Logo Logo

Hochschulschrift(en), die von Tresp, Volker begutachtet wurde(n)

Anzahl der Einträge: 18.

Liu, Yushan (2024): Machine learning with knowledge graphs for explainable Artificial Intelligence. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Sharifzadehgolpayegani, Sahand (2023): On the importance of symbol grounding and top-down processes in computer vision. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Frikha, Ahmed (2022): Deep knowledge transfer for generalization across tasks and domains under data scarcity: on intersections of anomaly detection, few-shot learning, continual learning, domain generalization and data-free learning. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Han, Zhen (2022): Relational learning on temporal knowledge graphs. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Gu, Jindong (2022): Explainability and robustness of deep visual classification models. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Wu, Zhiliang (2022): Representation learning for uncertainty-aware clinical decision support. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Berrendorf, Max (2022): Machine learning for managing structured and semi-structured data. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Hildebrandt, Marcel (2021): Reasoning on graph-structured data with deep-learning, path-based methods, and tensor factorization. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Ma, Yunpu (2020): Learning with relational knowledge in the context of cognition, quantum computing, and causality. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Zhao, Rui (2020): Deep reinforcement learning in robotics and dialog systems. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Huang, Yi (2020): Scalable statistical learning for relation prediction on structured data. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Baier, Stephan (2019): Learning representations for supervised information fusion using tensor decompositions and deep learning methods. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Esteban, Cristóbal (2018): Deep learning for precision medicine. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Yang, Yinchong (2018): Enhancing representation learning with tensor decompositions for knowledge graphs and high dimensional sequence modeling. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Boidol, Jonathan (2017): Monitoring data streams: Classification under uncertainty and entropy-based dependency-detection on streaming data. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Krompaß, Denis (2015): Exploiting prior knowledge and latent variable representations for the statistical modeling and probabilistic querying of large knowledge graphs. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Jiang, Xueyan (2014): Integrating prior knowledge into factorization approaches for relational learning. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Nickel, Maximilian (2013): Tensor factorization for relational learning. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik

Diese Liste wurde am Tue Jan 21 21:38:26 2025 CET erstelt.