Schulze, Felix (2021): Understanding the formation and properties of galaxies from stellar kinematics. Dissertation, LMU München: Faculty of Physics |
Preview |
PDF
Schulze_Felix.pdf 48MB |
Abstract
Obwohl die Entstehung und die Eigenschaften von Galaxien schon seit fast 100 Jahren Gegenstand astrophysikalischer Forschung sind, gibt es grundlegende Aspekte, welche bis heute nicht vollständig verstanden sind. Vor dem Hintergrund der kosmologischen Strukturbildung entwickeln sich Galaxien unter dem Einfluss diverser interner und externer physikalischer Prozesse. Ein komplexes Zusammenspiel dieser Prozesse, welche auf variierenden Zeitskalen agieren, formt die Galaxien die wir heute beobachten. Es ist bekannt, dass dieses Zusammenspiel maßgeblich die orbitale Struktur von Sternen innerhalb von Galaxien beeinflusst und daher Spuren in der Phasenraumverteilung hinterlässt. Die vorliegende Dissertation beschäftigt sich mit der Frage, welche Information aus der stellaren Kinematik extrahiert werden kann, um die Entstehung und Entwicklung von Galaxien umfassender zu verstehen. Im Speziellen untersuchen wir die Geschwindigkeitsverteilung entlang der Blickachse anhand ihrer Momente. Hierfür nutzen wir die hochmoderne hydrodynamische kosmologische \textit{Magneticum} Simulation, in welcher sich auf natürliche und selbstkonsistente Weise eine realistische und statistisch aussagekräftige Galaxienpopulation bildet. Um die kinematische Struktur von Galaxien in größerem Detail zu untersuchen, werden zusätzlich hochaufgelöste idealisierte Simulationen individueller Galaxienverschmelzungen analysiert. Der erste Teil der Arbeit bezieht sich zunächst auf das Zentrum elliptischer Galaxien. Im Einklang mit Beobachtungen finden wir im Allgemeinen eine bimodale Verteilung aus schnell rotierenden und langsam rotierenden Galaxien, mit konsistenten Häufigkeiten. Die Simulation reproduziert zudem die wichtigsten beobachteten Geschwindigkeitsstrukturen, wie gegenläufig oder entkoppelt rotierende Kerne. Mit Hilfe der dreidimensionalen Information der Simulation zeigen wir, dass es möglich ist, anhand von beobachtbaren Parametern die interne Anisotropie der Sterne abzuleiten. Dies bestätigt die Validität eines theoretischen Modells, welches zur Interpretation von Beobachtungen hinsichtlich der internen Struktur von Galaxien verwendet wird. Diese Resultate zeigen, dass die Magneticum Simulation ein exzellentes Laboratorium bereitstellt, um die stellare Kinematik und deren Ursprung zu erforschen. In diesem Zusammenhang finden wir, dass die Population aus langsam rotierenden Galaxien sich graduell seit z=2 aufbaut, und ein signifikanter Anteil dieser nun langsam rotierenden Galaxien ihren Drehimpuls durch eine massive Galaxienverschmelzung verloren hat. Im zweiten Teil untersuchen wir in einer detaillierten Fallstudie Ursprung, Stabilität und Dynamik eines gegenläufig rotierenden Kerns einer elliptischen Galaxie, die durch einen einzelnen massiven Verschmelzungsprozess zweier Spiralgalaxien in einer idealisierten Simulation