Logo Logo
Help
Contact
Switch language to German
Erzeugung organischer Halbleiter-Nanostrukturen durch Festphasenbenetzung. Geführtes Wachstum, molekulare Datenspeicherung und lokale Koadsorption
Erzeugung organischer Halbleiter-Nanostrukturen durch Festphasenbenetzung. Geführtes Wachstum, molekulare Datenspeicherung und lokale Koadsorption
Die vorliegende Arbeit behandelt Fragen aus dem interdisziplinären Gebiet der Nanowissenschaften durch Untersuchungen mittels Rastertunnelmikroskopie und Computerchemie. Sie steht im Kontext der Entwicklung nanotechnologischer Herstellungsverfahren, die sich auf die "bottom-up"- Fertigungsstrategie beziehen. Diese Strategie verfolgt das Ziel, aus einzelnen elementaren Bausteinen (z.B. Molekülen) grössere funktionelle Strukturen und Systeme kontrolliert zusammenzusetzen. Kern dieser Arbeit ist die Vorstellung eines neuartigen Strukturbildungsprozesses auf molekularer Ebene und die Erschliessung dessen Potentials. Für diesen Prozess wird der Begriff "supramolekulare Festphasenbenetzung" vorgeschlagen. Damit wird ausgedrückt, dass die Ergebnisse als eine neue Bedingung für supramolekulare, spontane Strukturbildung (engl. self-assembly) interpretiert werden, die bei Raumtemperatur an der Grenze zwischen zwei festen Phasen stattfindet. Das vorgestellte Modell beschreibt diesen Prozess durch Nanokristalle, die – in einer Matrix suspendiert – bei Kontakt mit einer Kristalloberfläche ein Verhalten zeigen, das trotz vorhandener Festkörpereigenschaften (kristalline Ordnung) dem Verhalten flüssiger Tropfen bei der Benetzung von Oberflächen verwandt ist. Darauf aufbauend wird das technologische Potential des neuen Prozesses erschlossen: 1. Adsorbatstrukturen von einer Reihe organischer Halbleiter werden erstmals beschrieben. Damit wird zudem gezeigt, dass sich durch supramolekulare Festphasenbenetzung unlösliche Halbleitermoleküle sehr einfach und unter Umgebungsbedingungen geordnet adsorbieren lassen – ein Ergebnis, das sonst nur mit grossen Aufwand (z.B. Molekularstrahlepitaxie im Vakuum) möglich wäre. 2. Ein Erklärungsmodell wird entwickelt, mit dem sich die bislang unverstandene Möglichkeit molekularer Datenspeicherung mittels PTCDA- Moleküle theoretisch erklären und auf weitere, unter (1) vorgestellte Moleküle erweitern lässt. 3. Die Entwicklung eines Nanofabrikationskonzeptes wird vorgestellt, das eine lokale Kontrolle des Wachstums von Nanostrukturen ermöglicht. Der Vorteil gegenüber einer klassischen, Molekül für Molekül durchgeführten Nanostrukturierung liegt darin, dass durch die Spitze eines Rastertunnelmikroskops allein die Information über Wachstumsrichtungen in das System lokal einzubringen ist, die eigentliche Bildung der Strukturen jedoch durch selbständig ablaufende und somit qualitativ und zeitlich hoche¢ziente Wachstumsprozesse stattfindet ("geführtes Wachstum"). Damit lässt sich die bisherige Beschränkung von self-assembly auf streng periodische Strukturen durchbrechen und die vordefinierte Bildung komplexer Strukturen erreichen. 4. Ein Verfahren wird vorgestellt, das eine lokale Adsorption von Molekülen zu geordneten Schichten innerhalb einer Lage fremder Moleküle erlaubt und somit den Aufbau heterogener Adsorbatschichten ermöglicht.
organische Halbleiter, self-assembly, Nanomanipulation, supramolekular, Rastertunnelmikroskopie
Trixler, Frank
2007
German
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Trixler, Frank (2007): Erzeugung organischer Halbleiter-Nanostrukturen durch Festphasenbenetzung: Geführtes Wachstum, molekulare Datenspeicherung und lokale Koadsorption. Dissertation, LMU München: Faculty of Geosciences
[thumbnail of Trixler_Frank.pdf]
Preview
PDF
Trixler_Frank.pdf

16MB

Abstract

Die vorliegende Arbeit behandelt Fragen aus dem interdisziplinären Gebiet der Nanowissenschaften durch Untersuchungen mittels Rastertunnelmikroskopie und Computerchemie. Sie steht im Kontext der Entwicklung nanotechnologischer Herstellungsverfahren, die sich auf die "bottom-up"- Fertigungsstrategie beziehen. Diese Strategie verfolgt das Ziel, aus einzelnen elementaren Bausteinen (z.B. Molekülen) grössere funktionelle Strukturen und Systeme kontrolliert zusammenzusetzen. Kern dieser Arbeit ist die Vorstellung eines neuartigen Strukturbildungsprozesses auf molekularer Ebene und die Erschliessung dessen Potentials. Für diesen Prozess wird der Begriff "supramolekulare Festphasenbenetzung" vorgeschlagen. Damit wird ausgedrückt, dass die Ergebnisse als eine neue Bedingung für supramolekulare, spontane Strukturbildung (engl. self-assembly) interpretiert werden, die bei Raumtemperatur an der Grenze zwischen zwei festen Phasen stattfindet. Das vorgestellte Modell beschreibt diesen Prozess durch Nanokristalle, die – in einer Matrix suspendiert – bei Kontakt mit einer Kristalloberfläche ein Verhalten zeigen, das trotz vorhandener Festkörpereigenschaften (kristalline Ordnung) dem Verhalten flüssiger Tropfen bei der Benetzung von Oberflächen verwandt ist. Darauf aufbauend wird das technologische Potential des neuen Prozesses erschlossen: 1. Adsorbatstrukturen von einer Reihe organischer Halbleiter werden erstmals beschrieben. Damit wird zudem gezeigt, dass sich durch supramolekulare Festphasenbenetzung unlösliche Halbleitermoleküle sehr einfach und unter Umgebungsbedingungen geordnet adsorbieren lassen – ein Ergebnis, das sonst nur mit grossen Aufwand (z.B. Molekularstrahlepitaxie im Vakuum) möglich wäre. 2. Ein Erklärungsmodell wird entwickelt, mit dem sich die bislang unverstandene Möglichkeit molekularer Datenspeicherung mittels PTCDA- Moleküle theoretisch erklären und auf weitere, unter (1) vorgestellte Moleküle erweitern lässt. 3. Die Entwicklung eines Nanofabrikationskonzeptes wird vorgestellt, das eine lokale Kontrolle des Wachstums von Nanostrukturen ermöglicht. Der Vorteil gegenüber einer klassischen, Molekül für Molekül durchgeführten Nanostrukturierung liegt darin, dass durch die Spitze eines Rastertunnelmikroskops allein die Information über Wachstumsrichtungen in das System lokal einzubringen ist, die eigentliche Bildung der Strukturen jedoch durch selbständig ablaufende und somit qualitativ und zeitlich hoche¢ziente Wachstumsprozesse stattfindet ("geführtes Wachstum"). Damit lässt sich die bisherige Beschränkung von self-assembly auf streng periodische Strukturen durchbrechen und die vordefinierte Bildung komplexer Strukturen erreichen. 4. Ein Verfahren wird vorgestellt, das eine lokale Adsorption von Molekülen zu geordneten Schichten innerhalb einer Lage fremder Moleküle erlaubt und somit den Aufbau heterogener Adsorbatschichten ermöglicht.