Czapp, Marion (2007): Entwicklung neuer Strategien zur Überwindung transporter-basierter Pharmakoresistenz bei Epilepsien. Dissertation, LMU München: Faculty of Veterinary Medicine |
Preview |
PDF
Czapp_Marion.pdf 2MB |
Abstract
Epilepsien zählen zu den häufigsten neurologischen Erkrankungen bei Hund, Katze und Mensch. Sie sind mit einer fortschreitenden Schädigung des zentralen Nervensystems und mit erheblichen Einschränkungen im täglichen Leben verbunden. Trotz Entwicklung zahlreicher neuer Antiepileptika über die letzten Jahrzehnte spricht etwa ein Drittel der Veterinär- und Humanpatienten nicht auf eine Pharmakotherapie an. Diese Pharmakoresistenz von Epilepsien stellt ein schwerwiegendes und bisher ungelöstes Problem für die betroffenen Patienten dar und macht neue Therapiestrategien dringend erforderlich. Eine Ursache der Pharmakoresistenz bei Epilepsien stellt die Überexpression von Multidrug-Transportern in den Endothelzellen der Blut-Hirn-Schranke dar. Die physiologische Funktion dieser Efflux-Transporter besteht darin, den Eintritt von Xenobiotika in das Gewebe bestimmter Körperregionen zu verhindern. Eine Überexpression bei pharmakoresistenten Patienten führt zu einem vermehrten Efflux-Transport von Antiepileptika in die Blutbahn, so dass trotz therapeutischer Plasma-Konzentrationen keine ausreichenden Wirkstoffspiegel im Bereich des epileptischen Fokus erreicht werden können. Auf der Basis der Multidrug-Transporter-Hypothese wurden im Rahmen dieser Dissertation zwei mögliche neue Behandlungsstrategien zur Überwindung der Pharmakoresistenz von Epilepsien im Tiermodell untersucht. In den letzten Jahrzehnten wurde ein direkter intra- oder extraneuronaler Transport von Substanzen nach intranasaler (i.n.) Applikation aus der Nasenhöhle in das Gehirn wiederholt beschrieben. Diese Möglichkeit zur Umgehung der Blut-Hirn-Schranke und der dort lokalisierten Efflux-Transporter wurde im Rahmen dieser Arbeit mittels Untersuchungen zur Gehirngängigkeit von Antiepileptika nach i.n.-Applikation im Rattenmodell näher überprüft. Mikrodialyse-Untersuchungen zur Bestimmung der Extrazellulär-Konzentration von Phenobarbital, Lamotrigin und Carbamazepin im Bereich des frontalen Cortex ergaben keine Hinweise auf einen effektiveren Substanztransport nach i.n.-Applikation im Vergleich zur intravenösen (i.v.) Applikationsform. Die Bestimmung der Phenobarbital-Konzentration im Gesamtgehirngewebe nach i.n.- und i.v.-Verabreichung resultierte ebenfalls in gleichwertigen Konzentrationen. Die Untersuchung einzelner Gehirnregionen 10 min nach i.n. Applikation ergab für den Bulbus olfactorius eine signifikant höhere Gehirn-Plasma-Ratio im Vergleich zur i.v.-Applikation. Im Amygdala-Kindling-Modell der Temporallappen-Epilepsie konnte eine dosisabhängige antikonvulsive Wirkung nach i.n.-Applikation von Phenobarbital beobachtet werden, die in vergleichbarem Maße auch nach i.v.-Applikation zu beobachten war. Insgesamt geben die Untersuchungsergebnisse keinen Hinweis darauf, dass ein direkter Transport von Antiepileptika aus der Nasenhöhle in das Gehirn in therapeutisch relevantem Ausmaß stattfindet und eine Umgehung der Blut-Hirn-Schranke auf diese Weise möglich ist. Eine besondere Eignung der i.n.-Applikation zur Therapie pharmakoresistenter Patienten erscheint daher unwahrscheinlich, kann jedoch endgültig erst durch Untersuchungen in einem Tiermodell für pharmakoresistente Epilepsie beurteilt werden. Die nach i.n.-Applikation von Phenobarbital erreichten Plasma-Konzentrationen in Kombination mit der gezeigten antikonvulsiven Wirksamkeit lassen diesen Applikationsweg jedoch zur nicht invasiven Behandlung eines Status epilepticus oder von Anfalls-Clustern Erfolg versprechend erscheinen. Dem Multidrug-Transporter P-Glycoprotein (P-gp) wird in Zusammenhang mit transporter-basierter Pharmakoresistenz bei Epilepsie besondere Bedeutung beigemessen. Durch pharmakologische Inhibition der P-gp-Funktion gelang im Tiermodell bereits die Überwindung von Pharmakoresistenz. Die Anwendung von Hemmstoffen bringt jedoch den Nachteil einer P-gp-Inhibition in allen Körperregionen mit sich. Eine auf die Blut-Hirn-Schranke begrenzte Reduktion der P-gp-Expression wäre durch den Mechanismus der RNA-Interferenz zu erreichen. Für in vivo-Untersuchungen an Ratten wurde gegen P-gp-mRNA gerichtete „small interfering RNA“ (siRNA) zum Schutz vor endogenen Nukleasen in Liposomen eingeschlossen. Zudem wurde für ein Targeting das Peptid ApoE4 an die Oberfläche der Liposomen gebunden, welches eine Endozytose an Endothelzellen der Blut-Hirn-Schranke vermittelt. Das Ziel einer P-gp-Reduktion auf Protein-Ebene nach i.v.-Applikation derart geschützter und zielgesteuerter siRNA konnte jedoch nicht erreicht werden. Die Quantifizierung der P-gp-Expression in den Endothelzellen der Blut-Hirn-Schranke anhand immunhistochemisch gefärbter Gehirnschnitte ergab 24 h nach Applikation keine Verminderung der P-gp-Expression. Die Ursachen für die ausgebliebene P-gp-Reduktion sind in weiterführenden Untersuchungen zu klären.
Item Type: | Theses (Dissertation, LMU Munich) |
---|---|
Keywords: | Epilepsie, Pharmakoresistenz, intranasale Applikation, P-Glycoprotein, RNA-Interferenz |
Subjects: | 500 Natural sciences and mathematics 500 Natural sciences and mathematics > 590 Zoological sciences |
Faculties: | Faculty of Veterinary Medicine |
Language: | German |
Date of oral examination: | 20. July 2007 |
1. Referee: | Potschka, Heidrun |
MD5 Checksum of the PDF-file: | fab9e75d9a0197ffe543c75cc00b9d05 |
Signature of the printed copy: | 0001/UMC 16463 |
ID Code: | 7397 |
Deposited On: | 24. Sep 2007 |
Last Modified: | 24. Oct 2020 08:11 |