Logo Logo
Help
Contact
Switch language to German
Emergence and resilience in multi-agent reinforcement learning
Emergence and resilience in multi-agent reinforcement learning
Our world represents an enormous multi-agent system (MAS), consisting of a plethora of agents that make decisions under uncertainty to achieve certain goals. The interaction of agents constantly affects our world in various ways, leading to the emergence of interesting phenomena like life forms and civilizations that can last for many years while withstanding various kinds of disturbances. Building artificial MAS that are able to adapt and survive similarly to natural MAS is a major goal in artificial intelligence as a wide range of potential real-world applications like autonomous driving, multi-robot warehouses, and cyber-physical production systems can be straightforwardly modeled as MAS. Multi-agent reinforcement learning (MARL) is a promising approach to build such systems which has achieved remarkable progress in recent years. However, state-of-the-art MARL commonly assumes very idealized conditions to optimize performance in best-case scenarios while neglecting further aspects that are relevant to the real world. In this thesis, we address emergence and resilience in MARL which are important aspects to build artificial MAS that adapt and survive as effectively as natural MAS do. We first focus on emergent cooperation from local interaction of self-interested agents and introduce a peer incentivization approach based on mutual acknowledgments. We then propose to exploit emergent phenomena to further improve coordination in large cooperative MAS via decentralized planning or hierarchical value function factorization. To maintain multi-agent coordination in the presence of partial changes similar to classic distributed systems, we present adversarial methods to improve and evaluate resilience in MARL. Finally, we briefly cover a selection of further topics that are relevant to advance MARL towards real-world applicability., Unsere Welt stellt ein riesiges Multiagentensystem (MAS) dar, welches aus einer Vielzahl von Agenten besteht, die unter Unsicherheit Entscheidungen treffen müssen, um bestimmte Ziele zu erreichen. Die Interaktion der Agenten beeinflusst unsere Welt stets auf unterschiedliche Art und Weise, wodurch interessante emergente Phänomene wie beispielsweise Lebensformen und Zivilisationen entstehen, die über viele Jahre Bestand haben und dabei unterschiedliche Arten von Störungen überwinden können. Die Entwicklung von künstlichen MAS, die ähnlich anpassungs- und überlebensfähig wie natürliche MAS sind, ist eines der Hauptziele in der künstlichen Intelligenz, da viele potentielle Anwendungen wie zum Beispiel das autonome Fahren, die multi-robotergesteuerte Verwaltung von Lagerhallen oder der Betrieb von cyber-phyischen Produktionssystemen, direkt als MAS formuliert werden können. Multi-Agent Reinforcement Learning (MARL) ist ein vielversprechender Ansatz, mit dem in den letzten Jahren bemerkenswerte Fortschritte erzielt wurden, um solche Systeme zu entwickeln. Allerdings geht der Stand der Forschung aktuell von sehr idealisierten Annahmen aus, um die Effektivität ausschließlich für Szenarien im besten Fall zu optimieren. Dabei werden weiterführende Aspekte, die für die echte Welt relevant sind, größtenteils außer Acht gelassen. In dieser Arbeit werden die Aspekte Emergenz und Resilienz in MARL betrachtet, welche wichtig für die Entwicklung von anpassungs- und überlebensfähigen künstlichen MAS sind. Es wird zunächst die Entstehung von emergenter Kooperation durch lokale Interaktion von selbstinteressierten Agenten untersucht. Dazu wird ein Ansatz zur Peer-Incentivierung vorgestellt, welcher auf gegenseitiger Anerkennung basiert. Anschließend werden Ansätze zur Nutzung emergenter Phänomene für die Koordinationsverbesserung in großen kooperativen MAS präsentiert, die dezentrale Planungsverfahren oder hierarchische Faktorisierung von Evaluationsfunktionen nutzen. Zur Aufrechterhaltung der Multiagentenkoordination bei partiellen Veränderungen, ähnlich wie in klassischen verteilten Systemen, werden Methoden des Adversarial Learning vorgestellt, um die Resilienz in MARL zu verbessern und zu evaluieren. Abschließend wird kurz eine Auswahl von weiteren Themen behandelt, die für die Einsatzfähigkeit von MARL in der echten Welt relevant sind.
artificial intelligence, multi-agent system, reinforcement learning, emergence, resilience
Phan, Thomy
2023
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Phan, Thomy (2023): Emergence and resilience in multi-agent reinforcement learning. Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics
[thumbnail of Phan_Thomy.pdf] PDF
Phan_Thomy.pdf

