Hechenbichler, Klaus (2005): Ensemble-Techniken und ordinale Klassifikation. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik |
Vorschau |
PDF
Hechenbichler_Klaus.pdf 1MB |
Abstract
Aufgrund der Entwicklung von aggregierten Methoden wurde in den letzten Jahren eine Reihe neuer Verfahren im Forschungsfeld der Klassifikation und Prädiktion eingeführt. Die beiden wichtigsten Entwicklungen, nämlich Bagging und Boosting, wurden sowohl für den Fall von binären Zielvariablen als auch für den Mehrklassenfall ausführlich diskutiert und analysiert. Während diese angeführten Methoden die Klassenvariable jedoch als nominale Größe ohne Ordnungsstruktur betrachten, kann die Zielvariable in vielen Anwendungen als eine geordnete kategoriale Größe angesehen werden. In dieser Arbeit sollen deshalb Varianten für Bagging und Boosting entwickelt und vorgestellt werden, die in der Lage sind, die durch die ordinale Struktur in den Daten gegebene Information zu nutzen. Ferner wird aufgezeigt, wie die Qualität der Vorhersagen durch die Verwendung dieser auf die Problemstellung abgestimmten Aggregationsverfahren verbessert wird. Die dazu nötigen empirischen Vergleiche zwischen diversen Klassifikationstechniken werden nicht nur anhand von Fehlklassifikationsraten durchgeführt; stattdessen sollen auch Kriterien, die die Ordinalität in Vorhersage und Zielgröße zu berücksichtigen vermögen, herangezogen werden. Hier spielen in erster Linie verschiedene Abstandsmaße eine Rolle. Aber auch auf der Basis anderer Techniken und Ansätze kann man versuchen, dem Problem der ordinalen Klassenstruktur zu begegnen: Nächste-Nachbarn-Verfahren, die eine der intuitivsten und einfachsten Methoden zur Klassifikation darstellen, werden in dieser Arbeit durch einige Modifikationen an die besonderen Strukturen von ordinalen Zielgrößen angepaßt. Abschließend können die Resultate dieses zweiten Ansatzes, der ohne großen Rechenaufwand auskommt, mit denjenigen der modernen und rechenintensiven Aggregationstechniken verglichen werden.
Dokumententyp: | Dissertationen (Dissertation, LMU München) |
---|---|
Keywords: | Ordinale Klassifikation , Bagging , Boosting , Nächste Nachbarn |
Themengebiete: | 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fakultäten: | Fakultät für Mathematik, Informatik und Statistik |
Sprache der Hochschulschrift: | Deutsch |
Datum der mündlichen Prüfung: | 8. November 2005 |
1. Berichterstatter:in: | Tutz, Gerhard |
MD5 Prüfsumme der PDF-Datei: | 9190e2d799b49b6e5032dda729dd8d0c |
Signatur der gedruckten Ausgabe: | 0001/UMC 15054 |
ID Code: | 4629 |
Eingestellt am: | 29. Dec. 2005 |
Letzte Änderungen: | 24. Oct. 2020 09:55 |