Logo Logo
Hilfe
Kontakt
Switch language to English
Signaltransduktion durch Zwei-Komponenten Systeme in dem halophilen Archaeon Halobacterium salinarum
Signaltransduktion durch Zwei-Komponenten Systeme in dem halophilen Archaeon Halobacterium salinarum
Die vorliegende Arbeit diente der funktionellen Charakterisierung der Zwei-Komponenten Systeme (ZKS) des halophilen Archaeons Halobacterium salinarum. Von der Existenz mehrerer Histidinkinasen (HK) und Antwortregulatoren (RR) neben dem Chemotaxis-ZKS CheA/CheY weiss man nur aufgrund der Sequenzierung des Genoms. Folglich fehlten bislang funktionelle Beschreibungen dieser Proteine. Die vorgelegte Dissertation begann, diesen Mangel zu beheben. Den Laborversuchen war eine bioinformatische Bestandsaufnahme vorgeschaltet, welche die Sensordomänen der HK, die Effektordomänen der RR und die konservierten ZKS-Domänen beider Proteinklassen nach greifbaren Anhaltspunkten durchforstete. Diese Rasterfahndung vermochte jedoch nur bescheidene Hinweise auf die Funktionen und Wechselwirkungen der HK und RR zu erbringen. Die praktischen Arbeiten zur funktionellen Charakterisierung der halobakteriellen ZKS basierten auf zwei unterschiedlichen Strategien. Der erste Ansatz bestand in dem Versuch einer Funktionszuordnung über die Applikation eines Phosphatmangels, dem alle bislang daraufhin untersuchten Prokaryoten durch eine exklusiv ZKS gesteuerte, differentielle Genexpression entgegenwirken. Im zweiten Ansatz wurde mit OE3855R eine der wenigen HK, deren Primärsequenz einen Hinweis auf die Proteinfunktion lieferte, eingehend biochemisch analysiert. Für die Phosphatmangelversuche musste zunächst geprüft werden, bei welchem Nährstoffangebot H. salinarum in eine Unterversorgung gerät. Den Experimenten zufolge limitiert ein Phosphatgehalt von weniger als 0,5mM im Medium die finale Wachstumsdichte. Die mangelhafte Phosphatversorgung induziert das Gen aph, was zu einer verstärkten Produktion und Sekretion des Enzyms Alkalische Phosphatase führt. Mikroarray-Analysen und RT-qPCR-Experimente deckten auf, dass das halobakterielle Pho-Regulon mehrere ABC-Transportsysteme und verschiedene sekretierte Enzyme umfasst. Über die somit stark verbesserten Phosphataufnahmefähigkeiten hinaus ändert sich die Transkription einer Vielzahl weiterer Gene, wobei es sich wahrscheinlich um sekundäre Effekte handelt. Während der Hungerphase verbraucht H. salinarum drei Viertel seines intrazellulären Phosphatspeichers. Die massive Abnahme des Phosphatvorrats ist nicht nur die Folge der Mangelversorgung, sondern gleichzeitig verantwortlich für die Induktion des Pho-Regulons. Das zuständige Regulatorprotein wurde bislang nicht enttarnt. Durch Konstruktion mehrerer Deletionsstämme konnten klassische ZKS als Signaltransduktoren überraschenderweise ausgeschlossen werden. Die Induktion von Proteinen mit Homologien zu DNA bindenden Bereichen von Transkriptionsfaktoren und zu dem regulatorischen Mediatorprotein PhoU deutet auf einen alternativen Regelkreis hin. Dieser wäre exklusiv für Archaea, da solche PhoU-Chimären ausschließlich in archaealen Genomen zu finden sind. Von der Anpassung des Proteininventars abgesehen orientieren H. salinarum-Zellen ihre Bewegungen an einem Phosphatgradienten. Diese Chemotaxis wird durch Phosphatmangel induziert und durch das Zwei-Komponenten System CheA-CheY vermittelt. Erstmals in einem Archaeon gezeigt, wird die Phosphattaxis von H. salinarum ausschließlich von anorganischem Phosphat ausgelöst. Laut Primärsequenzanalyse besitzt die Histidinkinase OE3855R eine Häm bindende PAS-Domäne (PAS3855) und könnte daher einen Sauerstoffsensor darstellen. Eine heterologe Expression von PAS3855 sollte dieser Hypothese Substanz verleihen. Das exprimierte Polypeptid enthielt geringe Mengen eines Kofaktors, der mittels Absorptionsspektroskopie und LC-MS-Analyse als Häm des Typs B identifiziert wurde. Auf Basis dieses Wissens erfolgte die Rekonstitution der Domäne mit HämB, was die Bildung eines Tetramers induzierte. Die spektroskopische Analyse entlarvte große Ähnlichkeiten zwischen den elektronischen Zuständen der zentralen Häm-Eisenionen von PAS3855 und dem Häm bindenden Redoxsensorprotein Dos aus E. coli. Da die Reduktion von FeIII- zu FeII-PAS3855 die Oligomerisierung der Domäne von einem Tetramer zu einem Dimer veränderte, lag eine redoxabhängige Signalfunktion der Histidinkinase OE3855R nahe. Die Deletion des kodierenden Gens führte zu keinem erkennbaren Phänotyp, weshalb zum gegenwärtigen Zeitpunkt keine Aussage getroffen werden kann, ob diese HK in vivo tatsächlich als Redox- oder auch Sauerstoffsensor fungiert.
phosphate starvation, microarray, PAS domain, two-component, archaea
Wende, Andy
2006
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Wende, Andy (2006): Signaltransduktion durch Zwei-Komponenten Systeme in dem halophilen Archaeon Halobacterium salinarum. Dissertation, LMU München: Fakultät für Chemie und Pharmazie
[thumbnail of wende_andy.pdf]
Vorschau
PDF
wende_andy.pdf