5MB

Abstract

Our world represents an enormous multi-agent system (MAS), consisting of a plethora of agents that make decisions under uncertainty to achieve certain goals. The interaction of agents constantly affects our world in various ways, leading to the emergence of interesting phenomena like life forms and civilizations that can last for many years while withstanding various kinds of disturbances. Building artificial MAS that are able to adapt and survive similarly to natural MAS is a major goal in artificial intelligence as a wide range of potential real-world applications like autonomous driving, multi-robot warehouses, and cyber-physical production systems can be straightforwardly modeled as MAS. Multi-agent reinforcement learning (MARL) is a promising approach to build such systems which has achieved remarkable progress in recent years. However, state-of-the-art MARL commonly assumes very idealized conditions to optimize performance in best-case scenarios while neglecting further aspects that are relevant to the real world. In this thesis, we address emergence and resilience in MARL which are important aspects to build artificial MAS that adapt and survive as effectively as natural MAS do. We first focus on emergent cooperation from local interaction of self-interested agents and introduce a peer incentivization approach based on mutual acknowledgments. We then propose to exploit emergent phenomena to further improve coordination in large cooperative MAS via decentralized planning or hierarchical value function factorization. To maintain multi-agent coordination in the presence of partial changes similar to classic distributed systems, we present adversarial methods to improve and evaluate resilience in MARL. Finally, we briefly cover a selection of further topics that are relevant to advance MARL towards real-world applicability.

Abstract

Unsere Welt stellt ein riesiges Multiagentensystem (MAS) dar, welches aus einer Vielzahl von Agenten besteht, die unter Unsicherheit Entscheidungen treffen müssen, um bestimmte Ziele zu erreichen. Die Interaktion der Agenten beeinflusst unsere Welt stets auf unterschiedliche Art und Weise, wodurch interessante emergente Phänomene wie beispielsweise Lebensformen und Zivilisationen entstehen, die über viele Jahre Bestand haben und dabei unterschiedliche Arten von Störungen überwinden können. Die Entwicklung von künstlichen MAS, die ähnlich anpassungs- und überlebensfähig wie natürliche MAS sind, ist eines der Hauptziele in der künstlichen Intelligenz, da viele potentielle Anwendungen wie zum Beispiel das autonome Fahren, die multi-robotergesteuerte Verwaltung von Lagerhallen oder der Betrieb von cyber-phyischen Produktionssystemen, direkt als MAS formuliert werden können. Multi-Agent Reinforcement Learning (MARL) ist ein vielversprechender Ansatz, mit dem in den letzten Jahren bemerkenswerte Fortschritte erzielt wurden, um solche Systeme zu entwickeln. Allerdings geht der Stand der Forschung aktuell von sehr idealisierten Annahmen aus, um die Effektivität ausschließlich für Szenarien im besten Fall zu optimieren. Dabei werden weiterführende Aspekte, die für die echte Welt relevant sind, größtenteils außer Acht gelassen. In dieser Arbeit werden die Aspekte Emergenz und Resilienz in MARL betrachtet, welche wichtig für die Entwicklung von anpassungs- und überlebensfähigen künstlichen MAS sind. Es wird zunächst die Entstehung von emergenter Kooperation durch lokale Interaktion von selbstinteressierten Agenten untersucht. Dazu wird ein Ansatz zur Peer-Incentivierung vorgestellt, welcher auf gegenseitiger Anerkennung basiert. Anschließend werden Ansätze zur Nutzung emergenter Phänomene für die Koordinationsverbesserung in großen kooperativen MAS präsentiert, die dezentrale Planungsverfahren oder hierarchische Faktorisierung von Evaluationsfunktionen nutzen. Zur Aufrechterhaltung der Multiagentenkoordination bei partiellen Veränderungen, ähnlich wie in klassischen verteilten Systemen, werden Methoden des Adversarial Learning vorgestellt, um die Resilienz in MARL zu verbessern und zu evaluieren. Abschließend wird kurz eine Auswahl von weiteren Themen behandelt, die für die Einsatzfähigkeit von MARL in der echten Welt relevant sind.