were driven by new developments in the realm of

empirical process theory. In particular, elaborating on the role of the order of magnitude

of the increments of an empirical process indexed by a function class F led to new insights

into stochastic limit theorems in function spaces. For more details, see the monographs

of Dudley (1999), Kosorok (2008), van de Geer (2000), or van der Vaart and Wellner

(1996).

Remark 2.1 In order to illustrate these ideas, let us consider the nonparametric regres-

sion model of Section 2.1, where the aim is to estimate an unknown function f0 : [0, 1] →
R from noisy observations Yi generated by the model

Yi = f0(xi) + σǫi

with regular sampling at fixed points xi = i/n and noise ǫi
iid
= N( 0, 1 ) for all i = 1, . . . , n.

The only a priori assumption that we use is that f0 belongs to a class of all functions

having a fixed number of derivatives f (m), i.e., the Sobolev space Wm
2 with known m:

F :=

{

f : [0, 1] → R :

∫
[
f (m)(x)

]2
dx 6 C,m ∈ N

}

.

Defining the empirical contrast function

γn(f) :=
1

n

n∑

i=1

[
Yi − f(xi)

]2
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based on the (empirical) L2-(semi-)norm

||f || :=

[

1

n

n∑

i=1

[
f(xi)

]2

]1/2

,

yields the nonparametric least-squares estimator f̂n satisfying

γn(f̂n) = min
f∈F

γn(f) .

Assuming that γn( . ) satisfies an integrability condition, we can define the increments of

an empirical process indexed by F :

Gn(f − f0) :=
√
n
{
γn(f0) − E[ γn(f0) ]

}
−

√
n
{
γn(f) − E[ γn(f) ]

}
.

From the above property of the nonparametric least-squares estimator f̂n, we can bound

its rate of convergence by the increments of the empirical process indexed by f̂n:

√
n||f̂n − f0||2 6 Gn(f̂n − f0) .

Using the metric entropy result in Lemma 6.1 of van de Geer (1990), the order of mag-

nitude of
∣
∣Gn(f − f0)

∣
∣ can be stochastically bounded, i.e.,

∣
∣Gn(f − f0)

∣
∣ = OP

(
||f − f0||1−1/(2m)

)
,

uniformly for all f ∈ F . Since the last equality holds uniformly, it also holds when

replacing f by f̂n. Then, by combining these results we obtain

||f̂n − f0||2 = OP

(
n−2m/(2m+1)

)
,

which corresponds to the minimax rate of convergence (2.1.3) for nonparametric regression

problems.

These ideas were generalized by Birgé and Massart (1993) who extended this approach

to general minimum contrast estimation and analyzed minimax adaptivity based upon

the results of Birgé (1983). Of course, the price, they had to pay for increased generality,

is a set of more stringent assumptions (for example, a known bound on f0) than in van de

Geer (1990).

In sum, the metric entropy determines the convergence rate of f̂n via the oscillating

behavior of Gn(f̂n − f0). If the metric entropy is too large, then the sample paths of the
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empirical process becomes too irregular such that no convergence to a (continuous) limit

process may be guaranteed and consistency cannot be established. See Giné and Zinn

(1984) and the monograph of Pollard (1984). In the econometrics literature, this type of

convergence is usually called stochastic equicontinuity and was successfully applied

to semi- and nonparametric estimation. See, for example, Andrews (1994) and Newey

(1991).

Besides these theoretical caveats, there also arises a severe problem when putting an

estimation method on infinite-dimensional parameter spaces to work. In practice, where

the sample size is finite, estimating an infinite-dimensional object based upon a finite

amount of information obviously appears to be a daunting task. This situation is known

in statistics as an ill-posed problem. See Carrasco, Florens, and Ghysels (2007) for a

review. Thus, a feasible nonparametric estimation method will be required to solve this

ill-posed problem as well.

As a remedy to this ‘large parameter space’ problem, Grenander (1981) introduced what

is nowadays known as the method of sieves and what boils down to replacing an infinite-

dimensional (target) space Θ by a sequence {Θn}n∈N of finite-dimensional approximating

spaces. Evidently, this turns an genuinely (infeasible) nonparametric estimation problem

into a parametric one. However, in contrast to standard parametric estimation, the

distinguishing feature of the method of sieves is that the dimension of the estimation

problem increases with the sample size n, which adds a substantial amount of modeling

flexibility.

Let (Θ, d) be a (semi-)metric space. A sieve is a sequence {Θn}n∈N of approximating

spaces for Θ such that, for any θ ∈ Θ, there exists some θn ∈ Θn satisfying

d(θn, θ) → 0

as n → ∞, i.e., the approximation error vanishes asymptotically. The approximate

minimum contrast estimator θ̂n (2.2.2) on sieves is defined as the minimizer of γn(θ) over

Θn, i.e.,

γn(θ̂n) 6 inf
θ∈Θn

γn(θ) +OP (ǫn) ,

where ǫn → 0 as n→ ∞.

Since we will deal with nonparametric estimation in function spaces only, the generic

notion of a sieve is now replaced by a definition which is more suitable with respect to

the basis functions used, in the sequel, to construct sieve subspaces.

Definition 2.2 (Sieve) Let F be an infinite-dimensional (function) space and Mn

be a collection (depending on the sample size n) of model labels m := mn. A sieve is
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a sequence {Fm}m∈Mn
of finite-dimensional, closed subspaces of F which satisfies the

following conditions:

C1 Fm ⊂ Fm+1

C2 {Fm}m∈Mn
is dense in F as n→ ∞.

Remark 2.3 Basically, the collection Mn of models labeled by m can have two different

forms, i.e., Mn may be a collection of nested or non-nested models. For nested models,

the collection Mn can be ordered in exactly the same way as the set of natural numbers

such that m ∈ N. Put differently, this structure allows us to totally order all models in

Mn according to, say, their dimension dm. This is the case which will be the relevant

one in the sequel. For the sake of completeness, we mention that a collection Mn of

non-nested models appears in the context of irregular histograms and wavelets, where we

may have different models with the same dimension dm. In this context, it is not possible

to order all models in Mn according to their dimension dm, but we rather need to resort

to a lexicographical ordering.

As already mentioned at the beginning of this section, the right choice of the band-

width parameter is the crucial issue in kernel-based nonparametric estimation. From

Definition 2.2, it seems to be obvious that the right choice of the model label m plays an

analogous role in sieve-based nonparametric estimation. Moreover, this tuning parameter

determines the degree of smoothing applied to the curve estimate. A non-optimal choice

either leads to over- or undersmoothing. Oversmoothing means that significant details

of the true function are blurred out, while undersmoothing means that the estimate is

too rough or wiggly (relative to the true function) being pure artefacts of the sampling

process. Since the sample size is finite in practice, it is important to relate this tuning

parameter to the sample size n. In applications, popular procedures for such data-driven

smoothing are cross-validation (Wahba, 1981) and the use of information criteria (Akaike,

1977).

Remark 2.4 As an illustration of the problems of nonparametric estimation in (infinite-

dimensional) function spaces, the usefulness of sieves in this context, and the role of the

tuning parameter m, we look at a classical example from Grenander (1981) and Geman

and Hwang (1982). Let X1, . . . , Xn be an iid sample of random observations drawn from

an absolutely continuous distribution function with an unknown probability density func-

tion f0 belonging to the class F := {f : f > 0,
∫
f = 1}. Moreover, define the contrast

function γ(x; f) := logf(x) such that the nonparametric maximum likelihood estimator is
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given by

f̂n(X1, . . . , Xn) = argmin
f∈F

[
− γn(f)

]
= argmin

f∈F

[

−
n∑

i=1

logf(Xi)

]

See (2.2.1). However, the maximizer of the empirical contrast function γn(f) turns out to

have a combe-type shape putting probability mass n−1δxi
at the sample points x1, . . . , xn.

Hence, f̂n ∈ F is no sensible nonparametric estimator for an unknown probability density

function, and it can be proved that, in this setup, f̂n is not even consistent.

The simplest sieve estimator for this problem is the histogram defined on the subspaces

Fm :=

{

f : f > 0,

∫

f = 1, constant on

[
k − 1

m
,
k

m

)

, m ∈ N, k = 0,±1,±2, . . .

}

.

The maximizer (2.2.2) for γ(x; f) := logf(x) is

f̂m(x) =
m

n
♯

{

Xi :
k − 1

m
6 Xi <

k

m
, x ∈

[
k − 1

m
,
k

m

)}

,

which is just the histogram with bin width m−1. Although it can be proved that, for

m→ ∞, f̂m is strongly consistent, i.e.,

P

(

limsup
n→∞

∫
∣
∣f̂m(x) − f0(x)

∣
∣dx = 0

)

= 1 ,

it is necessary that m = o(n−1). The exact rate of m has to be tuned optimally such that

it balances the effects of over- and undersmoothing. This example will be continued in

Remark 2.7.

We close this section with a short overview of the literature on sieve-based estimation.

Following the initial impetus of Grenander (1981), Geman and Hwang (1982) proved and

analyzed the conditions for the existence and consistency of sieve maximum likelihood

estimation. Shen and Wong (1994) and Wong and Shen (1995) derived convergence

rates of sieve maximum likelihood estimators. Convergence rates of sieve least-squares

estimators were derived by van de Geer (1990). Moreover, Shen (1997) considered sieve

maximum likelihood estimators, while van de Geer (1995b, 2002) and Birgé and Massart

(1998) analyzed sieve minimum contrast estimators.
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2.3 Orthogonal Projection Estimation on Fixed Sieve

The generality and flexibility of sieves allow us to use a unifying framework for nesting

many popular approximating spaces derived from regular or irregular histograms, trigono-

metric polynomials, splines with fixed or variable knots, or wavelets (Barron, Birgé, and

Massart, 1999). See also Chen (2007) for an extensive survey on sieves used in applied

econometrics. As already mentioned in Section 2.2, although such a unifying framework

looks appealing for comparing the theoretical properties of different sieves, the involved

assumptions might be too general and stringent relative to direct derivations of these

properties of a particular estimator such as, for example, least squares.

In what follows, we specialize the generic sieve of Definition 2.2 to approximating

spaces for orthogonal projections. For orthogonal projection estimators it is natural

to assume that the target function f : D → R is an element of the infinite-dimensional

space F = L2 := L2(D, dx) and to equipped with the usual L2-(semi-)norm

||f || := ||f ||L2 = 〈f, f〉1/2 =

(∫

f 2

)1/2

=

(∫

I

f 2(x) dx

)1/2

,

where, for any f, g ∈ F ,

〈f, g〉 :=

∫

fg =

∫

D

f(x)g(x) dx

is the inner product of L2.1 The approximating function fm is an element of the

dm-dimensional linear space

Fm :=
{
θ1ϕ1 + · · · + θdm

ϕdm
: θ1, . . . , θdm

∈ R, dm ∈ N
}
⊂ F ,

where {ϕλ : 1 6 λ 6 dm} is a set of orthonormal basis functions spanning Fm. Since

Fm is a proper (closed) subspaces of F , standard Hilbert space theory suggests that the

orthogonal projection

πm :=

dm∑

λ=1

θλϕλ =

dm∑

λ=1

〈ϕλ, f0〉ϕλ (2.3.1)

1Figueroa-López and Houdré (2006) point out that it is possible to generalize Definition 1.12 by
replacing the Lebesgue measure dx by a regularizing measure dµ, i.e., p̃ = dν/dµ. If, for example,
p = dν/dx blows off near the origin with rate x−1, i.e., p(x) = O(x−1) as x → 0, which is the case for the
gamma Lévy density in Section 4.1, then the regularizing measure dµ = x−2dx guarantees that p̃ is still
well-behaved near the origin and satisfies the condition

∫

R\{0} p̃2 dµ < ∞ which has the advantage that

it allows to extend L2(D, dx) to L2(R\{0}, dµ). Additionally, this is expected to yield more accurate
estimates of the Lévy density near the origin.



2.3. Orthogonal Projection Estimation on Fixed Sieve 55

of f0 onto Fm is the element fm ∈ Fm which is closest to f0 ∈ F in terms of the distance

||fm − f0||2. Unfortunately, the orthogonal projection πm is computationally infeasible

from a statistical perspective since the θλ’s depend upon the unknown target function

f0. Consequently, the next step is to find a computationally feasible estimator f̂m of πm.

Given an iid sample of observations X1, . . . , Xn, a sensible estimator is based on a simple

moment estimator of

θλ = 〈ϕλ, f〉 = Pϕλ =

∫

D

ϕλ(x)f0(x) dx , (2.3.2)

i.e.,

θ̂λ = Pnϕλ =
1

n

n∑

i=1

ϕλ(Xi) , (2.3.3)

for all λ = 1, . . . , dm, which turns out to be unbiased:

E
[

θ̂λ

]

=
1

n

n∑

i=1

E[ϕλ(X1) ] = E[ϕλ(X1) ] =

∫

D

ϕλ(x)f0(x) dx = θλ .

Thus,

f̂m :=

dm∑

λ=1

θ̂λϕλ (2.3.4)

is an unbiased estimator of πm, i.e., E
[

f̂m

]

= πm. Moreover, since

Var
[

θ̂λ

]

= Var

[
n∑

i=1

ϕλ(Xi)

n

]

=
1

n
Var[ϕλ(X1) ] , (2.3.5)

the orthogonal projection estimator of πm is mean-square consistent, i.e., f̂m
m.s.−−→ πm.

In order to gauge the performance of the sieve estimator f̂m, we follow the common

folklore in nonparametric estimation theory by assessing its risk derived from the L2-loss

||f̂m − f0||2. The use of the L2-risk is a natural choice for function estimation and is

usually justified by the fact that it allows for a neat decomposition of the global risk in

a (squared) bias term and a variance term (more generally, the stochastic error)

E
[

||f̂m − f0||2
]

= E
[

||f̂m − πm + πm − f0||2
]

= E
[
||f0 − πm||2

]
+ E
[

||f̂m − πm||2
]

= ||f0 − πm||
︸ ︷︷ ︸

bias term

2 + E
[

||f̂m − πm||2
]

︸ ︷︷ ︸

variance term

, (2.3.6)



56 2. Method of Sieves

due to the unbiasedness of f̂m. This classical trade-off is optimally solved by minimizing

the risk via balancing (the rates of) the bias and the variance term.

As a general loss function ℓ : F × F → R+ can be expressed in terms of a contrast

function by

ℓ(f0, f) = Ef0 [ γ(X, f) − γ(X, f0) ] =

∫
[
γ(X, f) − γ(X, f0)

]
dP ,

Birgé and Massart (1998) proposed the contrast function

γ(X; f) := ||f ||2 − 2f(X) (2.3.7)

for the problem of nonparametric density estimation via orthogonal projections. The

resulting loss function is indeed equivalent to the traditional L2-loss, i.e.,

ℓ(f0, f) = ||f − f0||2 . (2.3.8)

See Appendix 2.A for a derivation. Thus, the empirical contrast function of γ(X; f),

γn(f) =
1

n

n∑

i=1

γ(Xi; f) =

∫

f 2 − 2

n

n∑

i=1

f(Xi) , (2.3.9)

is minimized at f̂m with minimum value

γn(f̂m) =

∫

f̂ 2
m − 2

n

n∑

i=1

f̂m(Xi) =

∫
(

dm∑

λ=1

θ̂λϕλ

)2

− 2

n

n∑

i=1

dm∑

λ=1

θ̂λϕλ(Xi)

=

dm∑

λ=1

θ̂2
λ

∫

ϕ2
λ − 2

dm∑

λ=1

θ̂λ
1

n

n∑

i=1

ϕλ(Xi) = −
dm∑

λ=1

θ̂2
λ . (2.3.10)

Provided that the basis function satisfy a certain boundedness condition, the stochastic

error in (2.3.6) can be bounded as well.