13MB

Abstract

Die vorliegende Arbeit diente der funktionellen Charakterisierung der Zwei-Komponenten Systeme (ZKS) des halophilen Archaeons Halobacterium salinarum. Von der Existenz mehrerer Histidinkinasen (HK) und Antwortregulatoren (RR) neben dem Chemotaxis-ZKS CheA/CheY weiss man nur aufgrund der Sequenzierung des Genoms. Folglich fehlten bislang funktionelle Beschreibungen dieser Proteine. Die vorgelegte Dissertation begann, diesen Mangel zu beheben. Den Laborversuchen war eine bioinformatische Bestandsaufnahme vorgeschaltet, welche die Sensordomänen der HK, die Effektordomänen der RR und die konservierten ZKS-Domänen beider Proteinklassen nach greifbaren Anhaltspunkten durchforstete. Diese Rasterfahndung vermochte jedoch nur bescheidene Hinweise auf die Funktionen und Wechselwirkungen der HK und RR zu erbringen. Die praktischen Arbeiten zur funktionellen Charakterisierung der halobakteriellen ZKS basierten auf zwei unterschiedlichen Strategien. Der erste Ansatz bestand in dem Versuch einer Funktionszuordnung über die Applikation eines Phosphatmangels, dem alle bislang daraufhin untersuchten Prokaryoten durch eine exklusiv ZKS gesteuerte, differentielle Genexpression entgegenwirken. Im zweiten Ansatz wurde mit OE3855R eine der wenigen HK, deren Primärsequenz einen Hinweis auf die Proteinfunktion lieferte, eingehend biochemisch analysiert. Für die Phosphatmangelversuche musste zunächst geprüft werden, bei welchem Nährstoffangebot H. salinarum in eine Unterversorgung gerät. Den Experimenten zufolge limitiert ein Phosphatgehalt von weniger als 0,5mM im Medium die finale Wachstumsdichte. Die mangelhafte Phosphatversorgung induziert das Gen aph, was zu einer verstärkten Produktion und Sekretion des Enzyms Alkalische Phosphatase führt. Mikroarray-Analysen und RT-qPCR-Experimente deckten auf, dass das halobakterielle Pho-Regulon mehrere ABC-Transportsysteme und verschiedene sekretierte Enzyme umfasst. Über die somit stark verbesserten Phosphataufnahmefähigkeiten hinaus ändert sich die Transkription einer Vielzahl weiterer Gene, wobei es sich wahrscheinlich um sekundäre Effekte handelt. Während der Hungerphase verbraucht H. salinarum drei Viertel seines intrazellulären Phosphatspeichers. Die massive Abnahme des Phosphatvorrats ist nicht nur die Folge der Mangelversorgung, sondern gleichzeitig verantwortlich für die Induktion des Pho-Regulons. Das zuständige Regulatorprotein wurde bislang nicht enttarnt. Durch Konstruktion mehrerer Deletionsstämme konnten klassische ZKS als Signaltransduktoren überraschenderweise ausgeschlossen werden. Die Induktion von Proteinen mit Homologien zu DNA bindenden Bereichen von Transkriptionsfaktoren und zu dem regulatorischen Mediatorprotein PhoU deutet auf einen alternativen Regelkreis hin. Dieser wäre exklusiv für Archaea, da solche PhoU-Chimären ausschließlich in archaealen Genomen zu finden sind. Von der Anpassung des Proteininventars abgesehen orientieren H. salinarum-Zellen ihre Bewegungen an einem Phosphatgradienten. Diese Chemotaxis wird durch Phosphatmangel induziert und durch das Zwei-Komponenten System CheA-CheY vermittelt. Erstmals in einem Archaeon gezeigt, wird die Phosphattaxis von H. salinarum ausschließlich von anorganischem Phosphat ausgelöst. Laut Primärsequenzanalyse besitzt die Histidinkinase OE3855R eine Häm bindende PAS-Domäne (PAS3855) und könnte daher einen Sauerstoffsensor darstellen. Eine heterologe Expression von PAS3855 sollte dieser Hypothese Substanz verleihen. Das exprimierte Polypeptid enthielt geringe Mengen eines Kofaktors, der mittels Absorptionsspektroskopie und LC-MS-Analyse als Häm des Typs B identifiziert wurde. Auf Basis dieses Wissens erfolgte die Rekonstitution der Domäne mit HämB, was die Bildung eines Tetramers induzierte. Die spektroskopische Analyse entlarvte große Ähnlichkeiten zwischen den elektronischen Zuständen der zentralen Häm-Eisenionen von PAS3855 und dem Häm bindenden Redoxsensorprotein Dos aus E. coli. Da die Reduktion von FeIII- zu FeII-PAS3855 die Oligomerisierung der Domäne von einem Tetramer zu einem Dimer veränderte, lag eine redoxabhängige Signalfunktion der Histidinkinase OE3855R nahe. Die Deletion des kodierenden Gens führte zu keinem erkennbaren Phänotyp, weshalb zum gegenwärtigen Zeitpunkt keine Aussage getroffen werden kann, ob diese HK in vivo tatsächlich als Redox- oder auch Sauerstoffsensor fungiert.