Logo Logo
Hilfe
Kontakt
Switch language to English
Erhaltung stetiger Symmetrien bei Gibbsschen Punktprozessen in zwei Dimensionen
Erhaltung stetiger Symmetrien bei Gibbsschen Punktprozessen in zwei Dimensionen
The conservation of continuous symmetries in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for internal transformations and spatial translations of Gibbsian systems of marked particles with two body-interaction, where the interesting cases of of singular, hard-core and discontinuous interaction are included.
Gibbssche Punktprozesse, Symmetrieerhaltung, Satz von Mermin-Wagner, harter Kern
Richthammer, Thomas
2006
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Richthammer, Thomas (2006): Erhaltung stetiger Symmetrien bei Gibbsschen Punktprozessen in zwei Dimensionen. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik
[thumbnail of Richthammer_Thomas.pdf]
Vorschau
PDF
Richthammer_Thomas.pdf

925kB

Abstract

The conservation of continuous symmetries in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for internal transformations and spatial translations of Gibbsian systems of marked particles with two body-interaction, where the interesting cases of of singular, hard-core and discontinuous interaction are included.