Logo Logo
Help
Contact
Switch language to German
Biogenese photosynthetischer Elektronentransport-Komplexe in Plastiden der Gerste(Hordeum vulgare L.)
Biogenese photosynthetischer Elektronentransport-Komplexe in Plastiden der Gerste(Hordeum vulgare L.)
Die Synthese von Chlorophyll ist in Angiospermen ein streng lichtabhängiger Prozess. Keimlinge, welche im Dunkeln angezogen werden, bilden anstelle der (grünen) Chloroplasten (gelb-orange) Etioplasten. In diesen ist die Thylakoidmembran durch den parakristallinen Prolamellarkörper und einige Prothylakoidmembranen ersetzt. Auf Ebene der Proteine kann zwar bereits im Dunkeln die Translation aller plastidencodierten Chlorophyll-bindenden Proteine nachgewiesen werden, allerdings werden diese mit Ausnahme des D2-Proteins in Abwesenheit von Chlorophyll sofort wieder degradiert. Mit der Belichtung von etioliertem Gewebe setzen der Abbau des Prolamellarkörpers und die Bildung der Thylakoidmembranen ein. Diese Umstrukturierung des inneren Membransystems geht mit der Akkumulation und der Assemblierung der chlorophyll-bindenden Photosystemkomplexe einher. Der genaue Ablauf der de novo Assemblierung der Chlorophyll-bindenden Proteinkomplexe ist bisher nicht vollständig geklärt. Daher wurde in der vorliegenden Arbeit die Biogenese von Pigment-bindenden Proteinkomplexen der Plastidenmembran während der Ergrünung untersucht. Dabei dienten im Dunkeln angezogene Keimlinge bzw. die daraus isolierten Etioplasten und deren Membranproteinkomplexe als Startpunkt. Zur Identifikation und Charakterisierung der Pigment-bindenden Komplexe wurden verschiedene Methoden (differentielle Gelelektrophorese für Membranproteine, farblose native Polyacrylamidelektrophorese in Kombination mit Absorptionsspektroskopie) weiterentwickelt. Durch die Kombination aller Techniken konnten verschiedene Aussagen zur Situation im Etioplasten und zum Ablauf der de novo Assemblierung während der Ergrünung getroffen werden. Der ATP-Synthase- und der Cytochrom b6f-Komplex liegen bereits im Etioplasten in der aus dem Chloroplasten bekannten hochmolekularen Assemblierungsstufe vor, wobei im dimeren Cytochrom b6f-Komplex im Etioplasten Protochlorophyll a anstelle von Chlorophyll a nachgewiesen werden kann. Somit ist der Cytochrom b6f-Komplex der einzige Chlorophyll-bindende Komplex, der bereits in der Abwesenheit von Chlorophyll unter Ersatz des Chlorophylls durch ein Chlorophyllderivat akkumulieren kann. Unmittelbar nach der Initiation der Chlorophyllbiosynthese ist der Großteil des de novo synthetisierten Chlorophylls in der Membran nicht mit Photosystemkomplexen assoziiert, sondern transient mit dem membranintegralen Lil (Light harvesting like) 3-Protein. Die Identifikation des Lil 3-Proteins als Chlorophyll-bindendes Protein weist erstmals auf eine mögliche Funktion dieses Proteins als temporärer Chlorophyllspeicher hin. Nach einer Stunde Belichtung können sowohl Photosystem I wie auch Photosystem II-Komplexe nachgewiesen werden, wohingegen erste LHC- Komplexe nach zweistündiger Belichtung zu detektieren sind. Während des Assemblierungsvorganges können für beide Photosysteme mehrere Assemblierungsintermediate nachgewiesen werden. Nach vierstündiger Belichtung hat die Assemblierung aller Thylakoidmembrankomplexe die komplexeste Assemblierungsstufe erreicht, welche aus dem Chloroplasten bekannt ist. Daher kann nach einer Belichtungszeit von vier Stunden die Biogenese der vier an der Lichtreaktion beteiligten Thylakoidmembrankomplexe von proteinbiochemischer Seite als abgeschlossen betrachtet werden.
Not available
Reisinger, Veronika
2008
German
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Reisinger, Veronika (2008): Biogenese photosynthetischer Elektronentransport-Komplexe in Plastiden der Gerste(Hordeum vulgare L.). Dissertation, LMU München: Faculty of Biology
[thumbnail of Reisinger_Veronika.pdf]
Preview
PDF
Reisinger_Veronika.pdf

