Wang, Lingxiao (2018): Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors. Dissertation, LMU München: Fakultät für Geowissenschaften |
Vorschau |
PDF
Wang_Lingxiao.pdf 34MB |
Abstract
Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.
Abstract
Der Permafrostboden bedeckt etwa 24% der exponierten Landfläche in der nördlichen Hemisphäre. Es ist ein wichtiges Element der Kryosphäre und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der Landoberfläche und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die Oberflächenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frühen 1980er Jahren gestiegen. Die durchschnittliche Erwärmung nördlich von 60° N beträgt 1-2°C. In-situ-Messungen sind essentiell für das Verständnis der physischen Prozesse im Permafrostgelände. Es gibt jedoch mehrere Einschränkungen, die von Schwierigkeiten beim Bohren bis hin zur Repräsentativität begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergänzen und punktuelle Beobachtungen auf einen breiteren räumlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-Datensätzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewählt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stärksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) Datensätze haben Vorteile für das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der Unabhängigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-Datensätzen für Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die Variabilität der Auftautiefe der aktiven Schicht ist eine direkte Indikation der Veränderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingeführt wird, eingesetzt. Die D-InSAR-Technik wurde für Kartierung der Landoberflächendeformation über große Flächen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die Fähigkeit, tau- und gefrierprozessbedingte Bodenbewegungen über Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und Wertschätzung der D-InSAR-Anwendung bis heute hauptsächlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren für D-InSAR-Anwendung verursacht. Das diskontinuierliche Permafrostgelände wurde nur weniger berücksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen für D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die Präsenz des Permafrosts hin, wobei deren Veränderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X Rückstreuungsintensität und interferometrische Kohärenzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-Datensätzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten übertragen werden. Eine vorherrschende Veränderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch Veränderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke über den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollständig gefroren sein, was zum geerdeten Eis führt, während die Eisdecke über den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flüssiges Wasser unter der Eisdecke bestehen, was zum Treibeis führt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flüssige Wasser zusätzliche Wärme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren Verstärkung des Permafrostauftauen beiträgt. Basiert auf den Charakter, dass das flüssige Wasser eine bemerkenswert hohe Dielektrizitätskonstante besitzt, während reines Eis einen niedrigen Wert hat, wurden die SAR Datensätzen zur Erkennung des Wintereisdeckenregimes verwendet. Zunächst wurden Schemen in der räumlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die Zusammenhänge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschätzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflächen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erläutern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die räumliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen.
Dokumententyp: | Dissertationen (Dissertation, LMU München) |
---|---|
Themengebiete: | 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften |
Fakultäten: | Fakultät für Geowissenschaften |
Sprache der Hochschulschrift: | Englisch |
Datum der mündlichen Prüfung: | 20. Dezember 2018 |
1. Berichterstatter:in: | Ludwig, Ralf |
MD5 Prüfsumme der PDF-Datei: | 950ff4cdd0099562a78309afbfd228e4 |
Signatur der gedruckten Ausgabe: | 0001/UMC 26107 |
ID Code: | 23611 |
Eingestellt am: | 15. Feb. 2019 12:49 |
Letzte Änderungen: | 23. Oct. 2020 16:03 |