Proposition 2.5 Let πm be an orthogonal projection (2.3.1) of f0 ∈ F = L2(D, dx) on

Fm and f̂λ its corresponding estimator in (2.3.4). If there exists a bound such that

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dm∑

λ=1

ϕ2
λ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

= Dm ,
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then the risk decomposition (2.3.6) can be bounded as follows:

E
[

||f̂m − f0||2
]

6 ||f0 − πm||2 +
Dm

n
.

Remark 2.6 Note that the upper bound Dm in Proposition 2.5 is proportional to the

dimension dm of the orthogonal projection. Thus, we can rewrite, with a little abuse of

notation, the result of Proposition 2.5 as

E
[

||f̂m − f0||2
]

6 ||f0 − πm|| +
dm

n
,

which provides a better interpretation of the stochastic term.

On the one hand, the variance term increases linearly with the complexity of approx-

imating space Fm, since the higher the dimension dm, the more parameters θλ have to

be estimated. Put differently, increasing the complexity of the model renders the esti-

mation of its parameters less precise (for a fixed sample size). However, for n → ∞, it

follows from f̂m
m.s.−−→ πm that E

[

||f̂m − πm||2
]

→ 0, for a fixed m ∈ M (or for a given

approximating space Fm).

On the other hand, although the choice of the sieve, i.e., the sort of the underlying

orthonormal basis functions {ϕλ : λ ∈ N}, does not affect the properties of the estimation

error, it can be a crucial issue for controlling the bias term in (2.3.6), since not all sieves

may adapt equally well to important features of f . The bias term simply measures the

discrepancy between the target function f and the best possible approximation from Fm.

Clearly, the higher the dimension (or complexity) of Fm, the smaller the approximation

error due to the denseness of the sieve in Condition C2 of Definition 2.2.

In sum, the complexity of f̂m depends on the dimension dm of a chosen approximating

space Fm which should grow as the sample size n increases. But at the same time, ap-

proximating spaces with low dimension are preferable from the view point of estimation

precision. Hence, we end up with two fundamental insights. First, the risk is determined

by the classical trade-off between misspecification error and estimation error which typ-

ically occurs in nonparametric estimation theory, although the estimation is performed

on a fixed parametric sieve. Second, this trade-off is ‘tuned’ by the choice of the model

label m ∈ Mn, where the collection of models depends on the sample size n.

Although the method of sieves allows us to transform an infeasible function estimation

problem into a straightforward parametric estimation problem, it has been noted in the

literature that it may be still hampered by (suboptimally) slow rates of convergence

(Birgé and Massart, 1993). This happens to be the case in estimation procedures which
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allow the dimension (or complexity) to grow with the sample size n such that they tend

to opt for models with ‘too’ high dimensions. This has been known for quite some time

in the nonparametrics literature, and one way of resolving it was by penalizing for model

complexity.

2.4 Penalized Model Selection on Sieves

Before discussing penalization on sieves, we shortly return to the example of nonpara-

metric maximum likelihood estimation of a probability density function introduced in

Remark 2.4, since penalization is considered as an alternative to the method of sieves.

At first sight, these methods seem to be rather different, but this is just ostensible as we

will now show.

Remark 2.7 Define the penalized contrast function

γ̃(x; f) := γ(x; f) − δJn(f) = logf(x) − δJn(f) ,

where δ is a Lagrange parameter and Jn(f) is a non-negative penalty term, which leads

to the empirical contrast function

γ̃n(f) = γn(f) − δJn(f) =
1

n

n∑

i=1

γ(Xi; f) − δJn(f) .

Then, the approximate penalized estimator is defined as the approximate minimizer f̂n of

γ̃n(f) over F such that

γ̃n(f̂n) 6 inf
f∈F

[
− γ̃n(f)

]
+OP (ǫn) , (2.4.1)

where ǫn → 0 as n→ ∞. This corresponds to the penalized maximum likelihood estimator

of a probability density function of Good and Gaskins (1971). Moreover, it can also be

shown, by rewriting (2.4.1) as

f̂n(X1, . . . , Xn) = argmin
f∈F

[
− γn(f)

]
s.t. pen(f) 6 m ,

if it exists, that it also corresponds to the minimum contrast estimation over the sieve

subspace

Fm :=
{
f ∈ F : pen(f) 6 m

}
.

This shows the conceptual difference between the method of penalization and the method
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of sieves. The former minimizes over the original parameter space F , while the latter

minimizes over Fm. However, the penalty term essentially ‘transforms’ the unconstrained,

infinite-dimensional problem into a parametric one. Usually, the penalty term Jn( . ) is a

measure of smoothness of f and is chosen to penalize rough estimates heavier than smooth

ones. This rules out combe-type estimates as in Remark 2.4 and forces the estimate to

belong to a smoothness class, say a Sobolev space, of functions. More other examples, see

Silverman (1982) and Wahba (1990).

In Section 2.3, we discussed the optimal estimation via orthogonal projections on a fixed

sieve. Now, we want to look at how to gain additional modeling flexibility by allowing

to choose a projection estimator f̂m from the best model m̂ in the given collection Mn.

Consequently, we have to solve two optimality problems where, fortunately, the first one

has already been solved in Section 2.3. In practice, this boils down to the following

two-step procedure:

1. Projection step: compute the orthogonal projection estimator f̂m for all m ∈ Mn

2. Model selection: select model label m̂ indexing the best estimator f̂m over all

m ∈ Mn

In order to avoid overfitting in the model-selection step, consider the penalized version of

the empirical contrast function (2.3.9), i.e., γn(f)+pen(m). Then, the optimal estimator

f̂m̂ on the sieve {Fm}m∈Mn
is defined, if it exists, to satisfy

γn(f̂m̂) + pen(m̂) = inf
m∈Mn

[

inf
f∈Fm

γn(f) + pen(m)

]

. (2.4.2)

The right-hand side of this equality exactly reflects the nested structure of the above

two-step procedure. As we know from (2.3.10),

γn(f̂m) = −
dm∑

λ=1

θ̂2
λ

which can be use to eliminate the inner optimization by directly plugging in γn(f̂m) in

(2.4.2) such that we are left with the outer optimization which reduces to

m̂ = argmin
m∈Mn

{

−
dm∑

λ=1

θ̂2
λ + pen(m)

}

. (2.4.3)
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In Appendix 2.A, we show that the penalty term in (2.4.3) takes the form

pen(m) =
2

n2

n∑

i=1

dm∑

λ=1

ϕ2
λ(Xi) . (2.4.4)

Moreover, a similar result as in Proposition 2.5 for model selection on sieves with nested

models can be proved.

Theorem 2.8 (Birgé and Massart (1997)) Assume that the boundedness condition

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dm∑

λ=1

ϕ2
λ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

< Φ2dm

and the nestedness condition

dm < dm′ =⇒ Fm ⊂ Fm′

hold true. Then, for C1 > 0 and C2 > 1 and the penalty term

pen(m) =
(C1 + C2

2Φ2)dm

n
,

the following risk inequality holds

E
[

||f̂m̂ − f ||2
]

6 C inf
m∈Mn

[

||f − πm||2 +
dm

n

]

.

Remark 2.9 Nonasymptotic risk bounds such as in Theorem 2.8 are often called oracle

inequalities. They are derived from concentration inequalities which are due to Ta-

lagrand (1994, 1996). For a more general treatment, see Ledoux and Talagrand (1991).

Analogous to the example in Remark 2.1, the key idea of Theorem 2.8 is to use the penalty

as a control on the oscillations of an empirical process based on the difference of empiri-

cal contrast functions. These increments are characterized by concentration inequalities.

See Massart (2007). Massart (2000) provided a discussion of the constants of theses

concentration inequalities.

Oracle inequalities, like the one in Theorem 2.8, should not be confused with the mini-

max bound (2.1.2). They only describe how a proposed estimator behaves, for all n ∈ N,

relative to the so-called oracle. An additional step is required to show that the oracle

is minimax (adaptive) which, in turn, translates back to f̂m̂. Barron, Birgé, and Massart

(1999) showed that many model-selection based estimators are indeed adaptive in the

minimax sense. We refer to Section 2.6 for an illustration of the oracle approach.
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We close this section by mentioning an interesting interpretation of the constants ap-

pearing in the penalty term of Theorem 2.8. The penalty term can be cast in the generic

form

pen(m) = κ
︸︷︷︸

depends on data
but not on f

Lm
︸︷︷︸

complexity
of Mn

dm
︸︷︷︸

complexity
within Fm

/
n ,

where the Lm’s have to satisfy

∑

m∈Mn

exp(−Lmdm) 6 Σ <∞ ,

with κ, Lm > 0. Put together, the weight Lm has a dual role. On the one hand, it should

be small to keep the penalized risk at a low level. On the other hand, they it be large

when
∑

m∈Mn

exp(−dm) = ∞ ,

which happens to be the case for collections Mn of non-nested models. More precisely, we

shall usually choose Lm = 1 for nested models and Lm = L ln(n) for non-nested models.

This turns out to be of great importance for the minimax adaptive rate of convergence.

Note that, similar to the notion of minimum description length (Barron and Cover, 1991),

exp(−Lmdm) has a Bayesian flavor as they may be interpreted as a prior probability that

we assign to a specific model m.

2.5 Lévy Density Estimation with Discretely Sampled

Data

Recall from (2.3.4) that, given an iid sample X1, . . . , Xn, the orthogonal projection esti-

mator on a fixed sieve was defined by

f̂m =

dm∑

λ=1

θ̂λϕλ

with estimated Fourier coefficients

θ̂λ = Pnϕλ =
1

n

n∑

i=1

ϕλ .

As our aim is to estimate a continuous-time process, we shall first assume that we have at

our disposal a continuous record of observations {Xt}t∈[0,T ] of the underlying pure-jump



62 2. Method of Sieves

Lévy process X. In this case, all jumps are perfectly identified by the (continuous-time)

increments ∆Xt := Xt−Xt− of X. By a conjecture of Figueroa-López and Houdré (2006),

a sensible estimator for the Fourier coefficients of (2.3.4) is defined by

θ̂λ,C =
1

T

∫ T

0

∫

D

ϕλJ(dt× dx) ,

where the domain of estimation is restricted to a compact subset of R excluding the

origin, i.e.,

D = [a, b] ⊂ R\{0} ,

since this guarantees that ν(D) < ∞, due to the σ-finiteness of any Lévy measure. In

order to see that θ̂λ,C is indeed a reasonable estimator, note that, by P2 of Theorem 1.11,

E
[

θ̂λ,C

]

=
1

T
E

[ ∫ T

0

∫

D

ϕλJ(dt× dx)

]

=

∫

D

ϕλ(x)ν(dx) =

∫

D

ϕλ(x)p(x) dx ,

given that the conditions of Definition 1.12 and Theorem 1.11 are satisfied. Put differ-

ently, transferring the penalized model-selection approach of Section 2.4 simply amounts

to replacing the empirical operator Pn by a properly scaled Poisson integral. Then, the

empirical contrast function (2.3.9) reads as

γn,C(f) =

∫

D

f 2(x) dx− 2

T

∫

[0,T ]

∫

D

f(x)J(dt× dx) ,

while the penalty term (2.4.4) can be computed by

penC(m) =
2

T 2

∫

[0,T ]

∫

D

dm∑

λ=1

ϕ2(x)J(dt× dx) .

As we know from (1.3.2), a Poisson integral can be represented as

∫ T

0

∫

D

f(x)J(ds× dx) =
∑

0<t6T

f(∆Xt) ,

which shows how to explicitly compute the estimator of the Fourier coefficients:

θ̂λ,C =
1

T

∑

0<t6T

ϕλ(∆Xt) .

Unfortunately, observations of a continuous-time process cannot be sampled continu-

ously. Instead, we are often confronted with the situation where our data set is discretely
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sampled at, say n, equidistant time points; i.e.,

0 = t0 < t1 < · · · < tn = T .

Then, the sampling frequency is given by

∆n =
T

n
.

Attached to these time points is a set of observations {Xti}n
i=0. As an educated guess, one

would naturally try to substitute the continuous-time increments by the corresponding

discrete-time increments

∆Xi := Xti −Xti−1 ,

for all i = 1, . . . , n, such that a feasible estimator of the Fourier coefficients is given by

θ̂λ =
1

T

n∑

i=1

ϕλ(∆Xi) . (2.5.1)

Given the intuition in Figure 1.6, we would hope that θ̂λ converges to θ̂λ,C in some sense.

This was indeed accomplished by Figueroa-López and Houdré (2006) who showed, by

invoking the following result of Sato (1999, p. 45), that the discrete-time Poisson integral

converges weakly (in distribution) to the continuous-time Poisson integral, i.e.,

n∑

i=1

f(∆Xi) 
∑

0<t6T

f(∆Xt) ,

as n→ ∞, for all f defined in Corollary 2.10.

Corollary 2.10 (Sato (1999)) Let ∆n ց 0. If ν is the Lévy measure of an infinitely

divisible distribution P , then for any f ∈ C#
0 (the class of bounded continuous functions

from R to R vanishing on a neighborhood of 0)

∆−1
n

∫

R

f(x)P∆n(dx) →
∫

R

f(x)ν(dx) .

Remark 2.11 Note the close similarity of the relation stated in Corollary 2.10 and

the form of infinite divisibility given in (1.1.1). Actually, this is no coincidence since

this result is a byproduct of the proof of Theorem 1.3. Moreover, Figueroa-López (2009)

recently showed that ∆n = o(T−1), implying that ∆n → 0 at a faster rate than T → ∞.

This rate for high-frequency sampling is sufficient to guarantee that the Lévy measure can

be identified.
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We close this section by pointing out that there seems to be alternative to Figueroa-

López and Houdré (2006) by invoking the functional central limit theorem of Liese and

Ziegler (1999) who established the weak convergence of a sequence of Poisson processes.

This is indeed closely related to Corollary 8.8 of Sato (1999). Unfortunately, it is yet not

clear how to relate this result in-fill asymptotics.

2.6 Histogram Estimation Based on Sieves

Let us now return to the penalized model selection of Section 2.4 and exemplify this

approach by considering the problem of constructing an optimal histogram estimator for

a Lévy density. Our approach follows Birgé and Rozenholc (2006) who considered the

problem of nonparametric density estimation via model selection.

To this end, assume that we have computed the discrete-time increments {∆Xti}n
i=1

from Section 2.5. For the ease of exposition, we drop the ∆-sign such that the sample

of discrete-time increments {∆Xti}n
i=1 is denoted by {Xti}n

i=1 from now on. A regular

histogram estimator of the Lévy density p with dm bins is defined by

f̂m :=
dm

n

dm∑

λ=1

Nλ1Iλ
, (2.6.1)

where

Nλ =
n∑

i=1

1{Xti
∈Iλ}

is the number of discrete-time increments whose value fall in the interval Iλ. To be more

precise, this estimator implies a random partition Im = {I1, . . . , Idm
} of [0, 1] into dm

intervals of equal length 1/dm.

