Logo Logo
Help
Contact
Switch language to German
Etablierung eines Expressions- und Testsystems für Membranrezeptoren an Oozyten von Xenopus laevis. Anwendbarkeit für membranständige Steroidrezeptoren?
Etablierung eines Expressions- und Testsystems für Membranrezeptoren an Oozyten von Xenopus laevis. Anwendbarkeit für membranständige Steroidrezeptoren?
Entwicklungsbiologen haben vor über 25 Jahren festgestellt, daß Progesteron (PROG) die Fortsetzung der Reifeteilung an Xenopus Oozyten durch nicht-genomische Mechanismen an der Plasmamembran initiiert. Obwohl mehrere Publikationen dabei keine oder nur späte Veränderungen der intrazellulären Calciumkonzentration [Ca2+]i beschreiben, konnten Wasserman et al. an einigen Oozyten [Ca2+]i-Erhöhungen innerhalb der ersten Minute nach PROG-Zugabe beobachten. Diese Versuche sollten mit der Methode des Calcium Imaging reproduziert werden, wobei der Verlauf von [Ca2+]i durch Fluoreszenzmessung und dem Ca2+-Indikatorfarbstoff Fura-2 gemessen wurde. Dabei konnten innerhalb der ersten Minuten nach PROG-Zugabe keine Veränderungen von [Ca2+]i gefunden werden. Lysophosphatidylsäure (LPA) hingegen löste sehr zuverlässig Calcium-Signale aus. Durch Thrombin, Angiotensin II und Acetylcholin ausgelöste Effekte ließen sich, wenn auch seltener, ebenfalls zeigen. Xenopus Oozyten sind molekularbiologisch als eukaryontisches Expressionssystem nutzbar. Zur Etablierung des Expressions- und Testsystems wurde RNA in die Oozyten injiziert, die für den GnRH-Rezeptor kodiert. Nach erfolgreicher Expression steigt [Ca2+]i 1-3 Minuten nach der Rezeptorbindung über eine Aktivierung von Phospholipase Cb und das InsP3 System an. Auch bei Injektion von weniger als 0,5ng RNA pro Oozyte in das Zytosol konnte nach zwei Tagen, bei weniger als 0,15ng nach vier Tagen, ein schnelles Ca2+-Signal auf GnRH-Zugabe gesehen werden. Ebenso zeigten diese Effekte auch Oozyten, bei denen ein eukaryontischer GnRH-Rezeptor-Expressionsvektor in den Kern mikroinjiziert wurde, nicht aber unbehandelte Oozyten oder andere Negativkontrollen. An glatten Gefäßmuskelzellen (RSMC) kann in vitro eine schnelle Erhöhung von [Ca2+]i auf Aldosteron (ALDO) und an Spermatozoen auf PROG gezeigt werden. Zur Anwendung des Expressionssystems auf schnelle nicht-genomische Steroideffekte wurde einerseits aus diesen Zellen isolierte RNA in den Oozyten exprimiert, als auch RNA, welche für ein membranständiges Progesteron-bindendes Protein (mPR) kodiert. Durch Expression von RSMC-RNA konnte an Oozyten allerdings keine Calciumreaktion auf ALDO beobachtet werden; ebensowenig auf PROG durch Expression von RNA aus Mäusehoden oder mPR-RNA. Die hier vorgestellte Methode ist daher weniger geeignet zur Screening-Untersuchung bei der Expressionsklonierung zur Isolierung putativer Rezeptoren aus Genbanken oder Gesamt-RNA. Insgesamt handelt es sich jedoch um ein sehr gutes System, die Expression eines Rezeptors funktionell nachzuweisen; weitere Untersuchungen zur Rezeptoraktivierung, Signaltransduktion und topographischen Signalausbreitung lassen sich anschließen.
Aldosteron, Progesteron, Membraneffekte, Calcium, Fura
Reichert, Jörg
2003
German
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Reichert, Jörg (2003): Etablierung eines Expressions- und Testsystems für Membranrezeptoren an Oozyten von Xenopus laevis: Anwendbarkeit für membranständige Steroidrezeptoren?. Dissertation, LMU München: Faculty of Medicine
[thumbnail of Reichert_Joerg.pdf]
Preview
PDF
Reichert_Joerg.pdf

663kB

Abstract

Entwicklungsbiologen haben vor über 25 Jahren festgestellt, daß Progesteron (PROG) die Fortsetzung der Reifeteilung an Xenopus Oozyten durch nicht-genomische Mechanismen an der Plasmamembran initiiert. Obwohl mehrere Publikationen dabei keine oder nur späte Veränderungen der intrazellulären Calciumkonzentration [Ca2+]i beschreiben, konnten Wasserman et al. an einigen Oozyten [Ca2+]i-Erhöhungen innerhalb der ersten Minute nach PROG-Zugabe beobachten. Diese Versuche sollten mit der Methode des Calcium Imaging reproduziert werden, wobei der Verlauf von [Ca2+]i durch Fluoreszenzmessung und dem Ca2+-Indikatorfarbstoff Fura-2 gemessen wurde. Dabei konnten innerhalb der ersten Minuten nach PROG-Zugabe keine Veränderungen von [Ca2+]i gefunden werden. Lysophosphatidylsäure (LPA) hingegen löste sehr zuverlässig Calcium-Signale aus. Durch Thrombin, Angiotensin II und Acetylcholin ausgelöste Effekte ließen sich, wenn auch seltener, ebenfalls zeigen. Xenopus Oozyten sind molekularbiologisch als eukaryontisches Expressionssystem nutzbar. Zur Etablierung des Expressions- und Testsystems wurde RNA in die Oozyten injiziert, die für den GnRH-Rezeptor kodiert. Nach erfolgreicher Expression steigt [Ca2+]i 1-3 Minuten nach der Rezeptorbindung über eine Aktivierung von Phospholipase Cb und das InsP3 System an. Auch bei Injektion von weniger als 0,5ng RNA pro Oozyte in das Zytosol konnte nach zwei Tagen, bei weniger als 0,15ng nach vier Tagen, ein schnelles Ca2+-Signal auf GnRH-Zugabe gesehen werden. Ebenso zeigten diese Effekte auch Oozyten, bei denen ein eukaryontischer GnRH-Rezeptor-Expressionsvektor in den Kern mikroinjiziert wurde, nicht aber unbehandelte Oozyten oder andere Negativkontrollen. An glatten Gefäßmuskelzellen (RSMC) kann in vitro eine schnelle Erhöhung von [Ca2+]i auf Aldosteron (ALDO) und an Spermatozoen auf PROG gezeigt werden. Zur Anwendung des Expressionssystems auf schnelle nicht-genomische Steroideffekte wurde einerseits aus diesen Zellen isolierte RNA in den Oozyten exprimiert, als auch RNA, welche für ein membranständiges Progesteron-bindendes Protein (mPR) kodiert. Durch Expression von RSMC-RNA konnte an Oozyten allerdings keine Calciumreaktion auf ALDO beobachtet werden; ebensowenig auf PROG durch Expression von RNA aus Mäusehoden oder mPR-RNA. Die hier vorgestellte Methode ist daher weniger geeignet zur Screening-Untersuchung bei der Expressionsklonierung zur Isolierung putativer Rezeptoren aus Genbanken oder Gesamt-RNA. Insgesamt handelt es sich jedoch um ein sehr gutes System, die Expression eines Rezeptors funktionell nachzuweisen; weitere Untersuchungen zur Rezeptoraktivierung, Signaltransduktion und topographischen Signalausbreitung lassen sich anschließen.