entstanden ist. Wir können zeigen, dass solche Kerne aus neu geformten Sternen aufgebaut sind, deren Apoapsis sich innerhalb des Kernradius befindet. Das Rotationssignal verschwindet etwa 3Gyr nach der Galaxienkollision, ausgelöst durch die gravitative Vermischung der rotierenden Sterne mit Sternen, die den Kern auf stark elliptischen Bahnen intrudieren. Während seiner Lebenszeit vollführt der Kern eine periodische globale Bewegung. Diese Bewegung ist ein Indiz für die Konservierung des orbitalen Drehimpulses in der gasförmigen Komponente, welche später durch Sternentstehung den Kern aufbaut. Im dritten Teil erweitern wir unsere Analyse auf den stellaren Halo der Galaxien. Aufgrund der niedrigen Dichten und damit verbundenen langen Relaxationszeiten dokumentiert der stellare Halo eine Vielfalt an Informationen über Verschmelzungen mit anderen Galaxien. Im Einklang mit Beobachtungen finden wir drei Arten von radialen Rotationsvariationen: stark im Zentrum und schwächer im Halo, kontinuierlich ansteigend mit hoher Amplitude und durchgehend flach mit niedriger Amplitude. Diese Variationen in der Rotation sind Resultat des komplexen Zusammenspiels von interner Sternenstehung und der Akkretion von Sternen. Für die erste Art von Galaxien finden wir starke Indizien, dass der Halo und das Zentrum sich entkoppelt entwickeln. Während das Zentrum einer alten Scheibe entspricht die schon bei z~2 existiert und durch interne Sternenstehung wächst, baut sich der Halo durch das anisotrope Akkretieren kleiner Strukturen auf. Dieses Szenario legt nahe, dass eine Verbindung zwischen dem kinematischen Übergang und dem Übergang von insitu geformten zu akkretierten Sternen besteht. Wir demonstrieren, dass eine solche Korrelation existiert, jedoch mit einer gewissen Streuung, die durch einen vermischten Übergangsbereich verursacht wird. Abschließend wird die Form der Geschwindigkeitsverteilung genauer untersucht, indem wir die Schiefe und Wölbung der Verteilung miteinbeziehen, um die maximale Information aus der Geschwindigkeitsverteilung zu extrahieren. Dies wird erstmals für eine kosmologische Simulation durchgeführt. Wir zeigen, dass Galaxien mit ansteigender stellarer Masse eine zunehmend schmalere Geschwindigkeitsverteilung aufweisen. Diese Veränderung weist auf einen generellen Übergang in der orbitalen Konfiguration hin. Zudem können wir zeigen, dass die globalen wie auch räumlich aufgelösten höheren Momente Rückschlüsse auf die Entstehung von Galaxien zulassen. Galaxien deren lokale Schiefe stark mit der lokalen Rotationsuntestützung korreliert/anti-korreliert, weisen eine erhöhte intrinsische Sternenstehung und ein erhöhtes Reservoir an kaltem Gas auf. Zusammenfassend zeigt diese Dissertation, dass die stellare Geschwindigkeitsverteilung von Galaxien wertvolle Informationen über die Entstehung und Entwicklung von Galaxien enthält. Unsere Ergebnisse stellen aussagekräftige Interpretationen aktueller Beobachtungen dar und liefern Vorhersagen, die zum Verständnis zukünftiger Beobachtungen maßgeblich beitragen werden.
