Logo Logo
Hilfe
Kontakt
Switch language to English
Die hyperosmotische Stressantwort von Escherichia coli-von der Proteomanalyse zu einzelnen Komponenten
Die hyperosmotische Stressantwort von Escherichia coli-von der Proteomanalyse zu einzelnen Komponenten
Ein Habitat von Escherichia coli ist der Gastrointestinaltrakt von Säugetieren, der sich durch anaerobe Bedingungen und eine hohe Osmolalität auszeichnet. E. coli ist aber auch freilebend in Gegenwart von Sauerstoff in der Umwelt bei variierenden Osmolalitäten nachzuweisen. Eine Adaptation an diese ständig wechselnden Umweltbedingungen ist entscheidend für Wachstum und Überleben. In dieser Arbeit wurde der Adaptationsprozess an erhöhte Osmolalitäten durch globale Proteomanalysen untersucht. Zusätzlich wurden verschiedene Aspekte des Prozesses im Detail analysiert, um weitere regulatorische Komponenten aufzudecken. Es wurden globale Proteomveränderungen im pI-Bereich 4-7 nach osmotischem Stress unter aeroben Bedingungen zeitabhängig visualisiert. Es konnte eine verstärkte Produktion von 12 Proteinen nachgewiesen werden. 11 zusätzliche Proteine akkumulierten in Zellen, die einem osmotischen Stress ausgesetzt waren, der durch Zugabe des Salzes NaCl ausgelöst wurde. Der Großteil der durch Massenspektrometrie identifizierten Proteine waren Proteine mit allgemeiner Schutzfunktion, die auf transkriptioneller Ebene vom globalen Stressregulator RpoS reguliert werden. Der Vergleich von aeroben und anaeroben Bedingungen ergab eine Überlappung der akkumulierten Proteine von 50 %. Durch ergänzende Proteomanalysen mit alternativen Gelsystemen konnten zwei weitere Proteine identifiziert werden, die an der Osmostressantwort beteiligt sind. Die Zugabe des kompatiblen Soluts Glycinbetain resultierte in einer verminderten Akkumulation von 9 RpoS-regulierten Proteinen bei Salzstress unter aeroben Bedingungen. Für mindestens zwei Proteine konnte eine gegenläufige Regulation nachgewiesen werden. Unter anaeroben Bedingungen verminderte Glycinbetain die Akkumulation eines Proteins (ProX) nach Zugabe von NaCl. Es wurden Proteomanalysen einer K+-Aufnahmemutante im Vergleich zum Wildtyp bei hyperosmotischem Stress erstellt, um den Einfluss der erhöhten intrazellulären K+-Konzentration auf die nachfolgende Stressantwort zu untersuchen. Es konnte gezeigt werden, dass die Regulation von zwei Proteinen (ProX und TnaA) von der K+-Akkumulation abhängig ist. Das Regulationsmuster weiterer Proteine, insbesondere metabolischer Enzyme, war durch die fehlende Akkumulation von K+ in der Mutante beeinflusst. Es wurde eine Methode entwickelt, um Veränderungen der Proteininteraktionen direkt nach Salzstress aufzuzeigen. Durch Fixierung der Zellen mit Formaldehyd und anschließender Fraktionierung der Proteine konnten umfassende Veränderungen im Interaktionsmuster periplasmatischer Proteine nachgewiesen werden. Eine Bildung von Sauerstoffradikalen bei hyperosmotischem Stress konnte unter Verwendung eines Fluoreszenzfarbstoffes erstmalig in E. coli nachgewiesen werden. Die Inhibierung der Radikalbildung durch Inkubation mit Natriumascorbat führte zu einer verminderten Überlebenswahrscheinlichkeit der Zellen bei sehr hohen NaCl-Konzentrationen. Zellen, die in Gegenwart von Natriumascorbat einem Salzstress ausgesetzt waren, wiesen verminderte Mengen bestimmter Osmostress-involvierter Proteine auf. Für E. coli Stämme, denen Sauerstoffradikal-abbauende Enzyme wie Katalase und Superoxiddismutase fehlten, wurde eine erhöhte Salzstressresistenz gezeigt. Die phänotypische Analyse einer hdhA Mutante ergab verminderte Wachstumsraten bei erhöhten Osmolalitäten. Die Mutante war im Vergleich zum Wildtyp durch reduzierte Biofilmbildung und Beweglichkeit sowie Veränderungen im Proteom nach hyperosmotischem Stress gekennzeichnet. Die osmotisch induzierte, cytoplasmatische Trehalase TreF reguliert die intrazelluläre Trehalosekonzentration bei Salzstress unter aeroben Bedingungen. Unter anaeroben Bedingungen konnten keine Unterschiede in den Trehalosekonzentrationen in einer treF-Mutante im Vergleich zum Wildtyp beobachtet werden. Die Zugabe des kompatiblen Solutes Glycinbetain führte unabhängig von der Sauerstoffverfügbarkeit zur verstärkten Produktion von TreF.
osmotischer Stress Escherichia coli Proteomanalyse Trehalose Radikale
Koegl, Stephanie
2008
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Koegl, Stephanie (2008): Die hyperosmotische Stressantwort von Escherichia coli-von der Proteomanalyse zu einzelnen Komponenten. Dissertation, LMU München: Fakultät für Biologie
[thumbnail of Koegl_Stephanie.pdf]
Vorschau
PDF
Koegl_Stephanie.pdf

