Logo Logo
Hilfe
Kontakt
Switch language to English
Self-adaptive fitness in evolutionary processes
Self-adaptive fitness in evolutionary processes
Most optimization algorithms or methods in artificial intelligence can be regarded as evolutionary processes. They start from (basically) random guesses and produce increasingly better results with respect to a given target function, which is defined by the process's designer. The value of the achieved results is communicated to the evolutionary process via a fitness function that is usually somewhat correlated with the target function but does not need to be exactly the same. When the values of the fitness function change purely for reasons intrinsic to the evolutionary process, i.e., even though the externally motivated goals (as represented by the target function) remain constant, we call that phenomenon self-adaptive fitness. We trace the phenomenon of self-adaptive fitness back to emergent goals in artificial chemistry systems, for which we develop a new variant based on neural networks. We perform an in-depth analysis of diversity-aware evolutionary algorithms as a prime example of how to effectively integrate self-adaptive fitness into evolutionary processes. We sketch the concept of productive fitness as a new tool to reason about the intrinsic goals of evolution. We introduce the pattern of scenario co-evolution, which we apply to a reinforcement learning agent competing against an evolutionary algorithm to improve performance and generate hard test cases and which we also consider as a more general pattern for software engineering based on a solid formal framework. Multiple connections to related topics in natural computing, quantum computing and artificial intelligence are discovered and may shape future research in the combined fields., Die meisten Optimierungsalgorithmen und die meisten Verfahren in Bereich künstlicher Intelligenz können als evolutionäre Prozesse aufgefasst werden. Diese beginnen mit (prinzipiell) zufällig geratenen Lösungskandidaten und erzeugen dann immer weiter verbesserte Ergebnisse für gegebene Zielfunktion, die der Designer des gesamten Prozesses definiert hat. Der Wert der erreichten Ergebnisse wird dem evolutionären Prozess durch eine Fitnessfunktion mitgeteilt, die normalerweise in gewissem Rahmen mit der Zielfunktion korreliert ist, aber auch nicht notwendigerweise mit dieser identisch sein muss. Wenn die Werte der Fitnessfunktion sich allein aus für den evolutionären Prozess intrinsischen Gründen ändern, d.h. auch dann, wenn die extern motivierten Ziele (repräsentiert durch die Zielfunktion) konstant bleiben, nennen wir dieses Phänomen selbst-adaptive Fitness. Wir verfolgen das Phänomen der selbst-adaptiven Fitness zurück bis zu künstlichen Chemiesystemen (artificial chemistry systems), für die wir eine neue Variante auf Basis neuronaler Netze entwickeln. Wir führen eine tiefgreifende Analyse diversitätsbewusster evolutionärer Algorithmen durch, welche wir als Paradebeispiel für die effektive Integration von selbst-adaptiver Fitness in evolutionäre Prozesse betrachten. Wir skizzieren das Konzept der produktiven Fitness als ein neues Werkzeug zur Untersuchung von intrinsischen Zielen der Evolution. Wir führen das Muster der Szenarien-Ko-Evolution (scenario co-evolution) ein und wenden es auf einen Agenten an, der mittels verstärkendem Lernen (reinforcement learning) mit einem evolutionären Algorithmus darum wetteifert, seine Leistung zu erhöhen bzw. härtere Testszenarien zu finden. Wir erkennen dieses Muster auch in einem generelleren Kontext als formale Methode in der Softwareentwicklung. Wir entdecken mehrere Verbindungen der besprochenen Phänomene zu Forschungsgebieten wie natural computing, quantum computing oder künstlicher Intelligenz, welche die zukünftige Forschung in den kombinierten Forschungsgebieten prägen könnten.
Not available
Gabor, Thomas
2021
Englisch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Gabor, Thomas (2021): Self-adaptive fitness in evolutionary processes. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik
[thumbnail of Gabor_Thomas.pdf]
Vorschau
PDF
Gabor_Thomas.pdf

9MB

Abstract

Most optimization algorithms or methods in artificial intelligence can be regarded as evolutionary processes. They start from (basically) random guesses and produce increasingly better results with respect to a given target function, which is defined by the process's designer. The value of the achieved results is communicated to the evolutionary process via a fitness function that is usually somewhat correlated with the target function but does not need to be exactly the same. When the values of the fitness function change purely for reasons intrinsic to the evolutionary process, i.e., even though the externally motivated goals (as represented by the target function) remain constant, we call that phenomenon self-adaptive fitness. We trace the phenomenon of self-adaptive fitness back to emergent goals in artificial chemistry systems, for which we develop a new variant based on neural networks. We perform an in-depth analysis of diversity-aware evolutionary algorithms as a prime example of how to effectively integrate self-adaptive fitness into evolutionary processes. We sketch the concept of productive fitness as a new tool to reason about the intrinsic goals of evolution. We introduce the pattern of scenario co-evolution, which we apply to a reinforcement learning agent competing against an evolutionary algorithm to improve performance and generate hard test cases and which we also consider as a more general pattern for software engineering based on a solid formal framework. Multiple connections to related topics in natural computing, quantum computing and artificial intelligence are discovered and may shape future research in the combined fields.

Abstract

Die meisten Optimierungsalgorithmen und die meisten Verfahren in Bereich künstlicher Intelligenz können als evolutionäre Prozesse aufgefasst werden. Diese beginnen mit (prinzipiell) zufällig geratenen Lösungskandidaten und erzeugen dann immer weiter verbesserte Ergebnisse für gegebene Zielfunktion, die der Designer des gesamten Prozesses definiert hat. Der Wert der erreichten Ergebnisse wird dem evolutionären Prozess durch eine Fitnessfunktion mitgeteilt, die normalerweise in gewissem Rahmen mit der Zielfunktion korreliert ist, aber auch nicht notwendigerweise mit dieser identisch sein muss. Wenn die Werte der Fitnessfunktion sich allein aus für den evolutionären Prozess intrinsischen Gründen ändern, d.h. auch dann, wenn die extern motivierten Ziele (repräsentiert durch die Zielfunktion) konstant bleiben, nennen wir dieses Phänomen selbst-adaptive Fitness. Wir verfolgen das Phänomen der selbst-adaptiven Fitness zurück bis zu künstlichen Chemiesystemen (artificial chemistry systems), für die wir eine neue Variante auf Basis neuronaler Netze entwickeln. Wir führen eine tiefgreifende Analyse diversitätsbewusster evolutionärer Algorithmen durch, welche wir als Paradebeispiel für die effektive Integration von selbst-adaptiver Fitness in evolutionäre Prozesse betrachten. Wir skizzieren das Konzept der produktiven Fitness als ein neues Werkzeug zur Untersuchung von intrinsischen Zielen der Evolution. Wir führen das Muster der Szenarien-Ko-Evolution (scenario co-evolution) ein und wenden es auf einen Agenten an, der mittels verstärkendem Lernen (reinforcement learning) mit einem evolutionären Algorithmus darum wetteifert, seine Leistung zu erhöhen bzw. härtere Testszenarien zu finden. Wir erkennen dieses Muster auch in einem generelleren Kontext als formale Methode in der Softwareentwicklung. Wir entdecken mehrere Verbindungen der besprochenen Phänomene zu Forschungsgebieten wie natural computing, quantum computing oder künstlicher Intelligenz, welche die zukünftige Forschung in den kombinierten Forschungsgebieten prägen könnten.