Abstract
Although the formation and properties of galaxies have been the subject of astrophysical research for almost 100 years, some fundamental aspects are still not fully understood. Against the background of large scale cosmological structure formation, galaxies develop under the influence of various physical processes which interplay in a complex manner to form the galaxies observed today. This includes internal as well as external processes that act on varying temporal and spatial scales. It is known that aspects of this interplay significantly influence the orbital structure of stars within galaxies, and therefore encode in the stellar phase-space distribution. This thesis addresses the question of which information can be extracted from the kinematics of stars in order to further understand the details of the formation and evolution of galaxies. In particular, we study the stellar line-of-sight velocity distribution (LOSVD) based on its moments. For this we use the state-of-the-art hydrodynamic cosmological Magneticum Pathfinder simulation, which implements a variety of relevant physical mechanisms in order to build a realistic and statically meaningful galaxy population in a self-consistent manner. In addition, high-resolution idealised simulations of individual galaxy mergers are analysed to examine the kinematic structure of galaxies in greater detail. The first part of the thesis is constrained to the centre of Early-Type Galaxies. In agreement with observations from integral field spectroscopy surveys, we find a bimodal distribution of fast and slow rotating galaxies with consistent frequencies. Furthermore, the simulation reproduces the most important observed velocity structures, such as counter-rotating or decoupled rotating cores. Exploiting the three-dimensional information provided by the simulation, we demonstrate that it is possible to infer the internal stellar anisotropy from observable parameters. This confirms the validity of a theoretical model, which is generally used to interpret observations regarding the internal kinematic structure of galaxies. These results show that the Magneticum Pathfinder simulation provides an excellent laboratory to study the kinematics of galaxies and to explore their origin. In this context we find that the population of slowly rotating galaxies builds up gradually since z=2, and a significant fraction loses its angular momentum due to massive galaxy merger. Furthermore, we investigate in a detailed case study the origin, stability and dynamics of a counter-rotating kinematically distinct core (KDC) in an elliptical galaxy formed in an isolated galaxy merger simulation. We show, that the KDC consists of stars that have been newly formed during the merger on orbits with an apoapsis within the core radius. The rotation signal disappears approximately 3Gyr after the galaxy merger, triggered by the gravitational mixing of the rotating stars with stars which intrude the KDC on strongly elliptical orbits. During its lifetime, the core performs a periodic global movement comparable to the precession of a gyroscope in a gravitational potential. This global motion originates from the conservation of the progenitor orbital angular momentum in the gaseous component, which later builds up the KDC through star formation. In the third part we expand the analysis to the stellar halo of galaxies, which encodes a variety of information about interactions with other galaxies for a long period of time due to the low densities and the associated long relaxation timescales in the halo. In agreement with observations we find three characteristic types of radial rotation variations: i) strong in the centre and increasingly weaker in the halo ii) continuously rising with high amplitude iii) continuously flat mostly with low amplitude. These variations in the rotation reflect the complex interplay of internal star formation and external accretion of stars. For the first type of galaxies, we find strong evidence that the halo and the centre are evolving decoupled. While the centre corresponds to an old disk which already exists at z~2 and grows through internal star formation, the halo is built up through the anisotropic accretion of small structures which are disrupted in the halo. This scenario suggests a connection between the kinematic transition and the transition from in-situ formed to accreted ex-situ stars. We demonstrate that such a correlation exists, with a certain scatter caused by a transition region where both in-situ and ex-situ stars are strongly mixed. This result represents an important interpretation of recent observations and prediction for future observations which will push the limits of radial coverage of IFS observations. Finally, to extract the maximum information from the LOSVD, its shape is examined more closely by including higher-order moments measuring the deviations from a Gaussian, i.e. the skewness and kurtosis. This is the first time this analysis is applied to galaxies from a fully cosmological simulation. We show that galaxies with higher stellar masses exhibit a more peaked LOSVD, indicating a transition in the global orbital configuration. Furthermore, we are able to extract information about the formation history of galaxies from the global as well as spatially resolved higher-order moments. Galaxies with a strong anticorrelation/correlation between the local skewness and rotational support exhibit increased insitu star formation and a larger reservoir of cold gas to prolong star formation. In summary, this thesis shows that the LOSVD of galaxies encodes valuable information about the formation and evolution of galaxies. Our findings represent meaningful interpretations of recent IFS observations and provide predictions that can be probed by future surveys which will be able to reach larger radii and redshifts and to include information about stellar populations.
Item Type: | Theses (Dissertation, LMU Munich) |
---|---|
Subjects: | 500 Natural sciences and mathematics 500 Natural sciences and mathematics > 530 Physics |
Faculties: | Faculty of Physics |
Language: | English |
Date of oral examination: | 10. May 2021 |
1. Referee: | Burkert, Andreas |
MD5 Checksum of the PDF-file: | afab23b3cabc5b9f01e262ae1c472ec2 |
Signature of the printed copy: | 0001/UMC 28205 |
ID Code: | 28561 |
Deposited On: | 24. Sep 2021 13:25 |
Last Modified: | 24. Sep 2021 13:25 |