5MB

Abstract

Ein Habitat von Escherichia coli ist der Gastrointestinaltrakt von Säugetieren, der sich durch anaerobe Bedingungen und eine hohe Osmolalität auszeichnet. E. coli ist aber auch freilebend in Gegenwart von Sauerstoff in der Umwelt bei variierenden Osmolalitäten nachzuweisen. Eine Adaptation an diese ständig wechselnden Umweltbedingungen ist entscheidend für Wachstum und Überleben. In dieser Arbeit wurde der Adaptationsprozess an erhöhte Osmolalitäten durch globale Proteomanalysen untersucht. Zusätzlich wurden verschiedene Aspekte des Prozesses im Detail analysiert, um weitere regulatorische Komponenten aufzudecken. Es wurden globale Proteomveränderungen im pI-Bereich 4-7 nach osmotischem Stress unter aeroben Bedingungen zeitabhängig visualisiert. Es konnte eine verstärkte Produktion von 12 Proteinen nachgewiesen werden. 11 zusätzliche Proteine akkumulierten in Zellen, die einem osmotischen Stress ausgesetzt waren, der durch Zugabe des Salzes NaCl ausgelöst wurde. Der Großteil der durch Massenspektrometrie identifizierten Proteine waren Proteine mit allgemeiner Schutzfunktion, die auf transkriptioneller Ebene vom globalen Stressregulator RpoS reguliert werden. Der Vergleich von aeroben und anaeroben Bedingungen ergab eine Überlappung der akkumulierten Proteine von 50 %. Durch ergänzende Proteomanalysen mit alternativen Gelsystemen konnten zwei weitere Proteine identifiziert werden, die an der Osmostressantwort beteiligt sind. Die Zugabe des kompatiblen Soluts Glycinbetain resultierte in einer verminderten Akkumulation von 9 RpoS-regulierten Proteinen bei Salzstress unter aeroben Bedingungen. Für mindestens zwei Proteine konnte eine gegenläufige Regulation nachgewiesen werden. Unter anaeroben Bedingungen verminderte Glycinbetain die Akkumulation eines Proteins (ProX) nach Zugabe von NaCl. Es wurden Proteomanalysen einer K+-Aufnahmemutante im Vergleich zum Wildtyp bei hyperosmotischem Stress erstellt, um den Einfluss der erhöhten intrazellulären K+-Konzentration auf die nachfolgende Stressantwort zu untersuchen. Es konnte gezeigt werden, dass die Regulation von zwei Proteinen (ProX und TnaA) von der K+-Akkumulation abhängig ist. Das Regulationsmuster weiterer Proteine, insbesondere metabolischer Enzyme, war durch die fehlende Akkumulation von K+ in der Mutante beeinflusst. Es wurde eine Methode entwickelt, um Veränderungen der Proteininteraktionen direkt nach Salzstress aufzuzeigen. Durch Fixierung der Zellen mit Formaldehyd und anschließender Fraktionierung der Proteine konnten umfassende Veränderungen im Interaktionsmuster periplasmatischer Proteine nachgewiesen werden. Eine Bildung von Sauerstoffradikalen bei hyperosmotischem Stress konnte unter Verwendung eines Fluoreszenzfarbstoffes erstmalig in E. coli nachgewiesen werden. Die Inhibierung der Radikalbildung durch Inkubation mit Natriumascorbat führte zu einer verminderten Überlebenswahrscheinlichkeit der Zellen bei sehr hohen NaCl-Konzentrationen. Zellen, die in Gegenwart von Natriumascorbat einem Salzstress ausgesetzt waren, wiesen verminderte Mengen bestimmter Osmostress-involvierter Proteine auf. Für E. coli Stämme, denen Sauerstoffradikal-abbauende Enzyme wie Katalase und Superoxiddismutase fehlten, wurde eine erhöhte Salzstressresistenz gezeigt. Die phänotypische Analyse einer hdhA Mutante ergab verminderte Wachstumsraten bei erhöhten Osmolalitäten. Die Mutante war im Vergleich zum Wildtyp durch reduzierte Biofilmbildung und Beweglichkeit sowie Veränderungen im Proteom nach hyperosmotischem Stress gekennzeichnet. Die osmotisch induzierte, cytoplasmatische Trehalase TreF reguliert die intrazelluläre Trehalosekonzentration bei Salzstress unter aeroben Bedingungen. Unter anaeroben Bedingungen konnten keine Unterschiede in den Trehalosekonzentrationen in einer treF-Mutante im Vergleich zum Wildtyp beobachtet werden. Die Zugabe des kompatiblen Solutes Glycinbetain führte unabhängig von der Sauerstoffverfügbarkeit zur verstärkten Produktion von TreF.