It is noteworthy that, without loss of generality, we have assumed D = [0, 1] such that

each binwidth of the partition induced by dm corresponds to 1/dm. In applications, we

will stick to that convention by transforming the range of sampled observations, which

is taken as a rough approximation of the unknown true support of p, to [0, 1] using

an affine transformation of the data. Furthermore, recall that the Lévy density is not

defined at the origin such that it would be more appropriate to restrict the support on

[ǫ, 1]. However, as this leads to unhandy expression, we keep [0, 1]. Again, this poses no

problem in applications since zero increments are excluded, if they appear.
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Substituting Nλ in (2.6.1) shows that

f̂m :=
dm∑

λ=1

(

dm

n

n∑

i=1

1{Xi∈Iλ}

)

1Iλ
(2.6.2)

is indeed a special orthogonal projection estimator from (2.3.4) based on the orthonormal

basis {1Iλ
}λ∈N. As already discussed in Remark 2.4, this type of estimator corresponds

to the maximum likelihood estimator on a fixed, finite-dimensional sieve Fm spanned by

{1Iλ
: 1 6 λ 6 dm}, i.e., the space of all densities which are piecewise constant on the

partition Im. More precisely,

f̂m = argmin
f∈Fm

γn(f) ,

with contrast function γ(x; f) := −lnf(x) which naturally leads to the the loss function

ℓ(f, g) := Ef [ γ(X; g) − γ(X; f) ] =

∫ 1

0

ln

(
f(x)

g(x)

)

f(x) dx =: K(f, g) , (2.6.3)

where K denotes the Kullback-Leibler divergence.

for going from an optimization problem on a fixed sieve to a model selection problem, we

proceed as in Section 2.4 by adding a penalty term pen(m) which should guide us through

the model class Mn. Note that since we are not dealing with irregular histograms, Mn

is nested. Then, the penalized maximum likelihood estimator f̂m̂ is defined as the f̂m

which satisfies

m̂ = argmin
m∈Mn

{

γn(f̂m) + pen(m)
}

. (2.6.4)

Unfortunately, we cannot use the penalty term (2.4.4) since it was explicitly motivated

for least-squares problems based on the L2-equivalent contrast function (2.3.7). Moreover,

van de Geer (1995b) argued against the L2-loss induced by (2.3.7) and in favor of the

Hellinger loss, since the latter is expected to be a better measure of derivation for density

estimation. See also Le Cam (1986).

Let us now show how the oracle approach may help us to find a sensible penalty term for

the problem at hand. First, we need to compute the risk (2.1.1) of f̂m at f . To this end,

we need to define an appropriate risk function. As Birgé and Rozenholc (2006) argued,

the Kullback-Leibler loss (2.6.3) is not a good choice since there exists the possibility

that, for dm > 2, a bin may contain no observations such that K(f, f̂m) = ∞. Based on

what has been argued in the preceding paragraph, we choose the Hellinger loss

h2(f, g) :=
1

2

∫ 1

0

(√

f(x) −
√

g(x)
)2

dx . (2.6.5)



66 2. Method of Sieves

Consequently, the risk of f̂m at f is defined by

Rn(f, f̂m) := Ef

[

h2(f, f̂m)
]

, (2.6.6)

It can be gauged by the following result, which is related to Proposition 2.5.

Theorem 2.12 Let X1, . . . , Xn be a random sample drawn from a Lévy density f , and

let f̂m be the histogram estimate (2.6.1) on the regular partition I = {I1, . . . , Idm
} of [0, 1].

Define the orthogonal projection on the same partition by

πm =

dm∑

λ=1

pλdm1Iλ
,

where pλ =
∫

Iλ
f . Then,

Ef

[

h2(f, f̂m)
]

6 h2(f, πm) +
dm − 1

2n

Ef

[

h2(f, f̂m)
]

= h2(f, πm) +
dm − 1

8n

[
1 + o(1)

]
,

as n→ ∞.

Next, assume that there exists an oracle telling us which of the model in Mn is best

in the sense that it minimizes the risk over Mn. More precisely, if we denote this best

model by m∗, then it satisfies

m∗ = argmin
m∈Mn

Rn(f, f̂m) .

Unfortunately, m∗ cannot be taken as an estimator since it depends on f . However, it

can be used as a benchmark for Rn(f, f̂m) such that m is selected in such a way that

it ‘behaves’ similar to Rn(f, f̂m∗). To be more precise, we seek to find a data-driven

selection procedure for m such that the ratio of risks,

Rn(f, f̂m)

Rn(f, f̂m∗)
6 C with C > 1,

is minimized. As this selection procedure is directly connected to the penalty term, we

are able to derive an explicit expression (up to some constants) of pen(m). To this end,

we now present a full-fledged result and oracle inequality for the problem at hand. It

contains all the ingredients mentioned in Section 2.4.

Theorem 2.13 (Massart (2007)) Assume that all conditions of Theorem 2.12 with
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f̂m̂ satisfying (2.6.4). Let Σ be some absolute constant and {Lm}m∈Mn
be a collection of

nonnegative weights such that

∑

m∈Mn

e−Lm(dm−1) 6 Σ

holds. Assume that there exists some penalty function pen(m) such that, for all m ∈ Mn,

pen(m) > c1

(√

dm − 1 +
√

c2Lm(dm − 1)
)2

with c1 > 1/2 and c2 = 2(1 + c−1
1 ). If there exists some constant ρ > 0, such that f > ρ

(P -a.e.), and
∫
f(lnf)2 6 L <∞, then it holds, for some constant C(c1, ρ, L,Σ),

Ef

[

h2(f, f̂m̂)
]

6
(2c1)

1/5

(2c1)1/5 − 1
inf

m∈M

[

K(f, πm) +
pen(m)

n

]

+
C(c1, ρ, L,Σ)

n
.

Remark 2.14 The penalty term can be rewritten as

pen(m) = c1(dm − 1)
(

1 +
√

c2Lm

)2

.

While it was shown, based on asymptotic considerations and simulations by Birgé and

Rozenholc (2006), that c1 = 1 is optimal, the choice of the weights Lm is a delicate issue.

On the one hand, the weights should be small to obtain a small penalty term. On the other

hand, the weights should be large for decreasing the risk bounds via Σ. Massart (2007)

provided some bounds on the weights which are still not sufficient to operationalize the

penalty terms.

Based on an extensive simulation study, including densities with spatial inhomogeneities

like discontinuities etc., Birgé and Rozenholc (2006) found a robust calibration of the

penalty term:

pen(m) = dm − 1 +
[
ln(dm)

]2.5
,

for 1 6 dm 6 n/ln(n). Thus, our two-step model selection procedure from Section 2.4

reads as follows:

1. Projection step: compute the orthogonal projection estimator f̂m for all 1 6

dm 6 n/ln(n)

2. Model selection: select model satisfying label m̂

m̂ = argmin
16dm6n/ln(n)

{

γn(f̂m) + pen(m)
}



68 2. Method of Sieves

2.A Proofs & Auxiliary Results for Chapter 2

Proof of Equation 2.3.8

This equality follows from straightforward computations:

ℓ(f0, f) = Ef0 [ γ(X, f) − γ(X, f0) ] = Ef0

[
||f ||2 − 2f(X) − ||f0||2 + 2f0(X)

]

=

∫
[
||f ||2 − 2f − ||f0||2 + 2f0

]
f0

=

∫

||f ||2f0 − 2

∫

ff0 + 2

∫

f0f0 −
∫

||f0||2f0

= ||f ||2
∫

f0 − 2〈f, f0〉 + 2〈f0, f0〉 − ||f0||2
∫

f0

= ||f ||2 − 2〈f, f0〉 + 2||f0||2 − ||f0||2 = ||f ||2 − 2〈f, f0〉 + ||f0||2 = ||f − f0||2 .

Proof of Proposition 2.5

This proof explicitly derives the assertions of Birgé and Massart (1998). Define the

empirical process

Gnf :=
1

n

n∑

i=1

f(Xi) −
∫

ff0 .

Setting f = ϕλ in Gnf leads to the following result

χ2 :=
dm∑

λ=1

(Gnϕλ)
2 =

dm∑

λ=1

[

1

n

n∑

i=1

ϕλ(Xi) −
∫

ϕλf0

]2

=

dm∑

λ=1

[

θλ − 1

n

n∑

i=1

ϕλ(Xi)

]2

=

dm∑

λ=1

(θλ − θ̂λ)
2

=

dm∑

λ=1

(θλ − θ̂λ)
2

∫

ϕ2
λ =

∫
[

dm∑

λ=1

(θλ − θ̂λ)ϕλ

]2

=

∫
[

dm∑

λ=1

θλϕλ −
dm∑

λ=1

θ̂λϕλ

]2

=

∫

(πm − f̂m)2

= ||f̂m − πm||2 .

The expectation of χ2 is given by

E
[
χ2
]

= E

[
dm∑

λ=1

(Gnϕλ)
2

]

=
dm∑

λ=1

E
[
(Gnϕλ)

2
]

=
dm∑

λ=1

E





{

1

n

n∑

i=1

ϕλ(Xi) −
∫

ϕλf0

}2



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=
dm∑

λ=1

E





{

1

n

n∑

i=1

ϕλ(Xi)

}2

− 2

n

∫

ϕλf0

n∑

i=1

ϕλ(Xi) +

{∫

ϕλf0

}2




=

dm∑

λ=1

E
[

θ̂2
λ − 2θλθ̂λ + θ2

λ

]

=

dm∑

λ=1

(

E
[

θ̂2
λ

]

− θ2
λ

)

,

due to (2.3.3) and the unbiasedness of θ̂λ. Moreover, since

Var
[

θ̂λ

]

= E
[

θ̂2
λ

]

− θ2
λ =

1

n
Var[ϕλ(X1) ] ,

by (2.3.5), we obtain

E
[
χ2
]

=
1

n

dm∑

λ=1

Var[ϕλ(X1) ] .

Thus, the risk decomposition (2.3.6) can be expressed as

E
[

||f̂m − f0||2
]

= ||f0 − πm||2 + E
[
χ2
]
6 ||f0 − πm||2 +

1

n
E

[
dm∑

λ=1

ϕ2
λ(X1)

]

, (2.A.1)

since
1

n

dm∑

λ=1

Var[ϕλ(X1) ] =
1

n

dm∑

λ=1

E
[
ϕ2

λ(X1)
]
− 1

n

dm∑

λ=1

(E[ϕλ(X1) ])2 .

Additionally, if there exists a bound such that

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dm∑

λ=1

ϕ2
λ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

= Dm ,

then it follows that

E
[

||f̂m − f0||2
]

= ||f0 − πm||2 + E
[
χ2
]
6 ||f0 − πm||2 +

Dm

n
.

This completes the proof. �

Proof of Equation 2.4.4

We are not only going to derive 2.4.4, but we would also like to give another insight

into (2.4.3). To be more precise, we will show that the optimal model m̂ is the result of

minimizing the corresponding risk in (2.3.6):

m̂ = argmin
m∈Mn

E
[

||f̂m − f ||2
]

.
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According to (2.3.6), the risk can be decomposed into

E
[

||f̂m − f ||2
]

= ||f − πm||2 + E
[

||f̂m − πm||2
]

.

This can be further simplified by noting first that

||f − πm||2 =

∫

(f − fm)2 =

∫

f 2 − 2

∫

fmf +

∫

f 2
m

= ||f ||2 − 2
dm∑

λ=1

θλ

∫

ϕλf + ||πm||2 = ||f ||2 − 2
dm∑

λ=1

θ2
λ + ||πm||2

= ||f ||2 − ||πm||2 ,

where we used

||πm||2 =

∫
(

dm∑

λ=1

θλϕλ

)2

=
dm∑

λ=1

θ2
λ

∫

ϕ2
λ =

dm∑

λ=1

θ2
λ .

Second, note that

E
[

||f̂m − πm||2
]

= E

[ ∫

(f̂m − πm)2

]

= E

[ ∫

f̂ 2
m

]

− 2

∫

E
[

f̂m

]

πm +

∫

π2
m

= E
[

||f̂m||2
]

− ||πm||2 .

such that

−||πm||2 = E
[

||f̂m − πm||2
]

− E
[

||f̂m||2
]

.

Thus, the risk decomposition (2.3.6) reads as

E
[

||f̂m − f ||2
]

= ||f ||2 − ||πm||2 + E
[

||f̂m − πm||2
]

= ||f ||2 − E
[

||f̂m||2
]

+ 2 E
[

||f̂m − πm||2
]

.

Finally, according to (2.A.1), we end up the risk decomposition

E
[

||f̂m − f ||2
]

= ||f ||2 − E
[

||f̂m||2
]

+ 2 E
[
χ2
]
,

where

E
[
χ2
]

=
1

n

dm∑

λ=1

Var[ϕλ(X1) ] .

Since ||f ||2 is irrelevant for the minimization (2.4.3), it follows that

m̂ = argmin
m∈Mn

{

−E
[

||f̂m||2
]

+ 2 E
[
χ2
]}

.
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Then, (2.4.3) and (2.4.4) are obtained by substituting the empirical counterparts

m̂ = argmin
m∈Mn

{

−
dm∑

λ=1

θ̂2
λ +

2

n2

n∑

i=1

dm∑

λ=1

ϕ2
λ(Xi)

}

.

Proof of Theorem 2.12

This result was originally proposed by Birgé and Rozenholc (2006) for the problem of

constructing a histogram estimator for an unknown density function. The crucial point

in their proof is the use of a lemma which provides a bound and a limit on a moment of

a binomial random variable.

Due to the σ-finiteness of the Lévy measure (or its Radon-property) and the compact-

ness of its support, the estimation problem resembles the problem in Reynaud-Bouret

(2003), where the intensity function of an inhomogeneous Poisson process was estimated

via sieve based model selection. More precisely, in this case, the mean measure is finite

and allows for a normalization of the Lévy density such that Lemma 1 of Birgé and

Rozenholc (2006) applies.

A way to circumvent this lemma might be to follow van de Geer (1995a) who derived

probability bounds for the Hellinger loss used in maximum likelihood estimation of general

counting processes.

Miscellanea

Definition 2.15 (ǫ-Entropy) Let (X , d) be a (semi-)metric space. For ǫ > 0, the

ǫ-covering number N(ǫ,X ) is defined as the number of balls with radius ǫ necessary to

cover X , i.e., the cardinality of the smallest set, say X, such that, for all x ∈ X ,

min
xi∈X

d(xi, x) 6 ǫ .

A collection X satisfying the above condition is called an ǫ-covering set. The ǫ-entropy

of X is

H(ǫ,X ) := logN(ǫ,X ) .

Let N(ǫ,X ) = ∞ if no such finite set X exists.

If X is not bounded, then we consider the entropy o a ball around some fixed x0 ∈ X .

Definition 2.16 (Local Entropy) Let B(x0, σ) =
{
x ∈ X : d(x, x0) 6 σ, σ > 0

}
be a
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ball around x0. The local entropy is defined by

H(ǫ; σ) := H
(
ǫ, B(x0, σ)

)
.
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73



74 3. Nonparametric Estimation via Wavelets

3.1 Motivation & Definitions

This section introduces basic concepts and notions of wavelet analysis and motivates why

it may be advantageous to use wavelets. The material is based on the monographs of

Daubechies (1992), Meyer (1992), Ruch and van Fleet (2009), Walnut (2001), and Walter

(1994).

Let us assume a target function f ∈ F = L2(R) and that there exists a nested sequence

of closed subspaces {Vj}j∈Z of L2(R), i.e.,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R) ,

such that
⋂

j∈Z
Vj = {0} and

⋃

j∈Z
Vj = L2(R) .

For the moment, let us focus on the approximation space with the so-called resolution

level j = 0 which is defined as

V0 :=

{

v ∈ L2(R) : v(x) =
∑

k∈Z
α0,kφ0,k(x)

}

,

where the set
{
φ0,k(x) := φ(x − k) : k ∈ Z

}
forms an orthonormal basis of V0, i.e.,

the integer translates of function φ span V0. Under certain regularity conditions on φ

to be laid out later on, this structure can be generalized to all approximation spaces in

{Vj}j∈Z by simple transformations on φ which also shows how the approximation spaces

are interrelated: An orthonormal basis of the approximation space Vj with resolution

level j is given by the set
{
φj,k(x) := 2j/2φ(2jx− k) : k ∈ Z

}
. The orthogonal projection

of f ∈ L2(R) onto Vj is defined as

PVj
f :=

∑

k∈Z
〈φj,k, f〉φj,k =

∑

k∈Z
αj,kφj,k .

Up to now, this setup corresponds to an orthogonal projection on a finite-dimensional

sieve of Section 2.3.

