Logo Logo
Help
Contact
Switch language to German
Analyse eines neuen Sorting Nexins und seiner Funktion in der ßAPP-Prozessierung
Analyse eines neuen Sorting Nexins und seiner Funktion in der ßAPP-Prozessierung
Die Familie der Sorting Nexine (SNX) umfasst 33 bekannte Mitglieder, jedoch ist der Funktionsmechanismus vieler Sorting Nexine bislang nicht aufgeklärt. Auf der Suche neuer Modulatoren der βAPP-Proteolyse konnte im Rahmen eines Expressionsklonierungs-Screens (Schobel et al., 2006) ein bislang nicht beschriebenes Protein, Sorting Nexin 33 (SNX33), als Aktivator der βAPP-Proteolyse identifiziert werden. SNX33 ist ein phosphoryliertes Protein, das ubiquitär exprimiert wird und zudem eine hohe Homologie zu den Proteinen SNX9 und SNX18 aufweist. SNX33 ist im Zytosol lokalisiert, kann jedoch auch Membran-assoziiert vorliegen. Es konnte gezeigt werden, dass Überexpression von SNX33 zu einer Inhibition Dynamin-abhängiger Endozytose und in Folge dessen zu einer etwa 50% -igen Reduktion der βAPP-Endozytose führt. Die von SNX33 induzierte Endozytosehemmung wird durch die SH3-Domäne des Proteins vermittelt. Im Rahmen dieser Doktorarbeit durchgeführte Koimmunpräzipitationsstudien zeigten, dass SNX33 mittels seiner SH3-Domäne mit Dynamin interagiert und auf diese Weise möglicherweise dessen Funktion moduliert. In Übereinstimmung mit den durchgeführten Zellkultur-Experimenten führte eine Überexpression von SNX33 im Modellorganismus Caenorhabditis elegans ebenfalls zu einem Dynamin-Funktionsverlust. Da SNX33 Expression zu einer generellen Inhibition Dynamin-abhängiger Endozytose führt, handelt es sich dabei nicht um einen spezifischen βAPP-Modulator. Konsequenz einer reduzierten βAPP-Internalisierung ist eine starke Zunahme der neurotrophen sAPPα-Bildung sowie - je nach verwendeter Zelllinie - ein leichter Anstieg bzw. eine geringe Reduktion der pathogenen sAPPβ-Generierung. Es konnte gezeigt werden, dass Überexpression der homologen Proteine SNX9 und SNX18 ebenfalls zu einer Zunahme der βAPP-Spaltung führt. Es handelt sich also um einen Effekt, der von der ganzen Sorting Nexin-Subgruppe (SNX33/SNX9/SNX18) vermittelt wird. Diese Beobachtung legt die Vermutung nahe, dass diese Funktion innerhalb dieser Subgruppe konserviert ist. Transfektion von SNX1 führte zu keiner Änderung der βAPP-Proteolyse, was bedeutet, dass dieser Effekt nicht von der gesamten Sorting Nexin-Familie vermittelt wird. Interessanterweise ist die Spaltung von βAPP besonders sensitiv bezüglich einer veränderten Endozytose-Rate, da die Proteolyse der Transmembranproteine L-Selektin und des Tumornekrosisfaktor-Rezeptors 2 (TNFR2) unter SNX33 Überexpressionsbedingungen nicht signifikant verändert war. Ein siRNA-vermittelter Knock-Down von SNX33 führte zu keiner generellen Endozytoseinhibition in HEK293 Zellen, es konnte keine veränderte βAPP-Endozytoserate beobachtet werden. Die Bildung von sAPPα- und sAPPβ war in Folge dessen unverändert. Auch ein lst-4/SNX33-Knock-Down in C. elegans führte überraschenderweise zu keiner Inhibition der Dynamin-Funktion, äußerte sich jedoch in einer Fehlfunktion der Insulin-Signaltransduktion. SNX33-Knock-Down in humanen Zellen brachte keine nachweisbare Beeinträchtigung des Insulinsignalweges mit sich, jedoch besteht die Möglichkeit, dass die Homologen SNX9 und SNX18 einen Verlust von SNX33 kompensieren können. Dabei gilt zu beachten, dass eine Funktionsübernahme durch homologe Proteine in C. elegans nicht möglich ist, da dieser Organismus nur ein einziges homologes Protein der SNX33/SNX9/SNX18-Subgruppe besitzt. Im Rahmen dieser Doktorarbeit präsentierten sowie diskutierten Daten zeigen, dass SNX33 in unterschiedliche zellulärer Prozesse involviert ist. SNX33 ist ein neu identifizierter Modulator der Zelle, der für zentrale Signalwege und Vorgänge, wie zum Beispiel der Insulinrezeptor-Signaltransduktion und Endozytose, von Bedeutung ist. Im Gegensatz zum Modellorganismus C. elegans kann im humanen Zellkultursystem ein durch siRNA induzierter Funktionsverlust von SNX33 durch die homologen Proteine SNX9 und SNX18 kompensiert werden.
Sorting Nexin, APP, Endozytose
Schoebel, Susanne
2007
German
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Schoebel, Susanne (2007): Analyse eines neuen Sorting Nexins und seiner Funktion in der ßAPP-Prozessierung. Dissertation, LMU München: Faculty of Biology
[thumbnail of Schoebel_Susanne.pdf]
Preview
PDF
Schoebel_Susanne.pdf

