Logo Logo
Hilfe
Kontakt
Switch language to English
Die Rolle von Parkin bei der Parkinson-Erkrankung: Physiologische Funktion und Mechanismen der Inaktivierung
Die Rolle von Parkin bei der Parkinson-Erkrankung: Physiologische Funktion und Mechanismen der Inaktivierung
Mutationen im Parkin-Gen sind verantwortlich für eine autosomal rezessiv vererbbare Form der Parkinson-Erkrankung. Der Funktionsverlust von Parkin spielt eine zentrale Rolle bei der Pathogenese. Zu Beginn der vorliegenden Arbeit war lediglich bekannt, dass Parkin eine E3-Ubiquitin-Ligase-Aktivität besitzt und dass ein Funktionsverlust von Parkin offensichtlich zur Parkinson-Erkrankung führen kann. In der vorliegenden Doktorarbeit wurden zwei fundamentale Themenbereiche der Parkin-Forschung bearbeitet: 1. Die Analyse der Mechanismen der Inaktivierung von pathogenen Parkin-Mutanten. 2. Untersuchungen zur physiologischen Funktion von Parkin. Im ersten Teil dieser Arbeit konnten verschiedene Mechanismen der Parkin-Inaktivierung aufgeklärt werden, welche den Funktionsverlust von Parkin erklären. Pathogene C-terminale Deletionsmutationen führten zur Missfaltung und Aggregation von Parkin. Im Gegensatz zu Wildtyp-Parkin nahmen diese Mutanten spontan eine missgefaltete Konformation an und lagen in Form von zytosolischen Aggregaten vor. Pathogene Punktmutationen in der N-terminalen Ubiquitin-like (UBL)-Domäne verringerten die Stabilität von Parkin. Diese Mutanten wurden rasch über das Proteasom abgebaut. Im Rahmen dieser Untersuchungen konnte ferner gezeigt werden, dass in vivo zusätzlich zu Volllängen-Parkin eine kleinere Parkin-Spezies entsteht. Diese kleinere Parkin-Spezies ist gekennzeichnet durch das Fehlen der N-terminalen UBL-Domäne und wird aufgrund des Vorhandenseins eines internen Startcodons an Position 80 der humanen Parkin-Sequenz gebildet. Der zweite Teil der Arbeit konzentrierte sich auf die physiologische Funktion von Parkin. In Zellkultur-Modellen konnte festgestellt werden, dass Parkin nach Stressbehandlung hochreguliert wird und vor Stress-induziertem Zelltod schützt. Die Analyse von protektiven Signaltransduktionswegen konnte erstmalig zeigen, dass die Parkin-mediierte Aktivierung der NF-kappaB-Signaltransduktion essentiell ist für das neuroprotektive Potential von Parkin. Die vorliegende Arbeit lieferte Evidenz dafür, dass die E3-Ubiquitin-Ligase Parkin die NF-kappaB-Signalkaskade durch eine vermehrte regulierende Ubiquitylierung der zwei Signalmoleküle, IKK und TRAF2 aktiviert. Die in dieser Doktorarbeit dargestellten Ergebnisse ermöglichen Einblicke in die physiologische Funktion von Parkin sowie die Mechanismen, die zum Funktionsverlust von Parkin führen. Darüber hinaus können diese neuen Erkenntnisse einen Beitrag leisten zum besseren Verständnis pathogener Mechanismen der Parkinson-Erkrankung.
Parkin, Parkinson-Erkrankung, NF-kappaB, Ubiquitin, Missfaltung
Henn, Iris H.
2007
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Henn, Iris H. (2007): Die Rolle von Parkin bei der Parkinson-Erkrankung: Physiologische Funktion und Mechanismen der Inaktivierung. Dissertation, LMU München: Fakultät für Chemie und Pharmazie
[thumbnail of Henn_Iris_H.pdf]
Vorschau
PDF
Henn_Iris_H.pdf

11MB

Abstract

Mutationen im Parkin-Gen sind verantwortlich für eine autosomal rezessiv vererbbare Form der Parkinson-Erkrankung. Der Funktionsverlust von Parkin spielt eine zentrale Rolle bei der Pathogenese. Zu Beginn der vorliegenden Arbeit war lediglich bekannt, dass Parkin eine E3-Ubiquitin-Ligase-Aktivität besitzt und dass ein Funktionsverlust von Parkin offensichtlich zur Parkinson-Erkrankung führen kann. In der vorliegenden Doktorarbeit wurden zwei fundamentale Themenbereiche der Parkin-Forschung bearbeitet: 1. Die Analyse der Mechanismen der Inaktivierung von pathogenen Parkin-Mutanten. 2. Untersuchungen zur physiologischen Funktion von Parkin. Im ersten Teil dieser Arbeit konnten verschiedene Mechanismen der Parkin-Inaktivierung aufgeklärt werden, welche den Funktionsverlust von Parkin erklären. Pathogene C-terminale Deletionsmutationen führten zur Missfaltung und Aggregation von Parkin. Im Gegensatz zu Wildtyp-Parkin nahmen diese Mutanten spontan eine missgefaltete Konformation an und lagen in Form von zytosolischen Aggregaten vor. Pathogene Punktmutationen in der N-terminalen Ubiquitin-like (UBL)-Domäne verringerten die Stabilität von Parkin. Diese Mutanten wurden rasch über das Proteasom abgebaut. Im Rahmen dieser Untersuchungen konnte ferner gezeigt werden, dass in vivo zusätzlich zu Volllängen-Parkin eine kleinere Parkin-Spezies entsteht. Diese kleinere Parkin-Spezies ist gekennzeichnet durch das Fehlen der N-terminalen UBL-Domäne und wird aufgrund des Vorhandenseins eines internen Startcodons an Position 80 der humanen Parkin-Sequenz gebildet. Der zweite Teil der Arbeit konzentrierte sich auf die physiologische Funktion von Parkin. In Zellkultur-Modellen konnte festgestellt werden, dass Parkin nach Stressbehandlung hochreguliert wird und vor Stress-induziertem Zelltod schützt. Die Analyse von protektiven Signaltransduktionswegen konnte erstmalig zeigen, dass die Parkin-mediierte Aktivierung der NF-kappaB-Signaltransduktion essentiell ist für das neuroprotektive Potential von Parkin. Die vorliegende Arbeit lieferte Evidenz dafür, dass die E3-Ubiquitin-Ligase Parkin die NF-kappaB-Signalkaskade durch eine vermehrte regulierende Ubiquitylierung der zwei Signalmoleküle, IKK und TRAF2 aktiviert. Die in dieser Doktorarbeit dargestellten Ergebnisse ermöglichen Einblicke in die physiologische Funktion von Parkin sowie die Mechanismen, die zum Funktionsverlust von Parkin führen. Darüber hinaus können diese neuen Erkenntnisse einen Beitrag leisten zum besseren Verständnis pathogener Mechanismen der Parkinson-Erkrankung.