Logo Logo
Hilfe
Kontakt
Switch language to English
Complete Characterization of Light Waves using Attosecond Pulses
Complete Characterization of Light Waves using Attosecond Pulses
The most direct way to probe the strength of an electric field, is to measure the force that exerts to a charged particle. For a time varying field, charge placement within an interval substantially shorter than the characteristic period of variation of the field is essential for sampling its temporal evolution. Employing such a scheme to track the field variation of light waves that changes its direction 1015 times per second, charge release shall be confined within a fraction of a femtosecond. In this thesis, the complete characterization of a light pulse is demonstrated experimentally for the first time by probing its field variation using a 250 attosecond electron burst. Such an ultrafast charge probe, can be generated by the impulsive ionization of atoms, using an XUV attosecond pulse precisely synchronized with the light waveform to be characterized. The technique allows access to the instantaneous value of the electric field of IR, visible, or UV light and thereby opens the door for the synthesis of controlled, extremely broadband and arbitrarily shaped light waveforms. The above experiments, are presented along with critical pertinent developments on the generation of few-cycle phase-controlled light waveforms and their subsequent exploitation, for the generation of isolated XUV attosecond pulses. Precisely characterized and controlled light fields and XUV attosecond pulses employed in combination, hold the promise for probe and control of elementary processes evolving on an attosecond time scale.
Not available
Goulielmakis, Eleftherios
2005
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Goulielmakis, Eleftherios (2005): Complete Characterization of Light Waves using Attosecond Pulses. Dissertation, LMU München: Fakultät für Physik
[thumbnail of Goulielmakis_Eleftherios.pdf]
Vorschau
PDF
Goulielmakis_Eleftherios.pdf

13MB

Abstract

The most direct way to probe the strength of an electric field, is to measure the force that exerts to a charged particle. For a time varying field, charge placement within an interval substantially shorter than the characteristic period of variation of the field is essential for sampling its temporal evolution. Employing such a scheme to track the field variation of light waves that changes its direction 1015 times per second, charge release shall be confined within a fraction of a femtosecond. In this thesis, the complete characterization of a light pulse is demonstrated experimentally for the first time by probing its field variation using a 250 attosecond electron burst. Such an ultrafast charge probe, can be generated by the impulsive ionization of atoms, using an XUV attosecond pulse precisely synchronized with the light waveform to be characterized. The technique allows access to the instantaneous value of the electric field of IR, visible, or UV light and thereby opens the door for the synthesis of controlled, extremely broadband and arbitrarily shaped light waveforms. The above experiments, are presented along with critical pertinent developments on the generation of few-cycle phase-controlled light waveforms and their subsequent exploitation, for the generation of isolated XUV attosecond pulses. Precisely characterized and controlled light fields and XUV attosecond pulses employed in combination, hold the promise for probe and control of elementary processes evolving on an attosecond time scale.