Logo Logo
Help
Contact
Switch language to German
Spherical tangible user interfaces in mixed reality
Spherical tangible user interfaces in mixed reality
The popularity of virtual reality (VR) and augmented reality (AR) has grown rapidly in recent years, both in academia and commercial applications. This is rooted in technological advances and affordable head-mounted displays (HMDs). Whether in games or professional applications, HMDs allow for immersive audio-visual experiences that transport users to compelling digital worlds or convincingly augment the real world. However, as true to life as these experiences have become in a visual and auditory sense, the question remains how we can model interaction with these virtual environments in an equally natural way. Solutions providing intuitive tangible interaction would bear the potential to fundamentally make the mixed reality (MR) spectrum more accessible, especially for novice users. Research on tangible user interfaces (TUIs) has pursued this goal by coupling virtual to real-world objects. Tangible interaction has been shown to provide significant advantages for numerous use cases. Spherical tangible user interfaces (STUIs) present a special case of these devices, mainly due to their ability to fully embody any spherical virtual content. In general, spherical devices increasingly transition from mere technology demonstrators to usable multi-modal interfaces. For this dissertation, we explore the application of STUIs in MR environments primarily by comparing them to state-of-the-art input techniques in four different contexts. Thus, investigating the questions of embodiment, overall user performance, and the ability of STUIs relying on their shape alone to support complex interaction techniques. First, we examine how spherical devices can embody immersive visualizations. In an initial study, we test the practicality of a tracked sphere embodying three kinds of visualizations. We examine simulated multi-touch interaction on a spherical surface and compare two different sphere sizes to VR controllers. Results confirmed our prototype's viability and indicate improved pattern recognition and advantages for the smaller sphere. Second, to further substantiate VR as a prototyping technology, we demonstrate how a large tangible spherical display can be simulated in VR. We show how VR can fundamentally extend the capabilities of real spherical displays by adding physical rotation to a simulated multi-touch surface. After a first study evaluating the general viability of simulating such a display in VR, our second study revealed the superiority of a rotating spherical display. Third, we present a concept for a spherical input device for tangible AR (TAR). We show how such a device can provide basic object manipulation capabilities utilizing two different modes and compare it to controller techniques with increasing hardware complexity. Our results show that our button-less sphere-based technique is only outperformed by a mode-less controller variant that uses physical buttons and a touchpad. Fourth, to study the intrinsic problem of VR locomotion, we explore two opposing approaches: a continuous and a discrete technique. For the first, we demonstrate a spherical locomotion device supporting two different locomotion paradigms that propel a user's first-person avatar accordingly. We found that a position control paradigm applied to a sphere performed mostly superior in comparison to button-supported controller interaction. For discrete locomotion, we evaluate the concept of a spherical world in miniature (SWIM) used for avatar teleportation in a large virtual environment. Results showed that users subjectively preferred the sphere-based technique over regular controllers and on average, achieved lower task times and higher accuracy. To conclude the thesis, we discuss our findings, insights, and subsequent contribution to our central research questions to derive recommendations for designing techniques based on spherical input devices and an outlook on the future development of spherical devices in the mixed reality spectrum., Die Popularität von Virtual Reality (VR) und Augmented Reality (AR) hat in den letzten Jahren rasant zugenommen, sowohl im akademischen Bereich als auch bei kommerziellen Anwendungen. Dies ist in erster Linie auf technologische Fortschritte und erschwingliche Head-Mounted Displays (HMDs) zurückzuführen. Ob in Spielen oder professionellen Anwendungen, HMDs ermöglichen immersive audiovisuelle Erfahrungen, die uns in fesselnde digitale