Besides the connection via φ, the actual framework may be shown to offer another

relation between any pair of subspaces Vj and Vj+1 in terms of a so-called ‘residual space’

or detail space Wj. To this end, let the subspace Wj be the orthogonal complement

of Vj in Vj+1, i.e., Vj+1 = Vj ⊕Wj and Vj ⊥ Wj . This allows us to define a sequence

{Wj}j∈Z of detail spaces similar to {Vj}j∈Z but with the important distinction that all
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Wj ’s are mutually orthogonal. As before, we concentrate on a specific detail space with

resolution level j = 0 which is defined as

W0 :=

{

w ∈ L2(R) : w(x) =
∑

k∈Z
β0,kψ0,k(x)

}

,

where the set
{
ψ0,k(x) := ψ(x− k) : k ∈ Z

}
forms an orthonormal basis of W0, i.e., the

integer translates of function ψ span W0. This can again be generalized to any Wj in

{Wj}j∈Z by noting that an orthonormal basis of the detail space Wj with resolution j

is given by the set
{
ψj,k(x) := 2j/2ψ(2jx − k) : k ∈ Z

}
. The orthogonal projection of

f ∈ L2(R) onto Wj is defined as

PWj
f :=

∑

k∈Z
〈ψj,k, f〉ψj,k =

∑

k∈Z
βj,kψj,k .

All of these considerations ultimately lead to what is known as the wavelet decom-

position of a function f ∈ L2(R), stated in terms of function spaces,

L2(R) = · · · ⊕Wj0−1
︸ ︷︷ ︸

detail
space

⊕Wj0
︸︷︷︸
detail
space

⊕Wj0+1
︸ ︷︷ ︸

detail
space

⊕ · · ·

= Vj0
︸︷︷︸
coarse
space

⊕Wj0
︸︷︷︸
detail
space

⊕Wj0+1
︸ ︷︷ ︸

detail
space

⊕ · · · , (3.1.1)

or in terms of orthogonal projections,

f =
∑

j∈Z

∑

k∈Z
βj,kψj,k =

∑

j∈Z
PWj

f

=
∑

k∈Z
αj0,kφj0,k +

∑

j>j0

∑

k∈Z
βj,kψj,k = PVj0

f +
∑

j>j0

PWj
f . (3.1.2)

As already mentioned, applying {Vj}j∈Z is essentially nothing more than a sieve ap-

proximation. Thus, one might ask what are the merits of wavelet-based approximation?

For answering this question, it is convenient to illustrate the effects of transforming φ

and ψ using the simplest basis functions. The Haar scaling function is defined as

φ(x) :=







1 for 0 6 x < 1

0 otherwise.

Figure 3.1 depicts what happens when the indices j and k are varied. Let us first look at
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φ0,0 as the benchmark cases. Varying k while fixing j = 0, we see that the basis functions

φ0,k are translated, i.e., shifted, along the x-axis which, in the wavelet literature, is

traditionally termed as “time.” Next, fixing k = 0 and varying j, we recognize that

the basis functions φj,0 are locked-in at k = 0, while their support and amplitude are

changing. In the wavelet literature, the ordinate is called the “scale” or “frequency.”

Figure 3.1: Effects of j and k on Shape of Haar Scaling Function
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Turning back to the wavelet decomposition in (3.1.2), it is obvious that the projection

PVj0
f fixes a baseline resolution level j0 (or row) in Figure 3.1 such that it rules out any

variation in the scale. This explains why φ is usually called the scaling function (or

father wavelet). The rationale of using a baseline space Vj0 is that it provides a lower

truncation of the infinite sum
∑

j∈Z PWj
in (3.1.2).

In contrast to standard orthogonal projections, the value-added of wavelet approxima-
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tions is illustrated by introducing the Haar wavelet function:

ψ(x) :=







1 for 0 6 x < 0.5

−1 for 0.5 6 x < 1

0 otherwise.

Figure 3.2 depicts the effects of varying j and k, which turns out to be qualitatively

analogous to the analysis of the scaling function.

Figure 3.2: Effects of j and k on Shape of Haar Wavelet Function
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Turning back to the wavelet decomposition in (3.1.2), it is obvious that, starting from

the baseline space Vj0, the wavelet projection PWj
f with resolution levels j > j0 add

‘finer’ function approximations to PVj0
f . This explains why Vj0 is called the coarse

space while the Wj ’s are called the detail spaces in (3.1.1).

This insight gained from the analysis of the Haar scaling and wavelet functions can be
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generalized to any pair of scaling and wavelet functions:

φj,k := 2j/2φ(2jx− k) (3.1.3)

ψj,k := 2j/2ψ(2jx− k) . (3.1.4)

The basis functions φj,k and ψj,k are scaled and translated versions of φ and ψ, respec-

tively. Increasing the translation index k has the effect of shifting ψ on the x-axis from

the left to the right. Increasing the resolution level j has two different effects: First, the

factor 2j compresses the support of ψ. This is often described by saying that “ψ is well

localized in time.” Second, the factor 2j/2 dilates the amplitude of ψ.

Before starting with a more formal treatment of wavelet analysis, let us close this

motivating section by pointing out the merits of using wavelets: Spatial adaptivity and

sparse representation. To this end, note that since we can only deal with finitely many

terms in computations, the infinite double sums have to be truncated in such a way that

the wavelet representation provides the desired degree of approximation to the target

function f , i.e.,

f ≈
∑

|j|6J

∑

|k|6K

βj,kψj,k ,

for sufficiently, large J,K ∈ N.

Spatial adaptivity of wavelets means that the superposition of different wavelet func-

tions ψj,k with varying degree of localization allows the wavelet decomposition to ‘pick

up’ diverse spatial inhomogeneities of f such as discontinuities, high oscillations, wiggles,

kinks, cusps, etc.

As an illustration, let us consider the following example, Assume that a function f is

very smooth at the location x1 = k1 while it is ‘non-smooth’ at the location x2 = k2. In

this case, spatial adaptivity works as follows: The smooth part of f is only picked up by

the low resolution levels, say j0, such that |βj0,k1| > 0 but |βj,k1| ≈ 0 for all j > j0. On the

contrary, the non-smooth part of f is picked up by the high resolution levels such that

|βj,k2| > 0 for some j > j0. Thus, at a fixed location k∗ and for different resolution levels

j, the absolute values of the wavelet coefficients convey information on the regularity of

f .

This example leads us directly to the notion of sparse representation. Once we have

obtained the coefficients βj,k via the wavelet decomposition, it is a remarkable feature of

wavelet analysis that many of the βj,k’s are close to or equal to zero. Recall that, for high

resolution levels j, only wavelet coefficients βj,k near inhomogeneities of f are nonzero.

It should be noted, however, that this does not mean, in general, that J is small. Indeed,
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it usually turns out that J is large, but that the number of nonzero wavelet coefficients

is small.

Let us return to the exact version of the above approximation, and note that wavelets

allow for the decomposition

f(x) =
∑

j∈Z

∑

k∈Z
βj,kψj,k(x) (3.1.5)

of any function f ∈ L2(R).1 Turning L2(R) into a Hilbert space by defining the usual

inner product, (3.1.5) then implies that

||f ||2 =
∑

j∈Z

∑

k∈Z

∣
∣〈f, ψj,k〉

∣
∣
2 for all f ∈ L2(R)

〈ψj,k, ψj′,k′〉 =







1 for k = k′ and j = j′

0 otherwise.

An important result in wavelet theory is that the convergence of the wavelet expansion to

f in the L2-norm is unconditional, i.e., the ordering of basis functions is irrelevant. This

is due to the fact that wavelets constitute a Riesz, and this was pointed out by Donoho

(1993) to be the exceptional spatial adaptivity and compression properties of wavelet.

Definition 3.1 (Multiresolution Analysis) A multiresolution analysis consists of

a sequence {Vj}j∈Z of closed subspaces of L2(R) and a function φ ∈ V0 satisfying the

following conditions:

C1 · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

C2
⋃

j Vj = L2(R) and
⋂

j Vj = {0}

C3 f ∈ Vj ⇐⇒
{
x 7→ f(2x)

}
∈ Vj+1

C4 f ∈ V0 =⇒
{
x 7→ f(x− k)

}
∈ V0 for all k ∈ Z

C5
{
φ( . − k)

}

k∈Z is an orthonormal basis for V0.

1Note that by a simple change in notation, this expansion may be expressed as

f =
∑

λ∈Λ

θλϕλ

which looks similar to the orthogonal projection (2.3.1). Interestingly, if Λ = Mn were a finite (or
countable) collection of models as in Section 2.4, then it would now be non-nested. Moreover, this
implies that the bound on the risk of the oracle includes an additional ln(n) factor which slows down the
rate of convergence. As it turns out, this is a common phenomenon for nonlinear wavelet estimators.
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The existence of a multiresolution analysis allows us to relate the basis functions φj,k

and ψj,k such that they can recursively computed. This is important since most wavelets

do not have closed forms. Another non-trivial, but for computations important, issue is

the construction of compactly supported wavelets. This was accomplished by Daubechies

(1988) by setting up the so-called db-family of wavelets which will be used in our appli-

cations.

3.2 Wavelet Estimators

For estimation based on wavelets, we refer to the monographs of Härdle, Kerkyacharian,

Picard, and Tsybakov (1998), Ogden (1997), and Vidakovic (1999).

As already mentioned in the previous section, a multiresolution analysis allows us to

rewrite the wavelet expansion (3.1.5) as

f =
∑

k∈Z
αj0,kφj0,k +

∑

j>j0

∑

k∈Z
βj,kψj,k ,

defines a baseline, coarse space Vj0. As
∑

k∈Z αj0,kφj0,k and
∑

k∈Z βj,kψj,k are the orthog-

onal decompositions of Vj0 and Wj, respectively, we can apply the same reasoning as

in Section 2.3 and define the estimators of the generalized Fourier coefficient as simple

moment estimators: For a random sample of observations {Xi}n
i=1, let

α̂j0,k = 1
n

∑n
i=1 φj0,k(Xi)

β̂j,k = 1
n

∑n
i=1 ψj,k(Xi)

such that a wavelet estimator of f reads as

f̂ =
∑

k∈Z
α̂j0,kφj0,k +

∑

j>j0

∑

k∈Z
β̂j,kψj,k . (3.2.1)

Unfortunately, this estimator is infeasible as it involved infinite sums. In order to resolve

this issue, one first has to restrict the number of detail spaces involved by defining an

upper truncation level jn. Furthermore, the number of basis function for approximating
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the spaces Vj0 and Wj is restricted by a finite dyadic decomposition:2

f̂ =

2j0−1∑

k=0

α̂j0,kφj0,k +

jn∑

j=j0

2j−1∑

k=0

β̂j,kψj,k . (3.2.2)

As this estimator depends linearly on the data, it is called a linear wavelet estimator

of f .

The upper truncation parameter jn in (3.2.2), which depends on the data, plays a

similar role as the tuning (or smoothing) parameter, i.e., the bandwidth, in kernel density

estimation. To see this, note that a large jn includes high resolution detail spaces. If a

smooth function is corrupted by noise, the basis functions of these high resolution spaces

will pick up the oscillations due to noise. Thus, the estimate of the underlying function

will be rough, i.e., it is undersmoothed. In order to get a smoother estimate, one is forced

to decrease jn.

For this problem, Donoho and Johnstone (1995) put forward a simple modification in

order to work with high resolution levels, while optimally eliminating the noise component

in the data. Since the noise is picked up by the corresponding β̂j,k’s, they derived two

schemes to denoise the high resolution level coefficients. Both rely on the idea of thresh-

olding. The first one is called hard-thresholding, which yields thresholded wavelet

coefficients defined by ηλ(β̂j,k)

ηH
λ (x) :=







x if |x| > λ

0 otherwise,

where λ > 0. The second one is called soft-thresholding and is based on the idea

of Stein (1981)’s shrinkage procedure. There, the thresholded wavelet coefficients are

defined by

ηS
λ (x) :=







x− λ if x > λ

0 if |x| 6 λ

x+ λ if x < −λ.

The effects of these thresholding techniques are visualized in Figure 3.3

For the purpose of nonparametric density estimation via wavelets, Donoho, Johnstone,

Kerkyacharian, and Picard (1996) derived a universal threshold level λ =
√

2logn.

2On the one hand, dyadic decompositions derive from the so-called atomic decomposition of function
space which are the precursor of the wavelet decomposition (Triebel, 1992, 2008). On the other hand,
dyadic decompositions allow for the implementation of fast and efficient algorithms for computing of
wavelet coefficients.
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Figure 3.3: Hard- vs. Soft-Thresholding Rules
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A problem of the above term-by-term thresholding schemes is that their rates of conver-

gence is, in general, slowed by a ln(n) factor compared to the minimax rate. Thus, there

were many attempts to alleviate this problem. For example, Kerkyacharian, Picard, and

Tribouley (1996) proposed a soft-thresholding scheme, not term-by-term, but levelwise.

To be more precise, if

θj =
∑

k∈Z
|βj,k|2

denotes the ‘energy’ of the resolution level j, then the soft-thresholding is defined by:

ηj(θ̂j) =







θ̂j − 2j/n

θ̂j

if θ̂j > 2j/n

0 otherwise.

The rational why this scheme should provide more efficient estimates is that more ‘in-

formation’ is pooled for deciding whether to delete coefficients or to shrink them. The

authors indeed showed that it is possible to get rid of the ln(n)-factor.

The nonlinear wavelet estimator that we propose for nonparametrically estimating a

Lévy density is a hybrid of term-by-term and levelwise thresholding and is called block-
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thresholding. It was introduced by Hall, Kerkyacharian, and Picard (1998) and refined

by Chicken and Cai (2005) for density estimation. Cai (1999) provided an oracle in-

equality. Here, the idea is to divide the wavelet coefficients in every resolution level into

non-overlapping blocks of length l = ln(n). Then, hard-thresholding will be performed

with respect to the estimated squared bias

B̂i,k =
1

l

∑

j∈B(k)

β̂2
i,j ,

where B(k) is the set of indices j contained in block k. To be more precise, the wavelet

coefficients are kept, if B̂i,k is larger than a threshold level, otherwise they are all deleted

Hence, the block-thresholded estimator reads as

f̂(x) =
∑

j

α̂jφj(x) +

R∑

i=0

∑

k

∑

j∈B(k)

β̂i,jψi,j(x)1{B̂i,k>cn−1} ,

where R =
⌊
log2(Dnl

−1)
⌋
. Note that the introduction of blocks B(k) led to a slight

change of notation. For the exact calibration of D and c, we refer to Chicken and Cai

(2005). Moreover, Theorem 1 of Chicken and Cai (2005) proves adaptation in the min-

imax sense of the block-thresholded estimator. We note that this theorem should also

be valid for Lévy density estimation, due to the σ-finiteness of ν. Then, the only change

necessary would be the replacement of the concentration inequality of Talagrand (1994)

by an appropriate concentration for compensated Poisson processes of Reynaud-Bouret

(2003) who considered nonparametric estimation of the intensity of inhomogeneous Pois-

son processes. However, the technical details of this proof are left for future research.

We close this chapter by noting that wavelet estimators have been developed within the

nonparametric regression framework. Thus, they are not directly applicable to density

estimation. Recall from Section 2.1 that we have noisy observations Yi of f which we

used in our estimator f̂ . However, observations Yi drawn from a density function f do

not correspond to noisy observations of f . Instead, we first have to construct these noisy

observations from the sampled data. This is usually done by estimating a histogram

based on the observations Yi. The bin midpoints of this histogram are then interpreted

as noisy observations of the unknown density function f . Michael Nussbaum was the

first to advocate this approach in the discussion of Donoho, Johnstone, Kerkyacharian,

and Picard (1995) by pointing out to an approximation results based on Haar functions

of Koltchinskii (1994).

It is noteworthy that this approach is prone to a bias-variance trade-off. Clearly, more

bins provide more ‘noisy’ observations to be used for the wavelet density estimator. These
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will, however, be less efficient estimates (more noisy). This motivates the usage of the

histogram estimator based on model selection from Section 2.6.



