Logo Logo
Hilfe
Kontakt
Switch language to English
Charakterisierung der mitochondrialen TIM22-Translokase des Menschen
Charakterisierung der mitochondrialen TIM22-Translokase des Menschen
Die TIM22-Translokase in der mitochondrialen Innenmembran vermittelt die Insertion von polytopen Innenmembranproteinen mit internen Signalsequenzen wie der mitochondrialen Metabolit-Carrier. Dabei unterstützt eine Gruppe von strukturell verwandten Proteinen mit charakteristischem Metallbindungsmotiv (Cys4-Motiv) die Passage der hydrophoben Vorstufenproteine über den Intermembranraum. Dies sind in der Hefe Tim9, Tim10 und Tim12 sowie Tim8 und Tim13. Die Familie dieser kleinen Tim-Proteine ist evolutionär konserviert. Im Menschen wurden sechs Mitglieder dieser Proteinfamilie identifiziert: Tim9, Tim10a und Tim10b sowie DDP1, DDP2 und Tim13. Im Rahmen dieser Arbeit wurden die Komponenten der TIM22-Translokase der Säugetiere strukturell und funktionell charakterisiert. Bei ihnen handelt es sich ebenfalls um mitochondriale Intermembranraumproteine. Sie sind in der Lage, mittels der vier konservierten Cysteinreste ein Zn2+-Ion zu binden und damit vermutlich eine Zinkfinger-Struktur auszubilden. Mutationen, die zu einem Verlust des DDP1 Proteins führen, sind die Ursache für das Mohr-Tranebjaerg Syndrom, einer neurodegenerativen Erkrankung, die sich im Wesentlichen durch Taubheit und Dystonie auszeichnet. Eine Punktmutation im DDP1-Gen, die zu einem Austausch eines der konservierten Cysteine führt (DDP1C66W), verursacht den Verlust der Zinkbindungskapazität und resultiert in einem fehlgefalteten, instabilen Protein. Es wurde gezeigt, dass das mutierte DDP1 nicht mehr in der Lage ist, mit seinem Partnerprotein Tim13 zu interagieren und keinen funktionellen DDP1-Tim13 Komplex ausbilden kann. Die menschlichen Proteine der Tim9 und Tim10-Gruppen, Tim9, Tim10a und Tim10b sind wie ihre homologen Hefeproteine in zwei hetero-oligomeren Komplexen organisiert, einem 70 kDa-Komplex bestehend aus Tim9 und Tim10a sowie einem 450 kDa Tim9-10a-10b-Komplex. Beide Komplexe sind fest mit der Innenmembran assoziiert. Tim10b zeigt eine geringere Sequenzhomologie zu Hefe-Tim10 als Tim10a. Es liegt genauso wie Tim12 nur in dem hochmolekularen Komplex vor und weist die stärkste Membranassoziation auf. Es zeigt damit strukturelle Ähnlichkeit zu Tim12. Aufgrund der Membranassoziation der kleinen TIM-Komplexe entfällt aber wahrscheinlich die Funktion des Tim12 als Vermittler zwischen dem löslichen Komplex und der Membran. Tim9, Tim10a und Tim10b sind wie die Hefe-Proteine am Import von mitochondrialen Carriern beteiligt. Die Bindung an Translokationsintermediate von Carrier-Vorstufenproteinen erfolgt in Abhängigkeit von zweiwertigen Kationen wie Zn2+. Die Struktur des TIM22-Komplexes weist signifikante Unterschiede zu der aus der Hefe bekannten Organisation auf. Humanes Tim22 ist im Vergleich zu Hefe-Tim22 wenig konserviert. Es liegt kein stabiler Komplex vor, der Tim22 und die kleinen Tim-Proteine enthält. Sie befinden sich vermutlich in dynamischer Interaktion mit Tim22, die wahrscheinlich nur während der Translokation eines Vorstufenproteins auftritt. Bisher ist kein Komplexpartner des humanen Tim22 bekannt. Homologe zu Tim54 und Tim18, den membranintegralen Komplexpartnern des Tim22, wurden in menschlichen Datenbanken nicht identifiziert. Aufgrund der veränderten strukturellen Organisation ist das menschliche Tim22 nicht in der Lage, mit den Proteinen aus der Hefe funktionell zu kooperieren. Es hat vermutlich eine Anpassung an veränderte Substratspezifizitäten stattgefunden, die auch die Beteiligung weiterer bisher unidentifizierter Komponenten der TIM22-Translokase einschließen könnte. Ein neues Intermembranraumprotein menschlicher Mitochondrien, Cmi1, ist an der Biogenese der kleinen Tim-Proteine beteiligt. Eine Überexpression im Hefesystem führt zur signifikanten Erhöhung der Proteinmengen von kleinen Tim-Proteinen im mitochondrialen Intermembranraum. Cmi1 unterstützt vermutlich die rasche stabile Faltung der neu importierten kleinen Tim-Proteine. Da Cmi1 in der Lage ist, Metall-Ionen zu binden vermittelt es möglicherweise den Transfer von Zink-Ionen.
Mitochondrien, kleine Tim-Proteine, Carrier-Import, Biogenese
Mühlenbein, Nicole
2004
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Mühlenbein, Nicole (2004): Charakterisierung der mitochondrialen TIM22-Translokase des Menschen. Dissertation, LMU München: Fakultät für Chemie und Pharmazie
[thumbnail of Muehlenbein_Nicole.pdf]
Vorschau
PDF
Muehlenbein_Nicole.pdf