2MB

Abstract

Die Synthese von Chlorophyll ist in Angiospermen ein streng lichtabhängiger Prozess. Keimlinge, welche im Dunkeln angezogen werden, bilden anstelle der (grünen) Chloroplasten (gelb-orange) Etioplasten. In diesen ist die Thylakoidmembran durch den parakristallinen Prolamellarkörper und einige Prothylakoidmembranen ersetzt. Auf Ebene der Proteine kann zwar bereits im Dunkeln die Translation aller plastidencodierten Chlorophyll-bindenden Proteine nachgewiesen werden, allerdings werden diese mit Ausnahme des D2-Proteins in Abwesenheit von Chlorophyll sofort wieder degradiert. Mit der Belichtung von etioliertem Gewebe setzen der Abbau des Prolamellarkörpers und die Bildung der Thylakoidmembranen ein. Diese Umstrukturierung des inneren Membransystems geht mit der Akkumulation und der Assemblierung der chlorophyll-bindenden Photosystemkomplexe einher. Der genaue Ablauf der de novo Assemblierung der Chlorophyll-bindenden Proteinkomplexe ist bisher nicht vollständig geklärt. Daher wurde in der vorliegenden Arbeit die Biogenese von Pigment-bindenden Proteinkomplexen der Plastidenmembran während der Ergrünung untersucht. Dabei dienten im Dunkeln angezogene Keimlinge bzw. die daraus isolierten Etioplasten und deren Membranproteinkomplexe als Startpunkt. Zur Identifikation und Charakterisierung der Pigment-bindenden Komplexe wurden verschiedene Methoden (differentielle Gelelektrophorese für Membranproteine, farblose native Polyacrylamidelektrophorese in Kombination mit Absorptionsspektroskopie) weiterentwickelt. Durch die Kombination aller Techniken konnten verschiedene Aussagen zur Situation im Etioplasten und zum Ablauf der de novo Assemblierung während der Ergrünung getroffen werden. Der ATP-Synthase- und der Cytochrom b6f-Komplex liegen bereits im Etioplasten in der aus dem Chloroplasten bekannten hochmolekularen Assemblierungsstufe vor, wobei im dimeren Cytochrom b6f-Komplex im Etioplasten Protochlorophyll a anstelle von Chlorophyll a nachgewiesen werden kann. Somit ist der Cytochrom b6f-Komplex der einzige Chlorophyll-bindende Komplex, der bereits in der Abwesenheit von Chlorophyll unter Ersatz des Chlorophylls durch ein Chlorophyllderivat akkumulieren kann. Unmittelbar nach der Initiation der Chlorophyllbiosynthese ist der Großteil des de novo synthetisierten Chlorophylls in der Membran nicht mit Photosystemkomplexen assoziiert, sondern transient mit dem membranintegralen Lil (Light harvesting like) 3-Protein. Die Identifikation des Lil 3-Proteins als Chlorophyll-bindendes Protein weist erstmals auf eine mögliche Funktion dieses Proteins als temporärer Chlorophyllspeicher hin. Nach einer Stunde Belichtung können sowohl Photosystem I wie auch Photosystem II-Komplexe nachgewiesen werden, wohingegen erste LHC- Komplexe nach zweistündiger Belichtung zu detektieren sind. Während des Assemblierungsvorganges können für beide Photosysteme mehrere Assemblierungsintermediate nachgewiesen werden. Nach vierstündiger Belichtung hat die Assemblierung aller Thylakoidmembrankomplexe die komplexeste Assemblierungsstufe erreicht, welche aus dem Chloroplasten bekannt ist. Daher kann nach einer Belichtungszeit von vier Stunden die Biogenese der vier an der Lichtreaktion beteiligten Thylakoidmembrankomplexe von proteinbiochemischer Seite als abgeschlossen betrachtet werden.