Chapter 4

Simulations & Applications

85
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4.1 Variance Gamma Processes

In this section, we consider the variance gamma process as an example of a random

time-changed Brownian motion. As it turns out, the variance gamma process has three

different representations. Two of these involve gamma subordinators as building blocks.

Thus„ we recap some basic facts about gamma random variables and processes at this

point. A gamma random variable X has probability density function

fX(x;α, β) =
1

βαΓ(α)
xα−1e−x/β

1{x>0} , (4.1.1)

where α > 0 and β > 0 are interpreted as shape parameter and scale parameter, respec-

tively, and characteristic function

ΦX(u) = (1 − iuβ)−α ,

which is derived in (A.1.8).

The interpretations of α and β are partially due to the following important properties

of gamma random variables:

1. Additivity of gamma random variables: LetX1, . . . , Xn be independent gamma

random variables with respective probability density functions fXi
(x;αi, β) for i =

1, . . . , n. Then, Y =
∑n

i=1Xi is a gamma random variable with probability density

function

fY

(

y;
n∑

i=1

αi, β

)

. (4.1.2)

2. Scaling of gamma random variables: Let X be a gamma random variable with

probability density function fX(x;α, β). If c > 0, then Y = cX is a gamma random

variable with probability density function

fY (y;α, cβ) . (4.1.3)

From the moments of gamma random variable, derived in Appendix A.1, and Figures 4.1

and 4.2, we deduce that the its probability density is skewed to the right, is strictly

decreasing for 0 < α 6 1, and has a maximum at x = (α− 1)β for α > 1.

A gamma process is a Lévy process with gamma distributed increments. From the

form (A.1.10) of the characteristic function of a gamma random variable X and the

additivity property (4.1.2), we can immediately obtain the characteristic function of a
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Figure 4.1: Effect of Shape Parameter on Gamma Density Function
This figure depicts the effect of increasing the shape parameter α on the shape of a gamma
probability density function fX(x; α, β), while the scale parameter β = 1.5 is kept constant.
Due to the additivity property of gamma (4.1.2) and (4.1.6), this corresponds exactly to the
time evolution of the marginal density of a gamma process {Xt}t>0.
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gamma process {Xt}t>0

ΦXt
(u) = (1 − iuβ)−αt = exp

{

t

∫ ∞

0

(eiux − 1)
α

x
e−x/β dx

}

,

with characteristic triplet (0, 0, ν) and Lévy measure

νΓ(dx) =
α

x
e−x/β

1{x>0} dx . (4.1.4)

Put differently, the gamma process is a pure-jump Lévy process.

Following the literature on gamma processes and for reasons to be explained in Sec-

tion 4.1, we set α = c and β = 1/λ. Then, it follows from Conditions C1 and C3 of
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Figure 4.2: Effect of Scale Parameter on Gamma Density Function
This figure depicts the effect of increasing the scale parameter β on the shape of a gamma
probability density function fX(x; α, β), while the shape parameter α = 1.5 is kept constant.
Clearly, all subplots exhibit a mode.
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Definition 1.1 that, for all t > 0,

∆Xt
d
= ∆X1 = X1 −X0 = X1

d
= Gam(c, 1/λ) , (4.1.5)

which allows us to easily simulate the increments of a gamma process from Gam(c, 1/λ).

Moreover, due to the scaling property (4.1.3), it is sufficient to simulate

∆Xt
d
= Gam(c, 1)

in order to obtain Gam(c, 1/λ)-increments because, then,

∆Xt/λ
d
= Gam(c, 1/λ)

for all t > 0. Figure 4.3 illustrates s some sample paths of gamma processes (4.1.5). Since
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the increments of a gamma process are positive, its sample paths are non-decreasing such

that, by Definition 1.14, a gamma process is indeed a subordinator.

Figure 4.3: Sample Paths of Gamma Processes
This figure depicts simulated paths of the gamma process (4.1.5) for varying shape parameter
α = c and scale parameter β = 1/λ. The step size (or simulation frequency) is fixed at
∆t := ti − ti−1 = 0.02 for all i = 1, . . . , 50 with t0 = 0. The same seed for pseudo-random
number generation is used along panel rows. The sampling interval is scaled down to [0, 1].
There are two important points to note: First, increasing c increases the overall jump
activity of a sample path. Second, λ has only a scaling effect, leaving the overall jump
activity unaffected, i.e., increasing λ solely scales down the sizes of jumps. The latter is
perfectly in line with Figure 4.2, where increasing β leads to a heavier tail.
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Figure 4.1 along with the additivity property (4.1.2) of gamma random variables allows

us to infer the time evolution of the marginal density of a gamma process. Moreover,

the moments of a gamma random variables, derived in Appendix A.1, yield the first four

moments of a gamma process {Xt}t>0 with Gam(c, 1/λ)-increments,

E[Xt ] =
c

λ
t

E[Xt ] =
c

λ2
t
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skewness[Xt] =
2√
ct

excess kurtosis[Xt] =
6

ct
,

and describe how they change in the course of time.

From the Lévy measure of a gamma process on (4.1.4), we obtain the Lévy density of

a gamma process:

pΓ(x) =
νΓ(dx)

dx
=
c

x
e−λx

1{x>0} . (4.1.6)

Clearly, any gamma process has infinity activity since

∫

{x>0}
νΓ(dx) =

∫

{x>0}
pΓ(x) dx = ∞ .

At the same time, any gamma process has finite variation since

∫

{0<x61}
xνΓ(dx) =

∫

{0<x61}
xpΓ(x) dx <∞ .

Hence, according to Definition 1.7, any gamma process is a type-B Lévy process. Fig-

ure 4.4 depicts the Lévy densities underlying the simulated gamma processes in Figure 4.3.

Figures 4.3 and 4.4 lead to the following interpretations of parameters c and λ: c governs

the overall arrival rate of jumps, while λ governs the arrival rate of large jumps.1

The variance gamma process was introduced for the first time by Madan and Seneta

(1990). Further important properties and applications of the variance gamma process

were analyzed by Madan, Carr, and Chang (1998) and Geman, Madan, and Yor (2001).

As it turned out, the variance gamma process can be cast in three different representa-

tions, each of which emphasizes a distinctive feature.

The first representation of a variance gamma process Xt is to subordinate a Brownian

motion to a random time change by a gamma process (4.1.5), i.e.,

Xt = BΓt
= γΓt + σWΓt

, (4.1.7)

1Note that the gamma distribution is a popular choice when it comes to modeling inter-arrival times
of jump processes. To see this, set α = 1 and β = λ−1 in (4.1.1): fX(x; 1, λ−1) = λe−λ

1{x>0}, i.e.,

X
d
= Exp(λ). From Appendix A.1, the inter-arrival times between two consecutive jumps of a Poisson

process Nt

d
= Poi(λt) is exponentially distributed with mean rate of occurrence per unit of time, i.e.,

intensity, λ = E[ Nt ] /t. Consequently, the nth arrival time (or the arrival time of the nth jump) follows
the law Gam(n, λ−1). However, the interpretations of the gama parameters differ from those laid out in
Figure 4.4 since they model jump times and not jump sizes. Thus, these two notions should be not be
mixed up when interpreting the model parameters.



4.1. Variance Gamma Processes 91

Figure 4.4: Levy Densities of Gamma Processes
This figure depicts the Lévy density (4.1.6) of the gamma process (4.1.5) for different pa-
rameter values of c and λ.
The effects of changing c and λ are completely in line with the discussion of Figure 4.3. On
the one hand, increasing c increases the overall jump activity of the gamma process as the
area under the Lévy density p is scaled up. On the other hand, increasing λ decreases the
intensity of large jumps as the tail of the Lévy density p decays at a faster rate.
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where Bt is the Brownian motion with drift γ in (1.1.3) and {Γt}t>0 is the gamma process

defined by (4.1.5) satisfying the important parameter restriction

Γt − Γt−∆t
d
= Gam(∆t/c, c) ,

or, by using Definition 1.1,

∆Γt := Γt − Γt−1 = Γ1
d
= Gam(1/c, c) .

For the general form of a variance gamma process the parameters are defined as γ ∈ R

and σ, c > 0.
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The reason for reducing the number of parameters governing the gamma subordinator

becomes immediately obvious when considering the mean and variance of its increments:

E[ Γt − Γt−∆t ] = E[ Gam(∆t/c, c) ] = ∆t

Var[ Γt − Γt−∆t ] = Var[ Gam(∆t/c, c) ] = ∆t · c ,

due to the moments of a gamma process in Subsection 1.4.3. Put together, the mean of

the increments is equal to the time step on which the increments are computed, which

conveniently lends itself to interpreting the subordinator as stochastic time, where its

randomness is completely determined by its parameter c. Recall that, in Subsection 1.4.3,

we interpreted the subordinator as a measure of business time which (randomly) deviates

from calender time t.

Since we know from (4.1.5) how to simulate the increments of the gamma subordinator

Γt, it is straightforward to simulate the sample paths of the variance gamma process by

recognizing

Xt −Xt−1 = γ(Γt − Γt−1) + σWΓt−Γt−1

∆Xt = γ∆Γt + σW∆Γt
,

where W∆Γt

d
= N( 0,∆Γt ) =

√
∆Γt N( 0, 1 ). For simulation schemes for various Lévy

processes, see Cont and Tankov (2003, Chapter 6) and Schoutens (2003). Figure 4.5

illustrates simulated sample path of the variance gamma process (4.1.7). In particular,

this figure shows how the Brownian motion and the variance gamma process are related.

Note that from the mean and variance of the increments of the subordinator Γt, we see

that

E[ Γt ] = t

lim
cց0

Var[ Γt ] = 0 ,

i.e., Γt corresponds to the deterministic business time t > 0. Thus, the Brownian motion

is the limiting case of the variance gamma process as cց 0. Moreover, the sample path

behavior of a variance gamma process is lying in-between that of a compound Poisson

process and a Brownian motion.

The random time-change representation of a variance gamma process,

Xt = BΓt
,
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Figure 4.5: Sample Paths of Variance Gamma Processes & Subordinators
This figure depicts simulated paths of the variance gamma process (4.1.7) and the respective

gamma subordinators Γt

d
= Gam(t/c, c) for differing parameter value c, while γ = 0.02 and

σ = 0.75 are kept constant. The step size (or simulation frequency) is fixed at ∆t :=
ti − ti−1 = 0.01 for all i = 1, . . . , 100 with t0 = 0. The same seed for pseudo-random number
generation is used along panel rows. The sampling interval is scaled down to [0, 1].
From the discussion of the gamma process in Figures 4.3 and 4.4, we know that decreasing
c increases the overall jump activity. Consequently, as subordinator Γt converges to t, the
sample path of the corresponding variance gamma process resembles the sample path of the
Brownian motion in Figure 1.1.
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the characteristic exponent of a variance gamma process is easily derived by invoking

Theorem 1.16:

ΨX = −Ψ+
Γ ◦ (−ΨB) ,

where the Laplace exponent

Ψ+
Γ (z) = −ΨΓ(iz) =

1

c
ln(1 + zc)

follows from plugging in the characteristic function (A.1.8) of a gamma variable, i.e.,
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ΦΓ1 = (1 − iuc)−1/c. Finally, since

ΨB(u) = iuγ − u2σ2

2
,

it follows that

ΨX(u) = −1

c
ln

(

1 − iuγc+
1

2
u2σ2c

)

. (4.1.8)

This characteristic exponent, along with (A.1.2)–(A.1.5), allows us to derive, after some

tedious calculations, the unit-time increments of a general variance gamma process with

parameters γ, σ, and c:

E[X1 ] = γ

Var[X1 ] = σ2 + γ2c

skewness[X1] =
2γ3σ2 + 3γσ2c

(σ2 + γ2c)3/2

excess kurtosis[X1] =
3σ4c+ 6γ4c3 + 12γ2σ2c2

(σ2 + γ2c)2
.

Assuming σ 6= 0 in order to rule out deterministic variance gamma processes, these lower

moments all exist and yield two interesting results: First, the skewness of the increments’

law of a general variance gamma is determined by the drift parameter γ. A positive

or negative drift γ implies that the increments’ distribution is skewed to the right or

left, respectively. Second, the increments’ distribution of a variance gamma process is

leptokurtic if its gamma subordinator is stochastic, i.e., Var[ Γ1 ] = c 6= 0. This can be

interpreted as excess kurtosis generated by stochastic volatility as c controls the jump

activity. Moreover, the drift may also contribute to excess kurtosis.

Moreover, the characteristic exponent (4.1.8) yields after some cumbersome derivations

the Lévy density of a general variance gamma process:

pV G(x) =
νV G(dx)

dx
=

1

c|x| exp

(

γ

σ2
x− 1

σ

√

2

c
+
γ2

σ2
|x|
)

. (4.1.9)

Clearly, any variance gamma process has infinity activity since

∫

{x>0}
νV G(dx) =

∫

{x>0}
pV G(x) dx = ∞ .
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At the same time, any gamma process has finite variation since

∫

{0<x61}
xνV G(dx) =

∫

{0<x61}
xpV G(x) dx <∞ .

Hence, according to Definition 1.7, any gamma process is a type-B Lévy process. Fig-

ure 4.6 depicts the Lévy densities of some variance gamma processes.

Figure 4.6: Levy Densities of Variance Gamma Processes
This figure depicts the Lévy density (4.1.9) of the variance gamma process (4.1.7) for different
parameter values of γ and c, while σ = 1 is kept constant.
Note how skewness (γ 6= 0) shifts jump activity to the respective tail. Moreover, note how
the overall jump activity increases as c decreases.
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The last insight, e.g., the finite variation of any variance gamma process, leads to the

second representation. Due to its finite variation, any variance gamma process can be

represented as the difference two independent gamma processes, which are sometimes

interpreted as gain and loss processes:

Xt = BΓt
= γΓt + σWΓt

= Γ+
t − Γ−

t .
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Due to the independence of Γ+
t and Γ−

t , the characteristic function of the unit-time

increments of X can be factorized as follows:

ΦX1(u) = ΦΓ+
1
(u)Φ−Γ−

1
(u)

(

1 − iuγc+
1

2
u2σ2c

)−1/c

= (1 − iuM)−C(1 − iuG)−C ,

where

C := 1/c > 0

M :=

√

γ2c2

4
+
σ2c

2
+
γc

2
> 0

G :=

√

γ2c2

4
+
σ2c

2
− γc

2
> 0 .

This allows us to reconstruct the Lévy density (4.1.9) of a variance gamma process by

merging the Lévy densities of the individual gamma processes. To this end, recall that,

for x > 0,

νV G(dx) =
C

x
exp
(

− x

M

)

1{x>0} dx ,

while we have

νV G(dx) =
C

|x| exp

(

− |x|
G

)

1{x<0} dx ,

for x < 0. Thus, we obtain

pV G(x) =







C

|x| exp

(

− |x|
G

)

for x < 0

C

x
exp
(

− x

M

)

for x > 0.
(4.1.10)

Again, we note that increasing C increases the overall jump activity for both positive

and negative jumps. Likewise, the parameters G and M measure the speed at which the

arrival rate decays with the size of the jump.

A substantial extension of the variance gamma model was proposed by Carr, Geman,

Madan, and Yor (2002, 2003), which is called the CGMY model. The CGMY model

is able to generate both processes with finite or infinite activity and processes with finite

and infinite variation. Surprisingly, this comes along with just a minor modification of
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the variance gamma Lévy density (4.1.10):

pCGMY (x) =
νCGMY (dx)

dx
=







C

|x|1+Y
exp

(

− |x|
G

)

for x < 0

C

x1+Y
exp
(

− x

M

)

for x > 0,
(4.1.11)

where C,G,M > 0, as for the variance gamma model, and Y ∈ (−∞, 1).

