Pfannes, Kristina (2007): Characterization of the symbiotic bacterial partners in phototrophic consortia. Dissertation, LMU München: Faculty of Biology |
Preview |
PDF
Pfannes_Kristina_R.pdf 5MB |
Abstract
Bacterial interactions play a major role in nature, but are poorly understood, because of the lack of adequate model systems. Phototrophic consortia represent the most highly developed type of interspecific bacterial association due to the precise spatial arrangement of phototrophic green sulfur bacteria (GSB) around a heterotrophic central bacterium. Therefore, they are valuable model systems for the study of symbiosis, signal transduction, and coevolution between different bacteria. This thesis summarizes a series of laboratory experiments with the objective of elucidating the molecular, physiological and phylogenetical properties of the two bacterial partners in the symbiotic phototrophic consortium "Chlorochromatium aggregatum". The central bacterium of “C. aggregatum” had been identified as a Betaproteobacterium, however, it could not be characterized further due to the low amount of consortia in enrichment cultures. In this work a suitable method for enrichment and isolation of DNA of the central bacterium of "C. aggregatum" has been established using cesium chloride-bisbenzimidazole equilibrium density gradient centrifugation (Chapter 3). In density gradients, genomic DNA of the central bacterium of “C. aggregatum” formed a distinct band, which could be detected by real-time PCR. Using this method, the GC-content of the central bacterium was estimated to be 55.6%. Furthermore, its precise phylogenetic position was determined and it was shown to represent a novel and phylogenetically isolated lineage of the Comamonadaceae within the -subgroup of the Proteobacteria. Chapter 4 describes the detection of a new, highly diverse subcluster of Betaproteobacteria, which contains several central bacteria of phototrophic consortia. Genomic DNA of the central bacterium of “C. aggregatum” was enriched several hundred fold by employing a selective method for growth of consortia in a monolayer biofilm followed by a purification of the central bacterial genome by density gradient centrifugation. A combination of molecular methods revealed that two rrn operons of the central bacterium are arranged in a tandem fashion. This rare gene order was exploited to screen various natural microbial communities. A diverse and previously unknown subgroup of Betaproteobacteria was discovered in the chemocline of Lake Dagow, Eastern Germany. All 16S rRNA gene sequences recovered are related to that of the central bacterium of “C. aggregatum”. Phylogenetic analyses showed, that the central, chemotrophic symbionts of phototrophic consortia have a polyphyletic origin, just like their phototrophic counterparts. This indictates that not only different GSB but also different Betaproteobacteria have adapted to life in this type of symbiosis. Chapter 5 focuses on the isolation of the epibiont of “C. aggregatum” from a consortia enrichment culture and its description as Chlorobium chlorochromatii strain CaD. It represents a novel species within the genus Chlorobium and is characterized by physiological properties typical for GSB. However, the symbiotic strain differs from free-living GSB in the distribution of its chlorosomes and the presence of a conspicuous additional structure at the attachment-site to the central bacterium. Its capability to grow in pure culture indicates that it is not obligately symbiotic. The natural habitat of GSB and phototrophic consortia is the chemocline of stratified lakes. Therefore, the physiological response to oxygen exposure of the epibiont and the free-living GSB Chlorobium limicola has been investigated (Chapter 6). It was shown that GSB are able to survive oxygen exposure and have developed several strategies for oxygen detoxification. Genome annotation revealed the presence of several enzymes involved in oxygen detoxification in all currently sequenced GSB genomes. Phylogenetic analyses showed that most of these enzymes likely were present in the common ancestor of this group. The activity of some of those enzymes could be confirmed. Since carotenoids also act as antioxidants, the carotenoid composition of the epibiont was investigated. In contrast to all other GSB it lacks chlorobactene, the major carotenoid in green-coloured GSB. In addition, 7,8-dihydro--carotene has been identified in the epibiont as a novel carotenoid in nature. Substantial progress has been made in the course of this study not only with the establishment of a method facilitating genome sequencing of the central bacterium of “C. aggregatum”, but also with the developement of a molecular screening tool for central bacteria of phototrophic consortia. The resulting sequences will enable the direct comparison of the phylogeny of both bacterial partners in different phototrophic consortia and hence will provide the unique opportunity to assess for the first time the process of the coevolution of a bacteria-bacteria-symbiosis.
Item Type: | Theses (Dissertation, LMU Munich) |
---|---|
Subjects: | 500 Natural sciences and mathematics > 570 Life sciences 500 Natural sciences and mathematics |
Faculties: | Faculty of Biology |
Language: | English |
Date of oral examination: | 22. November 2007 |
1. Referee: | Overmann, Jörg |
MD5 Checksum of the PDF-file: | faf67a63f2b4772a931cc68575a3cc7a |
Signature of the printed copy: | 0001/UMC 16651 |
ID Code: | 7769 |
Deposited On: | 18. Dec 2007 07:31 |
Last Modified: | 24. Oct 2020 07:58 |