Welten versetzen oder die reale Welt überzeugend erweitern. Doch so lebensecht diese Erfahrungen in visueller und auditiver Hinsicht geworden sind, so bleibt doch die Frage, wie die Interaktion mit diesen virtuellen Umgebungen auf ebenso natürliche Weise gestaltet werden kann. Lösungen, die eine intuitive, greifbare Interaktion ermöglichen, hätten das Potenzial, das Spektrum der Mixed Reality (MR) fundamental zugänglicher zu machen, insbesondere für Unerfahrene. Die Forschung an Tangible User Interfaces (TUIs) hat dieses Ziel durch das Koppeln virtueller und realer Objekte verfolgt und so hat sich gezeigt, dass greifbare Interaktion für zahlreiche Anwendungsfälle signifikante Vorteile bietet. Spherical Tangible User Interfaces (STUIs) stellen einen Spezialfall von greifbaren Interfaces dar, insbesondere aufgrund ihrer Fähigkeit, beliebige sphärische virtuelle Inhalte vollständig verkörpern zu können. Generell entwickeln sich sphärische Geräte zunehmend von reinen Technologiedemonstratoren zu nutzbaren multimodalen Instrumenten, die auf eine breite Palette von Interaktionstechniken zurückgreifen können. Diese Dissertation untersucht primär die Anwendung von STUIs in MR-Umgebungen durch einen Vergleich mit State-of-the-Art-Eingabetechniken in vier verschiedenen Kontexten. Dies ermöglicht die Erforschung der Bedeutung der Verkörperung virtueller Objekte, der Benutzerleistung im Allgemeinen und der Fähigkeit von STUIs, die sich lediglich auf ihre Form verlassen, komplexe Interaktionstechniken zu unterstützen. Zunächst erforschen wir, wie sphärische Geräte immersive Visualisierungen verkörpern können. Eine erste Studie ergründet die Praxistauglichkeit einer einfach konstruierten, getrackten Kugel, die drei Arten von Visualisierungen verkörpert. Wir testen simulierte Multi-Touch-Interaktion auf einer sphärischen Oberfläche und vergleichen zwei Kugelgrößen mit VR-Controllern. Die Ergebnisse bestätigten die Praxistauglichkeit des Prototyps und deuten auf verbesserte Mustererkennung sowie Vorteile für die kleinere Kugel hin. Zweitens, um die Validität von VR als Prototyping-Technologie zu bekräftigen, demonstrieren wir, wie ein großes, anfassbares sphärisches Display in VR simuliert werden kann. Es zeigt sich, wie VR die Möglichkeiten realer sphärischer Displays substantiell erweitern kann, indem eine simulierte Multi-Touch-Oberfläche um die Fähigkeit der physischen Rotation ergänzt wird. Nach einer ersten Studie, die die generelle Machbarkeit der Simulation eines solchen Displays in VR evaluiert, zeigte eine zweite Studie die Überlegenheit des drehbaren sphärischen Displays. Drittens präsentiert diese Arbeit ein Konzept für ein sphärisches Eingabegerät für Tangible AR (TAR). Wir zeigen, wie ein solches Werkzeug grundlegende Fähigkeiten zur Objektmanipulation unter Verwendung von zwei verschiedenen Modi bereitstellen kann und vergleichen es mit Eingabetechniken deren Hardwarekomplexität zunehmend steigt. Unsere Ergebnisse zeigen, dass die kugelbasierte Technik, die ohne Knöpfe auskommt, nur von einer Controller-Variante übertroffen wird, die physische Knöpfe und ein Touchpad verwendet und somit nicht auf unterschiedliche Modi angewiesen ist. Viertens, um das intrinsische Problem der Fortbewegung in VR zu erforschen, untersuchen wir zwei gegensätzliche Ansätze: eine kontinuierliche und eine diskrete Technik. Für die erste präsentieren wir ein sphärisches Eingabegerät zur Fortbewegung, das zwei verschiedene Paradigmen unterstützt, die einen First-Person-Avatar entsprechend bewegen. Es zeigte sich, dass das Paradigma der direkten Positionssteuerung, angewandt auf einen Kugel-Controller, im Vergleich zu regulärer Controller-Interaktion, die zusätzlich auf physische Knöpfe zurückgreifen kann, meist besser abschneidet. Im Bereich der diskreten Fortbewegung evaluieren wir das Konzept einer kugelförmingen Miniaturwelt (Spherical World in Miniature, SWIM), die für die Avatar-Teleportation in einer großen virtuellen Umgebung verwendet werden kann. Die Ergebnisse zeigten eine subjektive Bevorzugung der kugelbasierten Technik im Vergleich zu regulären Controllern und im Durchschnitt eine schnellere Lösung der Aufgaben sowie eine höhere Genauigkeit. Zum Abschluss der Arbeit diskutieren wir unsere Ergebnisse, Erkenntnisse und die daraus resultierenden Beiträge zu unseren zentralen Forschungsfragen, um daraus Empfehlungen für die Gestaltung von Techniken auf Basis kugelförmiger Eingabegeräte und einen Ausblick auf die mögliche zukünftige Entwicklung sphärischer Eingabegräte im Mixed-Reality-Bereich abzuleiten.