Similar to the discussion on the activity and variation of the variance gamma process

following (4.1.9), it can be shown that the additional parameter Y allows us to classify

CGMY processes according to Definition 1.7. A CGMY process has infinite activity for

−1 < Y < 1, while it has infinite variation for 0 < Y < 1. For Y 6 −1, the CGMY

process has finite activity and finite variation such that it corresponds, for example,

to a compound Poisson process or, more generally, to a Lévy process of type A. For

−1 < Y 6 0, the CGMY process has infinite activity and finite variation such that it

corresponds, for example, to a variance gamma process (Y = 0) or, more generally, to

a Lévy process of type B. For 0 < Y < 1, the CGMY process has infinite activity and

infinite variation such that it corresponds, for example, to a normal inverse Gaussian

process or, more generally, to a Lévy process of type C. In order to satisfy integrability

condition of the Theorem 1.3, Y < 1 is necessary. The CGMY process can also be

represented as a random time change model (Madan and Yor, 2008).

Carr, Geman, Madan, and Yor (2002) performed goodness-of-fit testing on the S&P

500 index. Their favored model rejected any diffusion component, while a CGMY model

of type B seemed to fit the data best.2 Moreover, they showed that the CGMY model

generates more realistic shapes of implied volatility.

The third representation of the variance gamma process essentially boils down to a

very general scheme for simulating pure-jump Lévy processes, and which based upon the

insight that any pure-jump Lévy process can be approximated by a sequence of compound

Poisson processes. See Asmussen and Rosiński (2001) and Rosiński (2001).

Recall from Section 1.1 that the Lévy measure of a compound Poisson process is given

by

ν(dx) = λF (dx) .

Since F is a probability distribution function with F
(
R\{0}

)
= 1, it follows that

ν
(
R\{0}

)
= λ <∞ ,

2Note, however, that this result is a bit at odds with Aït-Sahalia and Jacod (2010) who found that
there is a need for a continuous component for two equity stocks of the Nasdaq 100 composite index they
considered.
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due to the finite activity of any compound Poisson process. Next, define a sequence of

compound Poisson processes with jump arrival rate

λn := ν
(
R\[−1/n, 1/n]

)
=

∫

R\[−1/n,1/n]

ν(dx)

and jump size distribution

F (dx) =
ν(dx)

λn
=

ν(dx)

ν
(
R\[−1/n, 1/n]

) .

By passage to the limit, any pure-jump Lévy process with general Lévy measure ν can

be arbitrarily well approximated by this sequence of compound Poisson processes (Sato,

1999, Corollary 8.8). As already discussed in Remark 2.11, this is the devise to handle

the jump part in the proof of Theorem 1.6. In simulations, this procedure amounts to

deleting jumps with absolute size smaller than 1/n and replacing them by a Brownian

motion.

We now look at the results of a small simulation study where the simplest variance

gamma model (γ = 0 and σ = c = 1),

p(x) =
ν(dx)

dx
=

1

|x| e−
√

2|x| ,

has been used to generate M = 500 trajectories, each with a sample size of T = 5000

returns. We then implement the block-thresholded wavelet estimator p̂ of Section 3.2.

This is done for various preliminary histogram estimators with a differing number of bins

N and various wavelet bases (Daubechies, 1988) with differing degrees of smoothness.

For each trajectory m = 1, . . . ,M the integrated squared error

ISEm =
1

104

104
∑

i=1

[
p(xi) − p̂(xi)

]2
,

via linear interpolation. That is, set up a fine grid of points {xi}104

i=1 and compute the

value of p̂(xi) by linearly interpolating between the adjacent p̂ which has been estimate

from the simulated data. This should guarantee a ‘fairer’ comparison to the ‘true’ Lévy

density p. Finally, the overall integrated squared error is calculated as the mean value of

the individual ISEm’s, i.e.,

ISE =
1

M

M∑

m=1

ISEm ,

The results are summarized in Table 4.1.
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Table 4.1: Simulation Results for Variance Gamma Model
This table shows the integrated squared errors ISE. The number N denotes the number of
bins used in the construction of the preliminary histogram estimators. N∗ corresponds to
the optimal value m̂ (2.6.4). For the wavelet bases, the Daubechies (1988) class is used,
where the corresponding number characterizes the degree of smoothness.

N
25 N∗ 1000

db4 0.602 0.532 0.663
db6 0.554 0.468 0.577
db8 0.479 0.398 0.526
db10 0.438 0.343 0.471

The results of Table 4.1 provide some indication that it may be advantageous to use an

optimal bin selector. In particular, when estimating near the origin and using a binwidth

too small, the estimated Lévy density ‘falls off’ as |x| → 0. This may be explained by the

fact that in simulations the bin nearest to the origin contains not enough observations,

when there are too many bins. On the other hand, if the binwidth of the bin nearest to

the origin is too large and might drag the blow-off effect at the origin into regions where

this effect has actually vanished. The second result of Table 4.1, which is well known from

the properties of wavelets, is that, for a smooth underlying density, smoother wavelets

do perform better.

Figure 4.7 depicts the end-of-day price and returns series of the S&P 500 index from

01/02/1990 to 11/30/2011. Seneta (2004) provided an extensive study of the variance

gamma process applied to financial data. Recently, Aït-Sahalia and Jacod (2011) devel-

oped a procedure to nonparametrically test whether a Lévy process has finite or infinite

activity.

Panel (a) of Figure 4.8 depicts the block-thresholded wavelet density estimator from

Section 3.2 along with the underlying histogram constructed from the model selection

approach of Section 2.6 for nonparametrically estimating the Lévy density of the 15-

seconds returns of the S&P 500 index. First, note that there is clear evidence for ‘small’

positive returns to have a higher arrival rate than their negative counterparts, which is

an indication of asymmetry. However, there does not seem to be a significant difference

between the wavelet estimator and the histogram, which might indicate that the former

does not yield much of an improvement upon the latter, except that the wavelet estimator

smooths the roughness of the histogram, as expected. This view is substantiated by Panel

(b) of Figure 4.8 which zooms in at the area around the origin.

Figure 4.9 is analogous to Figure 4.8, except that the wavelet density estimator was

replaced by a kernel density estimator which was scaled by the number of observations.
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Figure 4.7: S&P 500 Index and Returns Series
This figure depicts daily series of the S&P 500 from Jan 02, 1990 to Nov 30, 2011. The upper
panel displays the level series St. The lower panel displays the corresponding (continuously
compounded) returns rt :=

[
ln(St) − ln(St−1)

]
· 100%.

Note that although the data set consists of high-frequency observations (tick data), the
panels show daily observations only. The reason for this is that at the beginning of the
sample period, the S&P 500 was computed at a lower sampling frequency. Without daily
aggregation, the time axes would be stretched out on the right-hand side.
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The asymmetry of the arrival rate of ‘small’ jumps seems to be less pronounced than

for the wavelet estimator. Moreover, the kernel estimator seems to have a harder time

of gauging the overall arrival rate of ‘small’ jumps. This could be taken as an indica-

tion in favor of using the proposed approach for estimating Lévy densities with high

arrival rates. Finally, note that another advantage of the wavelet estimator is that it is

much faster to compute than the kernel density estimator. The 15-second returns series

contained 4393337 observations, which increased the computational time of the kernel

density estimator by a factor of 270 relative to the computational time of the wavelet

estimator.
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Figure 4.8: Wavelet Density Estimator for S&P 500 Returns
This figure illustrates the block-thresholded wavelet density estimator from Section 3.2 along
with the underlying histogram constructed from the model selection approach of Section 2.6
for nonparametrically estimating the Lévy density of the 15-seconds returns of the S&P 500
index. Panel (a) shows the estimators on the whole support of the sampled returns, while
Panel (b) zooms in at the areas around the origin.
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4.2 Lévy-Driven Ornstein-Uhlenbeck Processes

Volatility modeling is an important ingredient for many branches of finance such as, for

example, risk management and derivative pricing. In particular, dynamic and distribu-

tional aspects of volatility are the primary objects of interest. First attempts to tackle

this problems were purely parametric such as the classical ARCH (Engle, 1982) and

GARCH (Bollerslev, 1986) models or the stochastic volatility model (Hull and White,

1987; Heston, 1993).
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Figure 4.9: Kernel Density Estimator for S&P 500 Returns
This figure compares the histogram constructed from the model selection approach of Sec-
tion 2.6 to a kernel density, estimator which was scaled by the number of observations, for
the problem of nonparametrically estimating the Lévy density of the 15-seconds returns of
the S&P 500 index. Panel (a) shows the estimators on the whole support of the sampled
returns, while Panel (b) zooms in at the areas around the origin.
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Recently, the surge in computational power and the availability of high-frequency fi-

nancial data paved the way for nonparametric estimation of (stochastic) volatility. See,

for example, Andersen and Benzoni (2009) and Barndorff-Nielsen and Shephard (2002).

In financial applications, interest often centers on daily volatility whose nonparametric

counterpart is the integrated (or cumulative) volatility over time period [0, T ], where T

equals one day. To be more precise, the integrated volatility (or variance) is defined

by

〈X,X〉T :=

∫ T

0

σ2
t dt ,
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where σt is the instantaneous (but latent) volatility, Xt := ln(St), and St is the price of

a financial asset. However, note that the term “integrated volatility” is only accurate for

models without jump component in the log-price equation, i.e.,

dXt = γt dt+ σt dWt .

In the presence of jumps, the variation of the increments due to jumps is also included in

〈X,X〉T . In this case, it is more appropriate to call 〈X,X〉T the quadratic variation

of Xt. Given a sample high-frequency observations of the log-price Xt on a discrete time

grid over one day T , i.e.,

0 = t0 < t1 < · · · < tn−1 < tn = T ,

with sampling frequency ∆n := max16i6n{ti − ti−1}, the sum of squared high-frequency

returns constitutes a sensible estimator for 〈X,X〉T . To be more precise, the realized

volatility is defined by

[X,X]T :=
∑

ti−1,ti∈[0,T ]

(Xti −Xti−1
)2 . (4.2.1)

The upper panel of Figure 4.10 depicts the daily realized volatility computed from the

tick data for the S&P 500 index from 01/02/1990 to 11/30/2011 shown in Figure 4.7.

The theoretical justification for (4.2.1) as an estimator of 〈X,X〉T is based upon The-

orem I.4.47 of Jacod and Shiryaev (2003) which shows that

[X,X]T
P−→ 〈X,X〉T

as n → ∞ such that ∆n → 0. Put differently, the estimation error of [X,X]T vanishes

as the sampling frequency increases. Unfortunately, computing and plotting [X,X]T

for increasing sample frequency leads to a picture (the so-called signature plot) where

the realized volatility shows no tendency to converge or stabilize. Indeed, for ∆n ց 0,

realized volatility seems to blow off for many financial assets.

The explanation for this phenomenon is that the efficient price process Xt is not di-

rectly observable at high sampling frequencies, but that we are only able to observe the

transaction price process Yt which is contaminated by some noise component ǫt:

Yti
︸︷︷︸

transaction price

(observable)

= Xti
︸︷︷︸

efficient price

(unobservable)

+ ǫti
︸︷︷︸

market micro-

structure noise
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Figure 4.10: Realized Volatility of S&P 500 Index
This figure depicts ana analysis of the daily realized volatility of the S&P 500 from Jan 02,
1990 to Nov 30, 2011. The upper panel contained the time series of the realized volatility
based upon the (continuously compounded) returns rt :=

[
ln(St)− ln(St−1)

]
·100% displayed

in the lower panel of Figure 4.7. The lower panel shows the signature plot of the realized
volatility of Nov 30, 2011.
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The noise component ǫt subsumes many factors known as market microstructure

effects such as “bid-ask bounces, discreteness of price changes, differences in trade sizes

or informational content of price changes, gradual response of prices to a block trade,

the strategic component of the order flow, inventory control effects, etc.” (Aït-Sahalia,

2007).

As a quick fix to the problem induced by market microstructure noise, Andersen, Boller-

slev, Diebold, and Labys (2001) proposed to sample the data at a lower frequency, say 5

minutes, for which the signature plot shows that the realized volatility has settled on a

stable level. However, as this sparse-sampling scheme implies that most the data will be

discarded, more sophisticated procedures were suggested in order to correct for market

microstructure noise. See, for example, Aït-Sahalia, Mykland, and Zhang (2005), Zhang,
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Mykland, and Aït-Sahalia (2005), and Zhang (2006).

To check whether there is a need to apply one of these noise correction procedures, the

lower panel of Figure 4.10 depicts the realized volatility of S&P 500 index on 11/30/2011

computed for varying sampling frequencies.3 Clearly, the realized volatility does not

exhibit any diverging behavior for increasing sample frequencies 1/∆n.

Next, let us take a look at what empirical evidence was found on the relationship be-

tween volatility and jumps. For example, Eraker, Johannes, and Polson (2003) estimated

a parametric stochastic volatility model via maximum likelihood and found strong sup-

port for the hypothesis of jumps in the price and volatility series of the S&P 500 and the

Nasdaq 100.

Wu (2011) used the realized volatility (4.2.1) in order to estimate the volatility of the

S&P 500 index nonparametrically and found evidence for jumps in volatility. Moreover,

the arrival rate of jumps is very high and proportional to the level of volatility.

In another study, Todorov and Tauchen (2011) analyzed the volatility index VIX com-

puted by the Chicago Board of Options Exchange from close-to-maturity options written

on the S&P 500 index. Consequently, the VIX is often interpreted as the market’s

risk-neutral expectations of future volatility extracted from implied volatilities. In their

analysis, the authors used a generalized version of the (Blumenthal and Getoor, 1961)

index (Aït-Sahalia and Jacod, 2009a; Todorov and Tauchen, 2010) which can be directly

related to the stability index of α-stable processes. Their results suggest that the VIX

is driven by ‘small’ and ‘large’ jumps. On the one hand, the existence of ‘large’ jumps

require the inclusion of a jump component per se in any sensible model of the VIX. On

the other hand, although ‘small’ jumps arrive at a high intensity that rate is not high

enough to favor the inclusion of a continuous component.

As we have already argued in the Preface, simple Lévy processes are suitable models

for unconditional (or marginal) phenomena of financial returns distributions, but they

fail when it comes to reproducing or explaining conditional (or dynamic) phenomena of

financial returns. Recall that the most important stylized facts about the dynamics of

financial returns are volatility clustering, leverage, and long memory. Fortunately, there

is still some scope for building more realistic models using pure-jump Lévy processes.

Barndorff-Nielsen and Shephard (2001) proposed a continuous-time stochastic volatility

model for a security price St = S0exp(Xt), where the volatility process σ2
t follows a

weighted sum of independent Ornstein-Uhlenbeck processes σ2
t,j , each of which has an

3We have picked a day from the end of the sample since they have the largest amount of data compared
to days from the beginning of the sample period.
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independent background driving Lévy process Zt,j :

dXt = (µ+ βσ2
t ) dt+ σt dWt +

m∑

j=1

̺j dZ̄t,j

σ2
t =

m∑

j=1

wjσ
2
t,j (4.2.2)

dσ2
t,j = −λjσ

2
t,j dt+ dZt,j ,

where Z̄t,j = Zt,j − E[Zt,j ],
∑m

j=1wj = 1, and wj, λj > 0 for all j = 1, . . . , m. The

parameter µ > 0 can be interpreted as the risk-free rate, while β > 0 can be interpreted

as the risk premium. The parameters ̺j < 0 control the degree of leverage effect, whereas

the parameters λj > 0 control the speed of mean-reversion. The weights wj control

the persistence of volatility. In particular, long-range dependence, i.e., long memory, is

obtained for m→ ∞.

Besides the Wiener process Wt, the model dynamics is driven by Lévy processes Zt,j ,

which are defined to have no drift and no diffusion component. In order to rule out

negative volatilities, they are additionally required to be pure-jump Lévy processes with

non-negative increments. Thus, the Zt,j’s correspond to subordinators in the sense of

Definition 1.14. Interestingly, it can be shown that the distribution of log-returns tends to

the normal distribution when the time interval, on which returns are computed, increases.

Thus, this model even provides an explanation of aggregational normality.