18MB

Abstract

Die Familie der Sorting Nexine (SNX) umfasst 33 bekannte Mitglieder, jedoch ist der Funktionsmechanismus vieler Sorting Nexine bislang nicht aufgeklärt. Auf der Suche neuer Modulatoren der βAPP-Proteolyse konnte im Rahmen eines Expressionsklonierungs-Screens (Schobel et al., 2006) ein bislang nicht beschriebenes Protein, Sorting Nexin 33 (SNX33), als Aktivator der βAPP-Proteolyse identifiziert werden. SNX33 ist ein phosphoryliertes Protein, das ubiquitär exprimiert wird und zudem eine hohe Homologie zu den Proteinen SNX9 und SNX18 aufweist. SNX33 ist im Zytosol lokalisiert, kann jedoch auch Membran-assoziiert vorliegen. Es konnte gezeigt werden, dass Überexpression von SNX33 zu einer Inhibition Dynamin-abhängiger Endozytose und in Folge dessen zu einer etwa 50% -igen Reduktion der βAPP-Endozytose führt. Die von SNX33 induzierte Endozytosehemmung wird durch die SH3-Domäne des Proteins vermittelt. Im Rahmen dieser Doktorarbeit durchgeführte Koimmunpräzipitationsstudien zeigten, dass SNX33 mittels seiner SH3-Domäne mit Dynamin interagiert und auf diese Weise möglicherweise dessen Funktion moduliert. In Übereinstimmung mit den durchgeführten Zellkultur-Experimenten führte eine Überexpression von SNX33 im Modellorganismus Caenorhabditis elegans ebenfalls zu einem Dynamin-Funktionsverlust. Da SNX33 Expression zu einer generellen Inhibition Dynamin-abhängiger Endozytose führt, handelt es sich dabei nicht um einen spezifischen βAPP-Modulator. Konsequenz einer reduzierten βAPP-Internalisierung ist eine starke Zunahme der neurotrophen sAPPα-Bildung sowie - je nach verwendeter Zelllinie - ein leichter Anstieg bzw. eine geringe Reduktion der pathogenen sAPPβ-Generierung. Es konnte gezeigt werden, dass Überexpression der homologen Proteine SNX9 und SNX18 ebenfalls zu einer Zunahme der βAPP-Spaltung führt. Es handelt sich also um einen Effekt, der von der ganzen Sorting Nexin-Subgruppe (SNX33/SNX9/SNX18) vermittelt wird. Diese Beobachtung legt die Vermutung nahe, dass diese Funktion innerhalb dieser Subgruppe konserviert ist. Transfektion von SNX1 führte zu keiner Änderung der βAPP-Proteolyse, was bedeutet, dass dieser Effekt nicht von der gesamten Sorting Nexin-Familie vermittelt wird. Interessanterweise ist die Spaltung von βAPP besonders sensitiv bezüglich einer veränderten Endozytose-Rate, da die Proteolyse der Transmembranproteine L-Selektin und des Tumornekrosisfaktor-Rezeptors 2 (TNFR2) unter SNX33 Überexpressionsbedingungen nicht signifikant verändert war. Ein siRNA-vermittelter Knock-Down von SNX33 führte zu keiner generellen Endozytoseinhibition in HEK293 Zellen, es konnte keine veränderte βAPP-Endozytoserate beobachtet werden. Die Bildung von sAPPα- und sAPPβ war in Folge dessen unverändert. Auch ein lst-4/SNX33-Knock-Down in C. elegans führte überraschenderweise zu keiner Inhibition der Dynamin-Funktion, äußerte sich jedoch in einer Fehlfunktion der Insulin-Signaltransduktion. SNX33-Knock-Down in humanen Zellen brachte keine nachweisbare Beeinträchtigung des Insulinsignalweges mit sich, jedoch besteht die Möglichkeit, dass die Homologen SNX9 und SNX18 einen Verlust von SNX33 kompensieren können. Dabei gilt zu beachten, dass eine Funktionsübernahme durch homologe Proteine in C. elegans nicht möglich ist, da dieser Organismus nur ein einziges homologes Protein der SNX33/SNX9/SNX18-Subgruppe besitzt. Im Rahmen dieser Doktorarbeit präsentierten sowie diskutierten Daten zeigen, dass SNX33 in unterschiedliche zellulärer Prozesse involviert ist. SNX33 ist ein neu identifizierter Modulator der Zelle, der für zentrale Signalwege und Vorgänge, wie zum Beispiel der Insulinrezeptor-Signaltransduktion und Endozytose, von Bedeutung ist. Im Gegensatz zum Modellorganismus C. elegans kann im humanen Zellkultursystem ein durch siRNA induzierter Funktionsverlust von SNX33 durch die homologen Proteine SNX9 und SNX18 kompensiert werden.