Tangible User Interfaces, Spherical Devices, Mixed Reality, Virtual Reality, HCI, Mensch-Maschine-Interaktion, Tangible Interaction
Englmeier, David
2021
English
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Englmeier, David (2021): Spherical tangible user interfaces in mixed reality. Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics
[img]
Preview
PDF
Englmeier_David.pdf

6MB

Abstract

The popularity of virtual reality (VR) and augmented reality (AR) has grown rapidly in recent years, both in academia and commercial applications. This is rooted in technological advances and affordable head-mounted displays (HMDs). Whether in games or professional applications, HMDs allow for immersive audio-visual experiences that transport users to compelling digital worlds or convincingly augment the real world. However, as true to life as these experiences have become in a visual and auditory sense, the question remains how we can model interaction with these virtual environments in an equally natural way. Solutions providing intuitive tangible interaction would bear the potential to fundamentally make the mixed reality (MR) spectrum more accessible, especially for novice users. Research on tangible user interfaces (TUIs) has pursued this goal by coupling virtual to real-world objects. Tangible interaction has been shown to provide significant advantages for numerous use cases. Spherical tangible user interfaces (STUIs) present a special case of these devices, mainly due to their ability to fully embody any spherical virtual content. In general, spherical devices increasingly transition from mere technology demonstrators to usable multi-modal interfaces. For this dissertation, we explore the application of STUIs in MR environments primarily by comparing them to state-of-the-art input techniques in four different contexts. Thus, investigating the questions of embodiment, overall user performance, and the ability of STUIs relying on their shape alone to support complex interaction techniques. First, we examine how spherical devices can embody immersive visualizations. In an initial study, we test the practicality of a tracked sphere embodying three kinds of visualizations. We examine simulated multi-touch interaction on a spherical surface and compare two different sphere sizes to VR controllers. Results confirmed our prototype's viability and indicate improved pattern recognition and advantages for the smaller sphere. Second, to further substantiate VR as a prototyping technology, we demonstrate how a large tangible spherical display can be simulated in VR. We show how VR can fundamentally extend the capabilities of real spherical displays by adding physical rotation to a simulated multi-touch surface. After a first study evaluating the general viability of simulating such a display in VR, our second study revealed the superiority of a rotating spherical display. Third, we present a concept for a spherical input device for tangible AR (TAR). We show how such a device can provide basic object manipulation capabilities utilizing two different modes and compare it to controller techniques with increasing hardware complexity. Our results show that our button-less sphere-based technique is only outperformed by a mode-less controller variant that uses physical buttons and a touchpad. Fourth, to study the intrinsic problem of VR locomotion, we explore two opposing approaches: a continuous and a discrete technique. For the first, we demonstrate a spherical locomotion device supporting two different locomotion paradigms that propel a user's first-person avatar accordingly. We found that a position control paradigm applied to a sphere performed mostly superior in comparison to button-supported controller interaction. For discrete locomotion, we evaluate the concept of a spherical world in miniature (SWIM) used for avatar teleportation in a large virtual environment. Results showed that users subjectively preferred the sphere-based technique over regular controllers and on average, achieved lower task times and higher accuracy. To conclude the thesis, we discuss our findings, insights, and subsequent contribution to our central research questions to derive recommendations for designing techniques based on spherical input devices and an outlook on the future development of spherical devices in the mixed reality spectrum.