In the sequel, we work with a simplified model, since the superposition of factor volatil-

ities in (4.2.2) is more involved and analytically less tractable. To this end, Barndorff-

Nielsen and Shephard (2001) proposed a one-factor Ornstein-Uhlenbeck process for mod-

eling stochastic volatility:

dσ2
t = −λσ2

t + dZλt , (4.2.3)

whose strong solution is given by

σ2
t = e−λtσ2

0 +

∫ t

0

e−λ(t−s)dZλs . (4.2.4)

Note that replacing the usual time index t by λt guarantees that the marginal (or sta-

tionary) law of σ2
t does not depend upon the parameter λ. Moreover, it can be shown

that, for λ > 0, this process is indeed mean-reverting and strongly stationary.

Jongbloed and van der Meulen (2006) proposed a parametric estimator of discretely

sampled subordinators and Ornstein-Uhlenbeck processes with background driving Lévy

processes. Their estimator is based upon M-estimation of the cumulant function. The
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same problem was considered by Jongbloed, van der Meulen, and van der Vaart (2005).

However, their approach was nonparametric since the measure of the background driv-

ing Lévy process is related to the stationary law of Ornstein-Uhlenbeck process via its

empirical characteristic function.

Simulations of Ornstein-Uhlenbeck process with background driving Lévy process can

be implemented via its strong solution (4.2.4) or directly via an Euler-Maruyama dis-

cretization scheme of (4.2.3). The Lévy-driven Ornstein-Uhlenbeck processes of Barndorff-

Nielsen and Shephard (2001) are constructed in such a way that their marginal (or sta-

tionary) laws are predetermined. Probably, the simplest of these non-Gaussian Ornstein-

Uhlenbeck models is the Γ(α, β)-Ornstein-Uhlenbeck model, which has a Γ(α, β) marginal

law. Then, the subordinator is simulated as a compound Poisson process (1.1.4) with

Lévy measure ν(dx) = αλExp(β) dx. Figures 4.11 and 4.12 illustrates simulated sample

paths of the Γ(α, β)-Ornstein-Uhlenbeck process (4.2.3) for low and high λ, respectively.

The subordinators in the Barndorff-Nielsen and Shephard (2001) model may have in-

finite activity but only with finite variation. The latter property is somewhat at odds

with one result of Todorov and Tauchen (2011) which favors subordinators with infinite

variation.

The dynamics of σ2
t are be summarized as follows: Upward movements of σ2

t are solely

due to the jumps originating from the subordinator Zλt, while the effects of these jumps

die out exponentially fast at the rate λ due to the mean-reversion of σ2
t . This property

motivates the estimation of the Lévy density of the driving subordinator by considering

the positive increments of realized volatility. Of course, this correspondence is only ac-

curate for continuous-time sampling. Thus, we need a consistency argument based upon

in-fill asymptotics to warrant our estimation approach to be valid.

Although Eraker, Johannes, and Polson (2003) and Todorov and Tauchen (2011) sug-

gested that there are jumps in the price series and, thus, [X,X]T contains a component

induced by jump variation, it would nevertheless be possible to nonparametrically dis-

entangle the integrated variance from the jump variation using the notion of bipower

variation (Barndorff-Nielsen and Shephard, 2004, 2006). We leave this for future re-

search.

We now look at the results of a small simulation study where used the Γ(1.5, 0.5)-

Ornstein-Uhlenbeck model of Figure 4.12 with λ = 0.1 using the setup of Section 4.1.

The results, summarized in Table 4.2, are similar to those of the simulation study in

Section 4.1 yielding analogous conclusions and, therefore, omitted.

Figure 4.13 depicts the block-thresholded wavelet density estimator from Section 3.2
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Figure 4.11: Sample Paths of Levy-Driven Ornstein-Uhlenbeck Processes (a)
This figure depicts simulated paths of the Lévy-driven Ornstein-Uhlenbeck process (4.2.3)
and the respective subordinators for differing parameter values of α and β, while λ = 0.01
is kept constant. The step size (or simulation frequency) is fixed at ∆t := ti − ti−1 = 10−3

for all i = 1, . . . , 1000 with t0 = 0. The same seed for pseudo-random number generation
is used along panel rows. The initial value X0 is is equated to its mean αβ. The sampling
interval is scaled down to [0, 1].
Clearly, increasing α increases the jump intensity, while increasing β increases the jump
sizes. Obviously, these effects are to be expected from the structure of the Γ(α, β)-Ornstein-
Uhlenbeck model.
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along with the underlying histogram constructed from the model selection approach of

Section 2.6 for nonparametrically estimating the Lévy density of the subordinator of

the daily realized volatility of the S&P 500 index. The analysis and the comparison

to the corresponding kernel density estimator depicted in Figure 4.14 is analogous and,

therefore, omitted.
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Figure 4.12: Sample Paths of Levy-Driven Ornstein-Uhlenbeck Processes (b)
This figure depicts simulated paths of the Lévy-driven Ornstein-Uhlenbeck process (4.2.3)
and the respective subordinators. The simulation setup is exactly the same as in Figure 4.11,
expect that now λ = 0.1.
All effects are qualitatively analogous to Figure 4.11, when taking into account that increas-
ing λ increases the jump intensity.
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Table 4.2: Simulation Results for Lévy-Driven Ornstein-Uhlenbeck Model
This table shows the integrated squared errors ISE. The number N denotes the number of
bins used in the construction of the preliminary histogram estimators. N∗ corresponds to
the optimal value m̂ (2.6.4). For the wavelet bases, the Daubechies (1988) class is used,
where the corresponding number characterizes the degree of smoothness.

N
25 N∗ 1000

db4 0.751 0.632 0.728
db6 0.704 0.609 0.693
db8 0.656 0.587 0.637
db10 0.615 0.510 0.598
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Figure 4.13: Wavelet Density Estimator for S&P 500 Realized Volatility
This figure illustrates the block-thresholded wavelet density estimator from Section 3.2 along
with the underlying histogram constructed from the model selection approach of Section 2.6
for nonparametrically estimating the Lévy density of the subordinator of the daily realized
volatility of the S&P 500 index. Panel (a) shows the estimators on the whole support of the
sampled returns, while Panel (b) zooms in at the areas around the origin.
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Figure 4.14: Kernel Density Estimator for S&P 500 Realized Volatility
This figure compares the histogram constructed from the model selection approach of Sec-
tion 2.6 to a kernel density, estimator which was scaled by the number of observations, for
the problem of nonparametrically estimating the Lévy density of the subordinator of the
daily realized volatility of the S&P 500 index. Panel (a) shows the estimators on the whole
support of the sampled returns, while Panel (b) zooms in at the areas around the origin.
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Outlook

Finally, we point out some further directions which could be pursued in future work to

complement or extend what has been done up to now.

One well-known problem of orthogonal projection estimators of density functions is

that they may be negative and/or not integrate to one in small samples. Glad, Hjort,

and Ushakov (2003) proposed some easy-to-implement post-processing remedies to these

problems. Instead of ex-post corrections, there are essentially two approaches which

correct for the shortcomings of orthogonal projection estimators at the outset.

The first one is based on the idea to estimate a transformation of the original density

function. For example, Pinheiro and Vidakovic (1997) considered the estimation of the

square root of the density function via wavelets. Another example is Song (2010) who

estimated the log density function via wavelets. This approach is an extension of Kim

and Koo (2002) who used information projection on an orthonormal wavelet basis with

shrinkage to estimate the intensity function of an inhomogeneous Poisson process. Here,

it would be interesting to derive analytical results for thresholded estimators and to

compare their relative performance in a simulation study.

The second approach is based on the idea that a shape-preserving estimator of a density

function can be implemented by using two different sets of wavelet basis functions. While

the first set is used for decomposition and the second one for reconstruction, both sets

are not mutually orthogonal. That is why these basis functions are called biorthogonal

(Cohen, Daubechies, and Feauveau, 1992). An interesting point to note is that biorthog-

onal wavelets are essentially equivalent to B-splines and, therefore, particularly easy to

implement as their ‘basis functions’ are explicitly given. Cosma, Scaillet, and von Sachs

(2007) proposed a density estimator based on biorthogonal wavelets by using the ap-

proach of Dechevsky and Penev (1997, 1998). Again, it would be interesting to transfer

this approach to the estimation of Lévy density using threshold rules. In this respect,

the recent approach of Reynaud-Bouret and Rivoirard (2010) seems to be closely related

and most straightforwardly to extend.

113
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Another direction of future research could be the development of functional central

limit theorems for the use in deriving confidence sets and goodness-of-fit procedures

for wavelet-based Lévy density estimators. For example, Figueroa-López (2011) derived

Sieve-based confidence bands for Lévy densities based on orthogonal projections, whereas

Giné and Nickl (2009) derived Donsker theorems for wavelet-based density estimator.

In Section 2.1, we considered the risk based on the L2-loss as a global measure for

estimation precision. For measuring of local accuracy of an estimator at a point x0, the

expected (pointwise) squared error loss at x0 is used

R
((
f̂(x0) − f(x0)

)2
)

= E
[ (
f̂(x0) − f(x0)

)2
]

.

Chicken and Cai (2005) proved that thresholding based on blocks of order logn are simul-

taneously adaptively rate-optimal (over the usual function spaces) in the global and local

sense. This is in contrast to the original order (logn)2 of block lengths proposed by Hall,

Kerkyacharian, and Picard (1999) which is too large to be locally adaptive. These results

were derived for probability density estimation, and an extension to Lévy densities would

complete the results of Section 3.2.

Finally, note that, in Section 4.2, we only considered a simplified version of the Lévy-

driven Ornstein-Uhlenbeck model favored by Barndorff-Nielsen and Shephard (2001). As

already mentioned in Section 4.2, in order to capture the stylized fact of long memory in

volatility, a combination of Lévy-driven Ornstein-Uhlenbeck volatilities were considered

by Barndorff-Nielsen and Shephard (2001). In this model, it would be interesting to have

a method for nonparametric identification and estimation of a mixture of Lévy subor-

dinators. Corsi (2009) provided a possible economic interpretation for factors driving

volatility.
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A.1 Review of Relevant Probability Theory

This section is based upon the monographs of Dudley (2002), Fristedt and Gray (1997),

and Kallenberg (2002).

Definition A.1 (Radon measure) A measure µ on a Borel σ-field F is a Radon

measure, if µ(C) <∞, for every compact set C ∈ F .

Theorem A.2 (Radon-Nikodým) Let µ and ν be σ-finite measures on a measurable

space (Ω,F ). ν ≪ µ if and only if there exists a non-negative measurable function f

such that, for any A ∈ F ,

ν(A) =

∫

A

f dµ .

The function f is (µ-a.e.) unique. Let f be integrable with respect to µ, and define

ν(A) =
∫

A
f dµ. Then, ν is a signed measure.

Definition A.3 (Fourier Transform) Let f ∈ L1(R). The Fourier transform of f is

defined by

f ∗(u) = F
[
f(x)

]
:=

1√
2π

∫ ∞

−∞
e−iuxf(x) dx .

Sometimes the Fourier transform is stated without the factor 1/
√

2π and/or the minus

sign in the exponent, i.e.,
∫∞
−∞ eiuxf(x) dx, which does not change anything in the theory

of the Fourier transform.

The primary tool for characterizing and analyzing the laws of Lévy processes are the

characteristic functions of their distributions, which are closely related to the Fourier

transform of Definition A.3. For more details on the Fourier transform and its relation

to the characteristic function, see the monographs of Kawata (1972) and Lukacs (1970).

Definition A.4 (Characteristic Function) The characteristic function ΦX(u) of an

R-valued random variable X (or of its probability law PX) is defined by the C-valued

function

ΦX(u) :=

∫

R

eiuxPX(dx) = E
[
eiuX

]
= E[ cos(uX) ] − i E[ sin(uX) ] ,

for all u ∈ R, with complex number i =
√
−1.

Characteristic functions always exist and are finite. The characteristic function of a

random variable X allows for straightforward computation of the pth moment of X (if it
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exists) by introducing the notion of the pth cumulant of X:

κp :=
1

ip
dp
[
lnΦX(u)

]

dup

∣
∣
∣
∣
∣
u=0

. (A.1.1)

For instance, the first four moments of X (if they exist) read as follows:

E[X ] = κ1 (A.1.2)

Var[X ] = κ2 (A.1.3)

skewness[X] =
κ3

κ
3/2
2

(A.1.4)

excess kurtosis[X] =
κ4

κ2
2

. (A.1.5)

For positive random variables, there is an alternative to the characteristic function,

which is often easier to work with, as we will see later on at the end of this section.

Definition A.5 (Laplace Transform) The Laplace transform Φ+
X(z) of an R+-valued

random variable X (or of its probability law PX) is defined by the R+-valued function

Φ+
X(z) :=

∫ ∞

0

e−zxPX(dx) = E
[
e−zX

]
,

for all z > 0.

There are two relationships which interrelate the Fourier transform and the Laplace

transform:

ΦX(u) = Φ+
X(−iu) (A.1.6)

Φ+
X(z) = ΦX(iz) . (A.1.7)

However, although the Fourier transform always exists, the Laplace transform may not be

extendable to an analytical function in the complex plane. Thus, the crucial condition for

these relations to hold is analytical continuation. See also Sato (1999, p. 10) or Fristedt

and Gray (1997, p. 219).

A stochastic process is a collection X =
{
Xt(ω) ∈ E : ω ∈ Ω, t > 0

}
is defined

on a complete stochastic basis
(
Ω,F , {Ft}t>0, P

)
where, as usual, Ω is a sample space,

F is a σ-field of subsets of Ω, Ft is a filtration of F , and P is a positive probability

measure in (Ω,F ). For any time point t, the corresponding random variable in {Xt}t>0

is a (F , E )-measurable mapping Xt : Ω → E, where (E, E ) is a measurable space, where
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we will be suppressing the dependence of Xt on ω when no ambiguity is involved. In the

sequel, we will be considering state space E = R only.

Definition A.6 (Càdlàg Function) A function f : [0, 1] → R is càdlàg, if

C1 f is right-continuous, i.e., for all 0 6 x0 6 1,

f(x0+) := lim
xցx0

f(x) = f(x0) <∞

C2 and has left limits, i.e., for all 0 < x0 6 1,

f(x0−) := lim
xրx0

f(x) <∞ .

The space of all càdlàg function on [0, 1] is denoted by D[0, 1].

We now turn to the most relevant sort of stochastic processes with respect to our

purposes: point processes. A classical account on point processes is Kingman (1993).

A sequence {τn}n∈N of strictly increasing points, i.e., 0 < τ1 < τ2 < · · · with τn → ∞
as n → ∞, is a simple point process. When {τn}n∈N is interpreted as points in time,

which indicate the occurrence of some pre-specified event, say B, it is usually assumed

that τ0 := 0. Thus, the notion ‘event’ should not be confused with ω ∈ Ω, but rather

deemed to be some primitive event like, for example, a stock order arriving at a market

maker. The attribute ‘simple’ indicates that these events occur sequentially and not

simultaneously. Consequently, when considering some fixed τn, we speak of it as the nth

arrival time, i.e., the time when the nth event occurs.

If {τn}n∈N is a sequence of random variables, i.e., random times, then it is called

a random point process. For all n ∈ N, the nth inter-arrival time is defined as

Tn := τn − τn−1 such that the nth arrival (or jump) time is simply the partial sum

τn = T1 + · · · + Tn of the first n inter-arrival times.

If we define Nt := max{n : τn 6 t} with N0 := 0 as the number of points of {τn}n∈N

falling into the time interval (0, t], then {Nt}t>0 is the counting process for {τn}n∈N.

Obviously, the sample paths of a counting process are integer-valued, non-negative, and

non-decreasing. Likewise, the increment N∆t := Nt+∆t −Nt of a counting process equals

the number of events occurring in the corresponding time interval (t, t+ ∆t].