1MB

Abstract

Die TIM22-Translokase in der mitochondrialen Innenmembran vermittelt die Insertion von polytopen Innenmembranproteinen mit internen Signalsequenzen wie der mitochondrialen Metabolit-Carrier. Dabei unterstützt eine Gruppe von strukturell verwandten Proteinen mit charakteristischem Metallbindungsmotiv (Cys4-Motiv) die Passage der hydrophoben Vorstufenproteine über den Intermembranraum. Dies sind in der Hefe Tim9, Tim10 und Tim12 sowie Tim8 und Tim13. Die Familie dieser kleinen Tim-Proteine ist evolutionär konserviert. Im Menschen wurden sechs Mitglieder dieser Proteinfamilie identifiziert: Tim9, Tim10a und Tim10b sowie DDP1, DDP2 und Tim13. Im Rahmen dieser Arbeit wurden die Komponenten der TIM22-Translokase der Säugetiere strukturell und funktionell charakterisiert. Bei ihnen handelt es sich ebenfalls um mitochondriale Intermembranraumproteine. Sie sind in der Lage, mittels der vier konservierten Cysteinreste ein Zn2+-Ion zu binden und damit vermutlich eine Zinkfinger-Struktur auszubilden. Mutationen, die zu einem Verlust des DDP1 Proteins führen, sind die Ursache für das Mohr-Tranebjaerg Syndrom, einer neurodegenerativen Erkrankung, die sich im Wesentlichen durch Taubheit und Dystonie auszeichnet. Eine Punktmutation im DDP1-Gen, die zu einem Austausch eines der konservierten Cysteine führt (DDP1C66W), verursacht den Verlust der Zinkbindungskapazität und resultiert in einem fehlgefalteten, instabilen Protein. Es wurde gezeigt, dass das mutierte DDP1 nicht mehr in der Lage ist, mit seinem Partnerprotein Tim13 zu interagieren und keinen funktionellen DDP1-Tim13 Komplex ausbilden kann. Die menschlichen Proteine der Tim9 und Tim10-Gruppen, Tim9, Tim10a und Tim10b sind wie ihre homologen Hefeproteine in zwei hetero-oligomeren Komplexen organisiert, einem 70 kDa-Komplex bestehend aus Tim9 und Tim10a sowie einem 450 kDa Tim9-10a-10b-Komplex. Beide Komplexe sind fest mit der Innenmembran assoziiert. Tim10b zeigt eine geringere Sequenzhomologie zu Hefe-Tim10 als Tim10a. Es liegt genauso wie Tim12 nur in dem hochmolekularen Komplex vor und weist die stärkste Membranassoziation auf. Es zeigt damit strukturelle Ähnlichkeit zu Tim12. Aufgrund der Membranassoziation der kleinen TIM-Komplexe entfällt aber wahrscheinlich die Funktion des Tim12 als Vermittler zwischen dem löslichen Komplex und der Membran. Tim9, Tim10a und Tim10b sind wie die Hefe-Proteine am Import von mitochondrialen Carriern beteiligt. Die Bindung an Translokationsintermediate von Carrier-Vorstufenproteinen erfolgt in Abhängigkeit von zweiwertigen Kationen wie Zn2+. Die Struktur des TIM22-Komplexes weist signifikante Unterschiede zu der aus der Hefe bekannten Organisation auf. Humanes Tim22 ist im Vergleich zu Hefe-Tim22 wenig konserviert. Es liegt kein stabiler Komplex vor, der Tim22 und die kleinen Tim-Proteine enthält. Sie befinden sich vermutlich in dynamischer Interaktion mit Tim22, die wahrscheinlich nur während der Translokation eines Vorstufenproteins auftritt. Bisher ist kein Komplexpartner des humanen Tim22 bekannt. Homologe zu Tim54 und Tim18, den membranintegralen Komplexpartnern des Tim22, wurden in menschlichen Datenbanken nicht identifiziert. Aufgrund der veränderten strukturellen Organisation ist das menschliche Tim22 nicht in der Lage, mit den Proteinen aus der Hefe funktionell zu kooperieren. Es hat vermutlich eine Anpassung an veränderte Substratspezifizitäten stattgefunden, die auch die Beteiligung weiterer bisher unidentifizierter Komponenten der TIM22-Translokase einschließen könnte. Ein neues Intermembranraumprotein menschlicher Mitochondrien, Cmi1, ist an der Biogenese der kleinen Tim-Proteine beteiligt. Eine Überexpression im Hefesystem führt zur signifikanten Erhöhung der Proteinmengen von kleinen Tim-Proteinen im mitochondrialen Intermembranraum. Cmi1 unterstützt vermutlich die rasche stabile Faltung der neu importierten kleinen Tim-Proteine. Da Cmi1 in der Lage ist, Metall-Ionen zu binden vermittelt es möglicherweise den Transfer von Zink-Ionen.