Abstract

Die Popularität von Virtual Reality (VR) und Augmented Reality (AR) hat in den letzten Jahren rasant zugenommen, sowohl im akademischen Bereich als auch bei kommerziellen Anwendungen. Dies ist in erster Linie auf technologische Fortschritte und erschwingliche Head-Mounted Displays (HMDs) zurückzuführen. Ob in Spielen oder professionellen Anwendungen, HMDs ermöglichen immersive audiovisuelle Erfahrungen, die uns in fesselnde digitale Welten versetzen oder die reale Welt überzeugend erweitern. Doch so lebensecht diese Erfahrungen in visueller und auditiver Hinsicht geworden sind, so bleibt doch die Frage, wie die Interaktion mit diesen virtuellen Umgebungen auf ebenso natürliche Weise gestaltet werden kann. Lösungen, die eine intuitive, greifbare Interaktion ermöglichen, hätten das Potenzial, das Spektrum der Mixed Reality (MR) fundamental zugänglicher zu machen, insbesondere für Unerfahrene. Die Forschung an Tangible User Interfaces (TUIs) hat dieses Ziel durch das Koppeln virtueller und realer Objekte verfolgt und so hat sich gezeigt, dass greifbare Interaktion für zahlreiche Anwendungsfälle signifikante Vorteile bietet. Spherical Tangible User Interfaces (STUIs) stellen einen Spezialfall von greifbaren Interfaces dar, insbesondere aufgrund ihrer Fähigkeit, beliebige sphärische virtuelle Inhalte vollständig verkörpern zu können. Generell entwickeln sich sphärische Geräte zunehmend von reinen Technologiedemonstratoren zu nutzbaren multimodalen Instrumenten, die auf eine breite Palette von Interaktionstechniken zurückgreifen können. Diese Dissertation untersucht primär die Anwendung von STUIs in MR-Umgebungen durch einen Vergleich mit State-of-the-Art-Eingabetechniken in vier verschiedenen Kontexten. Dies ermöglicht die Erforschung der Bedeutung der Verkörperung virtueller Objekte, der Benutzerleistung im Allgemeinen und der Fähigkeit von STUIs, die sich lediglich auf ihre Form verlassen, komplexe Interaktionstechniken zu unterstützen. Zunächst erforschen wir, wie sphärische Geräte immersive Visualisierungen verkörpern können. Eine erste Studie ergründet die Praxistauglichkeit einer einfach konstruierten, getrackten Kugel, die drei Arten von Visualisierungen verkörpert. Wir testen simulierte Multi-Touch-Interaktion auf einer sphärischen Oberfläche und vergleichen zwei Kugelgrößen mit VR-Controllern. Die Ergebnisse bestätigten die Praxistauglichkeit des Prototyps und deuten auf verbesserte Mustererkennung sowie Vorteile für die kleinere Kugel hin. Zweitens, um die Validität von VR als Prototyping-Technologie zu bekräftigen, demonstrieren wir, wie ein großes, anfassbares sphärisches Display in VR simuliert werden kann. Es zeigt sich, wie VR die Möglichkeiten realer sphärischer Displays substantiell erweitern kann, indem eine simulierte Multi-Touch-Oberfläche um die Fähigkeit der physischen Rotation ergänzt wird. Nach einer ersten Studie, die die generelle Machbarkeit der Simulation eines solchen Displays in VR evaluiert, zeigte eine zweite Studie die Überlegenheit des drehbaren sphärischen Displays. Drittens präsentiert diese Arbeit ein Konzept für ein sphärisches Eingabegerät für Tangible AR (TAR). Wir zeigen, wie ein solches Werkzeug grundlegende Fähigkeiten zur Objektmanipulation unter Verwendung von zwei verschiedenen Modi bereitstellen kann und vergleichen es mit Eingabetechniken deren Hardwarekomplexität zunehmend steigt. Unsere Ergebnisse zeigen, dass die kugelbasierte Technik, die ohne Knöpfe auskommt, nur von einer Controller-Variante übertroffen wird, die physische Knöpfe und ein Touchpad verwendet und somit nicht auf unterschiedliche Modi angewiesen ist. Viertens, um das intrinsische Problem der Fortbewegung in VR zu erforschen, untersuchen wir zwei gegensätzliche Ansätze: eine kontinuierliche und eine diskrete Technik. Für die erste präsentieren wir ein sphärisches Eingabegerät zur Fortbewegung, das zwei verschiedene Paradigmen unterstützt, die einen First-Person-Avatar entsprechend bewegen. Es zeigte sich, dass das Paradigma der direkten Positionssteuerung, angewandt auf einen Kugel-Controller, im Vergleich zu regulärer Controller-Interaktion, die zusätzlich auf physische Knöpfe zurückgreifen kann, meist besser abschneidet. Im Bereich der diskreten Fortbewegung evaluieren wir das Konzept einer kugelförmingen Miniaturwelt (Spherical World in Miniature, SWIM), die für die Avatar-Teleportation in einer großen virtuellen Umgebung verwendet werden kann. Die Ergebnisse zeigten eine subjektive Bevorzugung der kugelbasierten Technik im Vergleich zu regulären Controllern und im Durchschnitt eine schnellere Lösung der Aufgaben sowie eine höhere Genauigkeit. Zum Abschluss der Arbeit diskutieren wir unsere Ergebnisse, Erkenntnisse und die daraus resultierenden Beiträge zu unseren zentralen Forschungsfragen, um daraus Empfehlungen für die Gestaltung von Techniken auf Basis kugelförmiger Eingabegeräte und einen Ausblick auf die mögliche zukünftige Entwicklung sphärischer Eingabegräte im Mixed-Reality-Bereich abzuleiten.