A Poisson process {Nt}t>0 with rate (or intensity) 0 < λ < ∞ is a counting process

satisfying the following properties:

(P1) N0 = 0.
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(P2) {Nt}t>0 has stationary and independent increments N∆t for all ∆t > 0.

(P3) For all ∆t→ 0,

P (N∆t = 1) = λ∆t+ o(∆t) ⇐⇒ lim
∆t→0

P (N∆t = 1)

∆t
= λ

P (N∆t > 2) = o(∆t) ⇐⇒ lim
∆t→0

P (N∆t > 2)

∆t
= 0 .

Property (P1) is the usual normalization. Property (P2) states that the distribution

of N∆t is the same for all ∆t > 0 and independent of t and, on the other hand, that

the number of events in disjoint time intervals are independent. Note that the Poisson

process is the only simple point process with stationary and independent increments.

Finally, Property (P3) rules out simultaneous occurrences of event B. On the one hand,

the probability that precisely one event B occurs in an arbitrarily small time interval

of length ∆t is approximately proportional to ∆t with proportionality factor λ. On the

other hand, the probability of two or more events B to occur in an arbitrarily small time

interval of length ∆t is negligible (i.e., of order ∆t) relative to the probability of one event

B to occur.

Interestingly, there are two alternative definitions of Poisson processes which are equiv-

alent to the one given above, and which shed some light on further properties of Poisson

processes. The first of these definitions reveals the reason why we speak of ‘Poisson’

processes:

(P1’) N0 = 0.

(P2’) {Nt}t>0 has independent increments N∆t for all ∆t > 0.

(P3’) The increments N∆t follow a Poisson distribution, i.e., N∆t
d
= Poi(λ∆t), or for

n = 0, 1, 2, . . .,

P (N∆t = n) =
(λ∆t)n

n!
e−λ∆t .

This definition relaxes Property (P2), and in turn, puts restriction (P3’) on the incre-

ments which is more stringent than stationarity. Moreover, Property (P3’) implies (P3).

Property (P3’) states that the number of events occurring in any finite time interval of

length ∆t is Poisson distributed with mean E[N∆t ] = λ∆t and Var[N∆t ] = λ∆t. Conse-

quently, the arrival rate equals the mean rate of occurrence of event B (per unit of time),

i.e., Nt
d
= Poi(λt) implies

λ =
E[Nt ]

t
.
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The second alternative definition of Poisson processes uses an equivalence relation be-

tween the distribution of the number of occurrences P (Nt > n) and the distribution of

the corresponding arrival times P (τn 6 t). To see this, note that Properties (P2’) and

(P3’) imply

P (T1 > t) = P (τ1 − τ2 > t) = P (τ1 > t) = P (Nt < 1) = P (Nt = 0) = P (Nt −N0 = 0)

= e−λt .

Put differently, the probability of not observing the first occurrence of event B decays

exponentially fast, i.e., the time interval T1 until the first occurrence is Exp(λ)–distributed.

Due to Property (P2’), this result can be generalized: The inter-arrival times {Tn}n∈N of

a Poisson process are independent and identically distributed as

P (Tn > t) = e−λt ⇐⇒ P (Tn 6 t) = 1 − e−λt ,

for all t > 0. As E[Tn ] = 1/λ for 0 < λ <∞, we see that increasing the intensity λ of a

Poisson process decreases the inter-arrival times, and thus, increases the activity of the

process. As a very basic result in probability theory, the partial sum of n independent

Exp(λ)-distributed random variables is Gamma distributed, see (4.1.1), such that the nth

arrival time τn follows the probability law Gam(n, λ−λ). Put together, the properties of

the definition read as:

(P1”) For any ω ∈ Ω, the sample paths of {Nt}t>0 are non-negative step functions with

jump size 1.

(P2”) The inter-arrival times {Tn}n∈N are independent and Exp(λ)–distributed, i.e.,

P (Tn > t) =







e−λt for t > 0

1 for t < 0.

Property (P2”) has two important implications: First, as is well known, the exponential

distribution is the only continuous distribution which is memoryless, i.e., if T d
= Exp(λ),

then

P
(
T > t+ s

∣
∣T > s

)
= P (T > s) .

This memoryless property along with the independence of inter-arrival times leads to the

conclusion that the increments of such a process are stationary and independent. The

second implication is that, given any finite time interval (0, t], the location of jumps are

uniformly distributed on (0, t]. To see this, assume that exactly one event has occurred in
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(0, t]. Next, divide (0, t] into a finite number of sub-intervals of equal length. Then, due

to the stationarity and independence of the increments, the probability that the event

has occurred in any of these sub-intervals is the same, i.e., uniform. This is indeed the

fundamental insight for simulating a Poisson process: Conditional on the number Nt of

jumps which have occurred with law Poi(λt) on some given time interval (0, t], the arrival

times τ1, . . . , τNt
have the same distribution as the order statistics of Nt independent

random variables which follow a uniform distribution on (0, t].

The characteristic function of a Poisson process {Nt}t>0 with intensity 0 < λ <∞
follows directly from the knowledge of its marginal law Nt

d
= Poi(λt) and a simple Taylor

series expansion:

Φt(u) = E
[
eiuNt

]
=

∞∑

n=0

eiunP (Nt = n)

=
∞∑

n=0

eiun (λt)n

n!
e−λt = e−λt

∞∑

n=0

(λteiu)n

n!

= e−λt

(

1 +
λteiu

1!
+

(λteiu)2

2!
+ · · ·

)

= e−λtexp(λteiu) = exp
{
λt(eiu − 1)

}

= exp
{
tΨ(u)

}
,

where Ψ(u) = λ(eiu − 1) is the characteristic exponent of a Poisson random variable.

Obviously, Nt is infinitely divisible.

An important concept in the context of Poisson processes is the notion of compen-

sation. Roughly speaking, compensation boils down to the operation of de-meaning. A

compensated Poisson process Ñt is a Poisson process Nt adjusted to be a martingale with

independent and stationary increments:

Ñt ≡ Nt − E[Nt ] = Nt − λt .

The characteristic function of a compensated Poisson process {Ñt}t>0 is derived

as follows:

Φt(u) = E
[

eiuÑt

]

= E
[
exp
{
iu(Nt − λt)

} ]

=

∞∑

n=0

E
[

exp
{
iu(Nt − λt)

}
∣
∣
∣Nt = n

]

P (Nt = n)

=
∞∑

n=0

eiu(n−λt)P (Nt = n) =
∞∑

n=0

eiu(n−λt) (λt)
n

n!
e−λt
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= e−λte−λtiu
∞∑

n=0

(λteiu)n

n!
= e−λt(1+iu)exp(λteiu) = exp

{
tλ(eiu − 1 − iu)

}

= exp
{
tΨ(u)

}
,

where Ψ(u) = λ(eiu − 1 − iu) is the characteristic exponent of a compensated Poisson

process Ñt.

Based on the law of total probability and assuming ΦX(u) = E
[
eiuX

]
to be the charac-

teristic function of X, we can easily derive the characteristic function of a compound

Poisson process SNt
in (1.1.4):

ΦSNt
(u) = E

[
eiuSNt

]
=

∞∑

n=0

E
[
eiuSNt

∣
∣Nt = n

]
P (Nt = n)

=

∞∑

n=0

E

[

exp

{

iu

∞∑

k=0

Xk

}∣
∣
∣
∣
∣
Nt = n

]

P (Nt = n)

=
∞∑

n=0

E
[
exp
{
iu(X1 + · · ·+Xn)

} ]
P (Nt = n)

=
∞∑

n=0

E
[
eiuX1 · · · eiuXn

]
P (Nt = n) =

∞∑

n=0

E
[
eiuX1

]
· · ·E

[
eiuXn

]
P (Nt = n)

=
∞∑

n=0

ΦX(u) · · ·ΦX(u)
︸ ︷︷ ︸

n-times

P (Nt = n) =
∞∑

n=0

[
ΦX(u)

]n (λt)n

n!
e−λt

= e−λt

∞∑

n=0

[
λtΦX(u)

]n

n!
= e−λt

(

1 +
λtΦX(u)

1!
+

[
λtΦX(u)

]2

2!
+ · · ·

)

= e−λtexp
{
λtΦX(u)

}
= exp

{

λt
[
ΦX(u) − 1

]}

= exp
{

λtE
[
eiuX − 1

]}

= exp

{

λt

∫

R\{0}
(eiux − 1)F (dx)

}

= exp

{

t

∫

R\{0}
(eiux − 1)λF (dx)

}

= exp
{
tΨ(u)

}
,

where Ψ(u) =
∫

R\{0}(e
iux−1)λF (dx) is the characteristic exponent of a compound Poisson

process.

Before deriving the characteristic function of a compensated compound Poisson

process, we first derive the expectation and variance of a compound Poisson process.

Assuming µX := E[X ] < ∞ and using the law of iterated expectations, the expectation

of a compound Poisson process SNt
is

E[SNt
] = E

[
E
[
SNt

∣
∣Nt

] ]
= E

[

E

[
Nt∑

k=1

Xk

∣
∣
∣Nt

]]

= E

[
Nt∑

k=1

E[Xk ]

]
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= E

[
Nt∑

k=1

E[X ]

]

= E[NtE[X ] ] = E[Nt ] E[X ] = λtE[X ] ,

while we use the law of total variance in order to derive its variance

Var[SNt
] = E

[
Var
[
SNt

∣
∣Nt

] ]
+ Var

[
E
[
SNt

∣
∣Nt

] ]
= E

[

Var

[
Nt∑

k=1

Xk

∣
∣
∣Nt

]]

+ Var[NtE[X ] ]

= E

[
Nt∑

k=1

Var[X ]

]

+ Var[Nt ] E[X ]2 = E[NtVar[X ] ] + λtE[X ]2

= E[Nt ] Var[X ] + λtE[X ]2 = λt
{
Var[X ] + E[X ]2

}

= λtE
[
X2
]
.

The characteristic function of a compensated compound Poisson process S̃Nt
in (1.1.6) is

derived as follows:

ΦS̃Nt
(u) = E

[

eiuS̃Nt

]

= E
[

exp
{

iu
(
SNt

− λtE[X ]
)} ]

=
∞∑

n=0

E

[

exp

{

iu
Nt∑

k=0

Xk − iuλtE[X ]

}
∣
∣
∣Nt = n

]

P (Nt = n)

= exp
{
− iuλtE[X ]

}
∞∑

n=0

E
[
eiuX1 · · · eiuXn

]
P (Nt = n)

= exp
{
− iuλtE[X ]

}
∞∑

n=0

[
ΦX(u)

]n (λt)n

n!
e−λt

= exp
{

− λt
(
1 + iuE[X ]

)}
∞∑

n=0

[
λtΦX(u)

]n

n!

= exp
{

− λt
(
1 + iuE[X ]

)}

exp
{
λtΦX(u)

}
= exp

{

λtE
[
eiuX

]
− 1 − iuE[X ]

}

= exp
{

λtE
[
eiuX − 1 − iuX

] }

= exp

{

t

∫

R\{0}
(eiux − 1 − iux)λF (dx)

}

= exp
{
tΨ(u)

}
,

where Ψ(u) =
∫

R\{0}(e
iux−1−iux)λF (dx) is the characteristic exponent of a compensated

compound Poisson process S̃Nt
.

The characteristic function of a gamma process {Xt}t>0 follows directly from the

knowledge of the characteristic function ΦX(u) of a gamma random variable X via the

gamma additivity property (4.1.2). Thus, it suffices to derive the characteristic function

of a gamma random variable. Since a gamma random variable is positive, we can apply

the Laplace transform of Definition A.5 for accomplishing this aim. From Definition A.5
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and the gamma density function fX(x;α, β) in (4.1.1), if follows that

Φ+
X(z) =

∫ ∞

0

e−zxfX(x;α, β) dx =
1

βαΓ(α)

∫ ∞

0

xα−1e−(z+1/β)x dx .

Using the change of variable y = (z + 1/β)x, we conclude

Φ+
X(z) =

(z + 1/β)−α

βαΓ(α)

∫ ∞

0

yα−1e−y dy

︸ ︷︷ ︸

=Γ(α)

= (1 + zβ)−α

such that

ΦX(u) = (1 − iuβ)−α (A.1.8)

by setting z = −iu for u < (iβ)−1. Finally, it follows from Conditions C2 and C3 of

Definition 1.1 and (4.1.2) that the characteristic function of a gamma process Xt reads

as

ΦXt
(u) = E

[
eiuXt

]
= (1 − iuβ)−αt . (A.1.9)

An alternative, yet extremely useful, representation of the characteristic function (A.1.8)

of a gamma random variable X is obtained by showing that

ln(1 + zβ) =

∫ ∞

0

e−x/β

∫ z

0

e−yx dy dx .

To this end, note that

∫ z

0

∫ ∞

0

e−(1/β+y)x dx dy =

∫ z

0

[

− 1

1/β + y
e−(1/β+y)x

]∞

0

dy =

∫ z

0

1

1/β + y
dy .

Using the change of variable x = 1/β + y, we arrive at

∫ ∞

0

e−x/β

∫ z

0

e−yx dy dx =
[
ln(1/β + y)

]z

0
= ln(1 + zβ) .

Thus, the Laplace transform of a gamma random variable X can be rewritten as

Φ+
X(z) = (1 + zβ)−α = exp

{
− αln(1 + zβ)

}

= exp

{

−α
∫ ∞

0

e−x/β

∫ z

0

e−yx dy dx

}

= exp

{

−α
∫ ∞

0

e−x/β

[

− 1

x
e−yx

]z

0

dx

}

= exp

{∫ ∞

0

(e−zx − 1)
α

x
e−x/β dx

}

.

Finally, by setting z = −iu, the characteristic function of a gamma random variable X
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reads

ΦX(u) = exp

{∫ ∞

0

(eiux − 1)
α

x
e−x/β dx

}

. (A.1.10)

Representation (A.1.10) of the characteristic function of a gamma random variable X

allows us to explicitly derive, via the cumulant formula (A.1.1) and formulae (A.1.2)–

(A.1.5), the first four moments of a gamma random variable. The mean

E[X ] = κ1 = αβ

of a gamma random variable X follows from

Ψ(u) = lnΦX(u) = α

∫ ∞

0

1

x

(
e(iu−1/β)x − e−x/β

)
dx

Ψ′(u) = iα

∫ ∞

0

e(iu−1/β)x dx

Ψ′(0) = iα

∫ ∞

0

e−x/β dx

κ1 =
1

i
Ψ′(0) = αβ .

The variance

Var[X ] = κ2 = αβ2

of a gamma random variable X follows from

Ψ′′(u) = −α
∫ ∞

0

xe(iu−1/β)x dx

Ψ′′(0) = −α
∫ ∞

0

xe−x/β dx = −α
{
[
−βxe−x/β

]∞
0

+

∫ ∞

0

βe−x/β dx

}

= −αβ2

κ2 =
1

i2
Ψ′′(0) = αβ2 ,

via integration by parts. The skewness

skewness[X] =
κ3

κ
3/2
2

=
2√
α

of a gamma random variable X follows from

Ψ(3)(u) = −iα

∫ ∞

0

x2e(iu−1/β)x dx

Ψ(3)(0) = −iα

∫ ∞

0

x2e−x/β dx = −iα

{
[
−βx2e−x/β

]∞
0

+

∫ ∞

0

2xβe−x/β dx

}

= −2iαβ3
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κ3 =
1

i3
Ψ(3)(0) = 2αβ3 ,

via integration by parts. The excess kurtosis

excess kurtosis[X] =
κ4

κ2
2

=
6

α

of a gamma random variable X follows from

Ψ(4)(u) = α

∫ ∞

0

x3e(iu−1/β)x dx

Ψ(4)(0) = α

∫ ∞

0

x3e−x/β dx = α

{
[
−βx3e−x/β

]∞
0

+

∫ ∞

0

3x2βe−x/β dx

}

= 6αβ4

κ4 =
1

i4
Ψ(4)(0) = 6αβ4 ,

via integration by parts.
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